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Abstract

According to the United Nations, approximately 24.7 million people used am-
phetamines, 16 million used cocaine, and 12 million used heroin in 2006,/07 [Costa, 2008].
Full recovery from drug addiction by chemical treatment and/or social and psycholog-
ical support is uncertain. The present investigation was undertaken to expand our
understanding of the factors that drive the dynamics of addiction. A new multiscale
computational model is presented which integrates current theories of addiction, un-
like previous models, considers addiction as a reversible process [Siegelmann, 2008].
Explicit time dependency is added to the inhibition and the compulsion processes.
Preliminary computational predictions of drug-seeking behavior are presented and po-
tential correlation with experimental data is discussed. Validation of the model appears
promising, however additional investigation is required.

1 INTRODUCTION

Drug addiction is a global problem. Historically, addicted people have been simply
considered to be lacking the willpower to quit. But the prevailing view has changed in
response to scientific studies which show that addiction correlates with social, psycho-
logical, and physiological factors. Addiction is now classified as a disease, a “bio-psycho-
social-spiritual disorder” [Interlandi, 2008], but the underling causes and prospects for
full recovery remain uncertain. Computational models for addictive behavior could
assist in this quest for understanding.

Many computational models of addiction have been proposed and applied in or-
der to provide a better understanding of factors which affect the nature of the ad-
dictive process. The relevant literature includes two types of models: one deals
with either behavior acquisition or behavior maintenance of drug self-administration,
and the other integrates both acquisition and maintenance based on machine learn-
ing or neuronal network dynamical approaches [Ahmed et al., 2007]. Both model
types share the common assumption that addiction is a non-reversible process, and
hence can not describe experimental observations which support possible recovery
[Winick, 1962, Sobell et al., 2000]. A new model of addiction, the“dynamical addict”,
takes into account both relapse and rehabilitation processes [Siegelmann, 2008]. This
approach considers addiction as a dynamical system where actual addiction behavior
and processes of inhibition and compulsion are separated. Unlike other computational
and mathematical models, it does not condemn the addict to a monotonic worsening
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Figure 1: Addiction model combining neuropsychological (NepS), cognitive (CogS), and
behavioral (BehS) scales. The output G(t) is the likelihood of drug-seeking behavior.

of the addictive condition. Moreover, temporal parameters are introduced to quantify
the virtual subject’s level of cognitive rationality and levels of feedback parameters
that make addiction so difficult to defeat.

The present investigation was undertaken to describe this new model in terms of
neuropsychological, cognitive, and behavioral observations, to incorporate the temporal
dimension within the processes of inhibition and compulsion, and to present a pre-
liminary correlation between synthetic data presented in this work and empirical data
found in the literature.

2 DESCRIPTION OF THE MODEL

This section describes the multiscale framework for formulating this new addiction
model [Siegelmann, 2008]. The model can be considered to comprise three resolution
scales: neuropsychological (NepS), cognitive (CogS), and behavioral (BehS) scales as
shown in Figure 1. The original formulation of the model’s output is the likelihood of
drug-seeking behavior G(t):

G(t) =1 —=r(t) (=C)+r)-I (1)

where 7(t) is a cognitive parameter defined below in Section 2.2, and C' and I are be-
havioral processes with longer time scales than r which are approximated by constants.
The output of the model, G(t), is generated at the BehS. The BehS is composed of
inhibition I and compulsion C signals that respectively prevent and encourage drug-
seeking behavior. The balance between I and C' is modulated by the CogS, which is
mainly intended to integrate the information coming from the NepS where internal and



external processes are computed and weighted.

The remainder of this section presents further details of the model parameters. The
following two sub-sections 2.1 and 2.2 present a brief review of the original model
from a multi-scale viewpoint. This is followed by a sub-section 2.3 which introduces
inhibition and compulsion as dynamical time-dependent processes.

2.1 Neuropsychological Scale (NepS)

The NepS consists of effects which are dependent on the internal state of the virtual
subject as well as acute external effects. How these internal and external processes
behave is summarized in Table 1 with corresponding mathematical details in the Ap-
pendix.

Internal processes are considered to include P(t), S(t), D(t) and ¢(t). P(t) denotes
the level of pain or negative consequences, in areas such as health or social relations;
which are increased by drug intake [De Alba et al., 2004]. S(t) denotes the level of
stress or the negative emotional state of the virtual subject. S(t) increases during with-
drawal periods [Hodgins et al., 1995, Koob and Le Moal, 2001, Aston-Jones and Harris, 2004]
and may trigger craving [Stewart, 2000]. D(t) denotes the level of current craving
which depends on dopamine transmission in the nucleus accumbens (NAc). Finally,
q(t) denotes the saliency of drug-associated cues that increase with repeated drug con-
sumption. When considering drug addiction as a disease of the learning and memory
mechanism [Hyman, 2005], repeated learning results in a stronger association between
the stimuli and the rewards, causing a sensitized saliency for drug associated cues
[Robinson and Berridge, 2003]. The signal ¢(¢) defines the initial value of the drug-
associated cue Q(t) when it is encountered, as described below.

External processes are considered to include Ap(t), As(t), Ap(t) and Q(t). Ap(t)
denotes a painful trauma that may cause an addict to stop taking drugs immediately
[Bradby and Williams, 2006, Barth et al., 2006]; Ag(t) denotes a stressful episode that
leads to immediate drug use [Erb et al., 1996, Sinha et al., 2000]; Ap(t) denotes drug
priming that could reinstate drug use again [de Wit and Stewart, 1983, Spealman et al., 1999];
and Q(t) denotes a drug-associated cue that may be triggered, for example, by visiting
a particular friend who uses that drug [See, 2002]. If an event Q(¢) is encountered,
the saliency of this signal is defined by the value of ¢(¢). When any of these external
processes is triggered, its value jumps to a fixed value, stays constant for a number of
time steps, and then decreases exponentially. If this external process is triggered again
before its previous effect disappears, it reverts to its initial value, stays constant for a
number of time steps and then decreases exponentially.

2.2 Cognitive Scale (CogS)

The CogS mediates between low and high level controls of behavior. As such, it
computes the cognitive rationality factor r(¢) and the input to the cognitive rationality
f(t) [Siegelmann, 2008]. The parameter r(t) characterizes the activity of the addiction-
related neuronal patterns: low levels cause compulsion to dominate and the value of
G(t) to decrease, and high levels cause inhibition to dominate and G(t) to increase.
The value of r(t) at any instant is a combination of the previous value of the cognitive
process 7(t — 1) and the input to the cognitive process f(t):



Table 1: Effects of G(t), the likelihood of drug-seeking behavior, on internal and external
processes for NepS.

Processes behavior when G(t) > 0 behavior when G(t) <0
S(t) exponentially increases exponentially decreases
P(t) exponentially decreases exponentially increases
starting from the change in the sign of G(t),
from negative to positive : :
. . ’ 11
D) D(t) exponentially increases for a fixed exponentially ncreases
Internals : :
number of time steps, then exponentially decreases
starting from the change in the sign of G(t),
from negative to positive : :
’ 11
q(t) q(t) stays constant for a fixed exponentiafly increases
number of time steps, then exponentially decreases
Ag(t) can be triggered can NOT be triggered
Ap(t) can NOT be triggered can be triggered
Externals Ap(t) can be triggered can NOT be triggered
Q1) can be triggered - its initial value depends on ¢(t)
1 1
r(t):§tanh(a-r(t—1)+ﬁ'f(t)+’y>+§ (2)

where r € [0, 1], and «, 3, and ~ are constants.

The input to the cognitive process f(t) can be expressed as a weighted sum of the
internal processes, that make addiction so difficult to overcome, and the external pro-
cesses that have a strong but temporary effect:

wpP(t) = wsS(t) — wpD(t)| + (3)
wa <Ap(t) — As(t) - AD(t)) Q)]
where wg, wp, and wp are the constants weighting factors for S(t), P(t), and D(t),

respectively; wy is the constant weighting factor for Ap(t), Ag(t), and Ap(t); and wg
is the constants weighting factor for Q(t).

2.3 Behavioral Scale (BehS)

The global output from the model G(t) computed in the BehS is the likelihood of
drug-seeking behavior. G(t) indicates whether the virtual subject is more or less likely
to manifest behavior inducing drug intake at time ¢ according to Equation 1, which
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can be readily modified to include time dependence:

G(t) =1 —r(t) - (=C@O) +r@)- 1) (4)

Here G(t) € [-1,1], I(t) represents the time-dependant inhibition, and C(t¢) the time-
dependant compulsion as defined below. For G(¢) > 0 the virtual subject is less likely to
have an episode of drug-seeking behavior (healthy behavior), whereas for G(t) < 0 the
virtual subject is more likely to exhibit drug-seeking behavior (maladaptive behavior).

The overall inhibition I(t) is the arithmetical mean of inhibitions i’ (¢) and " (¢). In-
hibition ¢'(t) is related to the virtual subject’s neural development of the frontal lobes of
the cortex [Durston et al., 2002, Leon-Carrion et al., 2004, Blakemore and Choudhury, 2006],
given by:

(1 —ehd. g ift < s

mazx,si

Yt —1)+(2d—1)5,, ift<sy

Z-;nax - (i;’nam - i6)6_ﬁ2d if t < s3
it —1) else

where s1, so and s3 correspond to developmental changes age from birth to childhood
(1), to puberty (s2), to adulthood (s3); 41 and (2 are constants; 4y,,, ;, is the maxi-
mum value of ¢/ (t) for age stage s1; i/,,, is the maximal value of '(t); Js, is the maximal
increase of i/(t) during age stage s2; d is the number of time steps after a change in the
age stage s1, s2 and s3; and i, is the value i'(d).

The inhibition i”(t) is ascribable to social rules governing the society in which the
virtual subject is living. We assume i'(¢) a sinusoidal function bounded by two expo-
nential functions:

1— e xet

(1) = ~—5—— (06 — ) Sin(xst) + xn + (©)

where Y. is a constant, xj is the asymptote of the higher exponential function that
bounds 7" (t), x; is the asymptote of the lower exponential function that bounds ()
and Yy, is the angular frequency whose value is changed randomly. Random noise is
added to i'(t) and " (¢).

The compulsion C(t) is the arithmetical mean of ¢/(¢) and ¢’ (¢) which are computed
according to the “incentive-sensitization theory of addiction” [Robinson and Berridge, 1993].
This theory assumes that the neural substrate of the subject using drugs for the first
few times becomes more sensitive to the drug by assigning high saliency to drug-related
inputs, and this saliency alteration is then the instigator to the compulsive behavior to
repetitive drug intakes. According to this theory, the first step is the pleasure phase,
during which the subject increasingly enjoys drug effects. The second step is the want-
ing phase during which the subject changes behavior in order to obtain more and more



of the drug. The parameter ¢/(¢) describes the sensitization (liking) process and the
parameter ¢’ (t) describes the incentive (wanting) process:

(¢, — (), —che 7 I G(t) <0
and 7¢ =0

A+ ) —chle™®d if G(t) <0
and ¢ =1

o + |C)o — chle P24 if G(t) >0
and 7¢ =1

L d(t—1) else

and

(¢ — (e — cg)e_“d if G(t) <0
and 7¢ =0

Ay — (cly — e 2 i G(t) <0

J(t) = and ¢ =1 (8)
¢+ |c¢f — cfjlePd if G(t) >0
and 7¢ =1
d'(t—1) else

where ¢}, ¢};, ¢}y, ¢h1, ¢y and ¢} are maximal and minimal values of respectively ¢ (t)
and ’(t); v, 11, 72, B, f1 and (3 are constants; 7¢ is a binary value set to 1 when
G(t) < 0 for a number of time steps; d is the number of time steps after a change in
the sign of G(t) or the value of 7¢; ¢, = ¢/(d) and ¢fj = ¢”’(d). Random noise is added
to both signals.

3 EXPERIMENTAL EVALUATION

Drinking, smoking, and drug use are serious problems among college students and
can cause addiction. A preliminary experimental evaluation of our model has been
performed in order to characterize such behavior. We begin by describing the onset
and maintenance of addictive behavior in G.D., a college-age virtual male subject who
had a healthy physical and mental development.

The evolution of G.D.’s inhibition (¢) up to age 25 is shown in Figure 2. Here i’ ()
is the inhibition related to his neural development, and " (¢) is the inhibition related
to the social rules present in his environment. Note that the neural related inhibition
i'(t) undergoes an abrupt transformation after age 10, whereas the inhibition i"(t)
fluctuates between two exponential curves that represent the minimum and maximum
inhibitions in G.D.’s social environment.
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Figure 2: Evolution of G.D.’s inhibition I(t) from birth to age 25: ¢'(¢) is the inhibition
related to neural development, and i”(¢) is the inhibition related to the social environment.

G.D. had his first encounter with drugs at age 17. The evolution of his drug-seeking
behavior G(t) and his compulsion C(t), between the ages of 16 and 18, are shown in
Figure 3. Note that the sign of G(t) changes form positive to negative at age 17, and
how the incentive and sensitization processes ¢(t) and ¢”(t) change their trajectories.

—G(Y)

16 ‘ 17 ‘ 18

17
time [years]

Figure 3: G(t) (upper curve) and C(t) (lower curve) for G.D. from age 16 to 18. Also included
are incentive ¢(t) and the sensitization ¢’(t) processes [Robinson and Berridge, 1993].

As a further check of the model, we used the same I(t) and C(t) signals and
performed 10 different simulations to compute G(¢) and also the other signals. Figures
4 to 6 show the means of these signals as well as the standard errors of the mean (SEM).
The evolution of G.D.’s internal processes S(t), P(t) and D(t) at the age of 17 when he
begins to take drugs and becomes addicted is shown in Figure 4. The level of negative
consequences in areas such as health or social relations P(t) and the dopamine-related
craving D(t) have low values at the beginning of the addictive experience, and then
progressively increase to steady values.

In the years following his encounter with addiction, G.D. exemplifies the drug-
seeking behavior of someone who is unsuccessfully trying to quit using drugs. This
relapse pattern, which is a fundamental characteristic of addiction, is apparent in Figure
5, which shows the mean values of G(¢) over 10 simulations and the corresponding SEM,
from age 19 to 21.
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Figure 4: Means and SEMSs of the internal processes S(t), P(t), and D(t) for G.D. from age
17 to 18 (10 simulations).
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Figure 5: G(t) mean and SEM for 10 simulations. Between ages 19 to 21, G.D. shows a
continuous relapse pattern of a person unsuccessfully trying to escape from drug-seeking
behavior.

G.D.’s internal processes for this same period are shown in Figure 6. Acute traumas
Ap(t) bring him towards a healthy behavior, but he is unable to overcome addiction
because of the drug-associated cues Q(t). As G(t) < 0 the value of ¢(¢) increases, and
As(t) and Ap(t) can not occur.

This particular case exemplifies a college-age student who has his first encounter
with drugs at the age of 17. Initially G.D. enjoyed the drug, but his enjoyment progres-
sively decreased as his desire increased. This dynamic behavior is due to the negative
effect of Q(t) being stronger than the positive effect of Ap(t).

Our model is not limited to monotonic non-reversible processes. Another example
with a healthier dynamic is shown in Figure 7. In this case, the virtual male subject,
we call V.R. has job-related difficulties following his 36th birthday. The acute stress
episodes he experiences at his workplace makes V.R. more vulnerable to addiction.
Over a period of several days, his G(t) value decreases and becomes negative, but
acute episodes of pain make his G(t) value positive again and his behavior is healthy
again.
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Figure 6: Acute pain Ap(t) (upper curve), and drug-associated cues @(t) and their saliency
value ¢(t) (lower curves) mean and SEM over 10 simulations for G.D. between ages 19 to 21.
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Figure 7: G(t) mean and SEM over 10 simulations for V.R. for 5 months following his
36th birthday. His drug-seeking behavior changes from healthy to maladaptive and back to
healthy.

4 DISCUSSION

The present paper introduces a multi-scale approach to the modeling of addiction while
also incorporating time dependence to the inhibition and the compulsion processes. A
fundamental issue is evaluating the model’s ability to mimic experimental data. The
first step in this endeavor is to assess whether the calculated likelihood of drug-seeking
behavior G(t) is suitable for describing actual addictive behavior.

Computed values for the likelihood of drug-seeking G(t) give rise to specific patterns
or trajectories of behavior. For example, it was shown that over 4 years, a group of
college-age occasional smokers is likely to evolve into three categories: 45% of the sub-
jects are likely to become nonsmokers, 35% occasional smokers, and 20% daily smok-
ers [Kenford et al., 2005]. Another investigation classifies drinking trajectories of first
year college students into five groups: light drinkers the whole year (light-stable), light
drinkers the whole year but with a considerable increase during holidays (light-stable
plus high holiday), initial moderate drinkers who increased their consumption during
the year (medium-increasing), initial heavy drinkers who decreased their consumption
during the year (high-decreasing), and finally heavy drinkers during the whole year



(heavy-stable) [Greenbaum et al., 2005].

The drug-seeking behavior profile of virtual subject G.D. presented in Figure 5
suggests a person in the “light-stable plus high holiday” group cited above. This
parallelism can be made under the assumption that G.D.’s birthday is in September.
Within this context, associations between local minima of G(¢) and holiday periods
seem reasonable with respect to time and the absolute values of G(t). The two local
minima prior to G.D.’s 20" and 21" birthdays may be considered to occur in the
summer, and the two local minima around ages 19.5 and 20.5 during winter breaks.
Also associations between local maxima of G(¢) and particularly intense periods of the
school year seem reasonable. Local maxima prior to G.D.’s 20" and 21** birthdays may
be considered to occur during examination periods. It is reasonable to associate G.D.’s
profile with the profile of a student which tends to decrease his drinking consumption
during periods requiring more responsibility, and to increase consumption during more
serene periods.

Preliminary results presented in this paper suggest that the “dynamical addict”
model could provide a complementary view to existing computational models toward
a better understanding of addiction and its dynamical properties. Future work will
concentrate on more extensive comparisons with real data as well as the integration of
an additional neurophysiological scale.
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APPENDIX

This Appendix contains the mathematical details for the internal and external pro-
cesses in Section 2.1.

The bounding function o is defined as:

0 ifx<O
o(x)=1< = ifzel0,1]
1 ifz>1

In the following, v(€ [—0.05,0.05]) denotes the uniform noise that is different for every
signal at each time step t.

The internal processes in the NepS are computed as follows:

S - stress
o[l —(1—Sp)-ePsd4v] ifG>0
S(t)=1< o[S{t—1)+v] ifG=0
0[Sy - e 754 4 1] ifG<0
where ¢. is the time of last change of sign of G; Sy is the value of S(t.); Os is the
exponential constant of S when G > 0; ~g is the exponential constant of S when
G < 0; d is the number of steps after ¢.; d € N; S € [0,1].
P - pain
o[Py-ePrd itG >0
P(t)y=1< o[P(t—1)+v] ifG=0

ol —(1—=PRy)-e P4y ifG<0
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where t. is the time of last change of sign of G; Py is the value of P(t.); Op is the
exponential constant of P when G > 0; «p is the exponential constant of P when
G < 0; d is the number of steps after t.; d € N; P € [0,1].

D - dopamine related craving

o[l — (1 —Dg)-ePrd 4] ifG>0
and d € [1, 7]
oDy - e Prd 4y itG >0
D(t) = and d > 7
oDt —1)+v] ifG=0
L o[l —(1—=Dg)-ed4+y] ifG<0

where t. is the time of last change of sign of G; Dy is the value of D(t.); 7 is the
number of time steps in which the dopamine related craving increases after there is no
drug consumption; DE) is the value of D(t) at t = 7; Bp is the exponential constant of
D when G > 0; vp is the exponential constant of D when G < 0; d is the number of
steps after t.; d € N; D € [0,1].

q - saliency to drug cues

olg(t —1) + v] if {G>0
and d € [1,7]}
orif G=0
q(t) = a[qé cePad 4y ifG>0
and d > 7
ol —(1—qy)-ed 4] ifG<0

where t. is the time of last change of sign of G qq is the value of ¢(t.); 7 is the number
of time steps in which saliency to drug cues does not decrease even that there is no
drug consumption; qé is the value of ¢(t) when ¢t = 7; 3, is the exponential constant
of ¢ when G > 0; v, is the exponential constant of ¢ when G' < 0; d is the number of
steps after t.; d € N; ¢ € [0, 1].

The external processes in the NepS are computed as follows:

Ag - acute shock

( As, if {G>0
and bg(t) =1}
or tg € [1, 7]

ps - Ag(t—1) iftg € [m,m]

L 0 else
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where bg(t) is a Boolean variable € {0, 1}; bg(t) = 1 means that a shock begins at time
t; Ag, is a constant; pg is a constant < 1; ¢ is the starting time of a shock; tg € N
is the number of steps after fy; 7 is the number of time steps in which the shock
effect is constant; 79 is the number of time steps in which the shock effect is decreasing
(o >11); Ag € [0, Ag,].

Ap and Ap - acute trauma and acute priming to drugs

The signals Ag, Ap, and Ap are mathematically very similar. The main difference is
that an event Ap can start only when G < 0, but events Ag and Ap can start only
when G > 0.

() - encountering drug cues
a(t) if bo(t) = 1
Q(t—1) if tg € [1, 7]

pq-QEt—1) iftg € [r,n)]

0 else

where bg(t) is a Boolean variable € {0,1}; bg(t) = 1 means that a cue begins at time
t; pg is a constant > 1; ¢g is the starting time of a cue; g € N is the number of steps
after tg; 71 is the number of time steps in which the cue effect is constant; 7o is the
number of time steps in which the cue effect is decreasing (2 > 71); Q € [0, pg].
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