
A Multi-Agent Learning Approach to Resource
Sharing across Computing Clusters

Chongjie Zhang Victor Lesser
Prashant Shenoy

Computer Science Department
University of Massachusetts Amherst

UMass Computer Science Technical Report UM-CS-2008-035

Abstract

Resource management in clusters traditionally uses centralized approaches,
which restricts the cluster scale. To expand this limit, we develop a multi-agent
approach to sharing resources across clusters in a decentralized manner. We or-
ganize shared clustered into an overlay network and formulate resource sharing in
such a network as a distributed sequential resource allocation problem (DSRAP).
We then propose a multi-agent reinforcement learning algorithm for each cluster to
learn both local allocation decision policy and task routing policy so that clusters
cooperatively allocate tasks and maximize the global utility of the system. Heuris-
tic strategies are developed to speed up the learning in such a complex problem.
We compare our approach with a centralized allocation approach that can gener-
ates optimal solutions in some cases. Experimental results show that our approach
is very effective and even outperforms the centralized allocation approach in some
cases where it does not generate optimal solutions.

1 Introduction
As “Software as a service” becomes a popular business model, it is becoming in-
creasingly demanding to build computing infrastructures to host application services.
Shared clusters built using commodity PCs or workstations offer a cost-effective so-
lution for constructing such infrastructures. Unlike a dedicated cluster, where each
computing node is dedicated to a single application, a shared cluster can run the num-
ber of applications significantly larger than the number of nodes, necessitating resource
sharing among applications. Thus the central challenge in shared clusters is resource
management that addresses such issues as resource reservation for individual applica-
tions, performance isolation between applications, and performance guarantee to ap-
plications.

Several approaches have been developed for allocating resources in a shared com-
modity cluster. A resource-sharing technique for a network of workstations was pro-
posed in [5]. This approach is based on fair relative allocation of cluster resources
using proportional-sharing scheduling. Cluster Reserves [4] provides a cluster-wide
abstraction that maps the resource assigned to a cluster reserve to individual nodes in
the cluster. Cluster Reserves built upon resource containers [7] and employed a linear
programming formulation for allocation resources. Sharc [20] focuses on absolute al-

1

Figure 1: A partially centralized system

location of resources by reservations. Techniques employed by Sharc have complexity
that is linear in the number of applications in the cluster.

However, these approaches use centralized resource management, which limits the
cluster scale and its computing capacity. To build larger shared computing infrastruc-
tures, one common model is to organize a set of shared clusters into a network and
enables resource sharing across shared clusters. Figure 1 shows an example of a shared
cluster network, where shaded circles represents managers and blank circles represents
computing nodes. The resource allocation decision is now distributed to each shared
cluster. Each cluster still uses a cluster-wide technique for managing its local resources.
However, as task (also referred to applications services) allocation requests vary across
clusters, an cluster may need to dynamically decide what tasks to allocated locally and
where to forward unallocated tasks to cooperatively optimize the global utility of the
whole system. To achieve scalability, each cluster has limited number of neighboring
clusters that it interacts with.

We describe this decision problem as a distributed sequential resource allocation
problem (DSRAP). We consider DSRAP is a novel and practical application for mul-
tiagent learning. In DSRAP, each agent (referred to a cluster) has only a partial view
of the whole system and does not have access to the system-level utility (because it
is not directly measurable in real-time). All agents make decisions concurrently and
autonomously. Each agent’s decision depends not only on its local state but also on
other agents’ states and policies.

This paper is intended to demonstrate applicability and effectiveness of multiagent
learning for DSRAP or similar distributed problems. We propose a multi-agent learn-
ing algorithm, called Fair Action Learning (FAL) which is a variant of the Generalized
Infinitesimal Gradient Ascent (GIGA) algorithm [23], for each agent to learn local de-
cision policies. To simplify the learning, we decomposes each agent’s decisions into
two connected learning problems: local allocation problem (deciding what tasks to be
allocated locally) and task routing problem (deciding where to forwarded a task). To
avoid poor initial policies during learning, heuristic strategies are developed to speed

2

up the learning. The learning approach is tested in a network of simulated clusters
and compared with a centralized greedy allocation approach, which is optimal in some
cases. Experimental results show that our multi-agent learning works effectively and
even outperforms the centralized approach in some cases. Although we discuss our
approach in this particular problem, it can be more generally useful in other online re-
source allocation problems, for example, when shared resources are storage devices in
distributed file systems, documents in peer-to-peer information retrieval, or energy in
sensor networks.

The rest of this paper is structured as follows. Section 2 formulates the problem
above as a distributed sequential resource allocation problem. Section 3 introduces
background knowledge about reinforcement learning and multi-agent reinforcement
learning. Section 4 describes decision-making processes of our approach and learning
models for each type of decisions. Section 5 describe experiment design and analyzes
experimental results. Related work is presented in Section 6. Finally, Section 7 con-
cludes our work and discusses future work.

2 Problem Formulation
The runtime model of DSRAP is described as follows. Each cluster manager receives
tasks either from the external environment or a neighboring manager. At each time
step, a manager makes decisions on what tasks are allocated locally and how remaining
tasks are forwarded to neighboring managers. Due to the task transfer time cost, there
is communication delay between two agents. To reduce the communication overhead,
the number of tasks a manager transfers at each time step is limited. When a task is
allocated locally, the manager gains an amount of utility at each time step, which is
specified by the task utility rate. If a task can not be allocated within its maximum
waiting time, it will be removed from the system. If an allocated task is finished,
all resources it occupies will be freed and available for future tasks. The main goal
of DSRAP is to derive decision policies for each manager that maximize the average
utility rate (AUR) of the whole system .

We denote a DSRAP with a tuple 〈C ,A, T ,B,R〉, where

• C = {C1, . . . , Cm} is a set of shared clusters.

• A = {aij} ∈ $m×m is the adjacent matrix of clusters and each element aij is
the task transfer time between cluster Ci and cluster Cj .

• T = {t1, . . . , tl} is a set of task types.

• B = {Dij} is the task arrival pattern and each element Dij is the arrival distri-
bution of tasks of type tj at cluster Ci.

• R = {R1, . . . , Rq}is a set of resource types (e.g., CPU and network) that each
cluster provides.

Each cluster Ci = {ni1, ni2, . . . , nik} contains a set of computing nodes. Each
computing node nij has a set of resources, represented as {〈R1, vij1〉, . . . , 〈Rq, vijq〉},
where Rh (h = 1, . . . q) is the resource type and vijh ∈ $ is the capacity of resource
Rh on node nij . We assume there exist standards that quantify each type of resource.
For example, we can quantify a fast CPU as 150 and a slow one with a half speed as
75.

3

In DSRAP, each task consists of at least one capsule or more if the task is dis-
tributed. A capsule is a component of a task that can run on an individual computing
node. A task with multiple capsules can run on one node or multiple nodes. Note
that resource management of shared clusters guarantees resources for each capsule, so
multiple capsules running in parallel on one node will perform the same as running on
multiple nodes. A capsule is not decomposable and can only run on one node. One
task can only run in one cluster.

A task type characterizes a set of tasks. Tasks of one type have the fixed number
of capsules. A task type ti is also denoted as a tuple 〈Ds

i , D
u
i , Dw

i , Drs1
i , . . . ,Drsn

i 〉,
where

• Ds
i is the task service time distribution

• Du
i is the task utility rate (utility per time step) distribution

• Dw
i is the distribution of the task maximum waiting time before being allocated

• D
rsj

i is the resource specification distribution of capsule j (j = 1, . . . , n) of a
task. D

rsj

i = {〈R1, D
rsj1
i 〉, . . . , 〈Rq, D

rsjq

i 〉 } and D
rsjh

i (h = 1, . . . q) is a
resource demand distribution of capsule j for resource Rh.

A task is denoted as a tuple 〈t, u, w, RS1, . . . , RSn〉, where

• t is the task type.

• u is the utility rate of the task.

• w is the maximum waiting time before being allocated.

• RSi is the resource specification of capsule i = 1, . . . , n. RSi = {〈R1, di1, . . . , Rq, diq〉,
where dih (h = 1, . . . q) is capsule i’s demand for resource Rh.

Based on the model of DSRAP developed above, the average utility rate of the
whole system to be maximized can be defined as following:

AUR = lim
n→∞

∑n
i=1

∑m
j=1

∑
x∈Ti(Cj)

u(x)
n

(1)

where Ti(Cj) is the set of tasks that allocated to cluster Cj at time i and u(x) is the
utility of task x. Note that, due to its partial view of the system, each individual cluster
can not observe the system’s AUR.

3 Background
3.1 Reinforcement Learning
Reinforcement learning (RL) [19] addresses the question of how an autonomous agent
that senses and acts in its environment can learn to choose optimal actions to achieve its
goals. The agent’s learning environment is typically formulated as a Markov Decision
Process (MDP). An MDP for a single agent (decision maker) can be described by a
tuple 〈S, A, T, r〉, where

• S is the state space,

4

• A is the action space,

• T is the transition function and T (s, a, s′) = Pr(st+1 = s′|st = s, at = a) is
the probability that action a in state s at time t will lead to state s′ at time t + 1,

• r is the reward function and r(s, a, s′) is the immediate reward (or expected
immediate reward) received after transition to state s′ from state s by executing
action a.

The agent’s goal is to maximize, at each time step k, the discounted total reward:

Rk =
∞∑

j=0

γjr(sk+j , ak+j , sk+j+1), (2)

where γ ∈ (0, 1) is the discount factor.
A solution to a MDP is called a policy. A deterministic policy directly maps each

state to one action, while a stochastic policy specifies a probability distribution over the
available actions for each state. Both can be represented as a function π(s, a), which
specifies the probability that an agent will execute action a at state s. An optimal policy
is a policy that allows an agent to achieve its goal and maximize the discounted total
reward at each time step.

If the underlying MDP model of a learning environment is completely known, the
optimal policy can be directly derived through dynamic programming. However, in
most real problems, this condition does not hold. The key feature of RL is that it can
learns an optimal policy through a trial-and-error exploration in the absence of explicit
MDP models.

Algorithm 1: Q-learning Algorithm
begin

Initialize Q(s, a) arbitrarily
repeat

Initialize s
repeat

Choose action a from state s using policy derived from Q (e.g.,
ε-greedy)
Take action a, observe r, s′

Q(s, a) ← Q(s, a) + α[r + γ maxa′ Q(s′, a′)−Q(s, a)]
s ← s′

until s is terminal
until the learning stops

end

The Q-learning [21] algorithm is an example RL algorithm that learns a action-
value function Q(s, a) estimating an agent’s long-range expected value, starting in
state s and taking initial action a. The action-value function update rule of Q-learning
is defined by:

Q(st, at) ← Q(st, at) + α[rt+1 + γ max
a

Q(st+1, a)−Q(st, at)], (3)

where α is the learning rate, γ is the discount factor, and rt+1 is the immediate reward
at time t + 1 after taking action a in state s. Algorithm 1 shows the procedural form

5

of the Q-learning algorithm. With the update rule 3, the learned action-value function,
Q, directly approximates Q∗, the optimal action-value function, independent of the
policy being followed. A deterministic optimal policy π∗ can be derived from Q∗ as
following:

π∗(s, a) =
{

1 if a = argmaxa′Q∗(s, a′)
0 otherwise (4)

3.2 Multi-Agent Reinforcement Learning
A multi-agent system (MAS) is a system composed of multiple interacting intelligent
agents. In a typical MAS, each agent has only a partial view of the system, but it is
autonomous or at least partially autonomous in decision-makings. A MAS is a coop-
erative MAS if all agents’ ultimate goals are to maximize the social or global utility
(the utility gained by the whole system). For example, our model for DSRAP is a
cooperative MAS.

In the single-agent setting, several interesting and powerful theorems guarantee that
RL algorithms, such as Q-learning, learn optimal value functions and optimal poli-
cies for MDP environments when lookup tables are used to represent the state-action
value function. However, in the multi-agent setting, due to the non-stationary environ-
ment (all agents are simultaneously learning their own policies), the usual conditions
for single-agent RL algorithms’ convergence to an optimal policy do not necessarily
hold [10, 13, 8]. As a result, the learning of agents may diverge due to lack of syn-
chronization. Several multi-agent reinforcement learning (MARL) algorithms have
been developed to address this issue [23, 8, 1], with convergence guarantee in specific
classes of games and with two agents.

Algorithm 2: Fair Action Learner (FAL) Algorithm
begin

r ← the cost for action a at state s
update Q-value table using < s, a, r >
r̄ ← average reward =

∑
a∈A π(s, a)Q(s, a)

foreach action a ∈ A do
∆(s, a) ← ζ(Q(s, a) + r̄)

end
π(s) ← limit(π(s) + ∆(s))

end

In this paper, we used a multi-agent reinforcement learning algorithm, called Pol-
icy Gradient Ascent (PGA), to learn decision-making policies. The PGA algorithm is
a direct policy search technique and a variant of the GIGA algorithm [23] that approx-
imates the policy gradient of each state-action pair with the difference of the expected
Q-value on that state and its Q-value. Algorithm 2 describes its policy update rule,
where ζ is the policy learning rate. To normalize π(s) such that it sums to 1, the limit
function from GIGA [23] is applied with minor modifications so that every action is
explored with minimum probability ε:

π(s) = limit(π(s)) = argminx:valid(x)|π(s)− x|

i.e., limit(π(s)) returns a valid policy that is closest to π(s).

6

One advantage of the PGA algorithm is that it learns stochastic policies and does
not require a global reward signal. As argued in [18], stochastic policies can work better
than deterministic policies in partially observable environments, if both are limited to
act based on the current percept. The PGA algorithm needs an algorithm to update its
state-action value function. We use the Q-learning algorithm in this paper.

4 Learning the Distributed Sequential Resource Allo-
cation

In DSRAP, at each time step, a manager may receive tasks from neighboring managers
or the external environment. It needs to decide what tasks are to be allocated in the local
cluster (if its resources are available) and how to forward the remaining tasks. Since
each manager makes decisions to maximize the global utility of the system, whether
to allocate a subset of tasks locally depends on both resource availability of its local
cluster and other clusters in the network. One straightforward approach is to unify the
decision-makings above as one. However, this idea faces a difficult problem, that is,
how to assign the reward for forwarding a task to neighboring managers. This reward
should be comparable to the utility the manager gains when allocating a task locally.
For example, if the manager gains all or partial utility of the task for forwarding it,
then other managers have no or less incentive to allocate this task than tasks directly
from the external environment. If receiving no utility, it will greedily allocate all tasks
locally, if local resources permit, and can not distinguish which neighbor is a better
candidate for this task. Another option is to duplicate the utility of the task, that is, all
managers that forward or allocate this task receive its utility. This option causes the
sum of local utilities not to be equal to the real global utility the whole system gains.
Obviously, looping tasks in the network tends to increasing the local utility of each
agent. This tendency results in ”bad” decision policies of managers that do no good for
the global utility.

Algorithm 3: General DSRAP Decision-Making Algorithm
begin

TASKS ← set of tasks received in current time cycle;
ALLOCATED TASKS ← selectAndAllocateTasks(TASKS);
TASKS ← TASKS \ ALLOCATED TASKS ;
foreach task t ∈ TASKS do

chooseANeighborAndForward(t) ;
end

end

We approach this problem by decoupling decisions above into two decision-makings:
local allocation decision (whether to allocate a task locally) and task routing decision
(to which neighboring cluster a task is forwarded). Algorithm 3 shows the general
decision-making process for DSRAP. This algorithm uses two functions: selectAn-
dAllocateTasks and chooseANeighborAndForward. Function selectAndAllocateTasks
is responsible for the first decision-making that selects and allocates a subset of re-
ceived tasks to its local cluster in order to maximize its local utility. The manager
gains utilities only from locally allocated tasks. The loop foreach statement accounts
for the second decision-making. For each task that is not allocated locally, function

7

chooseANeighborAndForward compares potential processing capabilities of neighbors
and chooses a better candidate and forward the task in order to maximize its allocation
probability. As the second decision policy of a manager depends on the first deci-
sion policies of other managers, our approach also explicitly establishes connections
between two decision-makings, which will be discussed later.

The way that we model the decision process for DSRAP has following advantages:

• As the reward function for the second decision-making is only used to com-
pare neighbors, it does not have to be comparable with that of the first decision-
making.

• The global utility of the system is exactly equal to the sum of local utilities of all
managers. Therefore, the global utility can potentially increase as each manager
improves its local utility.

• Our approach also deals well with the issue of information asymmetry. Each
manager has full knowledge about its own state, but limited knowledge about
each neighboring manager. By separating decisions, each manager not only takes
advantages of its detailed local information, but also allows neighbors to more
fairly compete for tasks.

• As two decisions are inherently connected, our approach does not cut down this
connection.

• Our approach allows managers to demonstrate both self-interest (in the first
decision-making) and cooperativeness (in the second decision-making). As the
global utility is the sum of local utilities, both characteristics direct and indirectly
tends to improve the performance of the whole system.

The environment where managers situate is open, dynamic, and non-stationary. No
predefined decision policies can work effectively in all situations. Each manager needs
to learn and adapt its policies to the dynamics of both the environment and other agents.
The following subsections will describe in detail both decision-making processes and
how to learn decision policies.

4.1 Modeling the First Decision-Making
Algorithm 4 shows the first decision-making process for DSRAP. This algorithm in-
crementally selects and allocate tasks locally. It uses three functions: getAllocable-
Tasks, allocate, and learn. Function getAllocableTasks filters tasks based on current
local resource availability and returns allocable tasks. Function allocate is responsible
for allocating resources to the task and update local resource availability information.
Function learn updates its allocation decision policy for selecting a task. Here we use
π1 to denote a policy for the first decision-making. VOID TASK is a unique, fake task
without resource requirements and utility. If this task is selected, then the remaining
tasks will be not allocated and the allocation process stops.

4.1.1 The Learning Model for the First Decision-Making

To model this decision-making as a learning problem, we first define the state space,
the action space, and the reward function. A manager’s allocation decision may depend
on various information, including availability of each resource on each computing node

8

Algorithm 4: selectAndAllocateTasks(TASKS)
Input: Set of tasks
Output: Set of allocated tasks
begin

ALLOCABLE TASKS ← getAllocableTasks(TASKS);
ALLOCATED TASKS ← ∅ ;
while ALLOCABLE TASKS (= ∅ do

ALLOCABLE TASKS ← ALLOCABLE TASKS ∪ {VOID TASK} ;
update current state s with local resource availability and
ALLOCABLE TASKS;
t ← task selected from ALLOCABLE TASKS according to decision
policy π1(s, ·);
if t = VOID TASK then

ALLOCABLE TASKS ← ∅;
else

allocate(t);
ALLOCATED TASKS ← ALLOCATED TASKS ∪{t} ;
TASKS ← TASKS \{t} ;
ALLOCABLE TASKS ← getAllocableTasks(TASKS);
learn(s, t);

end
end
return ALLOCATED TASKS;

end

in the local cluster and information about tasks to be allocated. As most of these infor-
mation values are continuous, the decision state space is immensely huge. In order to
make the learning problem tractable, we approximate the original state space by using
an abstract state space.

Each abstract state s = 〈st, sc〉 consists of two feature vectors st and sc, respec-
tively describing the task set to be allocated and availability of various resources in a
cluster. We assume the task type of a task can approximately represent information
about the task. So st can be represented as a vector 〈y1, y2, . . . , ym〉, where each fea-
ture yi corresponds to task type i and m is the number of task types. If the task set to
be allocated contains a task with type i, then yi = 1.

To describe resources in a cluster, we first categorize availability of each resource
into multiple levels and then use combinations of levels of different resources as fea-
tures to represent sc. The value of a feature is the number of computing nodes in
the cluster that have such resource levels. For example, if availability of CPU or net-
work on a computing node is described with two levels: LOW and HIGH, then there
are 4 combinations or features: x1 = 〈LOW, LOW 〉, x2 = 〈LOW, HIGH〉, x3 =
〈HIGH, LOW 〉, and x4 = 〈HIGH, HIGH〉, where CPU is the first component of
vectors. Feature vector sc = 〈x1, x2, x3, x4〉 describes resource availability of a clus-
ter. For example, a feature vector of a cluster with 5 nodes can be 〈0, 4, 1, 0〉, which
represents that the cluster has 4 nodes with LOW CPU availability and HIGH network
availability and one node with HIGH CPU availability and LOW network availability.

An action of this decision is to select a task to allocate. So each task t corresponds
to an action. In a real environment, it is not frequent to see two exact same tasks. To

9

reduce the action space, the type of the task is used to approximately represent the task
itself. Therefore, action set is mapped to the set of task types. Then binary feature
vector st of an abstract state s determines available actions for state s. It is possible
that one task set to be allocated may have several tasks with the same type. When such
task type is selected, the task of this type with the greatest utility rate will selected and
allocated.

The reward function r(s, t) returns the utility rate for allocating task t = 〈S, t, w, u〉
at state s, which is defined as following:

r(s, t) =
{

0 if t = VOID TASK
u otherwise (5)

In addition to the external environment, a manager may also receive tasks from
other managers. Decision policies of other managers have an impact on task arrivals
at this manager and consequently affect its learning. As all managers are simultane-
ously learning their own policies, the learning environment of each manager is non-
stationary. In addition, each manager only interacts their immediate neighbors and has
partial observation of the system. As argued in [18], stochastic policies can work better
than deterministic policies in partially observable environments, if both are limited to
act based on the current percept. For each manager, we choose Q-learning to update
its value function Q(s, a) and use PGA algorithm to learn its allocation decision policy
π1(s, a).

As the allocation decision policy π1(s, a) is stochastic, the update rule of Q-learning
needs to be changed as follows:

Q(sn, an) ← Q(sn, an) + α[rn+1 + γE{Q(sn+1, an+1)|sn}−Q(sn, an)]
← Q(sn, an) + α[rn+1 + γ

∑
s p(s|sn, an)

∑
a π(s, a)Q(s, a)−Q(sn, an)]

where p(s|sn, an) is the probability of transiting into state s by executing action an

at state sn, and π(s, a) is the probability of executing action a at state s. The new
update rule is just like that of Q-learning except that instead of the maximum over
next state-action pairs it uses the expected value, taking into account both the state-
transition probability and the probability each action will be executed under the current
policy. The new update rule needs the state-transition probability, because the next state
may not be determined until the task set to be allocated is known. The state-transition
probability can be estimated during the learning.

4.1.2 Accelerating the Learning Process

Even when using approximated state space and action space developed above, the state-
action space of each agent is still extremely large. Assume that a cluster has n com-
puting nodes, m types of resources, and receives k types of tasks and availability of
each resource is discretized into d levels, the size of the state-action space is k2kndm

.
In addition, any pure knowledge-free RL exploration strategies could entail running
arbitrarily poor initial policies, which should be avoided in the live system. To address
those issues, we proposed several techniques to guide the exploration. Policies are ini-
tialized with a greedy allocation algorithm, which allocates all tasks in an decreasing
order of their utilities if resources permit. The ε-greedy strategy is used to allow each
action to be explored with a minimum rate. To avoid unwanted system performance,
we set a utilization threshold for each cluster. If the utilization of every resource is
below this threshold, then the manager stops ε-greedy exploration and uses the greedy

10

algorithm for exploration. In addition, note that rejecting too many tasks will degrade
the system performance. We also limit the exploration rate to select VOID TASK.

4.2 Modeling the Second Decision-Making
The second decision-making for DSRAP addresses the question: to which neighboring
manager should a manager forward a given task to get it to a wanting cluster before it
expires? As the supply of resources are usually less than the demand of tasks, not all
tasks will be allocated to some cluster. The performance of this decision-making can
be measured by the probability that a task will be allocated in some cluster. With the
approach developed above for the first decision-making, each cluster manager learns
to choose and allocate tasks to maximize its utility, so improving the task forwarding
policy will increase the global utility of the system.

Algorithm 5: chooseANeighborAndForward(task t)
Input: A task to be forwarded
begin

update current state s with task t;
n ← a neighbor selected according to decision policy π2(s, ·);
forward task t to neighbor n ;
r ← the reward returned from neighbor n for task t ;
learn(s, n, r) ;

end

However, there is no ”training signal” for directly evaluating or improving the for-
warding policy until a task is either allocated or abandoned. To address this issue, we
employ reinforcement learning to update the policy using only local information. As
previous work [22] showed that PGA outperformed Q-learning in distributed decision-
making problems, we choose PGA to learn the forwarding policy. Algorithm 5 shows
the second decision-making process on forwarding a task. The learning model is de-
scribed below.

4.2.1 The Learning Model for the Second Decision-Making

The state sx is defined by the characteristics of the task x that an agent is forwarding.
More specifically, sx can be represented by a feature vector 〈tx, wx〉, where tx is the
type of the task x and wx is the remaining waiting time of the task x. We assume the
type of a task can characterize the task itself. An action j corresponds to choosing
neighboring manager j for forwarding a task. We define Qi(sx, j) as the expected
probability that the task x will be allocated if an agent i forwards it to its neighbor j,
and π2i(sx, j) as the probability that agent i will forward task x to agent j.

Upon sending a task to a, agent i immediately gets the reward single r(sx, j) from
the agent j’s. The reward r(〈tx, wx〉, j) is the estimated probability that the task x will
be allocated based on agent j current policies, namely

r(sx, j) = pj(x) + (1− pj(x))
∑

k∈neighbors ofj

π2j(s′x, k) ∗Qj(s′x, k) (6)

where pj(x) is the probability that agent j will allocate task x locally, π2j is the policy
of agent j for the second decision-making, and s′x is the state where agent j makes a

11

Greedy FDL SDL BDL
First Decision-Making Algorithm Best-first Learning1 Best-first Learning1

Second Decision-Making Algorithm Random Random Learning2 Learning2

Table 1: Distributed resource allocation approaches

decision for forwarding task x. If the state sx = 〈tx, wx〉, then s′x = 〈tx, wx − aij〉,
where aij is the time cost for transferring a task between agent i and agent j.

The probability pj(x) depends on agent j’s allocation policy π1j for the first decision-
making. It is calculated as following:

pj(x) =

0 if agent j has no resources for task x
or task x will be expired upon arriving∑

st
q(〈sc, st〉|t)π1j(〈sc, st〉, t) otherwise

(7)
where t is the type of task t, sc is the current feature vector of resource availability,

q(〈sc, st〉|t) is the probability that agent j is on state 〈sc, st〉when it allocates tasks with
type t, and π1j is the policy of agent j for the first decision-making. The probability
q(〈sc, st〉|t) can be estimated during the learning.

The simple version of Q-learning algorithm is used to update agent i’s estimate:

Qi(sx, j) = (1− α) ∗Qi(sx, j) + α ∗ r(xs, j)

where α is a learning rate (usually 0.5 in our experiments). With updated Q-values, the
PGA algorithm revises its policy π2i.

4.2.2 Dual Exploration

Exploration of Q-values is done locally between neighboring agents during a task trans-
fer to avoid excessive exploration overhead. In the learning model developed for the
second decision-making, only one Q-value (Qi(sx, j)) is updated when agent i for-
wards task x to agent j. However, one more Q-value (Qj(sx, i)) can also be updated
in the same transfer. This idea of using information about the traversed path for ex-
ploration in the reverse direction is called backward exploration [14]. When agent i
transfer task x to its neighbor j, the message that contains task x can take along reward
information r(sx, i) of agent i about allocating x. This reward information can be used
by agent j to update its own estimated pertaining to i. Later when agent j has to make
a decision, it has the updated Q-value for i. As a result, backward exploration speeds
up the learning.

5 Experiments
5.1 Experiment Design
To evaluate the performance of learning models developed in Section 4, we compared
five resource allocation approaches: greedy allocation, first-decision learning (FDL),
second-decision learning (SDL), both-decision learning (BDL), and centralized al-
location. The first four approaches are distributed techniques and derived from our
two-decision model developed in Section 4. As shown in Table 1, they use different

12

Figure 2: The network topology with 16 clusters

algorithms for each decision-making. With best-first algorithm for the first decision-
making, at each time step, a manager first sorts all received tasks in a descending order
of utility rate and then processes tasks one by one. If there are resources available for a
task, the manager then allocates it to its local cluster. Learning1 and Learning2 respec-
tively refer to the learning algorithms we developed for the first and second decision-
making. Note that, for SDL, the task allocation probability pj(x) in Equation 6 will be
directly estimated from the past allocation experience. With random algorithm for the
second decision-making, a manager randomly picks a neighboring manager to forward
an unallocated task. The centralized allocation approach has only one manager that
fully controls all computing nodes and uses best-first algorithm to allocate tasks.

In Learning1, availability of each resources needs to be discretized. Our approach
is to dynamically build a Gaussian distribution for each resource and discretize its avail-
ability into multiple levels, all of which have the same probability. Gaussian distribu-
tion’s parameters, mean and variance, are estimated from the resource specification of
tasks. In our experiments, each resource are categorized into three levels.

We have tested approaches on several network topologies with 2, 4, 8, and 16 clus-
ters, all of which show similar results. Here we present detailed results for a network
topology with 16 clusters pictured in Figure 2. The number outside a circle represents
the number of computing nodes of that cluster. For example, cluster 1 has 8 computing
nodes and cluster 4 has 21 nodes. The CPU capacity and network capacity vary on
different computing nodes, whose range is in [50, 150].

We assume all tasks have one capsule and the same maximum waiting time w
(Our experiments use w = 10). Each type can be represented by a feature vec-
tor 〈dcpu, dnetwork, u, st〉, where dcpu is the average demand for CPU, dnetwork is
the average demand for network bandwidth, u is the average utility rate and st is
the average service time. We assume CPU demand, network demand, and utility
rate of tasks of each type are under Poisson distribution, and their service time are
under exponential distribution. Our experiments use four types of tasks: ordinary,
IO-intense, compute-intense, and demanding. Their feature vectors are respectively
〈9, 8, 1, 20〉, 〈15, 48, 6, 35〉, 〈45, 8, 5, 30〉 and 〈47, 43, 25, 50〉. Note that the more de-
manding tasks usually have much higher utility rate.

There are four clusters that receives tasks from external environment, which are
shaded in Figure 2, and all other clusters receives no tasks from external environment.
Task arrivals of each type on each cluster are under some Poisson distribution. We
tested two different task loads: heavy and light. The average number of tasks of each

13

Figure 3: Utility rate under light task load

Figure 4: CPU utilization under light task load

type on each node under the heavy load is shown as below:

Node 5 ordinary: 9, IO-intense: 1, compute-intense: 5, demanding: 2

Node 6 ordinary: 7, IO-intense: 1, compute-intense: 4, demanding: 1

Node 9 ordinary: 8, IO-intense: 4, compute-intense: 1, demanding: 2

Node 10 ordinary: 3, IO-intense: 5, compute-intense: 1, demanding: 1

Note that, in overall, the more demanding tasks arrive much less frequently. Under
light task loads, these average numbers will be half of those of heavy task loads.

Each computing node can transfer 40 tasks per time step. PGA’s learning rate ζ =
min(0.1, max(2000/(2000+t)) in Learning1, and ζ = min(0.5, max(10000/(10000+
t)) in Learning2, where t is the current simulation time. Each simulation runs with
200000 time steps. All performance measures are computed every 5000 time steps.
Results are then averaged over 10 simulation runs and the deviation is computed across
the runs.

5.2 Results & Discussions
Figure 3 shows trends of utility rate of the whole cluster network as it runs with differ-
ent approaches under the light load. The curved lines of FDL, SDL, and BDL demon-

14

Figure 5: Network utilization under light task load

strate that Learning1, Learning2 and their combination monotonically improve the sys-
tem performance. Under the light load where the demand for resources is less than
the supply, the best solution is to allocate all received tasks within the system. In such
a setting, the centralized allocation approach generates the optimal solution. For dis-
tributed allocation approaches, how to route tasks and balance the loads across clusters
becomes very important. From Figure 3, it can be seen that the performance of SDL
and BDL is close to the optimal approach and much better than FDL and greedy ap-
proach. So Learning2 for the second decision-making effectively learns distributed task
routing policies.

When task loads are well-balanced across clusters, resources of each cluster usually
can meet the demand and the best-first algorithm is almost optimal for the first decision-
making by greedily allocating tasks locally. However, when task loads are not well
distributed, some clusters received more tasks than their capacity. In such a situation,
the best-first algorithm will not be optimal, because it does not take account of future
tasks in this current decisions. In contrast, Learning1 can predict future task arrivals
and learn to give up some tasks with low utilities and reserve resources for future tasks
with high utilities. As a result, Learning1 will outperforms the best-first algorithm. This
claim is verified by both different performance between FDL and the greedy approach
and close performance between SDL and BDL.

Although BDL and SDL perform very well, the gap between them and the optimal
approach (the centralized allocation approach under light load) is still noticeable. Two
reasons may account for this gap. First, our learning models uses both approximate
state space and action space, so both Learning1 and Learning2 may not learn perfect
policies. Second, both Learning1 and Learning2 never stop the exploration, although
the exploration rate is small. The Learning1’s exploration can reject all received tasks
at one time, which wastes resources. The Learning2’s exploration causes some tasks to
loop in the network until they expires.

Figure 4 and 5 respectively show CPU and network utilization as the system runs
with different approaches under light load. The utilization trends of both CPU and
network resources are similar. It can be observed that, although FDL outperforms the
greedy approach in terms of utility rate, it has lower resource utilization than the greedy
approach. This is because each task type’s average ratio of utility rate to resource
requirements are not equal. Task type demanding has much higher ratio than other
types. Table 3 shows the number of abandoned tasks of each type during the last 5000
time period of simulations. We can see that, in order to allocate tasks of type demanding

15

Approaches Utility Rate CPU Utilization Network Utilization Hops
Greedy 4900± 28 0.62± 0.00 0.60± 0.00 1.80± 0.01

FDL 5281± 41 0.60± 0.00 0.58± 0.00 3.88± 0.04
SDL 5851± 37 0.74± 0.00 0.71± 0.00 1.50± 0.02
BDL 5837± 39 0.70± 0.00 0.67± 0.00 4.30± 0.06

Centralized 6038± 47 0.77± 0.00 0.74± 0.00 0.00± 0.00

Table 2: Performance with light load

Approaches Ordinary IO-Intense Compute-Intense Demanding Total
Greedy 1± 0 4889± 129 5319± 115 3618± 73 13828± 209

FDL 18797± 1351 8542± 306 9399± 256 515± 94 37255± 1462
SDL 0± 0 367± 33 284± 27 625± 29 1278± 59
BDL 11046± 854 1867± 264 1605± 179 165± 22 14685± 745

Centralized 0± 0 0± 0 0± 0 0± 0 0± 0

Table 3: The number of tasks of each type abandoned under light load

Figure 6: Utility rate under heavy task load

as many as possible, FDL gives up many opportunities to allocate tasks of other types.
In contrast, the greedy approach almost allocates all ordinary tasks, which arrives more
frequently and have more chance to be allocated than tasks of other types. The same
reason also explains that, although SDL and BDL have similar performance, SDL has
higher resource utilization than BDL. Additionally, that no tasks are abandoned by the
centralized allocation verifies its optimality.

Table 2 summarizes the performance measures of different approaches during the
last 5000 time period of simulations. We can see that utility rates of SDL and BDL are
3% less than the optimal one. The column hops shows the average number times that
a task has been transfered before being allocated. Obviously, tasks in the centralized
allocation approach has no hops. The greedy approach and SDL has less hops per
task then FDL and BDL. This is because, with the greedy approach and SDL, a cluster
manager greedily allocates tasks whenever it has resource available, while, with SDL
and BDL, a manager is willing to give up tasks with low utility for future high-utility
tasks and forwards tasks more frequently (under heavy load, low-utility tasks arrive
much more frequently than high-utility tasks).

Figure 6, 7, and 8 show trends of utility rate, CPU utilization, and network utiliza-

16

Figure 7: CPU utilization under heavy task load

Figure 8: Network utilization under heavy task load

Approaches Utility Rate CPU Utilization Network Utilization Hops
Greedy 6364± 30 0.79± 0.00 0.76± 0.00 2.31± 0.01

FDL 7249± 29 0.71± 0.00 0.69± 0.00 4.33± 0.06
SDL 7273± 27 0.92± 0.00 0.89± 0.00 2.13± 0.01
BDL 8719± 49 0.87± 0.00 0.85± 0.00 5.33± 0.05

Centralized 7700± 33 0.95± 0.00 0.93± 0.00 0.00± 0.00

Table 4: Performance with heavy load

tion of the cluster network under the heavy load. Table 4 and 5 show the performance
measures and the number of abandoned tasks of each type during the last 5000 time
period of simulations. As seen in those figures and tables, most results obtained from
the light load case also holds in the heavy load case. However, in this more complicated
case, a few additional observations are noted.

The most significant one is that BDL outperforms the centralized allocation ap-
proach. Under the heavy load, the overall demand for resources exceeds their supply
by the whole cluster network. To address this sequential problem, the optimal cen-
tralized allocation approach should take into consideration future task arrivals to make
current allocation decisions. Because of short-sight decision-making, our centralized
allocation approach is not optimal in this situation. For distributed allocation approach,

17

Approaches Ordinary IO-Intense Compute-Intense Demanding Total
Greedy 650± 52 28058± 230 29444± 293 16437± 147 74590± 453

FDL 69151± 2480 37947± 434 41159± 374 7854± 261 156112± 2823
SDL 28± 6 20379± 291 20876± 246 15406± 145 56691± 495
BDL 60319± 3237 31095± 524 33421± 617 4381± 341 129218± 3580

Centralized 276± 39 18662± 273 20839± 258 13943± 159 53722± 407

Table 5: The number of tasks of each type abandoned under heavy load

its local allocation policies are getting important for the system performance, at least as
important as its task routing policies. This point is verified by the similar performance
of FDL and SDL (both better than the greedy approach) under the heavy load, as shown
in Figure 6. By comparing the performance of FDL and the greedy approach, we see
that Learning1 obtains better policies than the best-first algorithm when the resource
demand exceeds the supply. This advantage of Learning1 can offset disadvantages
of partial information and control of distributed allocation approaches. Therefore, al-
though neither FDL nor SDL alone can perform as well as the centralized allocation
approach, with advantages of both FDL and SDL, BDL can perform better than the
centralized allocation approach.

Another observation is that the performance improvement from BDL can be greater
than the sum of those from FDL and SDL. From Table 4, we can calculate the difference
between FDL and the greedy approach is 7249 − 6364 = 885 and the difference be-
tween SDL and the greedy approach is 7273− 6364 = 909. So their total is 1794. But
the difference between BDL and the greedy approach is 8719− 6364 = 2355 > 1794.
This is because BDL establishes a connection between Learning1 and Learning2 with
Equation 6. Learning1 improves local allocation policies, which generates better de-
mands for certain tasks. Those better demands boost the performance of Learning2,
which in turn learns better task routing policies to deliver tasks to the right clusters.

6 Related Work
Several techniques for managing resources in shared clusters have been developed over
the past decade [5, 4, 20]. A key contribution of our approach is to enable resource
sharing across shared clusters in a distributed way.

Several distributed scheduling algorithms based on heuristics are developed for al-
locating tasks with deadlines and resource requirements in [15]. These algorithms are
dynamic and function in a decentralized manner. Although they are originally targeted
for sharing resources among computing nodes, they can easily extended for sharing
resources among clusters. However, unlike our approach where each agent only inter-
acts with a limited number of neighboring agents, both their basis algorithms, focused
address algorithm and bidding algorithm, assume each agent can interact with all other
agents and request resource information from them in a real-time manner. As a result,
these algorithms have potential scalability issues.

A semi-distributed load balancing approach for massively parallel multicomputer
systems has been proposed in [3]. The proposed strategy uses a two-level hierarchi-
cal control by partitioning a distributed multiprocessor system into multiple spheres (a
similar concept to cluster). The runtime model is similar to our approach. For each
task, a sphere may make two decisions on: whether to allocate it locally and which

18

sphere for transfer the task to. However, each sphere uses simple load thresholds to
make such decisions and assume each sphere can request load information from all
other sphere. Multi-agent reinforce learning algorithms have been proposed for ad-
dressing a distributed task allocation problem (DTAP) [2, 22]. Unlike our allocation
model, all computing nodes in this DTAP are homogeneous and tasks have no deadline
and resource requirements.

A different resource allocation model is formulated in [17], which assumes a strict
separation between agents and resources. Jobs arrive to agents who make decisions
about where to execute them and the resources are passive (i.e., do not make decisions).
Therefore, there is no direct interaction between agents. Agents use reinforcement
learning based on local observations to adapt to changing resource availability (because
of other agents’ actions). Work [12] extends this model to allow heterogeneity of tasks
and resources and attach a queue to each resource.

Much work on resource allocation and load balancing have been done within the
framework of game dynamics which is closely related to multi-agent reinforcement
learning [11]. Congestion games [16] and minority games [6, 9] are two examples of
applying game dynamics to the resource allocation problem. The assumption of their
games usually eliminates or reduces complex issue (e.g., learning efficiency due to
state-action space, scalability with the increasing number of agents) of real problems,
which may be key challenges to solving those problems.

7 Conclusion and Future Work
In this paper, we formulate resource sharing among clusters as a distributed sequen-
tial resource allocation problem (DSRAP). We also present a multi-agent approach to
addressing this problem, where all agents cooperatively allocate task to maximize the
global utility of the system. In our approach, each agent’s decision is decomposed
into two subproblems: local task allocation and task routing, and then use multi-agent
reinforcement learning to learn a decision policy for each subproblem, only based on
its local observations. Experimental results show that, comparing to the performance
of a centralized resource allocation approach, our distributed approach works very ef-
fectively for addressing DSRAP. Although the simulation described here are not fully
realistic from the standpoint of actual networks of shared clusters, we believe this pa-
per has shown multi-agent reinforcement learning is a promising approach to resource
management across shared clusters.

One of interesting directions for future work is to generalize the table-based value
functions and policies with function approximation. This generalization allows us to
refine both action and state spaces to better approximate their original spaces or directly
use their original spaces. Potentially, less exploration is needed for the learning because
the generalization can transfer knowledge of well-learned states to their neighboring
states. Another direction is to incorporate MASPA [22] into our approach to speed up
the learning with a large policy search space. We also plan to extends our approach
to handle situations, such as dynamically changing resource capacity of clusters and
temporary failure of clusters.

19

References
[1] Sherief Abdallah and Victor Lesser. Learning the task allocation game. In AA-

MAS’06, 2006.

[2] Sherief Abdallah and Victor Lesser. Multiagent reinforcement learning and self-
organization in a network of agents. In AAMAS’07, 2007.

[3] Ishfaq Ahmad and Arif Ghafoor. Semi-distributed load balancing for massively
parallel multicomputer systems. IEEE Trans. Softw. Eng., 17(10):987–1004,
1991.

[4] Mohit Aron, Peter Druschel, and Willy Zwaenepoel. Cluster reserves: a mecha-
nism for resource management in cluster-based network servers. In Measurement
and Modeling of Computer Systems, pages 90–101, 2000.

[5] Andrea C. Arpaci-dusseau and David E. Culler. Extending proportional-share
scheduling to a network of workstations. In Proceedings of Parallel and Dis-
tributed Processing Techniques and Applications, 1997.

[6] W Brian Arthur. Inductive reasoning and bounded rationality. American Eco-
nomic Review, 84(2):406–11, May 1994.

[7] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource containers: A
new facility for resource management in server systems. In In Proceedings of the
third Symposium on Operating System Design and Implementation (OSDI’99),
pages 45–58, 1999.

[8] Michael Bowling. Convergence and no-regret in multiagent learning. In NIPS’05,
pages 209–216, 2005.

[9] Damien Challet and Matteo Marsili. Phase transition and symmetry breaking in
the minority game. Physical Review Letters, 1999.

[10] Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in
cooperative multiagent systems. In AAAI’98, pages 746–752. AAAI Press, 1998.

[11] James P. Crutchfield and Yuzuru Sato. Coupled replicator equations for the dy-
namics of learning in multiagent systems. Physical Review Letters, 2002.

[12] Aram Galstyan, Karl Czajkowski, and Kristina Lerman. Resource allocation in
the grid using reinforcement learning. In AAMAS ’04: Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent Systems,
pages 1314–1315, Washington, DC, USA, 2004. IEEE Computer Society.

[13] Spiros Kapetanakis and Daniel Kudenko. Reinforcement learning of coordination
in cooperative multi-agent systems. In AAAI’02, pages 326–331, 2002.

[14] Shailesh Kumar and Risto Miikkulainen. Confidence based dual reinforcement
q-routing: An adaptive online network routing algorithm. In IJCAI ’99, pages
758–763, 1999.

[15] K. Ramamritham, J. A. Stankovic, and W. Zhao. Distributed scheduling of tasks
with deadlines and resource requirements. IEEE Trans. Comput., 38(8):1110–
1123, 1989.

20

[16] Robert W. Rosenthal. A class of games possessing pure-strategy nash equilibria.
International Journal of Game Theory, pages 65–67, 2005.

[17] Andrea Schaerf, Yoav Shoham, and Moshe Tennenholtz. Adaptive load balanc-
ing: A study in multi-agent learning. Journal of Artificial Intelligence Research,
2:475–500, 1995.

[18] Satinder P. Singh, Tommi Jaakkola, Michael L. Littman, and Csaba Szepesvari.
Convergence results for single-step on-policy reinforcement-learning algorithms.
Machine Learning, 38(3):287–308, 2000.

[19] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-
tion. MIT Press, 1998.

[20] Bhuvan Urgaonkar and Prashant Shenoy. Sharc: Managing cpu and network
bandwidth in shared clusters. IEEE Trans. on Parallel and Distributed Systems
(TPDS), 14(11), 2003.

[21] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3/4):279–
292, 1992.

[22] Chongjie Zhang, Sherief Abdallah, and Victor Lesser. MASPA: Multi-agent au-
tomated supervisory policy adaptation. In University of Massachusetts Amherst
Computer Science Technical Report #08-03, 2008.

[23] Martin Zinkevich. Online convex programming and generalized infinitesimal gra-
dient ascent. In ICML’03, pages 928–936, 2003.

21

