.

Flash-Optimized Index Structures for Embedded Systems

Devesh Agrawal, Shashi Singh, Deepak Ganesan, Ramesh Sitaraman, and Yanlei Diao
{degrawal, shashi,dganesan,ramesh,yanlei} @cs.umass. edu,
Department of Computer Science,
Univeristy of Massachusetts,
Amherst MA 01008.

Flash memories are in ubiquitous use in many embedded
systems, including sensor networks, PDAs, mobile phones,
digital cameras and others. Flash-based embedded systems
present two key challenges in designing index structures: (a)
flash has fundamentally different read/write characteristics
from other non-volatile media such as magnetic disks, and
(b) the limited memory on embedded platforms requires
careful allocation of memory resources. In this paper, we
present the Buffered-B+ Tree, a novel index structure that
is designed to minimize pages and bytes accessed on flash,
thereby minimizing energy cost and response time. Our
work is inspired by prior research on buffered data struc-
tures designed for sorting and bulk-loading that minimize
I/0 for updates by fully utilizing available memory to buffer
operations. However, unlike previous schemes, the Buffered-
B+ tree uses an online adaptive algorithm that enables it
to be efficient for immediate lookup, in addition to being
adaptive to workload characteristics. Qur evaluation shows
that the Buffered-B+ tree offers upto 20x performance ben-
efits over alternate flash-based approaches across a range of
workloads, datasets, and memory constraints.

1. INTRODUCTION

Flash memories are in ubiquitous use in many embedded
systems, including sensor networks, PDAs, mobile phones,
embedded wireless routers, digital cameras and other de-
vices. Flash memories offer numerous benefits that make
them an ideal fit for battery-powered embedded systems:
small size, low cost, low power consumption, high capac-
ity, and greater shock resistance. The extremely low power
consumption of flash memory is particularly important in
energy-constrained sensor network applications since it en-
ables us to view the sensor network as a distributed data
archival and querying system [9]. In such a system, volu-
minous sensor data (e.g. image/audio/vibration data) can
be stored and indexed locally at sensors, and queries can
be pushed inside the network to retrieve the most relevant
data. Flash-based index structures are also required in other

embedded systems. For example, flash file systems require
efficient index structures to quickly locate items, and some of
them use B-trees for indexing [2]. In addition, mobile phones
are being employed in a variety of roles that require index-
ing on flash, ranging from low-power embedded databases
[1], to embedded search engines.

A key challenge in designing index structures for flash is
that, as a storage medium, flash has fundamentally differ-
ent read /write characteristics from other non-volatile media
such as magnetic disks. The first difference is that, un-
like disk writes, flash writes are immutable and cannot be
updated in-place—once written, a data page must be erased
before it can be written again. Moreover, the unit of erase of-
ten spans multiple pages, further complicating flash manage-
ment. Second, flash memory has a very different cost model
from magnetic disks — reads and writes to flash have very
low fixed cost, and reads are cheaper than writes. Besides
flash characteristics, embedded systems are often memory-
constrained with memory sizes ranging from as little as a
few kilobytes (for sensor platforms such as the Mote [20])
to a few megabytes (for PDAs). Both flash and memory
constraints fundamentally impact the energy consumption
and response time of a flash-based database system: on one
hand, the idiosyncrasies of flash require fundamentally dif-
ferent techniques to limit read, write and erase operations
and to optimize for a different cost model, and on the other
hand, the constrained memory sizes require memory opti-
mizations that can maximize energy efficiency across a wide
range of sensor devices with diverse memory constraints.

There have been numerous proposals to design flash op-
timized storage systems [7, 8], database systems [15], and
index structures [15, 18, 24, 25]. A majority of these ap-
proaches focus on the problem of minimizing the overhead
resulting from the lack of in-place updates. When data in
a flash page is updated, these schemes avoid re-writing the
entire page by storing “deltas” to the page in a separate lo-
cation on flash. We show that such delta-based approaches
are fundamentally unsuitable for designing flash-based in-
dex structures. This is because they attempt to optimize
for node writes, but end up greatly increasing the cost of
node reads, thereby increasing overall cost. Our view is that
the main deficiency of existing techniques to design flash-
optimized indexes is that they focus solely on storage-layer
optimizations and seek to keep the index structure itself un-
changed. As a result, the index structure is not designed to
either optimize for the constraints and cost function of flash
memory, or to fully exploit available memory on embedded
platforms.

In this paper, we present the Buffered-B+ Tree, a novel
index structure that is designed to minimize both pages as
well as bytes accessed on flash, thereby achieving the twin
objectives of minimizing energy costs as well as response
time. Our work is inspired by prior research on buffered
data structures designed for sorting and bulk-loading that
minimize I/O for updates by fully utilizing available mem-
ory to buffer operations [4, 5]. The principal idea behind
these techniques is to have a large buffer associated with
each node (or group of nodes) of a B-tree, and to buffer op-
erations on a sub-tree until the buffer fills up. Such an ap-
proach amortizes each read and write request to the storage
media over a large number of insert or lookup operations,
and also makes maximal use of available memory. The key
limitation of these techniques is that they were designed for
bulk-loading, hence their performance suffers dramatically
when lookups need to be answered immediately. This is
because such “immediate” lookup requests incur the over-
head of performing a linear scan through large flash-resident
buffers, which is typically far more expensive than the gains
obtained by buffering updates. In fact, we show that while
a Buffer Tree is significantly better than a standard B+ tree
when lookups can be delayed, it performs considerably worse
when even a small fraction of the lookups (1%) need to be
processed immediately.

The central idea of this paper is that we can design an
index structure that provides the best-of-both-worlds — it
can provide the benefits of a Buffer-tree for insertions, while
providing the benefits of a B+-tree for immediate lookup.
We achieve this objective by starting with a flash-optimized
B+ Tree, and attaching buffers to different nodes such that
each buffer batches updates to a sub-tree. Then, we adapt
the size of each buffer using an online algorithm that esti-
mates the cost and benefit of buffering updates based on the
currently observed lookup/insertion workload. This tech-
nique allows us to combine the benefits of a write-optimized
Buffer tree for a write-intensive workload together with a
read-optimized B+-tree for read-intensive workload, and to
choose the ideal buffer size for any intermediate workload.
We call our index structure a Buffered-B+ tree to signify
this adaptive capability.

Translating the benefits of a Buffered-B+ tree into prac-
tice is non-trivial since it requires that we carefully deal with
flash memory limitations and cost functions, as well as the
memory limitations of embedded platforms. An important
contribution of our work is optimizing the Buffered-B+ tree
for flash by: (a) optimizing the layout of buffers and index
nodes on flash, (b) determining the optimal node size across
a range of workloads and memory sizes, and (c) identifying
how to allocate limited memory (RAM) for caching buffers
and nodes.

In summary, the contributions in this paper are four-fold:

» We present an analysis of the Buffer Tree for imme-
diate lookups, and a comparison of the strengths and
limitations of the B+ tree and Buffer tree.

» This study leads us to the design of the Buffered-B+
tree, a novel index structure for flash memories that
is efficient, adaptive, and versatile, and is fundamen-
tally better suited for flash memories than existing ap-
proaches. We present a 2-competitive online algorithm
for adapting buffer sizes of a Buffered-B+- tree, as well
as a heuristic with lower memory consumption.

» We present a full implementation of the Buffered-B+

Tree on flash that optimizes for flash characteristics
and the memory constraints of embedded systems.

» Finally, we present a full evaluation of the Buffered-
B+ tree and show that it is upto 20x better than all
existing flash-based indexing techniques across a range
of workloads, datasets, and memory constraints.

2. DESIGN CONSIDERATIONS

In this section, we discuss flash characteristics, and how,
in conjunction with memory constraints, they impact the
design of an index structure.

2.1 Flash Memory Characteristics

NAND flash memories present some important differences
from magnetic disks in terms of their constraints and cost
model that impact the design of an index structure:

Flash memory hardware characteristics: Flash mem-
ories have three key hardware constraints:

» No in-place updates: Although flash is an energy-
efficient non-volatile storage medium, it is fundamen-
tally different from other devices such as disk due to
its no-overwrite nature—once a data page is written
to flash, it can not be updated or rewritten and must
be erased prior to being written again. The small-
est unit that can be erased on flash, termed an erase-
block, typically spans few tens of pages, which makes
a read-modify-write-operation prohibitively expensive
since it necessitates copying of all valid pages within
the erase block, then erasing the block, and finally
copying the valid pages and updated page back to the
block. Therefore, it is preferable to write the updated
data page to a different location, rather than erasing
and rewriting the old block.

» Byte-level access: An important distinction between
a disk and flash is that while the smallest amount of
data that can be accessed on a disk is a sector (typi-
cally 512 bytes), flash memory can be accessed at the
granularity of a byte. Each access involves first clock-
ing in the address of the page and the byte offset, after
which a sequence of bytes can be read out or writ-
ten. As we will see, the ability to access flash at a
small granularity is crucial since it enables us to de-
sign techniques that optimize the total number of bytes
accessed as well as the total number of pages accessed.

» Limited writes per page: A third constraint of flash
memory is that a page can be written to only a lim-
ited number of times (typically between 1-4) in a non-
overlapping manner.

Flash memory Read/Write Cost: Table 1 shows the
energy and latency costs involved with the read and write
operations of two different classes of NAND flash memories
available today. There are three notable characteristics of
the cost function:

» Low Fixed Cost: Flash memory is a purely elec-
tronic device and has no moving parts. As a result, it
has no rotational and seek delay to access a page, un-
like magnetic disks. The fixed access cost for flash is,
therefore, much closer to per-byte read and write costs
than in the case of disks. The ability to cheaply access
any page in flash introduces questions about how to
best optimize index structures for flash, which is one
of the problems that we address in this work.

Write Read
SLC Small Block¥, Energy Fixed 24.54p) 4.07ud
1Gb, 0.5KB page, Per-byte 0.0962uJ | 0.105u]
16KB erase block Latency | Fixed 274us 69us
Per-byte 1.577us 1.759us
SLC Large Block, Energy Fixed Cost | 2.06 uJ 7.78 pJ
1Gb, 4KB page, Per-byte 0.002xJ | 0.002uJ
64KB erase block Latency | Fixed 94.4us 25 us
Per-byte 0.042 us | 0.042 us

Table 1: Flash read/write energy and latency numbers
for the Toshiba TC58DVG02A1FT00 small block flash,
and the Samsung K9F1208X0C large block flash. For
the Toshiba flash, the numbers are measured using an
oscilloscope and an add-on board for the Mica2 Mote
fabricated by us. For the Samsung flash, the numbers
are obtained from the datasheet.

» Energy vs Latency Cost: Table 1 also shows that
the energy and latency cost functions are very similar
to each other in terms of the ratio of fixed to per-byte
costs. This is expected since the longer an operation
takes, the more energy it consumes. The similarity
between the cost functions suggest that optimizing an
index structure for energy will optimize latency, and
vice-versa.

2.2 Relation to Prior Work

A key problem in designing flash-based index structures
is how to handle updates to a node that has already been
written to flash. A trivial solution to the problem is to
re-write an entire node upon every update — for example,
every update to a B+ tree node can result in an out-of-
place rewrite of the entire flash page corresponding to the
node to a different location in flash. A flash translation
layer (FTL) hides this low-level movement of the physical
page by exposing only logical page numbers to the index
structure, hence pointers are not impacted by the page re-
write. Clearly, such an approach is inefficient and results in
numerous expensive node re-writes.

Existing techniques for reducing the overhead of out-of-
place updates treat updates to a flash page as a list of deltas
to the page. Instead of performing an expensive re-write
of the original flash page, the deltas to the page are stored
separately, thereby reducing the flash write overhead. When
a page needs to be read back to memory, both the base page,
as well as the pages where the deltas are stored are retrieved,
and the flash page is re-constructed. Such a delta-based
write-optimization is at the core of many recent techniques
[15, 18, 28], all of which use this basic mechanism but differ
in how they pack deltas into a flash page, and how they
layout delta pages in erase blocks on flash.

Is such a delta-based approach suitable for tree-based in-
dex structures on flash? Delta-based optimizations increase
the cost of reads since additional delta pages need to be
read at each level of the tree, but decrease the cost of writes
since inserted keys are packed into a delta page before be-
ing written to flash. A delta-based approach to constructing
tree-based index structures such as a B+ tree relies on the
fact that the savings in terms of fewer page writes outweighs
the cost of reading deltas for every tree access. However, Ta-
ble 1 shows that the cost of writing a page (fixed cost + a
page of bytes) is not significantly higher than the cost of
reading a page — the ratio is 1.5x for the large block flash,

and 5.5x for the small block flash. This suggests that even
reading one or two extra delta pages at each level of the
tree makes a delta-based scheme more expensive than even
a standard B+ tree with a node re-write upon every update.

The memory limitations of embedded devices exacerbates
the drawbacks of a delta-based approach. The limited caching
opportunity in small memory platforms leads to greater num-
ber of evictions of partially filled delta pages to flash. Since
a flash page can be only written a limited number of times,
this results in more delta pages being written to flash, each
of which is only partially filled. This in turn increases the
cost of insertion and lookups since more pages need to be
accessed. In Section 6, we provide a more detailed study
that considers numerous possible optimizations to a delta-
based scheme and show that delta-based B+ trees are not
effective to reduce the overhead of out-of-place rewrites.

Our Approach: Our view is that the main deficiency of
these techniques is that they focus solely on storage-layer
optimizations and seek to keep the index structure itself
unchanged. Instead of this approach, we ask how an index
structure can be re-designed to be aware of the flash memory
cost function and limitations, and to fully exploit available
memory to optimize performance. This question leads us
to the Buffer tree [4], an index structure for bulk-loading
that is fundamentally designed to minimize I/O for updates
by fully utilizing available memory to buffer operations. In
the following sections, we describe the Buffer tree in greater
detail, and how we can take advantage of some of its benefits
to design a flash-optimized index structure.

3. BUFFER TREES FOR INDEXING

Buffer trees [4] were originally designed for minimizing
the I/Os (i.e., operations to read or write a page (block) of
elements of size B) required for sorting and bulk loading,
hence optimized for insertions.! In our work, we re-examine
the buffer tree algorithm in the context of online index op-
erations, including its performance for both insertions and
lookups (Section 3.1). We further perform a comparative
analysis to gain insights into the strengths and limitations
of buffer trees and B+ trees. Results of this analysis lead
to the design of a more advanced tree structure that offers
truly efficient support for both insertions and lookups over
flash, which we describe in the next section.

3.1 Buffer Trees

The key idea underlying buffer trees is that, instead of per-
forming insertions or lookups one at a time, we can perform
multiple insert and lookup operations all at once. This way,
node accesses from the root to the leaves are shared among
these operations, yielding a better amortized cost for each
operation. To allow multiple operations to be performed all
at once, a buffer tree operates in a lazy batched manner: it
attaches a buffer to each node, containing operations to be
performed on the subtree rooted at that node, but without
actually performing the operation. When the buffer finally
fills up, all of its contained elements are pushed in a batch
to the buffers of the child nodes. This process proceeds un-
til elements are pushed all the way to the leaf buffers and
eventually to the leaf nodes themselves. Buffer trees also

1 Buffer trees also support deletions with the same cost as inser-
tions. For ease of composition, we omit deletions in the discussion
of this paper and refer the reader to [4] for details.

grisi2leislafalaji]oi6f7]alalao
Buffer Tree e A o e =

Figure 1: A Buffer tree of height three is shown together
with the buffer emptying process for one of the nodes.

Parameter Symbol | Value(s)
Max. of elements in main memory M variable

Max. of elements in a page (block) | B variable
Node size (in num. of elements) D o1

Node occupancy (a,b) b=D,a=%
Buffer size (in num. of elements) U 21

Num. of elements in the tree N variable
Height of the tree H <log, £ +1

Table 2: Parameters of the Buffer Tree Algorithm

fully utilize memory to reduce I/Os by employing large
nodes as well as large buffers that amortize the node access
cost over many elements.

Data Structure. Like a B+ tree, a buffer tree is a bal-
anced tree where all leaf nodes reside at the same level from
the root of the tree. With respect to node occupancy, a
buffer tree is modeled as an (a,b)-tree, where each non-leaf
node has between a and b child pointers, with a < (b—1)/2,
and the root has between 2 and b child pointers (B+ tree is
a special (a,b)-tree with a = (b — 1)/2). Buffer trees differ
from B+ trees in two main aspects: Each node in a buffer
tree is a super-node whose size D in number of elements is on
the order of the memory size M (D is also known as degree
of the tree). size U is also ©(M). Table 2 summaries the pa-
rameters of a buffer tree. For succinctness of our discussion,
we assume certain values of these parameters as shown in
the table. In particular, we set a super-node and its buffer
to be roughly half the size of the memory so that they fit in
memory together.?

Insertions. We first present the buffer tree insertion al-
gorithm. When receiving a request to insert an entry into
the buffer tree, we construct a new element consisting of the
entry to be inserted and a time stamp. When we have col-
lected B such elements in main memory, we sort them by
value and insert them as a block into the buffer of the root
stored on the external memory. If the buffer is not full, we
stop here. Otherwise, we incur the buffer-emptying process.

Buffer emptying at a non-leaf node. When buffer empty-
ing occurs at a non-leaf node, the basic operations are to
load the buffer and the super-node into main memory, re-
move elements from the buffer, and distribute them to the
child buffers through lookups in the node.

More specifically, when emptying the buffer at a non-leaf
node v, we view the buffer as two components: the batch
of most recent insertions y that caused the buffer overflow,

20ther values that satisfy the buffer tree definition also obey the
results presented in this paper.

and the elements z in the buffer before these insertions, with
|z| < U and |z| + |y| 2 U. We also know that y are sorted
(more on this below). The emptying process takes three
steps: (1). Read elements in z into main memory and sort
them, which takes '%l I/Os. (2). Read y (already sorted)
to merge with . As we merge the elements, we push them
down the tree via lookups in v, and place them in the ap-
propriate child buffers. Given our memory size, it is easy
to see that we only need to read y and v once in this step,
leading to J-L';i I/Os for this step. Furthermore, since we
distribute the elements in sorted order to the child buffers,
the write cost is simply % I/Os. (3). If a child buffer
becomes full after receiving y; (sorted) elements from this
process, we empty it recursively. A buffer emptying opera-
tion is illustrated in Figure 1.

If we first ignore the recursive calls, the sum of the first
two steps is z'ﬂ*"—ﬂ'iuﬂ. So, the amortized cost over |z|+]y|
elements is £(2+ z17)- Since |z|+|y| > U, the amortized
cost for pushing an element to a child buffer is:

1 D
o (E (2 + U)) (1)
By plugging in the values of D and U from Table 2, we have
O(%) 1/0 to push an element to a child buffer. Since the
emptying process can propagate from the root to the leaves,
the cost of pushing an element all the way down to a leaf
buffer is O(%).

Buffer emptying at a leaf node. The buffer emptying pro-
cess at a leaf node is similar to above, except that elements
are now removed from the buffer and inserted to the leaf
node, which may cause node splits. The cost of this process
hinges on the number of splits that can occur when insert-
ing |z| + |y| elements into the leaf node. Earlier work offered
upper bounds on the number of splits for an (a,b)-tree [12].
Its theorem indicates that the maximum number of splits in
our case is ﬂlﬂ%‘l‘m + H. So, the number of splits caused
by an element is &4 + m’i—lw, or O(g25 + #).

Also, each node split takes O(-EB—’) I/Os. Finally, by plug-
ging in values of @, b, D, and U from Table 2, we again have
O(%) for the amortized cost of inserting an element into a
leaf node and splitting nodes bottom-up.

Lookups. As mentioned above, buffer trees were de-
signed for batched insertions and lookups. In the delayed
lookups approach, a lookup request causes an element to
be created and buffered at the root, just like an insertion
request. The lookup is not performed until its element is
pushed to a leaf node in the buffer emptying process. Thus,
a lookup has the same amortized cost, O(—g), as an inser-
tion. However, it experiences a delay up to the time taken
to fill all the buffers on the root-to-leaf path.

In the immediate lookup approach, whenever we receive
a lookup request, we search the buffer tree immediately by
scanning the nodes on a root-to-leaf path as well as their
buffers. Thus, we address lookups immediately, but have to
pay O(#£) 1/Os for each lookup, where the factor M refers
to the size of super-nodes and buffers. Note that we cannot
achieve a better lookup bound by just delaying the lookup
response a little bit. If the delay is so small that the size
of the batch is not on the order of M, the slightly delayed
lookup cost is still O(#22), the same as immediate lookup.

Buffer Trees vs B4 Trees: Table 3 shows that while
buffer trees are significantly better than the B+ tree for

Insertion Immediate Lookup
B+ tree O(logg N) O(logg N) ‘
Buffer tree | O(% logy, N) [O(H log,, N) ‘

Table 3: I/O costs of Buffer Trees and B+ Trees.

insertions, it is significantly worse for immediate lookups.
The lower insertion cost of buffer trees is because of the
log factor with the base M (in contrast to the base B for
B+ trees). The high immediate lookup cost for the buffer
tree arises due to the large factor M due to the need to
scan the large nodes and large buffers on a root-to-leaf path
to perform immediate lookups. In other words, the very
choices of large nodes and buffers that improved insertion
performance penalize lookup performance.

Results of our comparative analysis lead to two questions
that we address in the rest of the paper: (1). Can we adjust
the super nodes in buffer trees so that they require a reduced
node access cost for lookups while still contributing to the
low insertion cost? (2). Can we also adjust the buffers so
that we can achieve a balance between the lookup cost and
the insertion cost?

4. Buffered-B+ TREE

In this section, we propose a new index structure, called
Buffered-B+ tree, that supports efficient immediate lookup
and yet has a low insertion cost. It achieves this by making
two key modifications to the original buffer tree structure.
First, it replaces each super-node with a subtree. Second, it
adapts the buffer size of each subtree based on the workload
seen by that subtree. The following two subsections explain
these techniques in detail.

4.1 Replacing a Super Node with a Subtree

To address the problem of high node access cost, the
Buffered-B+ tree replaces a super-node of size O(%) blocks
with a subtree of comparable size. Each node of the subtree
has a fanout F = Og’B), and the height & of the subtree is
chosen to be O(log %£).% Since M is typically quite large, it
can be assumed that k < 4. In addition, each subtree also
has a buffer of size O(%) blocks associated with it. This
way, the buffer tree can be seen as a regular B+ tree of
height H = O(logy N), augmented by buffers at every h**
level node. A Buffered-B+ tree is depicted in Figure 5.

The key insight is that this change retains the benefits of
the Buffer tree in terms of batched insertions, but reduces
the immediate lookup cost. This can be seen as follows:

Insertions: Applying the same analysis as done in Section
3.1, we can show that the amortized cost of emptying an
element from a buffer to the next level buffer (placed h levels
down the tree) is at most O(§ - (2+ ¥)) = O(¢%). To
compute the cost of pushing an element all the way down to
the lowest level buffer, we multiply the above cost with the
number of buffers on the path, O(£), where H is the total
height of the tree and h is the height of a subtree for one
buffer. Therefore, the amortized top-down cost of insertion
(ignoring splits) can be shown to be:

o(5-2)

An analysis similar to the one done in section 3.1, shows

3To avoid confusion, we use F to denote the node size in a
Buffered-B+ tree, as opposed to D for a buffer tree.

that the amortized cost of splits caused by emptying the

buffer of leaf subtree is at max O(ﬁ#) Since h < %, it

can be shown that the splitting cost is not more than the top
down cost of insertion. Hence, we claim that when the buffer
size U is comparable to the size M of the subtree, the total
insertion cost is O(% - £). Given £ = O(logy &/ logp &)
= O(log y N), the insertion cost becomes:

o (% log ¢ N) @)
As can be seen, this cost has the same order as the buffer
tree insertion cost shown in Table 3.

Immediate lookups: While the insertion cost remains un-
changed, changing the node size is able to lower the imme-
diate lookup cost. The node access cost for a lookup is now
reduced to reading only O(log; N) nodes, each of size O(B).
We can see that this is a huge improvement over the node
access cost of a lookup over a buffer tree, which is linear
in M. However, the buffer access cost of a lookup remains
unchanged as we still need to scan % buffers of size O(%)
blocks each. Hence, the buffer scan cost can be given by
O(% - £) = 0(% logy N).

Therefore, the total cost of an immediate lookup is:

O (logr N)+O(%log% N) 4)

It can be seen that the lookup cost here, assuming U =
©(M), still has the same order as the corresponding cost of
the buffer tree O(¥ logr N) as shown in Table 3.

A similar approach of placing buffers at every ht* level of
the tree was employed in [5]. One distinction is that, that
approach was used to efficiently bulk load a tree, whereas
ours is to reduce the node access cost of immediately lookups.
Second, such an approach of attaching buffers to subtrees
does not completely solve the problem of high lookup costs,
as showed above. This motivates us to consider using an
adaptive buffer size to also reduce the buffer access cost in
lookups.

4.2 Adaptive Buffering

The Buffered-B+ tree adaptively controls the buffer size of
each subtree to improve the lookup cost while maintaining a
low insertion cost. The buffer size is controlled by adaptively
deciding whether or not to prematurely empty the buffer
in response to a lookup or an insert operation. The key
rationale behind doing so is that emptying a buffer reduces
the buffer size to zero, hence eliminating the need for buffer
access for future lookups.

The right point at which to empty the buffer is workload
dependant. From Equation 2, we can see that the inser-
tion cost is inversely related to U (the effective buffer size
in this case, since we prematurely empty buffers), whereas
Equation 4 shows that the lookup cost is linear in U. This

trade-off indicates that the optimum value of U depends on

the workload: we would want U to be small for a read in-
tensive workload, and high for a write intensive workload.
The decision of when to empty the buffer is taken at a per
subtree level, since different parts of the tree could be seeing
a different workload depending on the key distribution.

In the following subsections, we first present an optimal
online algorithm ADAPT that adaptively decides when to
empty the buffer. Then, we present a simplification of this

algorithm that requires a much smaller amount of state but
achieves good performance in practice.

4.3 An optimal deterministic online algorithm
for Adaptive Buffering

Total inserted items — - _Iil_,—
St

|
Total items flushed

|

i

1
sav(ij} §

; 1 by ADAPT

Lookups

Figure 2: Algorithm ADAPT.

We describe algorithm A DA PT which processes a sequence
of insert and lookup operations in an online fashion and de-
cides at each stage whether or not to empty the buffer. A
typical sequence may be

{INS51,INS2,--+Li, Liy1,---INS;,--- }

where INS; and L; are the i*® insert and i** lookup respec-
tively. The sequence of operations processed by ADAPT
can be graphically represented by plotting the i*" lookup
on the x-axis versus the total inserted items preceding the
i*® lookup on the y-axis (see solid staircase-like line in Fig-
ure 2). The vertical segments of this plot represents items
inserted into the buffer, and the horizontal segments repre-
sents lookups made subsequent to the insertions. Likewise,
the actions taken by ADAPT can be represented by plotting
the i*" lookup on the x-axis versus the total items emptied
by ADAPT prior to the i*" lookup in the y-axis (see dot-
ted stair-case-like line in Figure 2). The vertical segments
of this plot represents the algorithm emptying the buffer,
while the horizontal segments represents lookups processed
without emptying.

The goal of ADAPT is to minimize the total cost of pro-
cessing the sequence of operations. ADAPT operates in an
online fashion making decisions at the current time with-
out knowing the future. The competitive ratio of ADAPT
is the ratio of the cost of ADAPT to the cost of OPT (an
offline optimal algorithm that knows the entire sequence in
advance) for a worst-case sequence of operations.

Let s; denote the number of buffer entries in the buffer
at the 7" lookup, § denote the cost of reading the subtree
and -y denote the cost of reading (and writing) a buffer-entry
during a buffer emptying operation. We make the following
simplifying assumptions in this analysis. We assume that
the cost of scanning the buffer is a linear function of the
number of buffer entries, i.e. 3-s; for the 7" lookup. We
also assume that the buffer emptying cost can be written
as vy - 5; + 0, since it is composed of the cost of reading the
subtree and the cost of reading (and writing) the s; buffer
entries given by v - s;.

4.3.1 Algorithm description

When the i lookup is received, ADAPT considers every
suitable j < 7 since the last flush and computes sav(i, j)
which is the savings in the cost of lookup processing if it
had (in hindsight) emptied the buffer at the j** lookup. If
ADAPT had emptied the buffer at the j*" lookup, it would
have saved scanning s; entries for the next (i—j+1) lookups.
Therefore, the savings sav(?,j) can be written as (i — j +
1) - 3 - s;. Pictorially, sav(i, j) is simply 3 times the area of
the shaded rectangle in Figure 2. Let the cost of emptying
the buffer at the j** lookup be empty(s) which equals -~ -
sj + 4. If there exists a j such that the savings sav(i,j) >
emply(j), ADAPT empties the buffer prior to processing
the #*" lookup. Intuitively, ADAPT looks to see if an empty
operation at some previous j** lookup would have decreased
its overall cost in hindsight, and if such a lookup exists it
empties the buffer now. In particular, if OPT knowing the
future could have emptied the buffer at some j* lookup to
decrease overall cost, ADAPT follows suit, albeit with some
delay resulting in some extra lookup cost. Note that up to
U counters may be needed to track the relevant values of s;
and sav(i, 7), where U is the maximum size of the buffer. In
addition, ADAPT will also empty a buffer if the size limit
of U is exceeded, i.e. if there have been U + 1 inserts after
the last empty operation.

=

Total items emplied by
ADAPT

Inserts

Total items emptied by
oPT

+

Foer F G Fiat Lookups

Figure 3: Proof of Lemma 1

4.3.2 Cost analysis

Let cost(ADAPT) (resp., cost(OPT)) be the total cost
incurred by ADAPT (resp., OPT). This total cost can be
broken down into 3 components: (1) bef(ADAPT) is total
cost incurred by ADAPT corresponding to the fized compo-
nent § of buffer-emptying cost. (2) bev(ADAPT) is the total
cost corresponding to the variable component - s; of buffer-
emptying cost. (3) ip(ADAPT) is the total cost correspond-
ing to the variable component 3 - s; of lookup-processing
cost. The total cost incurred by ADAPT is cost(ADAPT)
=bef(ADAPT) + bev(ADAPT) + Ip(ADAPT). Similarly,
cost(OPT) = bef(OPT) + bev(OPT) + Ip(OPT). The to-
tal cost of buffer-emptying is be(ADAPT) = bef(ADAPT)
+ bev(ADAPT) (similarly for be(OPT)). In the follow-
ing lemmas, we bound each of these 3 cost components for

T

e i i

£ s Tolal items emptied by
g s ADAPT

2 s}

L
P Total items emplied by
Be
1 k i i Lookups

Figure 4: Proof of Lemma 3

ADAPT.

Lemma 1: There exists an optimal OPT such that between
any two consecutive empty operations of ADAPT there must
be at least one empty operation of OPT.

Proof: Let F; and Fit1 be two consecutive empty opera-
tions of ADAPT (see Figure 3). Fopr denotes the empty
operation of OPT. We have the following two cases:

(1) Empty F;41 was caused by the buffer getting full, i.e.
when U elements were already in the buffer and the (I/41)t"
element arrived. In this case we know that in the interval
between events F; and Fiyi, there would have been U + 1
inserts. Thus, OPT must also empty at least once in this
interval.

(2) Empty F;4+1 was not caused because the buffer got full.
Thus, ADAPT emptied the buffer to optimize cost. For con-
tradiction, assume that OPT did not empty in the interval
between F; and Fi41. Let Fopr be the OPT empty immedi-
ately preceding F;. In case OPT did not empty before empty
F; of ADAPT, Fopr is the first empty of OPT that occurs
when the algorithm starts. The algorithm starts with the
buffer being empty, and we consider it as the first empty op-
eration. In Figure 3 red-line shows the behavior of OPT and
green-line shows that of ADAPT. In the interval (F;, Fi+1),
red-line must be below green-line because in this interval,
buffer size of OPT must be no less than that of ADAPT.
ADAPT would have taken the decision to carry out empty
Fi41 because one of the counters, in the interval (F;, Fiq1),
would have hit zero. Let C; be that counter, corresponding
to the lookup L; (shown in Figure 3). s: is the buffer size
of ADAPT at lookup Lj. sz is the buffer size of OPT at L;.
q is the number of lookups that arrived in the event-interval
[Lj, Fi+1] (including the lookup which resulted in the event
Fii1). Empty Fy, was carried out because C; hit zero, i.e.
B-q-s1>v-81+46. Here, B-q-s1 is the savings in the cost
of lookup processing if ADAPT had (in hindsight) emptied
the buffer at the j;» lookup. «-s1+4 is the cost of emptying
at jin lookup. This implies 8-q > v+ 4d/s1 > v+ §/s2, i.e.
B-q-s2>7-s2+ 0. This suggests that, had OPT emptied
at Lj, it would have further decreased its cost. But this is
not possible because OPT is optimal. Hence, we arrive at a

contradiction. [

Lemma 2: bef(ADAPT) < bef(OPT)

Proof: The first empty of ADAPT occurs when the algo-
rithm starts and the buffer is already empty. By arguments
similar to the one given in Lemma 1, there must be at least
one OPT empty between this first empty of ADAPT, and
its next empty operation. Lemma 1 states that between any
two real empties of ADAPT later on, there must be at least
one OPT empty. We associate each ADAPT empty with the
immediately preceding OPT empty. We conclude that the
total number of ADAPT empties is no more than the total
number of OPT empties. Each empty operation contributes
a constant, d, to be f(ADAPT) and bef(OPT). The Lemma
immediately follows. [

Lemma 3: bev(ADAPT) < bev(OPT) +~-U

Proof: When the buffer of fixed constant size U gets filled,
there must be an empty on the subsequent insert operation.
We consider the total number of elements (each element
emptied from the buffer is counted separately) that could
be emptied by ADAPT and OPT during the entire course.
The difference in this number between any two algorithms is
at most U, corresponding to at most U elements still remain-
ing in the buffer at the end of the course. The bev part is
proportional to the total number of elements emptied during
the entire course. Hence, in the worst case, bev(ADAPT)
may be off by a constant v-U from bev(OPT). The Lemma
immediately follows. O

Lemma 4: Ip(ADAPT) < Ip(OPT) + be(OPT)

Proof: Firstly, we have Ip(ADAPT) < Ip(OPT)+Ip(ADAPT—

OPT), where Ip(ADAPT — OPT) is the extra lp cost that
ADAPT incurs over the Ip cost incurred by OPT. We then
show that I[p(ADAPT — OPT) < be(OPT), which proves
the lemma. "

Consider Figure 4. Red staircase line shows ADAPT and
green staircase line shows OPT. ADAPT empties consecu-
tively at I*® and i*" lookups. By Lemma 1, there is at least
one OPT empty in between. Figure 4 shows two of them:
at k' and j** lookups. The shaded area shown in the figure
is a typical portion of Ip(ADAPT — OPT). We show that
this is at most the cost OPT incurred to empty the buffers
at j and k. Thus each such portion of [Ip(ADAPT — OPT)
before an ADAPT-empty can be attributed to empty costs
incurred by OPT before this ADAPT-empty and after the
immediately preceding ADAPT-empty. Using Lemma 1, we
can then conclude that ip(ADAPT — OPT) < be(OPT).

The shaded portion in Figure 4 is divided into two rectan-
gles. For the top rectangle, ADAPT’s savings if it had emp-
tied at 7, is 8- (i — 7) - s2 (excluding i** lookup which caused
an empty before its execution). Now ADAPT emptied at i
because one of the counters went below zero (including the
cost of i*" lookup). Thus, cost of accumulated lookups ex-
cluding i** lookup, is at most the initial value of any of the
previous counters (Note: initial value of a counter is v-s+46, s
being the buffer size at the counter position). In particular,
B-(i—j)-s2 < y-s2+6, i.e. B-(i—j) < y+8/s2 < y+d/s1. Or,
B:(i—7)-s1 < y-s1+6, i.e. portion of [Ip(ADAPT—OPT) de-
noted by the top rectangle is at most the cost of emptying
by OPT at j. Similarly for the bottom shaded rectangle,
B-(i—k)-s3 <~v-s3+68 < v-84+6, i.e. portion of
I[p(ADAPT — OPT) denoted by the bottom rectangle is at

most the cost of emptying by OPT at k. O

Theorem 1: ADAPT is 2-competitive, i.e., the cost in-
curred by ADAPT is within a factor of 2 of the optimal
offline algorithm OPT.

Proof: Using Lemma 2, Lemma 3 and Lemma 4, we have:
bef(ADAPT)+bev(ADAPT)+Ip(ADAPT) < bef(OPT)+
bev(OPT) + lp(OPT) + be(OPT) +~-U

Or, cost(ADAPT) < cost(OPT) + be(OPT) +~-U

Or, cost(ADAPT) < 2-cost(OPT)++~-U (since be(OPT) <
cost(OPT))

Here v - U is a constant. Hence, it follows that ADAPT is
2-competitive. [

Theorem 2: ADAPT has the best possible competitive
ratio for a deterministic algorithm, i.e. no deterministic al-
gorithm can be better than 2-competitive.

Proof: Ski-rental [27] is a special case of our problem by
considering the following mapping. Suppose we get just one
insert and sequence of lookups after that. Each lookup costs
B, which corresponds to the cost of renting a ski. An empty
operation costs 44§, which corresponds to the cost of buying
a ski. Since we know that even the simple case of ski-rental
cannot have a deterministic online algorithm with compet-
itive ratio less that 2, the same lower bound holds for our
more general problem. O

44 A simplified algorithm

Although we showed ADAPT to be 2-competitive, it suf-
fers from two problems that complicate a direct implemen-
tation. First, it requires U counters, one for reach possible
state of the buffer. Since this state has to be maintained for
each buffer in the Buffered-B+ tree, doing so is infeasible
for the low memory regimes that we target. Second, it has a
higher computational overhead as it needs to update every
counter on processing a lookup. Therefore, in our imple-
mentation, we use a simplified heuristic that is motivated
by algorithm ADAPT, called Adapt-Simple.

Algorithm 1 Adapt-Simple: Adaptive buffer emptying al-
gorithm

if requestType is an insert then

if buf ferSize < U then

Do not empty the buffer
else
Empty the buffer

end if
end if
{The following only concerns lookup requests}
subtree — Subtree receiving the lookup
a +«— Current accumulated cost of buffer scanning
buf fer ReadCost — Est. cost of reading this buffer
subtreeReadCost « Est. cost of reading the entire subtree
buf fer EmptyCost — subtreeReadCost + bufferReadCost
if subtree is a leaf then

bufferEmptyCost += Est. cost of writing entire subtree
else

buf ferEmptyCost += Est. cost of writing entire buffer
end if
if o + bufferReadCost < buf fer EmptyCost then

Scan the buffer to answer the lookup request

a += Cost of scanning the buffer
else

Empty the buffer

a « 0 {Clear the counter}
end if

Adapt-Simple assumes that the future workload is well
described by the workload seen in the past and heuristically

B-tree Index
Node Table
Subtee-1
Node Node Buttor
L ., B 10 { Detaits | Dotas
D BEHE
- Oftset0 | Cost
) 2 Bx0, Pgi
fiarea™ Co ST | - [smvic S T —

S, B <, Bgor1?

o S, s 18 BxS, Pp4 | BXx 00
S - IS - D oo | G
n 19 |55.Pw0

» R Y ’ L) Oftizet 0
Layout on flash
4 Nodo Log |m|lwal..am+cl

Figure 5: A Buffered-B+ tree having h = 2 and a fanout
of 16 is shown. Nodes 1 and 18 are roots of their subtrees
respectively and have a buffer associated with them.

estimates whether to empty the buffer. At a high level,
Adapt-Simple keeps track of the accrued cost, of scanning
the buffer, it has paid since the last buffer empty operation.
It decides to prematurely empty when this accrued cost is
more than the estimated cost of buffer emptying. Similar
to ADAPT, Adapt-Simple waits till the lookup processing
cost accrues to a certain threshold that warrants incurring
the cost of emptying the buffer. Algorithm 1 provides the
pseudocode for the algorithm.

5. IMPLEMENTATION

Having discussed the design of the Buffered-B+ tree, we
now turn to the implementation of the index structure on
flash. There are three key aspects of our implementation:
(a) the indexing layer including how insertions, buffer emp-
ties and immediate lookups are carried out, (b) the flash
storage layer including layout of the nodes and buffers, and
(c) memory allocation between the node and buffer caches.

5.1 Index Layer

The implementation of the Buffered-B+ tree augments a
standard B+ tree with buffers attached to every node having
a height that is a multiple of the subtree height h (Figure 5
shows an example with h = 2). An in-memory Node Table
maps each node to its current location on flash. Subtree root
nodes that are associated with a buffer also have additional
buffer-specific metadata associated with them. QOur imple-
mentation requires about four bytes of node-table metadata
for each node, and about 8 bytes of metadata for each sub-
tree. Since the number of subtrees is an order of magni-
tude lower than the number of nodes, we believe this addi-
tional metadata overhead justifies the savings obtained by
Buffered-B+ trees.

Insertions: Insertions to the Buffered-B+ tree are car-
ried out in a lazy batched manner. An insertion involves
creating a new “buffer-entry”, that is inserted into the root
subtree’s buffer. Since a buffer needs to be sorted in mem-
ory, the maximum buffer size is constrained by the total
memory M. In our implementation we set this to 3M /4.

Adapt-Simple: The Adapt-Simple algorithm can trig-
ger a buffer empty operation in two cases (a) prematurely
in response to a lookup (b) when the buffer size exceeds
the maximum buffer size U, which can result in cascading
empties down the tree. It has three components that are es-

timated online: (a) subtree read/write costs, (b) buffer read
cost, and (c) buffer empty cost for non-leaf subtrees. We
assume that the entire sub-tree is read from flash for each
emptying operation. This is typically the case since a batch
of updates are applied at the same time, hence it is likely
that the updates need all the nodes to be read. The cost
of reading the buffer is known since we can keep track of
the size of each buffer and the number of entries in it. To
estimate the buffer empty cost, we keep track of the aver-
age packing ratio of the buffer pages (i.e. number of buffer
entries per buffer page on flash), and use this to compute
the number of flash pages written, and hence the cost for
emptying the buffer.

Buffer Emptying: To empty a buffer, we first load and
sort the head }z| of the buffer in memory. Next it is merged
on the fly with the rest of the buffer |y|, which is still on flash,
and passed through the subtree. If it is a non leaf buffer,
then we route the buffer entries through the emptying sub-
tree into the buffer of the destination subtree. For example,
as shown in Figure 5, buffer entries in the buffer of sub-
tree 1 may be deposited in the buffers of subtree 2 through
17. In case it is a leaf buffer, then the sorted buffer entries
are inserted into the leaf subtree. We allow the subtree to
split multiple times as the entire leaf buffer is emptied. The
newly created leaf subtrees are then inserted into the par-
ent subtree, which in turn might split. In case the subtree
has a non-empty buffer, its buffer is also split. The whole
splitting process may cascade up to the root, in which case
a new root subtree might need to be created.

Immediate lookup: The Buffered-B+ tree does imme-
diate lookup much like the B+ tree. However, on encoun-
tering a subtree root node on the way to the leaf, it also
scans the buffer associated with that subtree. For example,
in Figure 5, if a lookup request reaches subtree 2, we will
also need to scan buffer 2. If the key to be looked up is not
found in the buffer we send it further down the tree.

5.2 Flash Layer

Node size: The cost model and tradeoffs of flash memory
require careful engineering of node sizes to optimize them for
this media. Previous studies have shown that the huge gap
between seek latency and the transfer rate for magnetic disks
favors larger B+ tree node sizes (16-32KB [11]) because they
amortize the cost of going to the disk and produce shallower
trees. In contrast to magnetic disks, the fixed cost of page
reads and writes for flash is much closer to the per-byte
cost (as shown in Table 1). This makes it important to
consider the total number of bytes accessed on flash since
it constitutes a significant fraction of the overall cost. The
flash memory cost model favors small B+ tree nodes and
deeper trees for two reasons: (a) smaller node sizes reduce
the total read cost since fewer bytes need to be read for each
lookup or insert operation, and (b) smaller node sizes reduce
the cost of an out-of-place rewrite since fewer bytes needs to
be re-written. Somewhat surprisingly, existing approaches
to design B-trees or its variants for flash memories do not
consider this problem, and set the node size to be equal to a
physical page, which is typically between 0.5KB - 4KB. As
we will show later in Section 6, a lower fanout (node size)
leads to tremendous cost savings for all flash-based indexing
schemes.

Node layout on flash: Since each Buffered-B+ tree
node is much smaller than a page in size, it is important to

pack multiple nodes into a flash page to amortize the cost of
flash writes over multiple nodes. Our implementation packs
multiple nodes into a single page, and stores these pages on
flash in a log-like manner. Every write to a node results in
an out-of-place re-write to the head of the log. An important
point here is that fewer such out-of-place node re-writes are
generated by the Buffered-B+ tree in comparison with a B+
tree due to the effect of batching. Thus, each out-of-place
rewrite of a node is typically amortized over multiple keys
being inserted to the node. Whenever a node is re-written
to a new location, the in-memory Node Table is updated
to reflect the new location. In order to facilitate garbage
collection to free up space, the node log is split into two
halves. When one of the halves fills up, the valid nodes of
the Buffered-B+- tree are recursively copied and written to
the second half, and the first half is erased. Since the node
log is fairly large (many hundreds of erase blocks), erases
are an infrequent operation. For typical NAND flash mem-
ories, the erase cost is much lower than the page write cost.
For example, the block erase cost (block = 32 pages) for
the Toshiba flash in Table 1 is approximately 2.5% of the
block write cost. Hence the cost of erasing the node log is a
relatively small fraction of the overall cost.

Buffer layout on flash: The buffer sizes in the case of
the Buffered-B+ tree are typically considerably larger than
the node sizes. Therefore, we do not need to pack differ-
ent buffers together into pages. Instead, each buffer is laid
out as a small flash partition consisting of a couple of erase
blocks. Pages within a buffer partition are written in a log
like manner. This approach also simplifies garbage collection
since the partition can be erased completely after it is emp-
tied. Moreover, the buffer can also be emptied and erased
when the partition becomes full. Since the number of bytes
read is important to minimize for flash, we store metadata
in each buffer page that tells how many buffer entries are in
the page. Therefore, each page read involves first reading
the metadata, and then the corresponding number of bytes.

5.3 Memory Allocation

Memory allocation presents an important implementation
challenge in our system. We now describe how memory is
used by different system components, and then discuss how
it is partitioned across them. The Buffered-B+ tree parti-
tions the memory given to it into two parts: (a) the Node
Cache and (b) the Buffer Pool. The Node Cache is respon-
sible for caching the new and recently accessed nodes of the
Buffered-B+ tree in memory. An LRU eviction policy is
used to evict old nodes?. In addition it also ensures that
the nodes of the subtree, whose buffer is being emptied, are
read at most once from flash. In order to do so, it pins the
nodes belonging to the subtree being emptied.

The Buffer Pool is responsible for storing the tail pages of
each buffer. This enables the buffer pool to improve write-
coalescing since it can potentially allow more buffer-entries
to be packed into a buffer page before the page is flushed to
flash. This improves both the cost of writing the buffers as
well as the cost of reading the buffers for immediate lookup
since fewer fixed page read costs are incurred. Evictions
from the buffer pool can occur in two cases: (a) a buffer
needs to be loaded into memory for emptying, and (b) a
new tail page is added to a buffer. The eviction policy

4We experimented with other eviction policies such as LIFO
but did not find much difference between the two

for the buffer pool is “highest-packed buffer page” i.e. the
buffer page having the largest number of buffer entries in
it is flushed. This increases the packing ratio of the buffer
pages, leading to less expensive reads for reasons discussed
earlier.

How should we allocate memory between the Node Cache
and Buffer Pool? We allocate most of the system memory to
the buffer pool. The key reason is that the buffer read and
write costs contribute to a significant share of the overall
immediate lookup cost. Hence, packing of the buffer entries
is critical to reduce this cost. In contrast, giving less mem-
ory to the node cache has a low impact on the overall per-
formance because nodes of a subtree are accessed together
resulting in a smaller working set.

6. EVALUATION

In this section, we evaluate the performance of the Buffered-
B+ Tree over a NAND flash simulator. Unless otherwise
mentioned, we used the cost function of the Toshiba 1Gb
NAND flash shown in Table 1. This flash does not allow
any page rewrites and has a page size of 512 bytes. We
find that the results in terms of energy and latency were
very close to each other, hence we present results only in
terms of energy as the performance metric. The simulator
was designed such that the memory given to it could be
varied. Moreover, each index structure was responsible for
managing its own memory.

Each experiment was performed by applying a workload
over a pre-constructed tree containing 50K keys. The total
costs obtained were normalized by the workload size to re-
port the cost per operation. Most of the experiments use an
index workload comprising a random mix of lookups and in-
serts with a given lookup-to-insert-ratio g, where ¢ denotes
the likelihood of getting a lookup over an insertion. The
workload size was adjusted for each g such such that a to-
tal of 200 thousand insertions took place. Unless otherwise
stated the keys being inserted and queried were i.i.d from a
uniform distribution ranging from 1 to 10000.

The Buffered-B+ tree was configured such that it used
25% of its memory for its node cache, while the rest of the
memory was used by the buffer pool. The fanout of the
Buffered-B+ tree was fixed to 16, and the subtree height h
was set to two. These parameters work well across a wide
range of workloads and memory regimes (see Section 6.3.6).
We exclude the memory usage of the Node Table (approxi-
mately 40 KB) in the results that we present since the sizes
of the Node Tables for different schemes were almost identi-
cal. We note that, for memory limited platforms, the Node
Table can be maintained on flash as a multilevel tree as
shown in [3].

6.1 Evaluation of existing flash-based indexes

In this section, we validate our claim that delta-based ap-
proaches for designing tree-based index structures are inef-
ficient even in comparison to a well-tuned standard B+-tree
for flash. We implement the delta-based approaches at a
layer below the B+ tree. Each “delta” in our implemen-
tation describes the high level operation performed on the
B+ tree node, for example, insertion of a new key-pointer
pair or updation of a child pointer. Each delta based scheme
uses an in-memory Node Table that maps a B+ tree node
to a "base node” and a list of delta pages. In order to read
a node, we first read the base node into memory and then

apply the deltas mentioned in the delta pages in order. To
prevent the Node Table size from growing unbounded, we
limit the number of delta pages associated with each node
to four [24, 25]. Similar to the Buffered-B+ tree implemen-
tation, nodes are written out as a log and an LRU based
Node cache is employed to cache new and recently accessed
nodes. We implement four different delta based schemes:

Basic Delta: This scheme is based on [24], and packs
deltas from different nodes into a single delta page that is
written out to the flash as a log. The basic drawback of this
approach is that deltas belonging a node are scattered over
the flash and hence many delta pages may need to be read
to reconstruct a single node, thereby significantly increas-
ing the cost of node reads. The remaining three techniques
present solutions for this problem.

BFTL: BFTL [25] improves upon the basic delta ap-
proach by coalescing deltas belonging to a single node and
writing them into fewer flash pages. This reduces the num-
ber of flash pages that must be read to reconstruct a node.
Updates in BFTL proceeds in three phases: 1. a maximum
of N updates to the B+-tree are kept in a ’reserve buffer’,
2. when the reserve buffer is full, the deltas generated by
the insertion of N keys into the tree are kept in an in mem-
ory delta pool, and 3. deltas contained in the delta pool
are flushed to the flash such that the deltas concerning the
same node are written to the same (or consecutive) pages.
We ensure that whenever memory is not being used by the
reserve buffer or delta pool, it is used by the node cache.
We set N = 60 based on the value recommended in [25).

IPL: In IPL [15], each nodes gets its own dedicated delta
page which only contains deltas belonging to that particular
node. Each dirty cached node has an associated log buffer
in memory which stores the deltas corresponding to that
node. Whenever a dirty cached node is evicted, we write its
corresponding log buffer to a flash page. In the IPL scheme,
the pages in an erase block are statically partitioned into
node pages and log pages. In our implementation, each erase
block is partitioned into 16 node pages and 16 log pages
since these settings worked best. Whenever a new node
page residing in erase block needs to be dirtied, we allocate
a new flash log sector on the erase block. The erase block is
"merged” if it is full by reading, merging, and rewriting all
node pages in it to a new erase block.

Consolidation: The Consolidation scheme addresses the
problem of long chain of deltas in the Basic Delta scheme
by using an online algorithm to adaptively decide whether
a node should be maintained as a list of deltas or as a sin-
gle page on flash. This scheme is inspired by the FlashDB
algorithm [18], which proposes an adaptive scheme to de-
cide whether a node should be maintained on flash as a list
of deltas or as a single page on flash. In this approach,
each node N maintains a counter C that tracks two costs:
(a) the cost of adding a new delta by incrementing C by
NodeWriteCost, and (b) the cost of reading the delta chain
by decrementing C by PageReadCost * i, where ¢ denotes
the length of the delta chain. The node N is consolidated
when C < 0, i.e. when the cost of storing deltas outweighs
the benefits.

To have a fair comparison between the schemes, we first
determine the optimal fanout for each scheme and pick the
value that gives the best results for the scheme (see Sec-
tion 6.3.6 for a discussion of the impact of fanout). We find
that a fanout of 8 gives the best results for the B+ tree, a

250

Detta record —— 50000
200 ngll:
= —n— = 40000
3 Consolidation —8— el .§
& 150 B+ Tree —» & Buffer tree (w/ imm. lookup) —+—] £ 20000
- + Tree —w— @
3 g 100 Buffer tree (w/ del. lookup) —x—3 :ét
§ 100 § eserer o S 20000
2]
< 10 K
L M&(& o -3 T 10000 B+ Tree —i—
Buffer tree (w/ del. lookups) ——
. Buffered B+ vtee —x—

0
0 20 40 60 80 100120 140 160 180 200
Lockup To Insert Ratio

Figure 6: Comparison of delta based
schemes with a tuned B+ tree

fanout of 16 for the Basic Delta, BFTL, and Consolidation
schemes, and a fanout of 84 for the IPL scheme.

Figure 6 shows how the total cost per operation varies
as the lookup-to-insert-ratio ¢ is varied from 1% to 200%.
This experiment was performed with 64KB of memory. The
results show that a B+ tree with optimal fanout does better
than all the delta-based techniques. This is because a low
fanout greatly reduces the node write (and read) costs for a
B+ tree. Delta based techniques avoid the cost of rewriting
a node, but incur a much higher node read overhead. Since
node writes are quite cheap in a low fanout B+ tree, the
delta based techniques do more harm than good.

The differences between the four delta-based schemes is
also worth noting. The Basic Delta scheme is the worst
since it has to read a long list of delta pages for each node.
IPL improves upon the Basic Delta scheme as it packs deltas
into dedicated delta pages. However, it needs to perform a
large number of merge operations which increases its cost.
The BFTL approach does better than both IPL and Basic
Delta as it achieves a good amount of delta packing and
yet doesn’t forgo the benefits of storing the deltas in a log.
The Consolidation scheme performs the best among these
schemes as it has a low read overhead for frequently read
nodes like top level nodes and reduces the number of node
rewrites required for infrequently read nodes like leaf nodes.

6.2 B+ Tree vs Buffer Tree

We now turn to a comparison of the B+-tree with opti-
mal fanout against the Buffer tree. We consider two cases
of the Buffer tree in this study: (a) Buffer tree with delayed
lookups i.e. lookups are buffered with the insertions, (b)
Buffer tree with immediate lookup i.e. the lookups scan
the nodes and buffers and are executed immediately. Fig-
ure. 7 shows that the Buffer tree with batched lookups and
insertions is about 5x better than the B+ tree with optimal
fanout. This shows that buffering updates has considerable
benefits over a scheme that does not use buffering at all.
However, the graph also shows that merely doing immedi-
ate lookups on an unmodified Buffer tree is not a good idea
as the large linear scan costs of lookups dominates over the
benefits obtained by batching the insertions. In fact, the
Buffer tree with immediate lookup performs considerably
worse than a B+ tree even for a very small lookup-to-insert-
ratio ratio of just 1%. It can also be seen that the cost of
immediate lookup on a buffer tree rises very rapidly as the
workload becomes more read-intensive. This motivates the
need for an adaptive structure that can obtain the benefits
of write batching in a write-intensive workload, yet perform
well for a read-intensive workload.

1
0 20 40 60 80 100120140160180200
Lookup to Insert Ratio

Figure 7: Immediate lookup on a
regular buffer tree

o
0 20 40 60 80 100120140160180200
Lookup to Insert Ratio

Figure 8: Impact on Garbage Collec-
tion

6.3 Performance of the Buffered-B+ Tree

In this section, we show that the Buffered-B+ tree scales
gracefully over a spectrum of workloads and memory con-
straints, and provides considerable performance benefits.

6.3.1 Impact of Workload

We use two traces to evaluate the effectiveness of Buffered-
B+ tree. The first is a “Uniform” workload where keys
drawn from a uniform distribution. The second is a “Image
Sensor” workload comprising visual terms in an image search
engine. This workload is a sequence of features contained in
200 images that were sampled from a camera sensor network
for indoor object detection. Each image is first processed us-
ing a feature extraction algorithm (SIFT) to extract unique
features from the image, which are then mapped to visual
words that are indexed [19]. A total of 64KB of memory
was given to the index in both cases. The keys to be looked
up were drawn randomly from the given trace.

Uniform Workload: Figure 9(a) shows how the per-
formance of Buffered-B+ tree varies gracefully as the work-
load changes from a write-intensive to read-intensive. The
Buffered-B+ tree works as well as the Buffer tree for write-
intensive workloads because it amortizes the cost of each
insertion heavily by batching. As the fraction of reads in-
creases, the Buffered-B+ tree responds by adapting the buffer
size appropriately as shown in Figure 9(b). We see that
Buffered-B+ tree quickly realizes that buffers are doing more
harm than good and reduces their size rapidly as the num-
ber of lookups is ramped up. However, the Buffered-B+
tree doesn’t completely turn off the buffers and is always
able to amortize insertion costs which helps it to perform
better than a B+ tree even in a read-intensive regime.

Sensor Workload: We now evaluate how the Buffered-
B+ tree compares to the Buffer tree and the B+ tree for
the Image Sensor trace (see Figure 9(c)). We find that the
behavior is very similar to that shown in Figure 9(a). The
Buffered-B+ tree performs about 4x better than the B+ tree
for write intensive workloads and about 20% better for read
intensive workloads.

We also ran the Buffered-B+ tree against other sensor
traces and find that it gives excellent performance in general.
The only cases were the Buffered-B+ tree performs worse
than the B+ tree is when the workload is highly temporally
correlated. In those cases, caching becomes very effective,
and the Buffered-B+ tree’s memory allocation policy (only a
quarter of the memory to the cache) impacts its performance
by about 30%. We believe we can address this problem by
dynamically adjusting the split of memory across the buffer

S0 1000

Buffered B+ ree —+—

B+ Tree ——

35 Buffered B+ ree —»—
tree (w/ del. lookups) —=—
30 4

15
10

Energy per op. (uJ)

1
0 20 40 60 80 100120140160 180200
Lookup 1o Insert Ratio

(b) Adaption of buffer size

5
0 20 40 60 80 100 120 140 160 180 200
Lookup to insert Ratio

(c) Cost with Image sensor trace

Figure 9: Effect of workload

B+ Tree ——
ered B+ ree —x—
3 40 Buffer ree (wldel lockups) —m—
& @ 100
L
S
20 5
g @ 10
w10 o
0
0 20 40 60 80 100 120 140 160 180 200
Lockup to Insent Ratio
(a) Cost
0 B+ Tree 8 —— 0
60 Buffered B+ tree —w— 50
3 Bufler tree (wf del. &p) —u— g
2 50 2 w0
8 40 g B+ tree (fanout 16) —+—
R ‘8', 30 BoTtee(lme) ——
gﬁ 0 E 2 Buller tree (w/ del. lookup) —&—
20 8 I 0088889n00600000886049
v 10 ‘\;q_“: Y 10
o :

B 16 32 64 128 256 512 1024
Memory size in KB (logscale)

Lookup to tnsest Ratio
Figure 10: (a) Adaption to memory under write inten-
sive workload (b) Effect of workload under low memory

pool and the node cache, which is a topic of future work.

6.3.2 Impact of Memory

In this set of experiments, we vary the memory available to
the index structures from 8KB to 1MB (excluding memory
given to the Node Table), the former representing Mote-class
embedded platforms, and the latter representing PDA-class
embedded platforms. Figure 10(a) shows how the perfor-
mance varies with memory by considering a write-intensive
workload with lookup-to-insert-ratio of 5%. To ensure that
the index structures don’t completely fit within the high
amount of memory given to them, we increased the workload
size to 1 million keys and started with an pre-constructed
tree having 200 thousand keys in it. The results demon-
strate that in a write-dominated workload, the Buffered-B+
tree out-performs the B+ tree with optimal fanout by 2.5 -
4x across the spectrum of memory constraints.

We now consider an extremely low memory scenario. Fig-
ure 10(b) shows the performance of Buffered-B+ tree for a
varying workload in low memory (8KB). The graph shows
that the Buffered-B+ tree is better than the optimized B+-
tree when the lookup-to-insert-ratio is less than 60%, whereas
the cost of Buffered-B+ tree becomes about 5-10% worse
than the B+ tree when the fraction of lookups exceeds this
point. The primary reason for this behavior is that the
Buffered-B+ tree uses a larger fanout of 16 compared to
the optimized B+ tree which has a fanout of 8 (for reasons
described in Section 6.3.6). At read intensive/low memory
settings, the Buffered-B+ tree is very similar to a B+ tree
with fanout of 16 since it has very low buffer size. As shown
in the figure, this difference in fanout accounts for much of
the difference between the two techniques. A second, less
significant, reason is because of the difference in the amount
of memory given to the node cache. Since the node cache
is smaller for the Buffered-B+ tree than the B+ tree, more

[
0 20 40 60 80 100 120 140 160 180 200

evictions occur for the former, leading to increased cost. We
believe that some of these problems of the Buffered-B+ tree
can be rectified if there is prior knowledge of the fraction
of lookups, as well as by dynamically adjusting the memory
given to the node cache.

These results show that the Buffered-B+ tree is signifi-
cantly better than the B+ tree across a wide range of work-
loads and memory constraints.

6.3.3 Impact on Garbage Collection

We now look at the impact of different techniques on
garbage collection at the storage layer to free space. The im-
pact on garbage collection depends on the number of pages
written by a scheme to flash — the more the number of
pages written, the greater the number of times that garbage
collection is invoked. Figure 8 shows the number of flash
pages written for each of the three index structures. The re-
sults show that the Buffered-B+ tree uses 3.5x fewer pages
on flash than the B+ tree for write-intensive workloads, and
is consistently better than the B+ tree with optimal fanout.
This shows that the Buffered-B+ tree triggers considerably
fewer garbage collection and erase operations.

6.3.4 Effect of Flash Type

BoYree—v-—
ed B+ ree —w—
5 ® Meﬂree(vddal.lodwps)—-—
g e
S
e
@
=
w 20

0
0 20 40 60 80 100 120 140 160 180 200
Lookup to insert Ratio

Figure 11: Performance with large block flash

The results that we have shown so far are based on the
Toshiba small block flash. We now consider the Samsung
large block flash detailed in Table 1. We use response time
as the metric since the datasheet does not provide exact
energy numbers. This experiment was done with 64KB of
main memory. The results are shown in Figure 6.3.4. We
find that that the choice of a particular type of flash hardly
affects the relative merits of the Buffered-B+ tree, and the
result is very similar to Figure 9(a). In fact, the Buffered-
B+ tree performs even better for the large block flash, with
gains of upto 15x for a write-intensive workload. This is be-

Buffered B+ tree —t+— —_——

B+ Tree
Buffered B+ tree —w—

Enorgy por 0p. (uJ)

033838888388
Energy per op. (uJ}

N

0 10 20 30 40 50 60 70 80 90 100 0 20 30 40 S0 60 70
Percentage of memory given to delta pool Fanout

Figure 12: (a) Impact of memory allocation across
buffer pool and node cache (b) Effect of fanout

cause the Samsung large block flash has even greater asym-
metry between read and write fixed costs, which enables the
Buffered-B+ tree to obtain more write-amortization.

6.3.5 Effect of Memory Allocation

We now evaluate the impact of memory allocation be-
tween the node cache and the buffer pool for the Buffered-
B+ tree. Our experiments until now have used a simple
allocation where one 25% the total memory is allocated to
the node cache, and the rest of the memory is allocated to
the buffer pool. Figure 12(a) shows the sensitivity of the
performance of the Buffered-B+ tree to the split across the
node cache and the buffer péol, when the lookup-to-insert-
ratio ratio was maintained at 25 % and a total of 64 KB was
given to the index. As discussed earlier in Section 5, the
buffer pool serves to increase the packing of buffer pages
on the flash. This packing is quite important, as the more
packed a buffer is, the lesser is the cost of reading it from
flash. On the other hand, larger the node cache, lower will
be the cost of accessing the nodes. Overall, we find that giv-
ing more memory to the buffer pool over the node cache is
preferable (the minimum in the graph occurs around 75%),
hence our decision to allocate 75% of the memory to the
buffer pool.

6.3.6 Effect of fanout

Figure 12(b) validates the optimal fanout choices that we
made for the Buffered-B+ tree and B+ tree. The two trees
were given 64KB of memory and a uniform random work-
load having 25% lookup-to-insert-ratio. It can be seen that
the B+ tree cost is lowest when the fanout is 8, which cor-
responds to roughly one-tenth of a page. This result can
also be shown analytically: in our implementation each key-
pointer pair occupies 6 bytes and each node has a header of 4
bytes, thus the size of a node with fanout f is S(f) = 6-f+4.
Hence, the cost of reading the node, as given by Table 1, is
C(f) = 4.07+0.105* S(f). Since the tree height is inversely
proportional to log f, we wish to minimize the cost of ac-
cessing a leaf node which is given as %{_}' It can be shown
that this function attains a minima when f = 8.

The Buffered-B+ tree has a higher optimum fanout of
16, as compared to the B4 tree. This is because a lower
fanout increases the number of subtrees, which translates to
an increased number of buffer emptying operations, thereby
increasing the cost of having a low fanout. Therefore our
implementation of Buffered-B+ tree uses a fanout of 16.
Since a subtree should fit within memory, the maximum
subtree height h is constrained to be just two levels to fit
within 8KB of RAM.

7. RELATED WORK

In this section, we survey related work that we have not
discussed previously in this paper (delta-based flash-based
data management techniques including BFTL [25], IPL [15],
and FlashDB (18] are discussed in Section 6.1).

Flash-Based Indexes and DBMS: The p-tree [13] tries
to minimize the impact of cascading updates on flash in
the absence of an FTL. It does so by packing the entire
path from the root to the leaf node into a single page on
flash. This is orthogonal to the problem that we address of
minimizing the accesses to flash. Microhash [26] is a spe-
cialized hash table index for flash resident streams. How-
ever, its technique of reverse chaining pages belonging to the
same hash bucket does not generalize easily to tree based in-
dices. [6] introduces auxiliary data structures for reducing
updates to file organizations on portable devices, however
they do not support indexes. LGeDBMS [14] demonstrates
the DBMS support for mobile phone applications over sim-
ulated flash memory, but lacks technical details.

Other Embedded DBMS: PicoDBMS [21] introduces a
smart card (EEPROM) based database platform. EEPROM
differs from flash in that it supports in-place updates but
has very limited storage and extremely high write costs. As
a result of which the proposed techniques do not extend
easily to flash based index design. Another EEPROM based
solution, DELite [22] proposes to incorporate indexes in the
data itself to save storage and to allocate memory among
query operators for reduced cost.

Flash File Systems: There has been significant work on
flash file systems but most of these (e.g., YAFFS [7], JFFS2
[23]) consume too much memory and do not have index-
specific optimizations. Similarly, file systems for mote-class
sensors such as Matchbox [10] and Capsule [16] do not sup-
port complex tree-based indexes. ELF[8], a delta based file
system is inefficient for index construction because of rea-
sons described in Section 6.1.

Special-Purpose Tree Indexes. A log structured de-
sign for optimizing writes in a disk based B+ tree was pro-
posed in [11}. Log structured write optimizations are ill
suited for flash, because of the absence of seek time. LHAM
[17] is a special purpose tree like index for write intensive
workloads. It works by partitioning the index across multi-
ple trees, the first few of which are kept entirely in memory.
In contrast, our work is to build a single B+ tree over flash
in an efficient manner.

8. CONCLUSION

In this paper, we presented the design, analysis, and im-
plementation of the Buffered-B+ tree, a flash and memory-
optimized index structure designed for embedded systems.
The key novelty in the Buffered-B+ tree is its ability to
achieve the benefits of buffered updates while still being ef-
fective for immediate lookups across a range of workloads.
Our work has a number of novel contributions including,
(a) a 2-competitive online buffer adaptation algorithm for
the Buffered-B+ tree and a simplified heuristic, (b) a full
implementation of the Buffered-B+ tree that addresses flash
limitations and cost functions, as well as memory limitations
on embedded platforms, and (c) a comprehensive evaluation
of the Buffered-B+ tree that demonstrates substantial per-
formance benefits across a range of workloads, datasets and
memory constraints.

Finally, we are exploring a number of avenues for future
work including: (a) integration of the Buffered-B+ tree with
a database system, (b) use of the index structure in a camera
sensor network search engine, and (c) a randomized version
of the online algorithm that we presented in this paper.

9. REFERENCES

(1] Enea polyhedra flashlite. http://wuw.enea.con.

[2] Reiserfs v4. vww.namesys.com/v4/v4.html.

[3] D. Agrawal, G. Mathur, G. Niv, D. Ganesan, Y. Diao, and

P. Shenoy. A memory-adaptive flash storage substrate for

sensor data management. Technical Report 07-53, UMass

Ambherst, 2007.

L. Arge. The buffer tree: A new technique for optimal

I/0O-algorithms (extended abstract). In WADS ’95.

[8] L. Arge, K. Hinrichs, J. V., and J. S. Vitter. Efficient bulk
operations on dynamic R-trees. In ALENEX 99.

[6] C. Bolchini, F. A. Schreiber, and L. Tanca. A context-aware
methodology for very small data base design. SIGMOD
Records, 33(1), 2004.

[7) A. O. Company. YAFFS: Yet another flash filing system.
http://www.alephl.co.uk/yaffs/.

[8] H. D., M. Neufeld, and R. Han. ELF: an efficient log-structured
flash file system for micro sensor nodes. In SenSys 2004.

[9] Y. Diao, D. Ganesan, G. Mathur, and P. Shenoy. Rethinking
data management for storage-centric sensor networks. In CIDR
2007.

[10] D. Gay. Matchbox: A simple filing system for motes.
http://wwu.tinyos.net/tinyos-1.x/doc/matchbox. pdf.

[11] G. Graefe. Write-optimized B-trees. In VLDB 2004.

[12] S. Huddleston and K. Mehlhorn. A new data structure for
representing sorted lists. Acta Informatica, 17, 1982.

[13] D. Kang, D. Jung, J. Kang, and J. Kim. u-tree: an ordered
index structure for NAND flash memory. In EMSOFT 2007.

[14] G. Kim, S. Baek, H. Lee, H. Lee, and M. Joe. LGeDBMS: a
small DBMS for embedded system with flash memory. In
VLDB 2006.

[18] S. Lee and B. Moon. Design of flash-based DBMS: an in-page
logging approach. In SIGMOD 2007.

[16]) G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy. Capsule:
an energy-optimized object storage system for
memory-constrained sensor devices. In SenSys 2006.

[17] P. Muth, P. ONeil, A. Pick, and G. Weikum. Design,
implementation, and performance of the LHAM log-structured
history data access method. In VLDB 1998.

(18] S. Nath and A. Kansal. FlashDB: dynamic self-tuning database
for NAND flash. In IPSN 2007.

[19] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman.
Object retrieval with large vocabularies and fast spatial
matching. In CVPR 2007.

[20] J. Polastre, R. Szewczyk, and D. E. Culler. Telos: enabling
ultra-low power wireless research. In IPSN 2005.

[21] P. Pucheral, L. Bouganim, P. Valduriez, and C. Bobineau.
PicoDBMS: Scaling down database techniques for the
smartcard. The VLDB Journal, 10(2-3), 2001.

[22] R. Sen and K. Ramamritham. Efficient data management on
lightweight computing device. In ICDE 2005.

[23] D. Woodhouse. JFFS: The journalling flash file system.
http://sourcevare.org/jffs2/jffs2. pdf.

[24] C. Wu, L.-P. Chang, and T.-W. Kuo. An efficient b-tree layer
for flash-memory storage systems. In RTCSA 2003.

[25] C. Wu, T. Wei, and L. P. Chang. An efficient B-tree layer
implementation for flash-memory storage systems. Trans. on
Embedded Computing Systems, 6(3), 2007.

[26) D. Zeinalipour-Yazti, S. L., V. K., D. Gunopulos, and
W. Najjar. MicroHash: An efficient index structure for
flash-based sensor devices. USENIX 2005.

[27] R.M. Karp. On-line algorithms versus off-line algorithms: how
much is it worth to know the future?. In Proc. IFIP World
Computer Congress, 1992, pp. 416-429.

[4

=

