
Considering the Exceptional: Incorporating Exceptions into Property
Specifications

Huong Phan
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
hphan@cs.umass.edu

George S. Avrunin
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
avrunin@cs.umass.edu

Lori A. Clarke
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
clarke@cs.umass.edu

Abstract

Property specifications concisely describe aspects of
what a system is supposed to do. It is important that these
specifications be correct, describing all the desired behav-
ior and ruling out undesired behavior. Our experience
shows that properties are sometimes specified incorrectly
because specifiers fail to take into account some exceptional
behaviors of the system. In previous work we presented
PROPEL, a tool that guides specifiers through the process of
creating understandable yet precise property specifications.
Here we describe extensions to PROPEL that allow spec-
ifiers of a property to indicate what exceptions should be
considered and what impact those exceptions should have
on the acceptability of system behavior. Although the de-
scription is given in terms of the framework provided by
PROPEL, the issues specifiers must consider would apply to
other specification formalisms.

Keywords: Requirements, Property Specifications, Ex-
ceptions, PROPEL.

1 Introduction

Property specifications concisely describe aspects of
what a system is supposed to do. These specifications can
then be used as the basis for system development and val-
idation. Therefore it is desirable that these property speci-
fications be both formally precise, so that they can serve as
the basis for validation, and accessible enough to be easily
understood by system developers, who might not be experts
in specification formalisms.

PROPEL, for “PROPerty ELucidator”, is a tool that
guides specifiers through the process of creating under-
standable yet precise property specifications [4, 10]. PRO-
PEL provides a set of property templates with explicit varia-
tions for specifiers to consider, thus ensuring that subtle de-

tails are not overlooked. PROPEL allows specifiers to work
with three different, but coordinated, views: an interactive
question-tree view, a disciplined natural language view, and
an extended finite-state automaton view. The first two views
do not require specifiers to have expertise in any particular
formalism. The last view, on the other hand, provides a pre-
cise specification to be used in formal analysis.

From our experiences using PROPEL to specify proper-
ties (e.g., [2]), we realized that when properties were speci-
fied incorrectly it often was because specifiers failed to take
into consideration some exceptional behavior of the system.
Exception handling, in fact, is an integral part of most sys-
tems, and exception handling mechanisms are directly pro-
vided in many programming languages, such as C++ and
Java, as well as in some process modeling languages, such
as Little-JIL [12]. Very little work, however, has been done
to facilitate the specification of exceptions in properties.

In this paper, we describe extensions to PROPEL that
overtly take exceptional behavior into account. With these
extensions, specifiers can now indicate what exceptions
should be considered in a property and decide what impact
those exceptions have on the acceptability of the behav-
ior by selecting among variations that PROPEL explicitly
makes available. Although the description is shown with
respect to the PROPEL framework, the concerns that must
be considered would apply to other property specification
formalisms.

The next section reviews the property-specification ap-
proach used in PROPEL. Section 3 shows example proper-
ties that motivate the introduction of exceptions in the spec-
ification of properties. Section 4 discusses how exceptions
are incorporated in property specifications using PROPEL.
Section 5 describes related work, and Section 6 concludes
with a discussion about the status of this work, our experi-
ence using this approach, and potential areas of future work.

2 Background

PROPEL aims to guide specifiers through the process of
creating property specifications that are both accessible and
mathematically precise. It is built upon the property pat-
terns developed by Dwyer, Avrunin, and Corbett [6]. Each
of the property patterns describes a behavior (called an “in-
tent” in the Dwyer et al. work)—a restriction on the occur-
rences of events or states. For instance, the behavior of the
Precedence pattern is an ordered relationship between a pair
of events or pair of states where the occurrence of the first
(enabler) is a necessary pre-condition for an occurrence of
the second (action). Response (the occurrence of the action
must be followed by an occurrence of the response), Exis-
tence (the action must occur), and Absence (the action must
not occur) are some other examples of behavior patterns. A
behavior might be intended to hold only while the system
is executing in a certain mode, or scope. The scopes de-
scribed in the property pattern work are: Global (the whole
execution), Before (execution up to a given event or state),
After (the execution after a given event or state), Between
(any part of the execution from one given event or state to
another given event or state), and After-Until (like the Be-
tween scope but the designated part of the execution con-
tinues even if the second event or state does not occur).
The property pattern work identifies eight behaviors and
five scopes that can be combined to create forty different
property patterns.

Although the property patterns are very useful, Dwyer et
al. admit that most specification formalisms are “a bit tricky
to use” [5]. Users are required to have significant expertise
with the particular specification formalisms. Dwyer et al.
also realize that there are variations of each property pat-
tern, and their website includes notes about some of those
variations, although the notes do not attempt to point out
all possible modifications that can be made to a property
pattern. For example, in the notes about the Precedence
pattern, it says that the pattern does not require that each
occurrence of action have its own occurrence of enabler.
It is up to specifiers to impose such a requirement if it is
desired, thus obtaining a variation of the pattern. There is,
however, no guidance on how to do this.

The PROPEL approach makes the specification of prop-
erties easier by extending some of these property patterns
with property templates that explicitly indicate alternative
options associated with each property pattern. Each of the
property templates is composed of a scope template, which
contains options related to the selected scope, and a behav-
ior template, which contains options related to the selected
behavior. PROPEL currently supports variations on all five
scope patterns and on four of the behavior patterns iden-
tified in the property pattern work: precedence, response,
existence, and absence. And although the pattern work

includes both event- and state-based forms of the prop-
erty patterns, PROPEL concentrates only on the event-based
forms. Using PROPEL, specifiers instantiate a property by
making decisions about, or resolving, each of the available
options in a selected property template. For example, one
option in the Precedence behavior template allows speci-
fiers to determine whether or not each occurrence of action
must have its own occurrence of enabler. To resolve an op-
tion, specifiers select one of the option’s possible settings.

For a property to be fully instantiated, not only must all
the options be resolved, but specifiers must also define the
set of events, or the alphabet, that is considered relevant
to the meaning of the property. PROPEL distinguishes pri-
mary events, or “events of primary interest”, and secondary
events, or “other events in the alphabet of the property.” Pri-
mary events are associated with predefined placeholders, or
parameters. PROPEL allows up to four different parame-
ters: at most two for the property’s behavior (A and B) and
at most two for the property’s scope (START and END).
The parameter names (A, B, START , or END) are dis-
played in the property templates until specifiers associate
one or more user-defined events with each displayed pa-
rameter. (When two or more events are associated with a
parameter, an occurrence of any one of them is treated as an
occurrence of the parameter. For example, in a Precedence
pattern in which prior to an occurrence of action requires an
occurrence of enabler, the enabler can be associated with
event E1 and event E2, meaning that either E1 or E2 can
enable the occurrence of action.) Specifiers may also define
secondary events, not associated with any property template
parameters. Secondary events can be used when a property
must constrain more that just the occurrences of primary
events. For example, it may be important that certain events
do not occur in between an occurrence of a primary enabler
and a primary action events. In this case, specifiers can in-
clude secondary events in the property’s alphabet and define
the property so that it explicitly prohibits all occurrences of
the secondary events between the enabler and action.

With the aim of guiding specifiers through the process of
creating property specifications that are both accessible and
mathematically precise, PROPEL currently provides three
different views of the property pattern templates: a Ques-
tion Tree (QT) view, a Disciplined Natural Language (DNL)
view, and an extended Finite-State Automaton (FSA) view.
Together they aim to bridge the gap between accessibility
and precision in property specification. The QT view pro-
vides interactive guidance to specifiers in selecting the de-
sired behavior and scope as well as resolving the related
options; the DNL view is accessible to specifiers who are
inclined to natural language description; and the FSA view
provides the precision that is necessary for finite-state veri-
fication. Specifiers can work with any or all of these views.
PROPEL automatically maintains the synchronization of the

2

views, allowing specifiers to switch from one to all or any
other views at any point after selecting the desired patterns.

When using PROPEL, specifiers start out by answering
initial questions in the QT. The QT view has two separate
parts, one for the scope template and one for the behavior
template. The initial behavior questions are shown in Fig-
ure 1 (the initial scope questions are shown in Figure 6).
Answering the initial scope questions and initial behavior
questions determines a scope template and a behavior tem-
plate respectively.

The QT provides an interactive format where specifiers
are presented with a question and a choice of possible an-
swers. Only one answer to a question is selected at a time.
And based on which answer is selected, a new set of ques-
tions and their associated answers may then be presented
for further consideration. Because of the QT’s hierarchical
nature, we refer to those questions as the child questions,
and the question to which the answer was selected as the
parent question. The QT hides all the questions that are not
relevant to the currently selected answers, thus helping to
keep specifiers focused.

Once the desired behavior and scope templates are se-
lected, specifiers can continue working in the QT view or
switch to other views to resolve all the options related to
those templates.

The DNL view displays core phrases for the chosen
scope and behavior property templates. A DNL template
presents the options related to each core phrase by a short
list of alternative phrases from which specifiers can choose.
In addition, the DNL template view also provides a few syn-
onyms to support customization. Figure 7 shows part of the
DNL view with a core phase and alternative phrases in the
drop-down box for supporting exceptions, as described in
Section 4. The DNL view targets specifiers who are un-
familiar with formalisms and/or prefer a natural language
description.

The extended FSA is the third view provided by PRO-
PEL. Since the fully instantiated form of this property view
is an FSA, this view offers the precision necessary for for-
mal analysis.

Traditionally, an FSA is defined by the tuple
〈S, s,A, Σ, δ〉 where S is the finite set of states, s ∈ S is
the unique start state, A ⊆ S is the set of accepting states,
Σ is the event alphabet, and δ : S × Σ → S is a transition
function. An event sequence e1e2 . . . en ∈ Σ∗ is accepted
by the FSA if a sequence of states s0, s1, . . . , sn exists in S
such that: (1) s0 = s; (2) sn ∈ A; and (3) δ(si−1, ei) = si

for i = 1, . . . , n.
In addition, PROPEL requires that the FSA be total and

deterministic; that is every event in the alphabet must be as-
sociated with one and only one transition emanating from
each state. Often a single non-accepting trap state is intro-
duced so that transitions to this trap state can be added to

satisfy this requirement.
When shown graphically, FSA states are shown as cir-

cles, the start state is denoted by an arrowhead on the circle,
an accepting state is indicated by an inner concentric circle,
and a transition is denoted by an arrow between two states
indicating the direction of flow in the automaton. Each tran-
sition is labeled by one or more events from the alphabet.

In PROPEL, the FSA notation is extended so that an FSA
template can be displayed with options to be resolved. An
option is represented in one of the following forms: an op-
tional transition, denoted by a dashed line instead of a solid
line; an optionally-accepting state, denoted by a dashed
inner concentric circle; and a multi-label, denoted by a
list of alternative sets of labels, each set separated by the
word “or”. Specifiers resolve the options by making de-
cision about: whether an optional transition should exist;
whether an optionally-accepting state should be accepting;
and which of the label choices should be selected in a multi-
label.

Other symbols are added to the extended FSA template
notation in order to improve the clarity of this view: “¬”
(the set complement operator) and “.” (the wildcard charac-
ter, representing all of Σ).

For clarity, when there are no options associated with the
non-accepting trap state or with any transitions to that state,
we suppress it and all the transitions to it.

Once specifiers select the desired behavior pattern and
chosen to work with the FSA view, the corresponding FSA
template will be shown with all the options to be resolved.
The states in the extended FSA view of the behavior part
of the property are called behavior states. The scope part
of the property is incorporated after specifiers choose the
desired scope pattern with the QT. The scope is applied
to the behavior by adding additional states, called scope
states, and by adding additional transitions between the
scope states and the behavior states. These transitions are
labeled by the scope delimiter events. Partially and fully in-
stantiated FSA views of an example property are given in
Figure 2 and discussed later in this section.

PROPEL identifies two special states in the FSA view: a
behavior start state and a behavior violation state. A behav-
ior start state is the start state of the FSA representing the
behavior part of the property, before applying the scope. A
behavior violation state, which is often shortened to viola-
tion state, is a non-accepting trap state in the behavior part
of the property. That state has only one emanating transi-
tion, a self-loop transition with labels for the entire alpha-
bet, i.e. once the FSA is driven to this state, it stays there.
Note that although the violation state is non-accepting, not
all non-accepting states are violation states. Moreover, not
all properties have violation states.

Consider the following property of a blood transfusion
process, written in natural language: ”After the physician

3

Figure 1. Initial behavior questions and answers

has ordered a blood transfusion for a patient, the presence
of a signed-consent form must be confirmed before infusing
a single unit of blood product to the patient.” This prop-
erty’s alphabet contains three events. To avoid clutter in
displaying the property, we assign each event a short name:
receive-order for “the physician orders a blood transfusion
for the patient”; consent-confirmed for “the presence of a
signed consent form is confirmed”; and infuse-blood for
“the infusion of a single unit of blood product is started.”

At first glance, it is easy to see this property’s scope maps
to the After pattern (the event receive-order marks the be-
ginning of the execution of interest). The property’s be-
havior maps fairly well to the Precedence pattern in which
an action is not allowed to occur until after an enabler
event has occurred. The enabler event would be associated
with the event consent-confirmed and the action event with
infuse-blood.

Figure 2 shows the FSA view of this property: one par-
tially and one fully instantiated. In the partially instanti-
ated FSA, the following options are not yet resolved: (i)
whether or not an action event (infuse-blood) is allowed
to occur again after the first occurrence of an action; (ii) if
an action event is allowed to occur again, whether or not it
requires its own occurrence of an enabler event (consent-
confirmed). The options are presented by optional transi-
tions and a multi-label of the self-loop transition at state 4
(here we label the states with numbers for easy reference).
The fully instantiated FSA shows that both the options are
set to true. State 1 is the scope state, the rest are behavior
states. State 2 is the behavior start state. State 5 is the be-
havior violation state. An event sequence will drive the FSA
to this behavior violation state if each infuse-blood event is
not preceded by a consent-confirmed event, i.e. blood is
infused without confirming the presence of the signed con-
sent form.

3 The need to specify exceptional events

In our experience specifying properties and verifying
them using finite-state verification, we found that one of the
main reasons properties were incorrectly specified was that
specifiers failed to take into account how some exceptional
events might impact what is considered correct or incorrect
system behavior. In this section we illustrate this with some
examples of properties that were initially specified incor-
rectly due to lack of consideration of exceptional events.
These properties are all concerned with the administration
of a single blood transfusion to a patient who arrives in the
Emergency Department of a hospital, is registered into the
hospital’s computer system, and is determined by a physi-
cian to need a blood transfusion.

First we look at an example of a property that deals with
a temporary interruption in a transfusion:

Property 1a: After the infusion has started, if it
has been interrupted due to a suspected transfu-
sion reaction, it must be resumed.

This property can be specified using the After scope pat-
tern and the Response behavior pattern, for which a stimu-
lus event must be followed by a response event. In this case,
interrupt, short for “the infusion is interrupted due to a sus-
pected transfusion reaction”, is the stimulus event; resume,
“resume the infusion”, is the response event; and infusion-
start is the scope guarding event, marking the start of the
execution of interest. After the occurrence of infusion-
start, if interrupt occurs but resume never occurs, then the
situation is not acceptable according to this property spec-
ification. In fact, during the blood transfusion process, if
the physician cancels an order for an infusion of a unit of
blood product, then of course that infusion does not need to

4

consent-
confirmed 3 infuse-blood 4

5

*

2

consent-
confirmed

¬ infuse-blood

infuse-blood infuse-blood

1
receive-

order

¬receive-
order ¬ (infuse-blood,

consent-confirmed) ¬ (infuse-blood,
consent-confirmed)

consent-
confirmed 3 infuse-blood 4

5

*

2

consent-
confirmed

¬ infuse-blood

infuse-blood

infuse-blood

1
receive-

order

¬receive-
order ¬ (infuse-blood,

consent-confirmed) ¬ (infuse-blood,
 consent-confirmed)

or
¬ infuse-blood

or
¬ consent-confirmed

or

*

!"#$%"&&'()*+$"*$%"$,-(!#./,#$'

01&&'()*+$"*$%"$,-(!#./,#$'

Figure 2. Example property expressed using
the After scope and the Precedence behavior

be resumed after having been interrupted. The event can-
cel, for “the physician cancels the order for the infusion” is
an exceptional event that must be taken into account. After
consulting with a domain expert, we revised the informal
statement of property 1a to the following:

Property 1b: After the infusion has started, if it
has been interrupted due to suspected transfusion
reaction, it must be resumed unless the physician
cancels the order for the infusion.

Careful consideration of this exceptional event leads the
specifier to decide that if this exceptional event occurs any-
where in a trace through the process, then that trace should
be considered to be acceptable, that is, considered to be con-
sistent with the stated property. (Other properties would
specify, for instance, that if the cancel event occurs before
the infusion is started, that infusion should never be started,
etc.)

Let us now consider another property associated with the
patient registration process. This process defines the steps
that need to be done to register a patient into the hospital’s
computer system. The process starts when the patient enters

the hospital and ends when a patient ID band is placed on
the patient’s arm. In this process, the clerk must ask for the
patient’s name, date of birth, etc. One of the properties is:

Property 2a: Before printing the patient ID band,
the patient’s name must be obtained.

The property in fact can be expressed in two ways, using
the Existence behavior and the Before scope patterns, or
using the Precedence behavior and the Global scope pat-
terns. For the purpose of this discussion, we will express
this property using the Existence behavior and the Before
scope patterns. The primary event of interest is pt-name-
obtained, for “patient name obtained”. A trace through the
process is considered to satisfy the property if the event pt-
name-obtained occurs within the scope before the scope
guarding event print-ID-band. Otherwise, if the event pt-
name-obtained does not occur within the scope, that trace
is considered to violate the stated property 2a.

In an Emergency Room setting, however, it is sometimes
the case that patients arrive unconscious, carrying no iden-
tifying information, and without someone to identify them.
Thus it is impossible to obtain the patient’s name before
starting treatment. In that case, according to the hospital’s
Patient Identification Protocol, the patient is still registered
in the system, but given a name such as John/Jane Doe, so
that medical care for the patient can proceed. In such a
trace through the process, the event pt-name-obtained ob-
viously never occurs. This trace should still be considered
acceptable though it does not satisfy property specification
2a. Revision of the property specification is needed; the
exceptional event unable-to-obtain, for “unable to obtain
patient’s identity”, must be taken into account. A revised
informal statement of property 2a is:

Property 2b: Before printing the patient ID band,
the patient’s name must be obtained unless the
patient is unconsciousness and other sources to
obtain the patient’s identity are not available.

(Of course, another property must be specified to describe
the appropriate actions in the case where it is impossible to
obtain a patient’s name, but the details of that property are
not relevant here.)

The impact of the exceptional event in this case is some-
what different from the impact of property 1b’s exceptional
event. In property 1b, a trace through the process is consid-
ered to satisfy the property if the exceptional event cancel
occurs at any point in that trace. In property 2b, a trace
through the process is considered to satisfy the property if
the exceptional event unable-to-obtain occurs within the
specified scope, i.e. before the event print-ID-band. The
following situation is certainly not acceptable: the clerk
does not obtain the patient’s name, enters an arbitrary name

5

into the system, prints the ID band, and only checks after-
ward that it is impossible to determine the patient’s iden-
tity. In this case, a trace with the exceptional event unable-
to-obtain-patient-identity, occurring after print-ID-band,
i.e. outside of the scope, cannot be considered to satisfy the
property.

Now we revisit the property mentioned in the previous
section.

Property 3a: After the physician has ordered a
blood transfusion for a patient, the presence of
a signed-consent form must be confirmed before
infusing a single unit of blood product to the pa-
tient.

This property can be represented with the Precedence be-
havior and the After scope pattern as shown before. The
scope guarding event is receive-order. The two events of
primary interest are consent-confirmed (the enabler) and
infuse-blood (the action). The action cannot occur until
after the enabler has occurred. In an emergency situation,
however, when the physician decides that the patient must
have the infusion but the consent form cannot be signed
(due to the fact that the patient is unconscious), this rule
can be bypassed. Following is a revised informal statement
of property 3a:

Property 3b: After the physician has ordered a
blood transfusion for a patient, the presence of
a signed-consent form must be confirmed before
infusing a single unit of blood product to a pa-
tient, unless the patient is unconscious and the
physician decides that the patient must have the
infusion, in which case the consent form can be
waived.

That is, if the exceptional event unconscious (short for “the
patient is unconscious and needs blood infusion”) occurs,
the event infuse-blood can occur without a prior occurrence
of the event consent-confirmed. More careful considera-
tion reveals that the exceptional event only has such impact
when it occurs within the scope but before a behavior vi-
olation has been determined. If an infusion is carried out
without a signed consent form and the patient is found to be
unconscious, but only after the transfusion has started, the
trace must be considered to be unacceptable.

In the following section we describe an approach for in-
corporating exceptional events into property templates in
PROPEL, that helps specifiers specify exceptional events
and indicate what impact those exceptional events are to
have on the system behavior.

4. Incorporating Exceptional Events

Having seen several examples of properties that require
consideration of exceptional events, we decided that, to be
consistent with the PROPEL philosophy of guiding users
through the specification of properties by explicitly indicat-
ing the options associated with common patterns, PROPEL
should also include the options associated with exceptional
behavior. This requires specifiers to indicate the exceptional
events that are to be considered and to select the settings for
the options associated with that set of events.

Similarly to how specifiers can assign events to the prop-
erty’s behavior parameters, A and B, and to the property’s
scope parameters, START and END, events can now
be assigned to an exceptional event parameter, called X .
And, as with behavior and scope parameters, if two or more
events are associated with the parameter, an occurrence of
any one of them is regarded as an occurrence of the param-
eter.

As the examples in the previous section show, occur-
rences of an exceptional event at different locations in an
event sequence may have different effects on whether the
event sequence is accepted. Thus, after declaring the ex-
ceptional events that should be taken into account, specifiers
have to resolve the following two independent options:

1. within-scope: If this option is set to true, then only ex-
ceptional events occurring within the scope are taken
into consideration. That is, if exceptional events occur
only outside of the scope, the event sequence’s accept-
ability is the same as when the exceptional events do
not occur at all. In the case of a property with Global
scope, this option within-scope is ignored.

2. before-violation: If this option is set to true, then only
exceptional events occurring before any behavior vio-
lation has been found are taken into consideration.

Below, we describe how these options are represented in
the FSA, QT, and DNL views.

4.1. FSA View

To support the treatment of exceptional events that result
in an event sequence being considered accepted, PROPEL
adds a new accepting state, called the exception state, to the
existing FSA templates and adds transitions on exceptional
events from existing states to this exception state. The idea
is that once the FSA is put in the exception state, it stays
in that state until the end of the event sequence or until a
guarding event of the designated scope is encountered.

The treatment of exceptional events must take into ac-
count the property’s designated scope. For scopes with a

6

start guarding event (i.e., After and Between) one previ-
ously existing option must be considered, subsequent-start-
reset. This option determines whether or not a subsequent
occurrence of a start guarding event resets the scope. The
exception state has up to three out-going transitions, de-
pending on the scope and the setting of subsequent-start-
reset:

• If the scope has a start guarding command, there is an
optional transition on the start guarding events to the
behavior start state. The existence of this transition
is determined by the option subsequent-start-reset. If
this option is set to true, then a subsequent occurrence
of the start guarding event resets the scope and this
transition exists in the corresponding FSA representa-
tion; otherwise this transition does not exist.

• If the scope has an end guarding event, there is a tran-
sition on the end guarding event to the accepting trap
state.

• There is a self-loop transition with a multi-label. Since
the existence of the above transitions depends on
the option subsequent-start-reset and on whether the
scope has an end guarding event, the multi-label on
this self-loop transition must reflect these dependen-
cies accordingly. The possible multi-labels are shown
in Table 1.

We represent the two exceptional-event-related options
(within-scope and before-violation) by the optional transi-
tions to the exception state. The setting of the option within-
scope is determined by the existence of the transitions from
the scope states to the exception state. These transitions
exist if and only if the option within-scope is set to false.
There is one special case, however, where the scope has
an end delimiter. More details are given when we explain
property 2b below.

The setting of the option before-violation is determined
by the existence of the transition from the behavior violation
state, the non-accepting trap state in the behavior FSA, to
the exception state. This transition exists if and only if the
option before-violation is set to false.

Let us look at the three properties 1b, 2b and 3b men-
tioned in the previous section. The Figures 3, 4, and 5
first show the fully-instantiated property, respectively, with-
out exceptional events, then show the FSA template tak-
ing exceptional events into account, and finally the fully-
instantiated property. For clarity, we assume that all the
scope and behavior option settings in properties 1b, 2b, and
3b, including the subsequent-state-reset option, are already
resolved exactly the same as in properties 1a, 2a and 3a re-
spectively.

1 32 4start interrupt resume

interrupt

¬start ¬interrupt ¬resume ¬interrupt

1 32 4start interrupt resume

interrupt

¬start
or

¬(start,
cancel)

¬(interrupt,
cancel)

¬(resume,
cancel) ¬(interrupt,

cancel)

5

cancel

cancel

cancel
cancel

*

1 32 4start interrupt resume

interrupt

¬(start,
cancel)

¬(interrupt,
cancel)

¬(resume,
cancel)

¬(interrupt,
cancel)

5

cancel

cancel

cancel

cancel

*

01&&'()*+$"*$%"$,-(023(R,/#,+,*$"$%.*(5.#(!#./,#$'(6"

7,8/&"$,(9%$:(;<=,/$%.*(>/$%.*+(5.#(!#./,#$'(6?

01&&'()*+$"*$%"$,-(023(R,/#,+,*$"$%.*(5.#(!#./,#$'(6?

Figure 3. Property 1a and 1b

As shown in Figure 3, the exceptional event cancel (the
physician cancels the order for the infusion) is incorporated
in property 1b by:

• adding the exceptional state (state 5),

• adding additional transitions on cancel from all the be-
havior states to the exceptional state,

• adding an optional transition from the scope state (state
1) to the exceptional state. This transition exists if and
only if the option within-scope is set to false.

• changing the existing multi-labels to reflect these ad-
ditions where possible.

Note, we omit the optional transition from the exceptional
state to the behavior start state (state 2). That optional
transition involves the scope option subsequent-start-reset,
which in this case was already resolved to false. Therefore
the fully-instantiated FSA does not show that transition.

7

Table 1. Multi-label on the Self-loop Transition of the Exception State

Scope Multi-label Description
Global . A subsequent occurrence of an event in the alphabet while the FSA is in the ex-

ception state will not cause a change in state.
After (scope has start
guarding event)

¬start or . If ¬start is used, a subsequence occurrence of start resets the scope. If . is used,
a subsequence occurrence of start does not reset the scope (e.g., property 1b).

Before (scope has
end guarding event)

¬end An occurrence of end while the FSA is in the exception state puts the FSA in the
accepting trap state, otherwise there is no change in state(e.g., property 2b).

Between (scope has
start and end guard-
ing events)

¬(start, end)
or ¬end

If ¬(start, end) is used, a subsequent occurrence of start resets the scope. If ¬end
is used, a subsequent occurrence of start does not reset the scope.

As discussed in the previous section, for property 1b, an
event sequence is considered acceptable if the exceptional
event cancel occurs anywhere in the event sequence. Thus
the option within-scope should be set to false, which leads
to the existence of the transition from state 1 to state 5. Re-
solving this option results in the fully-instantiated property
shown in Figure 3.

Exceptional events are incorporated in properties 2b and
3b in the same way. Figure 4 illustrates the case where
the property’s scope has an end delimiter, print-ID-band,
and therefore there is an accepting trap state (state 3). When
adding the exception state (state 5), a transition on the end
delimiter from the exception state to the accepting trap state
is added. Property 2b also illustrates the case where the op-
tion within-scope is set to true; thus there is no transition
from the scope state (state 4) to the exception state (state 5).
As mentioned above, this is a special case where the scope
has an end delimiter, thus state 4 is a scope state that is a
non-accepting trap state (different from the behavior vio-
lation state, which does not appear in this case). An event
sequence puts the FSA into state 4 if the scope-ending event
is encountered after a behavior violation was found. At this
point, an occurrence of an exceptional event is obviously
outside of the scope and after the violation. If the event
sequence, taking into account the exceptional event, should
still be considered accepted, then the existence of the transi-
tion from state 4 to state 5 should mean setting both options
within-scope and before-violation to false. Therefore, in
the case where the scope has an end delimiter, the optional
transition from the non-accepting trap state to the exception
state exists if and only if both exception-related options are
set to true.

Unlike the previous two cases, Property 3b in Figure 5
has a behavior violation state (state 5). The option before-
violation is represented by the optional transition from the
violation state to the exception state (state 6). This transi-
tion exists if and only if the option before-violation is set
to false. It was previously decided that for this property an

event sequence is considered acceptable if the exceptional
event occurs within the defined scope and before a behavior
violation is found. The options within-scope and before-
violation are, therefore, both set to true. The optional tran-
sitions from the violation state (5) and the scope state (1)
are therefore removed.

The changes to the QT and DNL views to support ex-
ceptional events are much more straightforward and show
the benefit of having carefully-designed natural-language
views. By making a few explicit decisions in these views,
all the options shown in the FSA view are decided.

4.2. Question Tree View

In the QT, a new question (Q1) is added to let specifiers
indicate whether or not any exceptional events should be
considered. This question is placed in the scope QT, as a
child question after specifiers select the answer for the ini-
tial scope question. By answering “Yes” to Q1, specifiers
indicate that some exceptional events must be taken into ac-
count. The second new question (Q2) lets specifiers resolve
the exception-related options. Figure 61 shows the case
where the specifier chooses a non-Global scope: after the
specifier indicates the need to consider exceptional events, a
sentence opening “The event sequence is considered accept-
able if X occurs” is presented and the specifier must select
among the following four choices to complete the sentence
to describe the impact of the exceptional events:
(1) anywhere in the event sequence.
(2) anywhere in the event sequence before any behavior vi-
olation has been found.
(3) within the designated scope.
(4) within the designated scope and before any behavior vi-
olation has been found.

1In the figures, X is the parameter’s default name that will be replaced
by the user-defined exceptional event names once the specifier associates
exceptional events with this parameter.

8

pt-name-
obtained 2 print-ID-band 3

*

4

print-ID-band

*
or
¬unable to obtain

¬print-ID-band

1

5

unable-to-
obtain

¬print-ID-band

unable-to-
obtain

print-ID-band

unable-to-
obtain

pt-name-
obtained 2 print-ID-band 3

*

4

print-ID-band

*

¬print-ID-band

1

pt-name-
obtained 2 print-ID-band 3

*

4

print-ID-band

*

¬print-ID-band

1

5

unable-to-
obtain

¬print-ID-band

unable-to-
obtain

print-ID-band

01&&'()*+$"*$%"$,-(023(R,/#,+,*$"$%.*(5.#(!#./,#$'(@"

7,8/&"$,(9%$:(;<=,/$%.*(>/$%.*+(5.#(!#./,#$'(@?

01&&'()*+$"*$%"$,-(023(R,/#,+,*$"$%.*(5.#(!#./,#$'(@?

Figure 4. Property 2a and 2b

In the case of the Global scope, since option within-
scope is ignored, only the first 2 choices would be displayed
to the specifier.

4.3. Disciplined Natural Language View

The DNL view is also updated to allow specifiers to re-
solve the exceptional-event-related options. Similar to the
way the alternative answers are presented in the QT view,
a sentence composed of a core phrase and four alternative
phrases are added to the DNL view in the case of a non-
Global scope (Figure 7), while in the case of the Global
scope, the sentence is composed of the same core phrase
and only the first two alternative phrases. The correspond-
ing option settings are the same as those in the QT view.

consent-
confirmed 3 infuse-blood 4

5

*

2

consent-
confirmed

¬ infuse-blood

infuse-blood

infuse-blood

01&&'()*+$"*$%"$,-(023(R,/#,+,*$"$%.*(5.#(!#./,#$'(A"

1
receive-

order

¬receive-
order

¬ (infuse-blood,
consent-confirmed)

¬ (infuse-blood,
consent-confirmed)

consent-
confirmed 3 infuse-blood 4

5

*
or

¬unconscious

2

consent-
confirmed

infuse-blood infuse-blood

1
receive-

order

¬receive-order
or

¬(receive-order,
unconscious)

¬ (infuse-blood,
consent-confirmed,

unconscious)

6

unconscious

*

unconscious
unconcsious

unconscious

unconscious

¬ (infuse-blood,
consent-confirmed,

unconscious)

¬ (infuse-blood,
unconscious)

consent-
confirmed 3 infuse-blood 4

5

*

2

consent-
confirmed

infuse-blood infuse-blood

1
receive-

order

¬receive-order

¬ (infuse-blood,
consent-confirmed,

unconscious)

6

unconscious

*

unconscious
unconscious

¬ (infuse-blood,
consent-confirmed,

unconscious)

¬ (infuse-blood,
unconscious)

7,8/&"$,(9%$:(;<=,/$%.*(>/$%.*+(5.#(!#./,#$'(A?

01&&'()*+$"*$%"$,-(023(R,/#,+,*$"$%.*(5.#(!#./,#$'(A?

Figure 5. Property 3a and 3b

5 Related work

There is a considerable body of work attempting to bring
accessibility and understandability to formal property speci-
fications, including a number of papers that extend the prop-
erty patterns of Dwyer et al. Due to space limitations, we
do not summarize that work here (but refer the reader to [4]
and [3] for such discussions) and instead focus on the work
related to exceptions.

The idea of exceptions in programming languages has a
long history, going back to the 1970s (see [9], for exam-
ple, for a discussion), but the only work we are aware of
that discusses the impact of exceptions on property speci-
fications like those produced with PROPEL is that of Flake
and Mueller [7]. They proposed a temporal extension to

9

non-Global
scope choice

Q1

Q2

Figure 6. Exceptional-event-related Questions and Their Answers for a non-Global Scope Property

core phrase

alternative
phrases

Figure 7. Exceptional-event-related DNL Phrases for a Non-Global Scope Property

the Object Constraint Language (OCL) to allow the expres-
sion of a modified version of the property patterns for UML
Statecharts. They also pointed out that their approach could
be combined with the approach of Soundarajan and Fridella
for specifying exceptional situations in OCL [11] by spec-
ifying appropriate post-conditions for methods. They do
not, however, seem to have implemented this. The gen-
eral idea of specifying erroneous or exceptional behavior
by post-conditions can be traced back to OBJ [8], and a
similar approach is used, for example, in JML [1], but none
of these approaches provides the sort of guidance for spec-
ifiers in describing the impact of exceptional behavior on
acceptability that PROPEL does.

6 Conclusion

The decision to incorporate support for exceptional
events arose based on our experiences eliciting and repre-
senting properties for medical processes [2]. As remarked
above, we noticed that the most common reason that prop-
erties were specified incorrectly was because they failed to
take exceptional conditions into account. We discovered
these problems, not when eliciting or reviewing the proper-
ties with domain experts, but while we were trying to verify
process definitions of medical processes. All of the prop-
erties that failed because of this problem can now be rep-
resented appropriately using the current version of PROPEL
that provides support for exceptional events as described in
this paper. In all these cases, the exceptional events are ac-
tually associated with raised exceptions in the process defi-
nitions, although that does not always have to be the case–
conditions that the specifier views as exceptional need not

10

be explicitly represented that way in the system whose re-
quirements are being specified.

This version of PROPEL also provides support for the
disjunction of events, as described in this paper. It is some-
times the case that disjunction can be used to support excep-
tional events. For example, Property 1b could be restated
as: After the infusion has started, if it has been interrupted
due to suspected transfusion reaction, it must be resumed or
canceled. Disjunction does not provide support for all the
four cases that need to be supported, however, and can lead
to awkward representations.

There are several areas of future research. One interest-
ing issue is how exceptional events should be supported dur-
ing finite-state verification. For example, what if a property
is found to be consistent with a program but all the traces
through that program are acceptable because the property
is always driven to the accepting exception state. Certainly
verifiers would want to be informed of this situation since
presumably the non-exceptional behavior was expected to
occur.

There are some extensions to the current version of PRO-
PEL that should be investigated. Some of the original prop-
erty patterns are not supported. We have also noticed that
an alternation pattern between two events, where either one
can occur first, occasionally is needed and is not currently
supported by PROPEL or the original property patterns. The
current version of PROPEL also treats all the events associ-
ated with a parameter or with secondary events the same;
they are represented as disjuncts and, thus, in the FSA
are shown as multi-labels on the appropriate transitions.
It might be reasonable to allow specifiers to select among
these labels. In considering possible extensions, however,
our goal is not to support all possible property specifica-
tions but to support the more common types of properties
that occur in practice. Based on our case studies to date
[4, 3], this has indeed been the case, with PROPEL naturally
supporting over 90% of the properties that have arisen.

Finally, more experimental evaluation needs to be under-
taken. We basically retrofitted the problematic properties
from our studies using the PROPEL extensions for support-
ing exceptional events. We do not know if these exceptional
events would have been taken into account in the original
property formulation if the exceptional options had been
presented to the domain experts. Nor do we know if sig-
nificantly more properties will take exceptional events into
consideration if these options are consistently presented to
the specifiers and domain experts. It would also be interest-
ing to see if these extensions influence specifiers developing
properties for programs written in Java or other program-
ming languages that provide explicit support for exceptional
conditions.

References

[1] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An overview
of JML tools and applications. International Journal on
Software Tools for Technology Transfer, 7(3):212–232, June
2005.

[2] B. Chen, G. S. Avrunin, E. A. Henneman, L. A. Clarke, L. J.
Osterweil, and P. L. Henneman. Analyzing medical pro-
cesses. In ICSE ’08: Proceedings of the 30th International
Conference on Software Engineering, pages 623–632, New
York, NY, USA, May 2008. ACM.

[3] R. L. Cobleigh. PROPEL: An Approach Supporting User
Guidance in Developing Precise and Understandable Prop-
erty Specifications. PhD thesis, University of Massachusetts
Amherst, 2008.

[4] R. L. Cobleigh, G. S. Avrunin, and L. A. Clarke. User guid-
ance for creating precise and accessible property specifica-
tions. In Proceedings of the 14th International Symposium
on Foundations of Software Engineering, pages 208–218.
ACM, 2006.

[5] M. Dwyer, G. Avrunin, and J. Corbett. Property specifica-
tion patterns website. http://patterns.projects.cis.ksu.edu/.

[6] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property
specifications for finite-state verification. In Proceedings of
the 21st International Conference on Software Engineering,
pages 411–420, 1999.

[7] S. Flake and W. Mueller. Expressing property specification
patterns with OCL. In International Conference on Soft-
ware Engineering Research and Practice, pages 595–601.
CSREA Press, 2003.

[8] J. A. Goguen and J. J. Tardo. An introduction to OBJ. In
M. V. Zelkowitz, editor, Proceedings of SRS, Specifications
of Reliable Software, pages 170–189. IEEE, 1979.

[9] B. G. Ryder, M. L. Soffa, and M. Burnett. The impact of
software engineering research on modern progamming lan-
guages. ACM Trans. Softw. Eng. Methodol., 14(4):431–477,
2005.

[10] R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J. Oster-
weil. Propel: an approach supporting property elucidation.
In Proceedings of the 24th International Conference on Soft-
ware Engineering, pages 11–21. ACM, 2002.

[11] N. Soundarajan and S. Fridella. Modeling exceptional be-
havior. In In UML99 The Unified Modeling Language. Be-
yond the Standard. Fort Collins, CO, USA, volume 1723 of
LNCS, pages 691–705. Springer, 1999.

[12] A. Wise, A. Cass, B. Lerner, E. McCall, L. Osterweil, and
J. Sutton, S.M. Using Little-JIL to coordinate agents in
software engineering. Proceedings of the 15th IEEE Inter-
national Conference on Automated Software Engineering,
pages 155–163, 2000.

11

