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Abstract

Coordination of distributed entities is required for problems arising in many areas,
including multi-robot systems, networking applications, e-commerce applications, and the
control of autonomous space vehicles. As a formal framework for such problems, we use
the decentralized partially observable Markov decision process (DEC-POMDP). Though
much work has been done on optimal dynamic programming algorithms for the single-
agent version of the problem, optimal algorithms for the multiagent case have remained
elusive. The main contribution of this paper is an optimal policy iteration algorithm for
solving DEC-POMDPs. The algorithm uses stochastic finite-state controllers to represent
policies. A controller can also include a correlation device, which allows agents to cor-
relate their actions without communicating during execution. The algorithm alternates
between expanding the controller and performing value-preserving transformations, which
modify the controller without sacrificing value. We present two efficient value-preserving
transformations, one which can reduce the size of the controller and another which can
improve its value while keeping the size fixed. Empirical results demonstrate the usefulness
of value-preserving transformations in increasing value while keeping controller size to a
minimum.In order to improve solution quality in practice, while sacrificing convergence
to optimality we also present a heuristic version of our policy iteration algorithm. This
algorithm further reduces the size of each agents controller at each step by assuming prob-
ability distributions are known for the other agents’ actions. While this assumption may
not hold in general, we show that it can be used to produce higher quality solutions in our
test problems.

1. Introduction

Markov decision processes (MDPs) provide a useful framework for solving problems of
sequential decision making under uncertainty. In some settings, agents must base their
decisions on partial information about the system state. In that case, it is often better to use
the more general framework of partially observable Markov decision processes (POMDPs).
Even more general are problems in which a team of decision makers, each with its own
local observations, must act together. Domains in which these types of problems arise
include networking, multi-robot coordination, e-commerce, and space exploration systems.
The decentralized partially observable Markov decision process (DEC-POMDP) provides
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an effective framework to model such problems. Though this model has been recognized for
decades (Witsenhausen, 1971), there has been little work on provably optimal algorithms
for it.

On the other hand, POMDPs have been studied extensively over the past few decades
(Smallwood & Sondik, 1973; Simmons & Koenig, 1995; Cassandra, Littman, & Zhang, 1997;
Hansen, 1998a; Bonet & Geffner, 2000; Poupart & Boutilier, 2003; Feng & Zilberstein, 2004;
Smith & Simmons, 2005; Smith, Thompson, & Wettergreen, 2007). It is well known that a
POMDP can be reformulated as an equivalent belief-state MDP. A belief-state MDP cannot
be solved in a straightforward way using MDP methods because it has a continuous state
space. However, Smallwood and Sondik (1973) showed how to implement value iteration by
exploiting the piecewise linearity and convexity of the value function. This work opened the
door for many algorithms, including approximate approaches and policy iteration algorithms
in which the policy is represented using a finite-state controller.

Extending dynamic programming for POMDPs to the multiagent case is not straight-
forward. For one thing, it is not clear how to define a belief state and consequently form a
belief-state MDP. With multiple agents, each agent has uncertainty about the observations
and beliefs of the other agents. Furthermore, the finite-horizon DEC-POMDP problem
with just two agents is complete for a higher complexity class than the single-agent version
(Bernstein, Givan, Immerman, & Zilberstein, 2002), indicating that these are fundamentally
different problems.

In this paper, we describe an extension of the policy iteration algorithm for single agent
POMDPs to the multiagent case. As in the single agent case, our algorithm converges
in the limit, and thus serves as the first nontrivial optimal algorithm for infinite-horizon
DEC-POMDPs. A few optimal approaches (Hansen, Bernstein, & Zilberstein, 2004; Szer,
Charpillet, & Zilberstein, 2005) and several approximate algorithms have been developed for
finite-horizon DEC-POMDPs (Peshkin, Kim, Meuleau, & Kaelbling, 2000; Nair, Pynadath,
Yokoo, Tambe, & Marsella, 2003; Emery-Montemerlo, Gordon, Schnieder, & Thrun, 2004;
Seuken & Zilberstein, 2007), but only locally optimal algorithms have been proposed for
the infinite-horizon case (Bernstein, Hansen, & Zilberstein, 2005; Szer & Charpillet, 2005;
Amato, Bernstein, & Zilberstein, 2007).

In our algorithmic framework, policies are represented using stochastic finite-state con-
trollers. A simple way to implement this is to give each agent its own local controller. In
this case, the agents’ policies are all independent. A more general class of policies includes
those which allow agents to share a common source of randomness without sharing observa-
tions. We define this class formally, using a shared source of randomness called a correlation
device. The use of correlated stochastic policies in the DEC-POMDP context is novel. The
importance of correlation has been recognized in the game theory community (Aumann,
1974), but there has been little work on algorithms for finding correlated policies.

Each iteration of the algorithm consists of two phases. These are exhaustive backups,
which add nodes to the controller, and value-preserving transformations, which change the
controller without sacrificing value. We first provide a novel exposition of existing single-
agent algorithms using this two-phase view, and then we go on to describe the multiagent
extension.

There are many possibilities for value-preserving transformations. In this paper, we
describe two different types, both of which can be performed efficiently using linear pro-
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gramming. The first type allows us to remove nodes from the controller, and the second
allows us to improve the value of the controller while keeping its size fixed. Our empirical
results demonstrate the usefulness of value-preserving transformations in obtaining high
values while keeping controller size to a minimum.

We note that this work serves to unify and generalize our previous work on dynamic
programming for DEC-POMDPs. In 2004, we presented the first algorithm for the finite-
horizon case (Hansen et al., 2004). When extended to the infinite-horizon case, this algo-
rithm can be viewed as interleaving exhaustive backups and controller reductions. In 2005,
we presented the bounded policy iteration for DEC-POMDPs (Bernstein et al., 2005), which
extended a POMDP algorithm proposed by Poupart and Boutilier (2003). Through the
lens of our framework, this algorithm can be viewed as repeated application of a specific
value-preserving transformation.

Because the optimal algorithm will not usually be able to return an optimal solution
in practice, we also introduce a heuristic version of our policy iteration algorithm. This
approach makes use of initial state information to focus policy search and removes many
more nodes of the controller at each step. To accomplish this, a forward search from the
initial state distribution is used to construct a set of belief points an agent would visit
assuming the other agents use given fixed policies. This search is conducted for each agent
and then policy iteration takes place while using the belief points to guide the removal of
controller nodes. The assumption that other agents use fixed policies causes the algorithm
to no longer be optimal, but it performs well in practice. We show that more concise and
higher-valued solutions can be produced compared to the optimal method before resources
are exhausted.

The remainder of the paper is organized as follows. Section 2 introduces the formal
models of sequential decision making. Section 3 contains a novel presentation of existing
dynamic programming algorithms for POMDPs. In section 4, we present an extension of
policy iteration for POMDPs to the DEC-POMDP case, along with a convergence proof.
We discuss our heuristic version of policy iteration in section 5, while experiments using
policy iteration and heuristic policy iteration are described in section 6. Finally, section 7
contains the conclusion and a discussion of possible future work.

2. Formal Model of Distributed Decision Making

In this section, we describe the formal framework upon which our work is based. This
framework extends the well-known Markov decision process to allow for distributed policy
execution. We also define an optimal solution for this model and discuss two different
representations for these solutions.

2.1 Decentralized POMDPs

A decentralized partially observable Markov decision process (DEC-POMDP) is defined for-
mally as a tuple 〈I, S, !A, T, R, !Ω, O〉, where

• I is a finite set of agents.

• S is a finite set of states, with distinguished initial state s0.
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Figure 1: (a) Markov decision process. (b) Partially observable Markov decision process.
(c) Decentralized partially observable Markov decision process with two agents.

• !A = ×i∈IAi is a set of joint actions, where Ai is the set of actions for agent i.

• T : S × !A → ∆S is the state transition function, defining the distributions of states
that result from starting in a given state and each agent performing an action.

• R : S× !A → % is the reward function for the set of agents for each set of joint actions
and each state.

• !Ω = ×i∈IΩi is a set of joint observations, where Ωi contains observations for agent i.

• O : !A×S → ∆!Ω is an observation function, defining the distributions of observations
for the set of agents that result from each agent performing an action and ending in
a given state.

The special case of a DEC-POMDP in which there is only one agent is called a partially
observable Markov decision process (POMDP).

In this paper, we consider the case in which the process unfolds over an infinite sequence
of stages. At each stage, all agents simultaneously select an action, and each receives the
global reward based on the reward function and a local observation based on the observation
function. Thus, the transitions, rewards and observations depend on the actions of all
agents, but each agent must act based only on local observations. This is illustrated in
Figure 1. The objective of the agents is to maximize the expected discounted sum of
rewards that are received, thus it is a cooperative framework. We denote the discount
factor β and require that 0 ≤ β < 1.

In a DEC-POMDP, the decisions of each agent affect all the agents in the domain, but
due to the decentralized nature of the model each agent must choose actions based solely on
local information. Because each agent receives a separate observation that does not usually
provide sufficient information to efficiently reason about the other agents, solving a DEC-
POMDP optimally becomes very difficult. For example, each agent may receive a different
piece of information that does not allow a common state estimate or any estimate of the
other agents’ decisions to be calculated. These single estimates are crucial in single agent
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Figure 2: A set of horizon three policy trees (a) and two node stochastic controllers (b)
for a two agent DEC-POMDP. Actions are represented by the arrows or stop
figure (where each agent can move in the given direction or stay where it is)
and observations are labeled “wl” and “wr” for seeing a wall on the left or the
right respectively. Actions are chosen for each agent by starting at the root for
the policy tree or initial node for the controller (given by the arrow) and then
following to the next node depending on the local observation that is seen. This
is done deterministically for three steps for the policy trees and stochastically for
infinite steps for the controllers.

problems, as they allow the agent’s history to be summarize concisely, but they are not
generally available in DEC-POMDPs. This is seen in the complexity of the finite-horizon
problem with at least two agents, which is NEXP-complete (Bernstein et al., 2002) and
thus in practice may require double exponential time. Like the infinite-horizon POMDP,
optimally solving an infinite-horizon DEC-POMDP is undecidable as it may require infinite
resources, but our method is able to provide a solution within ε of the optimal with finite
time and memory. Nevertheless, introducing multiple decentralized agents causes a DEC-
POMDP to be significantly more difficult than a single agent POMDP.

2.2 Solution Representations

A local policy for an agent is a mapping from local action and observation histories to actions
while a joint policy is a set of policies, one for each agent in the problem. As mentioned
above, an optimal solution for a DEC-POMDP is the joint policy that maximizes the
expected sum of rewards that are received over the finite or infinite steps of the problem.
In infinite-horizon problems, the rewards are discounted to maintain a finite sum. Thus, an
optimal solution is a joint policy that provides the highest value starting at the given initial
state of the problem.

For finite-horizon problems, local policies can be represented using a policy tree as seen
in Figure 2a. Using this representation, an agent takes the action defined at the root
node and then after seeing an observation, chooses the next action that is defined by the
respective branch. This continues until the action at a leaf node is executed. For example,
agent 1 would first move left and then if a wall is seen on the right (observation “wr”), the
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agent would move left again. If a wall is now seen on the left (observation “wl”), the agent
does not move on the final step. A policy tree is a record of the the entire local history for
an agent up to some fixed horizon and because each tree is independent of the others it can
be executed in a decentralized manner. While this representation is useful for finite-horizon
problems, infinite-horizon problems would require trees of infinite height.

Another option used in this paper is to condition action selection on some internal
memory state. These solutions can be represented as a set of local finite-state controllers
(seen in Figure 2b). The controllers operate in a very similar way to the policy trees in
that there is a designated initial node and following the action selection at that node, the
controller transitions to the next node depending on the observation seen. This continues for
the infinite steps of the problem. Throughout this paper, controller states will be referred
to as nodes to help distinguish them from system states.

An infinite number of nodes may be required to define an optimal infinite-horizon DEC-
POMDP policy, but we will discuss a way to produce solutions within ε of the optimal
with a fixed number of nodes. While deterministic action selection and node transitions are
sufficient to define this ε-optimal policy, when memory is limited stochastic action selection
and node transition may be beneficial. A simple example illustrating this for POMDPs
is given by Singh (1994), which can be easily extended to DEC-POMDPs. Intuitively,
randomness can help an agent to break out of costly loops that result from forgetfulness.

A formal description of stochastic controllers for POMDPs and DEC-POMDPs is given
in sections 3.2.1 and 4.1.1 respectively, but an example can be seen in Figure 2b. Agent 2
begins at node 1 and moves up with probability 0.89 and stays in place with probability
0.11. If the agent stayed in place and a wall was then seen on the left (observation “wl”),
on the next step, the controller would transition to node 1 and the agent would agent take
the same distribution of actions again. If a wall was seen on the right instead (observation
“wr”), there is a 0.85 probability that the controller will transition back to node 1 and a 0.15
probability that the controller will transition to node 2 for the next step. The finite-state
controller allows an infinite-horizon policy to be represented compactly by remembering
some aspects of the agent’s history without representing the entire local history.

3. Centralized Dynamic Programming

In this section, we cover the main concepts involved in dynamic programming for the sin-
gle agent case. This will provide a foundation for the multiagent dynamic programming
algorithm described in the following section.

3.1 Value Iteration for POMDPs

Value iteration can be used to solve POMDPs optimally. This algorithm is more complicated
than its MDP counterpart, and does not have efficiency guarantees. However, in practice
it can provide significant leverage in solving POMDPs.

We begin by explaining how every POMDP has an equivalent MDP with a continuous
state space. Next, we describe how the value functions for this MDP have special structure
that can be exploited. These ideas are central to the value iteration algorithm.
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3.1.1 Belief State MDPs

A convenient way to summarize the observation history of an agent in a POMDP is through
a belief state, which is a distribution over system states. As it receives observations, the
agent can update its belief state and then remove its observations from memory. Let b
denote a belief state, and let b(s) represent the probability assigned to state s by b. If an
agent chooses action a from belief state b and subsequently observes o, each component of
the successor belief state obeys the equation

b′(s′) =
P (o|a, s′)

∑
s∈S P (s′|s, a)b(s)

P (o|b, a)
,

where

P (o|b, a) =
∑

s′∈S

[
P (o|a, s′)

∑

s∈S

P (s′|s, a)b(s)

]
.

Note that this is a simple application of Bayes’ rule.
It was shown by Astrom (1965) that a belief state constitutes a sufficient statistic for

the agent’s observation history, and it is possible to define an MDP over belief states as
follows. A belief-state MDP is a tuple 〈Π, A, T,R〉, where

• Π is the set of distributions over S.

• A is the set of actions (same as before).

• T (b, a, b′) is the transition function, defined as

T (b, a, b′) =
∑

o∈O

P (b′|b, a, o)P (o|b, a).

• R(b, a) is a reward function, defined as

R(b, a) =
∑

s∈S

b(s)R(s, a).

When combined with belief-state updating, an optimal solution to this MDP can be used
as an optimal solution to the POMDP from which it was constructed. However, since the
belief state MDP has a continuous, |S|-dimensional state space, traditional MDP techniques
are not immediately applicable.

Fortunately, dynamic programming can be used to find a solution to the belief state
MDP. The key result in making dynamic programming practical was proved by Smallwood
and Sondik (1973), who showed that the Bellman operator preserves piecewise linearity and
convexity of a value function. Starting with a piecewise linear and convex representation of
V t, the value function V t+1 is piecewise linear and convex, and can be computed in finite
time.

To represent a piecewise linear and convex value function, one need only store the value
of each facet for each system state. Denoting the set of facets Γ, we can store |Γ| |S|-
dimensional vectors of real values. For any single vector, γ ∈ Γ, we can define its value at
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Figure 3: A piecewise linear and convex value function for a POMDP with two states.

the belief state b with V (b, γ) =
∑

s∈S b(s)γ(s). Thus, to go from a set of vectors to the
value of a belief state, we use the equation

V (b) = max
γ

∑

s∈S

b(s)γ(s).

Figure 3 shows a piecewise linear and convex value function for a POMDP with two states.
Smallwood and Sondik proved that the optimal value function for a finite-horizon

POMDP is piecewise linear and convex. The optimal value function for an infinite-horizon
POMDP is convex, but may not be piecewise linear. However, it can be approximated
arbitrarily closely by a piecewise linear and convex value function, and the value iteration
algorithm constructs closer and closer approximations, as we shall see.

3.1.2 Pruning Vectors

Every piecewise linear and convex value function has a minimal set of vectors Γ that repre-
sents it. Of course, it is possible to use a non-minimal set to represent the same function.
This is illustrated in Figure 4. Note that the removal of certain vectors does not change
the value of any belief state. Vectors such as these are not necessary to keep in memory.
Formally, we say that a vector γ is dominated if for all belief states b, there is a vector
γ̂ ∈ Γ \ γ such that V (b, γ) ≤ V (b, γ̂).

Because dominated vectors are not necessary, it would be useful to have a method for
removing them. This task is often called pruning, and has an efficient algorithm based
on linear programming. For a given vector γ, the linear program in Table 1 determines
whether γ is dominated. If variables can be found to make ε positive, then adding γ to the
set improves the value function at some belief state. If not, then γ is dominated.

This gives rise to a simple algorithm for pruning a set of vectors Γ̃ to obtain a minimal
set Γ. The algorithm loops through Γ̃, removes each vector γ ∈ Γ̃, and solves the linear
program using γ and Γ̃ \ γ. If γ is not dominated, then it is returned to Γ̃.

It turns out that there is an equivalent way to characterize dominance that can be useful.
Recall that for a vector to be dominated, there does not have to be a single vector that has
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Figure 4: Non-minimal representation of a piecewise linear and convex value function for a
POMDP.

Variables: ε, b(s)

Objective: Maximize ε.

Improvement constraints:

∀γ̂
∑

s

b(s)γ̂(s) + ε ≤
∑

s

b(s)γ(s)

Probability constraints: ∑

s

b(s) = 1, ∀s b(s) ≥ 0

Table 1: The linear program for testing whether a vector γ is dominated.

value at least as high for all states. It is sufficient for there to exist a set of vectors such
that for all belief states, one of the vectors in the set has value at least as high as the vector
in question.

It can be shown that such a set exists if and only if there is some convex combination
of vectors that has value at least as high as the vector in question for all states. This is
shown graphically in Figure 5. If we take the dual of the linear program for dominance
given in the previous section, we get a linear program for which the solution is a vector of
probabilities for the convex combination. This dual view of dominance was first used in a
POMDP context by Poupart and Boutilier (2003), and is useful for policy iteraion, as will
be explained later.
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Figure 5: The dual interpretation of dominance. Vector γ3 is dominated at all belief states
by either γ1 or γ2. This is equivalent to the existence of a convex combination of
γ1 and γ2 which dominates γ3 for all belief states.

Variables: ε, x(γ̂)

Objective: Maximize ε

Improvement constraints:

∀s V (s, γ) + ε ≤
∑

γ̂

x(γ̂)V (s, γ̂)

Probability constraints: ∑

γ̂

x(γ̂) = 1, ∀γ̂ x(γ̂) ≥ 0

Table 2: The dual linear program for testing dominance for the vector γ. The variable x(γ̂)
represents P (γ̂).

3.1.3 Dynamic Programming Update

In this section, we describe how to implement a dynamic programming update to go from a
value function Vt to a value function Vt+1. In terms of implementation, our aim is to take
a minimal set of vectors Γt that represents Vt and produce a minimal set of vectors Γt+1

that represents Vt+1.
Each vector that could potentially be included in Γt+1 represents the value of an action a

and assignment of vectors in Γt to observations. A combination of an action and transition
rule will hereafter be called a one-step policy. The value vector for a one-step policy can
be determined by considering the action taken, the resulting state transitioned to and
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observation seen and the value of the assigned vector at step t. This is given via the
equation

γt+1
i (s) = R(s, α(i)) + β

∑

s′,o

P (s′|s,α(i))P (o|α(i), s′)γt
τ(i,o)(s

′),

where i is the index of the vector, α(i) is its action, and τ(i, o) is the index of the vector in
Γt to which to transition upon receiving observation o and β is the discount factor. More
details on the derivation and use of this formula are provided by Zhang and Zhang (2001).

There are |A||Γt||Ω| possible one-step policies. A simple way to construct Γt+1 is to
evaluate all possible one-step policies and then apply a pruning algorithm such as Lark’s
method (Lark III, 1990). Evaluating the entire set of one-step policies will hereafter be
called performing an exhaustive backup. It turns out that there are ways to perform a
dynamic programming update without first performing an exhaustive backup. Below we
describe two approaches to doing this.

The first approach uses the fact that it is simple to find the optimal vector for any
particular belief state. For a belief state b, an optimal action can be determined via the
equation

α = argmaxa∈A

[
R(b, a) + β

∑

o∈Ω

P (o|b, a)V t(T (b|a, o))

]
.

For each observation o, there is a subsequent belief state, which can be computed using
Bayes’ rule. To get an optimal transition rule, τ(o), we take the optimal vector for the
belief state corresponding to o.

Since the backed-up value function has finitely many vectors, there must be a finite set
of belief states for which backups must be performed. Algorithms which identify these belief
states include Smallwood and Sondik’s “one-pass” algorithm (1973), Cheng’s linear support
and relaxed region algorithms (Cheng, 1988), and Kaelbling, Cassandra and Littman’s
Witness algorithm (1998).

The second approach is based on generating and pruning sets of vectors. Instead of
generating all vectors and then pruning, these techniques attempt to prune during the gen-
eration phase. The first algorithm along these lines was the incremental pruning algorithm
(Cassandra et al., 1997). Recently, improvements have been made to this approach (Zhang
& Lee, 1998; Feng & Zilberstein, 2004, 2005).

It should be noted that there are theoretical complexity barriers for DP updates. Littman
et al. (1995) showed that under certain widely believed complexity theoretic assumptions,
there is no algorithm for performing a DP update that is worst-case polynomial in all the
quantities involved. Despite this fact, dynamic programming updates have been success-
fully implemented as part of the value iteration and policy iteration algorithms, which will
be described in the subsequent sections.

3.1.4 Value Iteration

To implement value iteration, we simply start with an arbitrary piecewise linear and convex
value function, and proceed to perform DP updates. This corresponds to value iteration in
the equivalent belief state MDP, and thus converges to an ε-optimal value function after a
finite number of iterations.
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Value iteration returns a value function, but a policy is needed for execution. As in the
MDP case, we can use one-step lookahead, using the equation

δ(b) = argmaxa∈A

[
∑

s∈S

R(s, a)b(s) + β
∑

o∈Ω

P (o|b, a)V (τ(b, o, a))

]
,

where τ(b, o, a) is the belief state resulting from starting in belief state b, taking action a,
and receiving observation o. We note that a state estimator must be used as well to track
the belief state. Using the fact that each vector corresponds to a one-step policy, we can
extract a policy from the value of the vectors:

δ(b) = α

(
argmaxk

∑

s

b(s)γk(s)

)

While the size resulting set of dominant vectors may remain exponential, in many cases it
is much smaller. This can significantly simplify computation.

As in the completely observable case, the Bellman residual provides a bound on the
distance to optimality. Recall that the Bellman residual is the maximum distance across all
belief states between the value functions of successive iterations. It is possible to find the
maximum distance between two piecewise linear and convex functions in polynomial time
with an algorithm that uses linear programming (Littman et al., 1995).

3.2 Policy Iteration for POMDPs

With value iteration, a POMDP is viewed as a belief-state MDP, and a policy is a mapping
from belief states to actions. An early policy iteration algorithm developed by Sondik used
this policy representation (Sondik, 1978), but it was very complicated and did not meet
with success in practice. We shall describe a different approach that has performed better
on test problems. With this approach, a policy is represented as a finite-state controller.

3.2.1 Finite-State Controllers

Using a finite-state controller, an agent has a finite number of internal states. Its actions
are based only on its internal state, and transitions between internal states occur when
observations are received. Internal states provide agents with a kind of memory, which can
be crucial for difficult POMDPs. Of course, an agent’s memory is limited by the number
of internal states it possesses. In general, an agent cannot remember its entire history of
observations, as this would require infinitely many internal states.

We formally define a controller as a tuple 〈Q,Ω, A,ψ, η〉, where

• Q is a finite set of controller nodes.

• Ω is a set of inputs, taken to be the observations of the POMDP.

• A is a set of outputs, taken to be the actions of the POMDP.

• ψ : Q → ∆A is an action selection function, defining the distribution of actions
selected at each node.
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• η : Q × A × Ω → ∆Q is a transition function, defining the distribution of resulting
nodes for each initial node and action taken.

For each state and starting node of the controller, there is an expected discounted sum
of rewards over the infinite horizon. It can be computed using the following system of linear
equations, one for each s ∈ S and q ∈ Q:

V (s, q) =
∑

a

P (a|q)



R(s, a) + β
∑

s′,o,q′

P (o, s′|s, a)P (q′|q, a, o)V (s′, q′)



 .

Where P (a|q) is the probability action a will be taken in node q and P (q′|q, a, o) is the
probability the controller will transition to node q′ from node q after action a was taken
and o was observed.

We sometimes refer to the value of the controller at a belief state. For a belief state b,
this is defined as

V (b) = max
q

∑

s

b(s)V (s, q).

Thus, it is assumed that, given an initial state distribution, the controller is started in the
node which maximizes value from that distribution. Once execution has begun, however,
there is no belief state updating. In fact, it is possible for the agent to encounter the same
belief state twice and be in a different internal state each time.

3.2.2 Algorithmic Framework

We will describe the policy iteration algorithm in abstract terms, focusing on the key com-
ponents necessary for convergence. In subsequent sections, we present different possibilities
for implementation.

Policy iteration takes as input an arbitrary finite-state controller. The first phase of an
iteration consists of evaluating the controller, as described above. Recall that value iteration
was initialized with an arbitrary piecewise linear and convex value function, represented by
a set of vectors. In policy iteration, the piecewise linear and convex value function arises
out of evaluation of the controller. Each controller node has a value when paired with each
state. Thus, each node has a corresponding vector and thus a linear value function over
belief state space. Choosing the best node for each belief state yields a piecewise linear and
convex value function.

The second phase of an iteration is the dynamic programming update. In value iter-
ation, an update produces an improved set of vectors, where each vector corresponds to
a deterministic one-step policy. The same set of vectors is produced in this case, but the
actions and transition rules for the one-step policy cannot be removed from memory. Each
new vector is actually a node that gets added to the controller. All of the probability
distributions for the added nodes are deterministic.

Finally, additional operations are performed on the controller. There are many such
operations, and we describe two possibilities in the following section. The only restriction
placed on these operations is that they do not decrease the value for any belief state. Such
an operation is denoted a value-preserving transformation.
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Input: A finite state controller, and a parameter ε.

1. Evaluate the finite-state controller by solving a system of linear equations.

2. Perform a dynamic programming update to add a set of deterministic nodes to the
controller.

3. Perform value-preserving transformations on the controller.

4. Calculate the Bellman residual. If it is less than ε(1 − β)/2β, then terminate.
Otherwise, go to step 1.

Output: An ε-optimal finite-state controller.

Table 3: Policy Iteration for POMDPs.

The complete algorithm is outlined in Table 3. It is guaranteed to converge to a finite-
state controller that is ε-optimal for all belief states within a finite number of steps. Fur-
thermore, the Bellman residual can be used to obtain a bound on the distance to optimality,
as with value iteration.

3.2.3 Controller Reductions

In performing a DP update, potential nodes that are dominated do not get added to the
controller. However, after the update is performed, some of the old nodes may have become
dominated. These nodes cannot simply be removed, however, as other nodes may transition
into them. This is where the dual view of dominance is useful. Recall that if a node is
dominated, then there is a convex combination of other nodes with value at least as high
from all states. Thus, we can remove the dominated node and merge it into the dominating
convex combination by changing transition probabilities accordingly. This operation was
proposed by Poupart and Boutilier (2003) and built upon earlier work by Hansen (1998b).

Formally, a controller reduction attempts to replace a node q ∈ Q with a distribution
P (q̂) over nodes q̂ ∈ Q \ q such that for all s ∈ S,

V (s, q) ≤
∑

q̂∈Q\q

P (q̂)V (s, q̂).

This can be achieved by solving the linear program in Table 2. As nodes are used rather
than vectors, we replace x(γ̂) with x(q̂) in the dual formulation which provides a proba-
bility distribution of nodes which dominate node q. Rather than transitioning into q, this
distribution can then be used instead. It can be shown that if such a distribution is found
and used for merging, the resulting controller is a value-preserving transformation of the
original one.

3.2.4 Bounded Backups

In the previous section, we described a way to reduce the size of a controller without
sacrificing value. The method described in this section attempts to increase the value of
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Variables: ε, x(a), x(a, o, q′)

Objective: Maximize ε

Improvement constraints:

∀s V (s, q) + ε ≤
∑

a



x(a)R(s, a) + β
∑

s′,o,q′

x(a, o, q′)P (o, s′|s, a)V (s′, q′)





Probability constraints:
∑

a

x(a) = 1, ∀a, o
∑

q′

x(a, o, q′) = x(a)

∀a x(a) ≥ 0, ∀a, o, q′ x(a, o, q′) ≥ 0

Table 4: The linear program to be solved for a bounded backup. The variable x(a) repre-
sents P (a|q), and the variable x(a, o, q′) represents P (a, q′|q, o).

the controller while keeping its size fixed. It focuses on one node at a time, and attempts to
change the parameters of the node such that the value of the controller is at least as high
for all belief states. The idea for this approach originated with Platzman (1980), and was
made efficient by Poupart and Boutilier (2003).

In this method, a node q is chosen, and parameters for the conditional distribution
P (a, q′|q, o) are to be determined. Determining these parameters works as follows. We
assume that the original controller will be used from the second step on, and try to replace
the parameters for q with better ones for just the first step. In other words, we look for
parameters which satisfy the following inequality:

V (s, q) ≤
∑

a

P (a|q)



R(s, a) + β
∑

s′,o,q′

P (q′|q, a, o)P (o, s′|s, a)V (s′, q′)





for all s ∈ S. Note that the inequality is always satisfied by the original parameters.
However, it is often possible to get an improvement.

The new parameters can be found by solving a linear program, as shown in Table 4.
Note that the size of the linear program is polynomial in the sizes of the POMDP and the
controller. We call this process a bounded backup because it acts like a dynamic programming
backup with memory constraints. To see this, consider the set of nodes generated by a DP
backup. These nodes dominate the original nodes across all belief states, so for every
original node, there must be a convex combination of the nodes in this set that dominate
the original node for all states. A bounded backup finds such a convex combination.

It can be shown that a bounded backup yields a value-preserving transformation. Re-
peated application of bounded backups can lead to a local optimum, at which none of the
nodes can be improved any further. Poupart and Boutilier showed that a local optimum
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Figure 6: A local optimum for bounded backups. The solid line is the value function for the
controller, and the dotted line is the value function for the controller that results
from a full DP update.

has been reached when each node’s value function is touching the value function produced
by performing a full DP backup. This is illustrated in Figure 6.

4. Decentralized Dynamic Programming

In the previous section, we presented dynamic programming for POMDPs. A key part of
POMDP theory is the fact that every POMDP has an equivalent belief-state MDP. No
such result is known for DEC-POMDPs, making it difficult to generalize value iteration to
the multiagent case. This lack of a shared belief-state requires a new set of tools to be
developed for solving DEC-POMDP. As a step in this direction, we were able to develop an
optimal policy iteration algorithm for DEC-POMDPs that includes the POMDP version as
a special case. This algorithm is the focus of the section.

We first show how to extend the definition of a stochastic controller to the multiagent
case. Multiagent controllers include a correlation device, which is a source of randomness
shared by all the agents. This shared randomness increases solution quality while minimally
increasing representation size without adding communication. As in the single agent case,
policy iteration alternates between exhaustive backups and value-preserving transforma-
tions. A convergence proof is given, along with efficient transformations that extend those
presented in the previous section.

4.1 Correlated Finite-State Controllers

The joint policy for the agents is represented using a stochastic finite-state controller for
each agent. In this section, we first define a type of controller in which the agents act
independently. We then provide an example demonstrating the utility of correlation, and
show how to extend the definition of a controller to allow for correlation among agents.
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4.1.1 Local Finite-State Controllers

In a local controller, the agent’s node is based on the local observations received, and the
agent’s action is based on the current node. These local controllers are defined in the same
way as the POMDP controllers above, with each agent possessing its own controller that
operates independently of the others. As before, stochastic transitions and action selection
are allowed.

We formally define a local controller for agent i as a tuple 〈Qi,Ωi, Ai, ψi, ηi〉, where

• Qi is a finite set of controller nodes.

• Ωi is a set of inputs, taken to be the local observations for agent i.

• Ai is a set of outputs, taken to be the actions for agent i.

• ψi : Qi → ∆Ai is an action selection function for agent i, defining the distribution of
actions selected at each node of that agent’s controller.

• ηi : Qi ×Ai ×Ωi → ∆Qi is a transition function for agent i, defining the distribution
of resulting nodes for each initial node and action taken of that agent’s controller.

The functions ψi and ηi parameterize the conditional distribution P (ai, q′i|qi, oi) which rep-
resents the combined action selection and node transition probability for agent i. When
taken together, the agents’ controllers determine the conditional distribution P (!a, !q ′|!q,!o).
This is denoted an independent joint controller. In the following subsection, we show that
independence can be limiting.

4.1.2 The Utility of Correlation

The joint controllers described above do not allow the agents to correlate their behavior
via a shared source of randomness. We will use a simple example to illustrate the utility
of correlation in partially observable domains where agents have limited memory. This
example generalizes the one given by Singh (1994) to illustrate the utility of stochastic
policies in partially observable settings containing a single agent.

Consider the DEC-POMDP shown in Figure 7. This problem has two states, two agents,
and two actions per agent (A and B). The agents each have only one observation, and
thus cannot distinguish between the two states. For this example, we will consider only
memoryless policies.

Suppose that the agents can independently randomize their behavior using distributions
P (a1) and P (a2). If the agents each choose either A or B according to a uniform distribution,
then they receive an expected reward of −R

2 per time step, and thus an expected long-term
reward of −R

2(1−γ) . It is straightforward to show that no independent policy yields higher
reward than this one for all states.

Next, let us consider the even larger class of policies in which the agents may act in a
correlated fashion. In other words, we consider all joint distributions P (a1, a2). Consider
the policy that assigns probability 1

2 to the pair AA and probability 1
2 to the pair BB. This

yields an average reward of 0 at each time step and thus an expected long-term reward of
0. The difference between the rewards obtained by the independent and correlated policies
can be made arbitrarily large by increasing R.
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Figure 7: A DEC-POMDP for which a correlated joint policy yields more reward than the
optimal independent joint policy.

It is worth noting that correlation can increase the value of a set of fixed-size controllers,
but this same value can be achieved by a larger set of uncorrelated controllers. Thus,
correlation is a way to make better use of limited representation size, but is not required to
produce a set of optimal controllers.

4.1.3 Correlated Joint Controllers

In the previous subsection, we established that correlation can be useful in the face of
limited memory. In this subsection, we extend our definition of a joint controller to allow for
correlation among the agents. To do this, we introduce an additional finite-state machine,
called a correlation device, that provides extra signals to the agents at each time step. The
device operates independently of the DEC-POMDP process, and thus does not provide
agents with information about the other agents’ observations. In fact, the random numbers
necessary for its operation could be determined prior to execution time and made available
to all agents.

Formally, a correlation device is a tuple 〈Qc, ψc〉, where Qc is a set of nodes and ψc :
Qc → ∆Qc is a state transition function. At each step, the device undergoes a transition,
and each agent observes its state.

We must modify the definition of a local controller to take the state of the correlation
device as input. Now, a local controller for agent i is a conditional distribution of the
form P (ai, q′i|qc, qi, oi). The correlation device together with the local controllers form a
joint conditional distribution P (!a, !q ′|!q,!o), where !q = 〈qc, q1, . . . , qn〉. We will refer to this
as a correlated joint controller. Note that a correlated joint controller with |Qc| = 1 is
effectively an independent joint controller. Figure 8 contains a graphical representation of
the probabilistic dependencies in a correlated joint controller.
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Figure 8: A graphical representation of the probabilistic dependencies in a correlated joint
controller for two agents.

The value function for a correlated joint controller can be computed by solving the
following system of linear equations, one for each s ∈ S and !q ∈ !Q:

V (s, !q) =
∑

#a

P (!a|!q)



R(s,!a) + β
∑

s′,#o,#q ′

P (s′,!o|s,!a)P (!q ′|!q,!a,!o)V (s′, !q ′)



 .

We sometimes refer to the value of the controller for an initial state distribution. For a
distribution b, this is defined as

V (b) = max
#q

∑

s

b(s)V (s, !q).

It is assumed that, given an initial state distribution, the controller is started in the joint
node which maximizes value from that distribution.

4.2 Policy Iteration

In this section, we describe the policy iteration algorithm. We first extend the definitions of
exhaustive backup and value-preserving transformation to the multiagent case. Following
that, we provide a description of the complete algorithm, along with a convergence proof.

4.2.1 Exhaustive Backups

We introduced exhaustive backups in the section on dynamic programming for POMDPs.
We stated that one way to implement a DP update was to perform an exhaustive backup,
and then prune dominated nodes that were created. More efficient implementations were
described thereafter. These implementations involved interleaving pruning with node gen-
eration.

For the multiagent case, it is an open problem whether pruning can be interleaved
with node generation. Nodes can be removed, as we will show in a later subsection, but for
convergence we require exhaustive backups. We do not define DP updates for the multiagent
case, and instead make exhaustive backups a central component of our algorithm.
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An exhaustive backup adds nodes to the local controllers for all agents at once, and
leaves the correlation device unchanged. For each agent i, |Ai||Qi||Ωi| nodes are added
to the local controller, one for each one-step policy. Thus, the joint controller grows by
|Qc|

∏
i |Ai||Qi||Oi| joint nodes.

Note that repeated application of exhaustive backups amounts to a brute force search
in the space of deterministic policies. This converges to optimality, but is obviously quite
inefficient. As in the single agent case, we must modify the joint controller in between
adding new nodes. For convergence, these modifications must preserve value in a sense that
will be made formal in the following section.

4.2.2 Value-Preserving Transformations

We now extend the definition of a value-preserving transformation to the multiagent case.
In the following subsection, we show how this definition allows for convergence to optimality
as the number of iterations grows.

The dual interpretation of dominance is helpful in understanding multiagent value-
preserving transformations. Recall that for a POMDP, we say that a node is dominated if
there is a convex combination of other nodes with value at least as high for all states. Though
we defined a value-preserving transformation in terms of the value function across belief
states, we could have equivalently defined it so that every node in the original controller
has a dominating convex combination in the new controller.

For the multiagent case, we do not have the concept of a belief state MDP, so we take
the second approach mentioned above. In particular, we require that dominating convex
combinations exist for nodes of all the local controllers and the correlation device. A trans-
formation of a controller C to a controller D qualifies as a value-preserving transformation
if C ≤ D, where ≤ is defined below.

Consider correlated joint controllers C and D with node sets !Q and !R, respectively. We
say that C ≤ D if there exist mappings fi : Qi → ∆Ri for each agent i and fc : Qc → ∆Rc

such that
V (s, !q) ≤

∑

#r

P (!r|!q)V (s,!r)

for all s ∈ S and !q ∈ !Q.
We sometimes describe the fi and fc as a single mapping f : !Q → ∆!R. Examples

of efficient value-preserving transformations are given in a later section. In the follow-
ing subsection, we show that alternating between exhaustive backups and value-preserving
transformations yields convergence to optimality.

4.2.3 Algorithmic Framework

The policy iteration algorithm is initialized with an arbitrary correlated joint controller. In
the first part of an iteration, the controller is evaluated via the solution of a system of linear
equations. Next, an exhaustive backup is performed to add nodes to the local controllers.
Finally, value-preserving transformations are performed.

In contrast to the single agent case, there is no Bellman residual for testing convergence
to ε-optimality. We resort to a simpler test for ε-optimality based on the discount rate
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Input: A correlated joint controller, and a parameter ε.

1. Evaluate the correlated joint controller by solving a system of linear equations.

2. Perform an exhaustive backup to add deterministic nodes to the local controllers.

3. Perform value-preserving transformations on the controller.

4. If βt+1|Rmax|
1−β ≤ ε, where t is the number of iterations so far, then terminate. Else go

to step 1.

Output: A correlated joint controller that is ε-optimal for all states.

Table 5: Policy Iteration for DEC-POMDPs.

and the number of iterations so far. Let |Rmax| be the largest absolute value of an imme-
diate reward possible in the DEC-POMDP. Our algorithm terminates after iteration t if
βt+1|Rmax|

1−β ≤ ε. At this point, due to discounting, optimality over t steps is close enough to
optimality over the infinite horizon. Justification for this test is provided in the convergence
proof. The complete algorithm is sketched in Table 5.

Before proving convergence, we state a key lemma regarding the ordering of exhaustive
backups and value-preserving transformations. Its proof is deferred to the Appendix.

Lemma 1 Let C and D be correlated joint controllers, and let Ĉ and D̂ be the results of
performing exhaustive backups on C and D, respectively. Then Ĉ ≤ D̂ if C ≤ D.

Thus, if there is a value-preserving transformation changing controller C to D and both are
exhaustively backed up, then there is a value-preserving transformation changing controller
Ĉ to D̂. This allows value-preserving transformations to commute with exhaustive backups
as a value-preserving transformation always exists mapping the original exhaustively backed
up controller to the transformed and backed up controller regardless of ordering. We can
now state and prove the main convergence theorem for policy iteration.

Theorem 1 For any ε, policy iteration returns a correlated joint controller that is ε-optimal
for all initial states in a finite number of iterations.

Proof. Repeated application of exhaustive backups amounts to a brute force search in
the space of deterministic joint policies. Thus, after t exhaustive backups, the resulting
controller is optimal for t steps from any initial state. Let t be an integer large enough that
βt+1|Rmax|

1−β ≤ ε. Then any possible discounted sum of rewards after t time steps is small
enough that optimality over t time steps implies ε-optimality over the infinite horizon.

Now recall the previous lemma, which states that exhaustive backups and value-preserving
transformations commute. By an inductive argument, performing t steps of policy iteration
is a value-preserving transformation of the result of t exhaustive backups. We have argued
that for large enough t, the value of the controller resulting from t exhaustive backups is
within ε of optimal for all states. Thus, the result of t steps of policy iteration is also within
ε of optimal for all states. !
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4.3 Efficient Value-Preserving Transformations

In this section, we describe how to extend controller reductions and bounded backups
to the multiagent case. We will show that both of these operations are value-preserving
transformations.

4.3.1 Controller Reductions

Recall that in the single agent case, a node can be removed if for all belief states, there is
another node with value at least as high. The equivalent dual interpretation is that a node
can be removed is there exists a convex combination of other nodes with value at least as
high across the entire state space.

Using the dual interpretation, we can extend this to a rule for removing nodes in the
multiagent case. The rule applies to removing nodes either from a local controller or from the
correlation device. Intuitively, in considering the removal of a node from a local controller
or the correlation device, we consider the nodes of the other controllers to be part of the
hidden state.

More precisely, suppose we are considering removing node qi from agent i’s local con-
troller. To do this, we need to find a distribution P (q̂i) over nodes q̂i ∈ Qi \ qi such that for
all s ∈ S, q−i ∈ Q−i, and qc ∈ Qc,

V (s, qi, q−i, qc) ≤
∑

q̂i

P (q̂i)V (s, q̂i, q−i, qc).

Finding such a distribution can be formulated as a linear program, as shown in Table 6a. In
this case, success is finding parameters such that ε ≥ 0. The linear program is polynomial
in the sizes of the DEC-POMDP and controllers, but exponential in the number of agents.

If we are successful in finding parameters that make ε ≥ 0, then we can merge the
dominated node into the convex combination of other nodes by changing all incoming links
to the dominated controller node to be redirected based on the distribution P (q̂i). At this
point, there is no chance of ever transitioning into qi, and thus it can be removed.

The rule for the correlation device is very similar. Suppose that we are considering the
removal of node qc. In this case, we need to find a distribution P (q̂c) over nodes q̂c ∈ Qc \ qc

such that for all s ∈ S and !q ∈ !Q,

V (s, !q, qc) ≤
∑

q̂c

P (q̂c)V (s, !q, q̂c).

Note that we abuse notation here and use !Q for the set of tuples of local controller nodes,
excluding the nodes for the correlation device. As in the previous case, finding parameters
can done using linear programming. This is shown in Table 6b. This linear program is also
polynomial in the the sizes of the DEC-POMDP and controllers, but exponential in the
number of agents.

We have the following theorem, which states that controller reductions are value-preserving
transformations.

Theorem 2 Any controller reduction applied to either a local node or a node of the corre-
lation device is a value-preserving transformation.
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(a) Variables: ε, x(q̂i)

Objective: Maximize ε

Improvement constraints:

∀s, q−i, qc V (s, qi, q−i, qc) + ε ≤
∑

q̂i

x(q̂i)V (s, q̂i, q−i, qc)

Probability constraints: ∑

q̂i

x(q̂i) = 1, ∀q̂i x(q̂i) ≥ 0

(b) Variables: ε, x(qc)

Objective: Maximize ε

Improvement constraints:

∀s, !q V (s, !q, qc) + ε ≤
∑

q̂c

x(q̂c)V (s, !q, q̂c)

Probability constraints:
∑

q̂c

x(q̂c) = 1, ∀q̂c x(q̂c) ≥ 0

Table 6: (a) The linear program to be solved to find a replacement for agent i’s node qi.
The variable x(q̂i) represents P (q̂i). (b) The linear program to be solved to find a
replacement for the correlation node qc. The variable x(q̂c) represents P (q̂c).

Proof. Suppose that we have replaced an agent i node qi with a distribution over nodes
in Qi \ qi. Let us take fi to be the identity map for all nodes except qi, which will map to
the new distribution. We take fc to be the identity map, and we take fj to be the identity
map for all j += i. This yields a complete mapping f . We must now show that f satisfies
the condition given in the definition of a value-preserving transformation.

Let Vo be the value function for the original controller, and let Vn be the value function
for the controller with qi removed. A controller reduction requires that

Vo(s, !q) ≤
∑

#r

P (!r|!q)Vo(s,!r)

for all s ∈ S and !q ∈ !Q. Thus, we have

Vo(s, !q) =
∑

#a

P (!a|!q)



R(s, a) + β
∑

s′,#o,#q ′

P (!q ′|!q,!a,!o)P (s′,!o|s,!a)Vo(s′, !q ′)
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≤
∑

#a

P (!a|!q)



R(s, a) + β
∑

s′,#o,#q ′

P (!q ′|!q,!a,!o)P (s′,!o|s,!a)
∑

#r ′

P (!r|!q)Vo(s,!r ′)





=
∑

#a

P (!a|!q)



R(s, a) + β
∑

s′,#o,#q ′,#r ′

P (!q ′|!q,!a,!o)P (s′,!o|s,!a)P (!r|!q)Vo(s,!r ′)





for all s ∈ S and !q ∈ !Q. Notice that the formula on the right is the Bellman operator
for the new controller, applied to the old value function. Denoting this operator Tn, the
system of inequalities implies that TnVo ≥ Vo. By monotonicity, we have that for all k ≥ 0,
T k+1

n (Vo) ≥ T k
n (Vo). Since Vn = limk→∞ T k

n (Vo), we have that Vn ≥ Vo. This is sufficient
for f to satisfy the condition in the definition of value-preserving transformation.

The argument for removing a node of the correlation device is almost identical to the
one given above. !

4.3.2 Bounded Dynamic Programming Updates

In the previous section, we described a way to reduce the size of a controller without
sacrificing value. Recall that in the single agent case, we could also use bounded backups
to increase the value of the controller while keeping its size fixed. This technique can
be extended to the multiagent case. As in the previous section, the extension relies on
improving a single local controller or the correlation device, while viewing the nodes of the
other controllers as part of the hidden state.

We first describe in detail how to improve a local controller. To do this, we choose an
agent i, along with a node qi. Then, for each oi ∈ Ωi, we search for new parameters for the
conditional distribution P (ai, q′i|qi, oi).

The search for new parameters works as follows. We assume that the original controller
will be used from the second step on, and try to replace the parameters for qi with better
ones for just the first step. In other words, we look for parameters satisfying the following
inequality:

V (s, !q) ≤
∑

#a

P (!a|!q)



R(s, a) + β
∑

s′,#o,#q ′

P (!q ′|!q,!a,!o)P (s′,!o|s,!a)V (s′, !q ′)





for all s ∈ S, q−i ∈ Q−i, and qc ∈ Qc. The search for new parameters can be formulated as a
linear program, as shown in Table 7a. Its size is polynomial in the sizes of the DEC-POMDP
and the joint controller, but exponential in the number of agents.

The procedure for improving the correlation device is very similar to the procedure for
improving a local controller. We first choose a device node qc, and consider changing its
parameters for just the first step. We look for parameters satisfying the following inequality:

V (s, !q) ≤
∑

#a

P (!a|!q)



R(s, a) + β
∑

s′,#o,#q ′

P (!q ′|!q,!a,!o)P (s′,!o|s,!a)V (s′, !q ′)





for all s ∈ S and !q ∈ !Q.
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(a) Variables: ε, x(qc, ai), x(qc, ai, oi, q′i)

Objective: Maximize ε

Improvement constraints:

∀s, q−i, qc V (s, !q, qc) + ε ≤
∑

#a

P (a−i|qc, q−i)[x(qc, ai)R(s,!a) +

β
∑

s′,#o,#q ′,q′c

x(c, ai, oi, q
′
i)P (q′−i|qc, q−i, a−i, o−i)

· P (!o, s′|s,!a)P (q′c|qc)V (s′, !q ′, q′c)]

Probability constraints:

∀qc

∑

ai

x(qc, ai) = 1, ∀qc, ai, oi

∑

q′i

x(qc, ai, oi, q
′
i) = x(qc, ai)

∀qc, ai x(qc, ai) ≥ 0, ∀qc, ai, oi, q
′
i x(qc, ai, oi, q

′
i) ≥ 0

(b) Variables: ε, x(q′c)

Objective: Maximize ε

Improvement constraints:

∀s, !q V (s, !q, qc) + ε ≤
∑

#a

P (!a|qc, !q)[R(s,!a) + β
∑

s′,#o,#q ′,q′c

P (!q ′|qc, !q,!a,!o)

· P (s′,!o|s,!a)x(q′c)V (s′, !q ′, q′c)]

Probability constraints:

∀q′c
∑

q′c

x(q′c) = 1, ∀q′c x(q′c) ≥ 0

Table 7: (a) The linear program used to find new parameters for agent i’s node qi. The
variable x(qc, ai) represents P (ai|qi, qc), and the variable x(qc, ai, oi, q′i) represents
P (ai, q′i|qc, qi, oi). (b) The linear program used to find new parameters for the
correlation device node qc. The variable x(q′c) represents P (q′c|qc).
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As in the previous case, the search for parameters can be formulated as a linear program.
This is shown in Table 7b. This linear program is also polynomial in the sizes of the DEC-
POMDP and joint controller, but exponential in the number of agents.

The following theorem states that bounded backups preserve value.

Theorem 3 Performing a bounded backup on a local controller or the correlation device
produces a new correlated joint controller which is a value-preserving transformation of the
original.

Proof. Consider the case in which some node qi of agent i’s local controller is changed.
We define f to be a deterministic mapping from nodes in the original controller to the
corresponding nodes in the new controller.

Let Vo be the value function for the original controller, and let Vn be the value function
for the new controller. Recall that the new parameters for P (ai, q′i|qc, qi, oi) must satisfy
the following inequality for all s ∈ S, q−i ∈ Q−i, and qc ∈ Qc:

Vo(s, !q) ≤
∑

#a

P (!a|!q)



R(s, a) + β
∑

s′,#o,#q ′

P (!q ′|!q,!a,!o)P (s′,!o|s,!a)Vo(s′, !q ′)



 .

Notice that the formula on the right is the Bellman operator for the new controller, applied
to the old value function. Denoting this operator Tn, the system of inequalities implies
that TnVo ≥ Vo. By monotonicity, we have that for all k ≥ 0, T k+1

n (Vo) ≥ T k
n (Vo). Since

Vn = limk→∞ T k
n (Vo), we have that Vn ≥ Vo. Thus, the new controller is a value-preserving

transformation of the original one.
The argument for changing nodes of the correlation device is almost identical to the one

given above. !

4.4 Open Issues

We noted at the beginning of the section that there is no known way to convert a DEC-
POMDP into an equivalent belief-state MDP. Despite this fact, we were able to develop
a provably convergent policy iteration algorithm. However, the policy iteration algorithm
for POMDPs has other desirable properties besides convergence, and we have not yet been
able to extend these to the multiagent case. Two such properties are described below.

4.4.1 Error Bounds

The first property is the existence of a Bellman residual. In the single agent case, it
is possible to compute a bound on the distance to optimality using two successive value
functions. In the multiagent case, policy iteration produces a sequence of controllers, each
of which has a value function. However, we do not have a way to obtain an error bound
from these value functions. For now, to bound the distance to optimality, we must consider
the discount rate and the number of iterations completed.

4.4.2 Avoiding Exhaustive Backups

In performing a DP update for POMDPs, it is possible to remove certain nodes from
consideration without first generating them. In Section 3, we gave a high-level description
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Input: A joint controller, the desired number of centralized belief points k, initial state
b0 and fixed policy for each agent πi.

1. Starting from b0, sample a set of k belief points for each agent assuming the other
agents use their fixed policy.

2. Evaluate the joint controller by solving a system of linear equations.

3. Perform an exhaustive backup to add deterministic nodes to the local controllers.

4. Retain nodes that contribute the highest value at each of the belief points.

5. For each agent, replace nodes that have lower value than some combination of other
nodes at each belief point.

6. If controller sizes and parameters do not change then terminate. Else go to step 2.

Output: A new joint controller based on the sampled centralized belief points.

Table 8: Heuristic Policy Iteration for DEC-POMDPs.

of a few different approaches to doing this. For DEC-POMDPs, however, we did not define
a DP update and instead used exhaustive backups as the way to expand a controller. Since
exhaustive backups are expensive, it would be useful to extend the more sophisticated
pruning methods for POMDPs to the multiagent case.

Unfortunately, in the case of POMDPs, the proofs of correctness for these methods all
use the fact that there exists a Bellman equation. Roughly speaking, this equation allows us
to determine whether a potential node is dominated by just analyzing the nodes that would
be its successors. Because we do not currently have an analog of the Bellman equation for
DEC-POMDPs, we have not been able to generalize these results.

There is one exception to the above statement, however. When an exhaustive backup
has been performed for all agents except one, then a type of belief state space can be
constructed for the agent in question using the system states and the nodes for the other
agents. The POMDP node generation methods can then be applied to just that agent. In
general, though, it seems difficult to rule out a node for one agent before generating all the
nodes for the other agents.

5. Heuristic Policy Iteration

While the optimal policy iteration method shows how a set of controllers with value arbi-
trarily close to optimal can be found, the resulting controllers may be very large and many
unnecessary nodes may be generated along the way. This is exacerbated by the fact that
the algorithm cannot take advantage of an initial state distribution and must attempt to
improve the controller for any initial state. As a way to combat these disadvantages, we
have developed a heuristic version of policy iteration that removes nodes based on their
value only at a given set of centralized belief points. As a result, the algorithm will no
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longer be optimal, but it can often produce more concise controllers with higher solution
quality for a given initial state distribution.

5.1 Directed Pruning

Our heuristic policy iteration algorithm uses sets of belief points to direct the pruning pro-
cess of our algorithm. There are two main advantages of this approach: it allows simultane-
ous pruning for all agents and it focuses the controller on certain areas of the belief space.
We first discuss the benefits of simultaneous pruning and then mention the advantages of
focusing on small areas of the belief space.

As mentioned above, the pruning method used by the optimal algorithm will not always
remove all nodes that could be removed from all the agents’ controllers without losing
value. Because pruning requires each agent to consider the controllers of other agents, after
nodes are removed for one agent, the other agents may be able to prune other nodes. Thus
pruning must cycle through the agents and ceases when no agent can remove any further
nodes. This is both time consuming and causes the controller to be much larger than it
needs to be.

Like the game theoretic concept of incredible threats, a set of suboptimal policies may be
useful only because other agents may employ similarly suboptimal policies. That is, because
each agent retains all policies that have a higher value than its other policies for some
distribution over states and policies of the other agents there may be policies that are kept
only because of their higher value when other agents employ certain suboptimal policies.
In turn, those suboptimal policies of the other agents may not be removed in the above
pruning method due to their usefulness when other suboptimal policies are adopted. Only
by removing the set of suboptimal policies simultaneously can controller size be reduced
while at least maintaining value. This simultaneous pruning could further reduce controller
sizes and thus increase scalability and solution quality. While it may be possible to define
a value-preserving transformation for these problems, finding a nontrivial automated way
to do so while maintaining the optimality of the algorithm remains an open question.

The advantage of considering a smaller part of the state space has already been shown
to produce drastic performance increases in POMDPs (Ji, Parr, Li, Liao, & Carin, 2007;
Pineau, Gordon, & Thrun, 2003) and finite-horizon DEC-POMDPs (Seuken & Zilberstein,
2007; Szer & Charpillet, 2006). For POMDPs, a problem with many states has a belief
space with large dimensionality, but many parts may never be visited by an optimal policy.
Focusing on a subset of belief states can allow a large part of the state space to be ignored
without significant loss of solution quality.

The problem of having a large state space is compounded in the DEC-POMDP case.
Not only is there uncertainty about the state, but also about the policies of the other agents.
As a consequence, the generalized belief space which includes all possible distributions over
states of the system and current policies of the other agents must be considered to guarantee
optimality. This results in a huge space which contains many unlikely states and policies.
The uncertainty about which policies other agents may utilize does not allow belief updates
to normally be calculated for DEC-POMDPs, but as we showed above, it can be done by
assuming a probability distribution over actions of the other agents. This limits the number

28



Variables: ε, x(q̂i) and for each belief point b

Objective: Maximize ε

Improvement constraints: ∀b, q−i

∑

s

b(s)
[∑

q̂i

x(q̂i)V (q̂i, q−i, s)− V (!q, s)
]
≥ ε

Probability constraints:
∑

q̂i

x(q̂i) = 1 and ∀q̂i x(qi) ≥ 0

Table 9: The linear program used to determine if a node q for agent i is dominated at
each point b and all initial nodes of the other agents’ controllers. As node q
may be dominated by a distribution of nodes, variable x(q̂i) represents P (q̂i), the
probability of starting in node q̂ for agent i.

of policies that need to be considered by all agents and if the distributions are chosen well,
may permit a high-valued solution to be found.

5.2 Belief Set Generation

As mentioned above, our heuristic policy iteration algorithm constructs sets of belief points
for each agent which are later used to evaluate the joint controller and remove dominated
nodes. To generate the belief point set, we start at the initial state and by making assump-
tions about the other agents, we can calculate the resulting belief state for each action and
observation pair of an agent. By fixing the policies for the other agents, this belief state up-
date can be calculated in a way very similar to that described for POMDPs in section 3.1.1.
This procedure can be repeated from each resulting belief state until a desired number of
points is generated or no new points are visited.

More formally, we assume the other agents have a fixed distribution of action choice for
each system state. That is, if we know P (!a−i|s) then we can determine the probability any
state results given a belief point and an agent’s action and observation. The derivation of
the likelihood of state s′, given the belief state b, and agent i’s action ai and observation oi

is shown below.

P (s′|ai, oi, b) =
∑

#a−i,#o−i,s

P (s′,!a−i,!o−i, s|ai, oi, b)

=

∑
#a−i,#o−i,s

P (!o|s, b,!a, s′)P (s′, s,!a, b)
P (oi, ai, b)

=

∑
#a−i,#o−i,s

P (!o|s,!a, s′)P (s′|s,!a, b)P (!a, s, b)
P (oi, ai, b)

=

∑
#a−i,#o−i,s

P (!o|s,!a, s′)P (s′|s,!a)P (!a−i|a, s, b)P (!a, s, b)
P (oi, ai, b)
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=

∑
#a−i,#o−i,s

P (!o|s,!a, s′)P (s′|s,!a)P (!a−i|ai, s, b)P (s|ai, b)P (ai, b)
P (oi, ai, b)

=

∑
#a−i,#o−i,s

P (!o|s,!a, s′)P (s′|s,!a)P (!a−i|s)b(s)
P (oi|ai, b)

where
P (oi|ai, b) =

∑

a−i,o−i,s,s′

P (!o|s,!a, s′)P (s′|s,!a)P (!a−i|s)b(s)

Thus, given the action probabilities for the other agents, −i, and the transition and obser-
vation models of the system, a belief state update can be calculated.

5.3 Algorithmic Framework

We provide a formal description of our approach in Table 8. Given the desired number
of belief points, k, and random action and observation selection for each agent, the sets
of points are generated as described above. The search begins at the initial state of the
problem and continues until the given number of points is obtained. If no new points are
found, this process can be repeated to ensure a diverse set is produced. The arbitrary initial
controller is evaluated and the value at each state and for each initial node of any agent’s
controller is retained. The exhaustive backup procedure is exactly the same as the one used
in the optimal algorithm, but updating the controller takes place in two steps. First, for
each of the k belief points, the highest-valued set of initial nodes is found. To accomplish
this, the value of beginning at each combination of nodes for all agents is calculated for each
of these k points and the best combination is kept. This allows nodes that do not contribute
to any of these values to be simultaneously pruned. Next, each node of each agent is pruned
using the linear program shown in Table 9. If a distribution of nodes for the given agent has
higher value at each of the belief points for any initial nodes of the other agents’ controllers,
it is pruned and replaced with that distribution. The new controllers are then evaluated
and the value is compared with the value of the previous controller. This process of backing
up and pruning continues while the controller parameters continue to change.

Similar to how bounded policy updates can be used in conjunction with pruning in the
optimal policy iteration algorithm, a nonlinear programming approach (Amato et al., 2007)
can be used to improve solution quality for the heuristic case. To accomplish this, instead of
optimizing the controller for just the initial belief state of the problem, all the belief points
being considered are used. A simple way to achieve this is to maximize over the sum of
the values of the initial nodes of the controllers weighted by the probabilities given for each
point. This approach can be used after each pruning step and may further improve value
of the controllers.

6. Dynamic Programming Experiments

This section describes the results of experiments performed using policy iteration. Because
of the flexibility of the algorithm, it is impossible to explore all possible ways of implementing
it. However, we did experiment with a few different implementation strategies to gain an
idea of how the algorithm works in practice. All of these experiments were run on a 3.40GHz
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Intel Pentium 4 with 2GB of memory. Three main sets of experiments were performed on
a single set of test problems.

Our first set of experiments focused on exhaustive backups and controller reductions.
The results confirm that value improvement can be obtained through iterated application of
these two operations. Further improvement is demonstrated by also incorporating bounded
updates. However, because exhaustive backups are expensive, the algorithm was unable to
complete more than a few iterations on any of our test problems.

In the second set of experiments, we addressed the complexity issues by using only
bounded backups, and no exhaustive backups. With bounded backups, we were able to
obtain higher-valued controllers while keeping memory requirements fixed. We examined
how the sizes of the initial local controllers and the correlation device affected the value of
the final solution.

The third set of experiments examined the complexity issues caused by exhaustive back-
ups by using the point-based heuristic. This allowed our heuristic policy iteration algorithm
to complete more iterations than the optimal algorithm and in doing so, increased solution
quality of the largest solvable controllers. By incorporating Amato et al.’s NLP approach,
the heuristic algorithm becomes slightly less scalable than the with heuristic pruning alone,
but the amount of value improvement per step increases. This causes the resulting con-
trollers in each domain to have the highest value of any approach.

6.1 Test Domains

In this section, we describe three test domains, ordered by the size of the problem rep-
resentation. For each problem, the transition function, observation function, and reward
functions are described. In addition, an initial state is specified. Although policy iteration
does not require an initial state as input, one is commonly assumed and is used by the
heuristic version of the algorithm. A few different initial states were tried for each problem,
and qualitatively similar results were obtained. In all domains, a discount factor of 0.9 was
utilized.

As a very loose upper bound, the centralized policy was calculated for each problem in
which all agents share their observations with a central agent and decisions for all agents are
made by the central agent. This results in a POMDP with the same number of states, but
the action and observation sets are Cartesian products of the agents action and observation
sets. The value of this POMDP policy is provided below, but because DEC-POMDP policies
are more constrained, the optimal value may be much lower.

Two Agent Tiger Problem

The two agent tiger problem consists of 2 states, 3 actions and 2 observations (Nair et al.,
2003). In this domain, there are two doors. Behind one door is a tiger and behind the other
is a large treasure. Each agent may open one of the doors or listen. If either agent opens the
door with the tiger behind it, a large penalty is given. If the door with the treasure behind it
is opened and the tiger door is not, a reward is given. If both agents choose the same action
(i.e., both opening the same door) a larger positive reward or a smaller penalty is given to
reward this cooperation. If an agent listens, a small penalty is given and an observation
is seen that is a noisy indication of which door the tiger is behind. While listening does
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not change the location of the tiger, opening a door causes the tiger to be placed behind
one of the door with equal probability. The problem begins with the tiger equally likely to
be located behind either door. The optimal centralized policy for this problem has value
59.817.

Meeting on a Grid

In this problem, with 16 states, 5 actions and 4 observations, two robots must navigate on a
two-by-two grid. Each robot can only sense whether there are walls to its left or right, and
their goal is to spend as much time as possible on the same square as the other agent. The
actions are to move up, down, left, or right, or to stay on the same square. When a robot
attempts to move to an open square, it only goes in the intended direction with probability
0.6, otherwise it either goes in another direction or stays in the same square. Any move
into a wall results in staying in the same square. The robots do not interfere with each
other and cannot sense each other. The reward is 1 when the agents share a square, and
0 otherwise. The initial state places the robots diagonally across from each other and the
optimal centralized policy for this problem has value 7.129.

Box Pushing Problem

This problem, with 100 states, 4 actions and 5 observations consists of two agents that
get rewarded by pushing different boxes (Seuken & Zilberstein, 2007). The agents begin
facing each other in the bottom corners of a fout-by-three grid with the available actions of
turning right, turning left, moving forward or staying in place. There is a 0.9 probability
that the agent will succeed in moving and otherwise will stay in place, but the two agents
can never occupy the same square. The middle row of the grid contains one large box in the
middle of two small boxes. The small boxes can be moved by a single agent, but the large
box can only be moved by both agents pushing at the same time. The upper row of the
grid is considered the goal row, which the boxes are pushed into. The possible deterministic
observations for each agent consist of seeing an empty space, a wall, the other agent, a small
box or the large box. A reward of 100 is given if both agents push the large box to the
goal row and 10 is given for each small box that is moved to the goal row. A penalty of -5
is given for each agent that cannot move and -0.1 is given for each time step. Once a box
is moved to the goal row, the environment resets to the original start state. The optimal
centralized policy for this problem has value 183.936.

6.2 Exhaustive Backups and Controller Reductions

In this section, we present the results of using exhaustive backups together with controller
reductions. For each domain, the initial controllers for each agent contained a single node
with a self loop, and there was no correlation device. For each problem, the first action
of the problem description was used. This resulted in the repeated actions of opening the
left door in the two agent tiger problem, moving up in the meeting on a grid problem and
turning left in the box pushing problem. The reason for starting with the smallest possible
controllers was to see how many iterations we could complete before running out of memory.

On each iteration, we performed an exhaustive backup, and then alternated between
agents, performing controller reductions until no more nodes could be removed. For bounded
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Two Agent Tiger, |S| = 2, |Ai| = 3, |Ωi| = 2
Iteration Exhaustive Sizes Controller Reductions Bounded Updates

0 (1, 1) -150 (1,1 in 1s) -150 (1,1 in 1s)
1 (3, 3) -137 (3,3 in 1s) -20 (3,3 in 12s)
2 (27, 27) -117.8 (15, 15 in 7s) -20 (15, 15 in 89s)
3 (2187, 2187) -98.9 (255, 255 in 1301s) -20* (255, 255 in 3145s)

Meeting on a Grid, |S| = 16, |Ai| = 5, |Ωi| = 4
Iteration Exhaustive Sizes Controller Reductions Bounded Updates

0 (1, 1) 2.8 (1,1 in 1s) 2.8 (1,1 in 1s)
1 (5, 5) 3.4 (5,5 in 7s) 3.8 (5,5 in 145s)
2 (3125, 3125) 3.7 (80,80 in 821s) 4.78* (125,125 in 1204s)

Box Pushing, |S| = 100, |Ai| = 4, |Ωi| = 5
Iteration Exhaustive Sizes Controller Reductions Bounded Updates

0 (1, 1) -2 (1,1 in 4s) -2 (1,1 in 53s)
1 (4, 4) -2 (2,2 in 108s) 6.3 (2,2 in 132s)
2 (4096, 4096) 12.8 (9,9 in 755s) 42.7* (16,17 in 714s)

Table 10: Results of applying exhaustive backups, controller reductions and bounded up-
dates to our test problems. The second column contains the sizes of the controllers
if only exhaustive backups had been performed. The third column contains the
resulting value, sizes of the controllers, and time required for controller reductions
to be performed on each iteration. The fourth column displays these same quan-
tities with bounded updates also being used. The * denotes that a backup and
pruning were performed, but bounded updates exhausted the given resources.

dynamic programming results, after the reductions were completed bounded updates were
also performed for all agents. For these experiments, we attempted to improve the nodes of
each agent in turn until value could not be improved for any node of any agent. For each
iteration, we recorded the sizes of the controllers produced, and noted what the sizes would
be if no controller reductions had been performed. In addition, we recorded the value from
the initial state and the total time taken to reach the given result.

The results are shown in Table 10. Because exhaustive backups add many nodes, we
were unable to complete many iterations without exceeding memory limits. As expected,
the smallest problem led to the largest number of iterations being completed. Although
we could not complete many iterations before running out of memory, the use of controller
reductions led to significantly smaller controllers compared to the approach of just applying
exhaustive backups. Incorporating bounded updates requires some extra time, but is able
to improve the value produced at each step, causing substantial improvement in some cases.

It is also interesting to notice that the controller sizes when using bounded updates are
not always the same as when only controller reductions are completed. This can be seen
after two iterations in both the meeting on a grid and box pushing problems. This can
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occur because the bounded updates change node value and thus change the number and
location of the nodes that are pruned. In the box pushing problem, the two agents also
have different size controllers after two steps. This can occur, even in symmetric problems,
when a set of actions is only necessary for a single agent.

6.3 Bounded Dynamic Programming Updates

As we saw from the previous experiments, exhaustive backups can fill up memory very
quickly. This leads naturally to the question of how much improvement is possible without
exhaustive backups. In this section, we describe an experiment in which we repeatedly
applied bounded backups, which left the size of the controller fixed. We experimented with
different starting sizes for the local controllers and the correlation device.

We define a trial run of the algorithm as follows. At the start of a trial run, a size is
chosen for each of the local controllers and the correlation device. The action selection and
transition functions are initialized to be deterministic, with the outcomes drawn according
to a uniform distribution. A step consists of choosing a node uniformly at random from the
correlation device or one of the local controllers, and performing a bounded backup on that
node. After 200 steps, the run is considered over. In practice, we found that values often
stabilized in fewer steps.

We varied the sizes of the local controllers while maintaining the same number of nodes
for each agent, and we varied the size of the correlation device from 1 to 2. For each domain,
we increased number of nodes until the required number of steps could not be completed
in under four hours. In general, runs required significantly less time to terminate. For each
combination of sizes, we performed 20 trial runs and recorded the best value over all runs.

For each of the three problems, we were able to obtain solutions with higher value than
with exhaustive backups. Thus, we see that even though repeated application of bounded
backups does not have an optimality guarantee, it can be competitive with an algorithm that
does. However, it should be noted that we have not performed an exhaustive comparison.
We could have made different design decisions for both approaches concerning the starting
controllers, the order in which nodes are considered, and other factors.

Besides comparing to the exhaustive backup approach, we wanted to examine the effect
of the sizes of the local controllers and the correlation device on value. Figure 9 shows
a graph of best values plotted against controller size. We found that, for the most part,
the value increases when we increase the size of the correlation device from one node to
two nodes (essentially moving from independent to correlated). It is worth noting that the
solution quality had somewhat high variance in each problem, showing that setting good
initial parameters is important for high-valued solutions.

For small controllers, the best value tends to increase with controller size. However, for
very large controllers, this not always the case. This can be explained by considering how a
bounded backup works. For new node parameters to be acceptable, they must not decrease
the value for any combination of states, nodes for the other controllers, and nodes for the
correlation device. This becomes more difficult as the numbers of nodes increase, and thus
it is easier to get stuck in a local optimum. This can be readily seen in the two agent tiger
problem and to some extent the meeting on a grid problem. Memory was exhausted before
this phenomenon takes place in the box pushing problem.
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Figure 9: Best value per trial run plotted against the size of the local controllers, for (a)
the two agent tiger problem, (b) the meeting in a grid problem and (c) the box
pushing problem. The solid line represents independent controllers (a correlation
device with one node), and the dotted line represents a joint controller including a
two-node correlation device. Times ranged from under 1s for one node controllers
without correlation to four hours for the largest controller found with correlation
in each problem.

6.4 Heuristic Dynamic Programming Updates

As observed above, the optimal dynamic programming approach can only complete a small
number of backups before resources are exhausted. Similarly, using bounded updates with
fixed size controllers can generate high value solutions, but it can be difficult to pick the
correct controller size and initial parameters. As an alternative to the other approaches, we
also present experiments using our heuristic dynamic programming algorithm.

Like the optimal policy iteration experiments, we initialized single node controllers for
each agent with self loops and no correlation device. The same first actions were used as
above and backups were performed until memory was exhausted. The set of belief points
for each problem was generated given the initial state distribution and a distribution of
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actions for the other agents. For the meeting on a grid and box pushing problems, it was
assumed that all agents chose any action with equal probability regardless of state. For the
two agent tiger problem, it was assumed that for any state agents listen with probability 0.8
and open each door with probability 0.1. This simple heuristic policy was chosen to allow
more of the state space to be sampled by our search. The number of belief points used for
the two agent tiger and meeting on a grid problems was ten and twenty points were used
for the box pushing problem.

For each iteration, we performed an exhaustive backup and then pruned controllers as
described in steps four and five of Table 8. All the nodes that contributed to the highest
value for each belief point were retained and then each node was examined using the linear
program in Table 9. For results with the NLP approach, we also improved the set of
controllers after heuristic pruning by optimizing a nonlinear program whose objective was
the sum of the values of the initial nodes weighted by the belief point probabilities. We
report the value produced by the optimal and heuristic approaches for each iteration that
could be completed in under four hours and with the memory limits of the machine used.
The nonlinear optimization was performed on the NEOS server, which provides a set of
machines with varying CPU speeds and memory limitations.

The values for each iteration of each problem are given in Figure 10. We see the
heuristic policy iteration (HPI) methods are able to complete more iterations than the
optimal methods and as a consequence produce higher values. In fact, the results from
HPI are almost always exactly the same as those for the optimal policy iteration algorithm
without bounded updates for all iterations that can be completed by the optimal approach.
Thus, improvement occurs primarily due to the larger number of backups that can be
performed.

We also see that while incorporating bounded updates improves value for the optimal
algorithm, incorporating the NLP approach into the heuristic approach produces even higher
value. Optimizing the NLP requires a small time overhead, but substantially increases
value on each iteration. This results in the highest controller value in each problem. Using
the NLP also allows our heuristic policy iteration to converge to a six node controller for
each agent in the two agent tiger problem. Unfortunately, this solution is known to be
suboptimal. As an heuristic algorithm, this is not unexpected, and it should be noted that
even suboptimal solutions by the heuristic approach outperform all other methods in all
our test problems.

6.5 Discussion

We have demonstrated how policy iteration can be used to improve both correlated and
independent joint controllers. We showed that using controller reductions together with
exhaustive backups is more efficient in terms of memory than using exhaustive backups
alone. However, due to the complexity of exhaustive backups, even that approach could
only complete a few iterations on each of our test problems.

Using bounded backups alone provided a good way to deal with the complexity issues.
With bounded backups, we were able to find higher-valued policies than with the previous
approach. Through our experiments, we were able to understand how the sizes of the local
controllers and correlation device affect the final values obtained.
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Figure 10: Comparison of the dynamic programming algorithms on (a) the two agent tiger
problem, (b) the meeting in a grid problem and (c) the box pushing problem.
The value produced by policy iteration with and without bounded backups as
well as our heuristic policy iteration with and without optimizing the NLP were
compared on each iteration until the time or memory limit was reached.

With our heuristic policy iteration algorithm, we demonstrated further improvement by
dealing with some of the complexity issues. The heuristic approach is often able to continue
improving solution quality past the point where the optimal algorithm exhausts resources.
More efficient use of this limited representation size is achieved by incorporating the NLP
approach as well. In fact, the heuristic algorithm with NLP improvements at each step
provided results that are at least equal to the highest value obtained in each problem and
sometimes were markedly higher than the other approaches. Furthermore, as far as we
know, these results are the highest published values for all three of the test domains.

7. Conclusion

We present a policy iteration algorithm for DEC-POMDPs. The algorithm uses a novel pol-
icy representation consisting of stochastic finite-state controllers for each agent along with

37



a correlation device. We define value-preserving transformations and show that alternating
between exhaustive backups and value-preserving transformations leads to convergence to
optimality. We also extend controller reductions and bounded backups from the single agent
case to the multiagent case. Both of these operations are value-preserving transformations
and are provably efficient. Finally, we introduced a heuristic version of our algorithm which
is more scalable and produces higher values on our test problems. Our algorithm serves as
the first nontrivial exact algorithm for DEC-POMDPs, and provides a bridge to the large
body of work on dynamic programming for POMDPs.

Our work provides a solid foundation for solving DEC-POMDPs, but much work remains
in addressing more challenging problem instances. We focused on solving general DEC-
POMDPs, but the efficiency of our approaches could be improved by using structure found
in certain problems. This would allow specialized representations and solution techniques
to be incorporated. Below we describe some key challenges of our general approach, along
with some preliminary algorithmic ideas to extend our work on policy iteration.

Approximation with Error Bounds Often, strict optimality requirements cause com-
putational difficulties. A good compromise is to search for policies that are within some
bound of optimal. Our framework is easily generalized to allow for this.

Instead of a value-preserving transformation, we could define an ε-value-preserving trans-
formation, which insures that the value at all states decreases by at most ε. We can perform
such transformations with no modifications to any of our linear programs. We simply need
to relax the requirement on the value for ε that is returned. It is easily shown that using
an ε-value-preserving transformation at each step leads to convergence to a policy that is
within εβ

1−β of optimal for all states.
For controller reductions, relaxing the tolerance may lead to smaller controllers because

some value can be sacrificed. For bounded backups, it may help in escaping from local
optima. Though relaxing the tolerance for a bounded backup could lead to a decrease in
value for some states, a small “downward” step could lead to higher value overall in the
long run. We are currently working on testing these hypotheses empirically.

General-Sum Games In a general-sum game, there is a set of agents, each with its own
set of strategies, and a strategy profile is defined to be a tuple of strategies for all agents.
Each agent assigns a payoff to each strategy profile. The agents may be noncooperative, so
the same strategy profile may be assigned different values for each agent.

The DEC-POMDP model can be extended to a general-sum game by allowing each
agent to have its own reward function. In this case, the strategies are the local policies, and
a strategy profile is a joint policy. This model is often called a partially observable stochastic
game (POSG). Hansen et al. (2004) presented a dynamic programming algorithm for finite-
horizon POSGs. The algorithm was shown to perform iterated elimination of dominated
strategies in the game. Roughly speaking, it eliminates strategies that are not useful for an
agent, regardless of the strategies of the other agents.

Work remains to be done on extending the notion of a value-preserving transformation
to the noncooperative case. One possibility is to redefine value-preserving transformations
so that value is preserved for all agents. This is closely related to the idea of Pareto
optimality. In a general-sum game, a strategy profile is said to be Pareto optimal if there
does not exist another strategy profile that yields higher payoff for all agents. It seems that
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policy iteration using the revised definition of value-preserving transformation would tend
to move the controller in the direction of the Pareto optimal set. Another possibility is
to define value-preserving transformations with respect to specific agents. As each agent
transforms its own controller, the joint controller should move towards a Nash equilibrium.

Handling Large Numbers of Agents The general DEC-POMDP representation pre-
sented in this paper grows exponentially with the number of agents, as seen in the growth
of the set of joint actions and observations as well as the transition, reward and observation
functions. Thus this representation is not feasible for large numbers of agents. However,
a compact representation is possible if each agent interacts directly with just a few other
agents. We can have a separate state space for each agent, factored transition probabilities,
and a reward function that is the sum of local reward functions for clusters of agents. In
this case, the problem size is exponential only in the maximum number of agents interacting
directly. This idea is closely related to recent work on graphical games (La Mura, 2000;
Koller & Milch, 2003).

Once we have a compact representation, the next question to answer is whether we
can adapt policy iteration to work efficiently with the representation. This indeed seems
possible. With the value-preserving transformations we presented, the nodes of the other
agents are considered part of the hidden state of the agent under consideration. These
techniques modify the controller of the agent to get value improvement for all possible
hidden states. When an agent’s state transitions and rewards do not depend on some other
agent, it should not need to consider that agent’s nodes as part of its hidden state. A
specific compact representation along with extensions of different algorithms was proposed
by Nair et al. (2005).
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Appendix A. Correlation proof

Appendix B. Proof of Lemma 1

For ease of exposition, we prove the lemma under the assumption that there is no correlation
device. Including a correlation device is straightforward but tedious. The statement of the
lemma is repeated below.

Lemma 1 Let C and D be correlated joint controllers, and let Ĉ and D̂ be the results of
performing exhaustive backups on C and D, respectively. Then Ĉ ≤ D̂ if C ≤ D.

Proof. Suppose we are given controllers C and D, where C ≤ D. Call the sets of joint
nodes for these controllers !Q and !R, respectively. It follows that there exists a function
fi : Qi → ∆Ri for each agent i such that

V (s, !q) ≤
∑

#r

P (!r|!q)V (s,!r)

for all s ∈ S and !q ∈ !Q.
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We now define functions f̂i to map between the two controllers Ĉ and D̂. For the old
nodes, we define f̂i to produce the same output as fi. It remains to specify the results of f̂i

applied to the nodes added by the exhaustive backup. New nodes of Ĉ will be mapped to
distributions involving only new nodes of D̂.

To describe the mapping formally, we need to introduce some new notation. Recall that
the new nodes are all deterministic. For each new node !r in controller D̂, the node’s action
is denoted !a(!r), and its transition rule is denoted !r ′(!r,!o). Now, the mappings f̂i are defined
such that

P (!r|!q) = P (!a(!r)|!q)
∏

#o

∑

#q ′

P (!q ′|!q,!a(!r),!o)P (!r ′(!r,!o)|!q ′)

for all !q in controller Ĉ and !r in controller D̂.
We must now show that the mapping f̂ satisfies the inequality given in the definition

of a value-preserving transformation. For the nodes that were not added by the exhaustive
backup, this is straightforward. For the new nodes !q of the controller Ĉ, we have for all
s ∈ S,

V (s, !q) =
∑

#a

P (!a|!q)



R(s,!a) +
∑

#o,s′,#q ′

P (s′,!o|s,!a)P (!q ′|!q,!a,!o)V (s′, !q ′)





≤
∑

#a

P (!a|!q)



R(s,!a) +
∑

#o,s′,#q ′

P (s′,!o|s,!a)P (!q ′|!q,!a,!o)
∑

#r ′

P (!r ′|!q ′)V (s′,!r ′)





=
∑

#a

P (!a|!q)



R(s,!a) +
∑

#o,s′,#q ′,#r ′

P (s′,!o|s,!a)P (!q ′|!q,!a,!o)P (!r ′|!q ′)V (s′,!r ′)





=
∑

#r

P (!r|!q)



R(s,!a(!r)) +
∑

#o,s′

P (s′,!o|s,!a(!r))V (s′,!r ′(!r,!o))





=
∑

#r

P (!r|!q)V (s,!r).

!
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