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Abstract

The goal of approximate policy evaluation is to “best” represent a target value function
according to a specific criterion. Temporal difference methods and Bellman residual methods
differ in the choice of the optimization criterion. So-called residual algorithms, which we
refer to as hybrid algorithms, effectively combine these two solution methods. We propose
two least-squares implementations of hybrid algorithms. This improves the previous incre-
mental algorithm by making more efficient use of data. Furthermore, we provide a geometric
interpretation of hybrid algorithms and demonstrate on a simple problem why a combination
of temporal difference methods and Bellman residual methods may be useful. Experimental
results in both small and large domains suggest hybrid algorithms can find solutions that lead
to better policies when performing policy iteration.

1 Introduction
Solving Markov decision processes (MDPs) [1] with large or infinite state spaces requires some
form of function approximation. Algorithms that use value functions, such as approximate value
iteration and approximate policy iteration, encounter the problem of how best to represent a target
function. Given a policy π, the approximate policy evaluation problem is to compute an approxi-
mate value function V̂ that represents that policy’s value function V π. Temporal difference meth-
ods [2] and Bellman residual methods [3] offer different solutions to this problem. These methods,
which behave very differently in practice, are similar in that they both stem from functions of the
Bellman equation. Baird [4] proposed a combination of the two methods using a single parameter
that at one extreme defaults to the temporal difference method and at the other extreme defaults
to the Bellman residual method. Intermediate values combine the objective functions of the two
methods. Baird termed this a residual algorithm, which for clarity we refer to as a hybrid algorithm.
The original hybrid algorithm [4] was incremental in nature as updates to the value function

either occur after each observed transition or after each epoch. Incremental algorithms have the
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disadvantage that they make inefficient use of data and require appropriately setting a learning rate.
Least-squares algorithms have been proposed to remedy these issues. The least-squares temporal
difference (LSTD) algorithm was proposed by Bradke and Barto [5] and generalized by Boyan
[6] to learn a value function for a fixed policy. Least-squares methods have also been applied
to control problems. Lagoudakis and Parr proposed least-squares policy iteration (LSPI) [7] for
learning an action-value function. There has also been theoretical work along this line [8]. To
take advantage of the benefits of least-squares algorithms, we propose two such implementations
of hybrid algorithms.
We provide an analysis of hybrid algorithms in terms of a projection of the target function

V π. The difference amongst the various algorithms can also be understood from a geometric per-
spective. Hybrid algorithms offer more active control over the geometry of the Bellman equation.
We illustrate why this control may be useful using a small MDP. We also compare the algorithms
empirically.

2 Background and Terminology
We consider Markov decision processes (MDPs) [1] with a finite state space S of N states, a finite
action space A, a state transition function P (s, a, s′) yielding the probability of moving from state
s ∈ S to state s′ ∈ S given action a ∈ A, and a reward function R(s, a, s′) giving the expected
reward under the transition from s ∈ S to s′ ∈ S given a ∈ A. Let P π be a N × N matrix with
P π(i, j) = P (i, π(i), j) and let Rπ be a length N vector with Rπ(i) =

∑

j P π(i, j)R(i, π(i), j).
The value function V π is a length N vector that solves the Bellman equation

V π = Rπ + γP πV π (1)

for policy π which maps states to actions. We consider infinite horizon problems where the dis-
count factor γ is in the range [0, 1).
Policy evaluation involves computing V π for an arbitrary policy π. When V π can be repre-

sented exactly, this is achieved by either direct computation V π = (I − γP π)−1Rπ or through
iteration

Vk+1 = T π(Vk) = Rπ + γP πVk (2)

where T π : RN → RN is the Bellman operator. This method converges to V π.
When an exact representation of V π is infeasible, the value function must be approximated.

We consider linear function approximation where a value function V is expressed as a linear
combination of basis functions. This is written V = Φw where w ∈ RK is an adjustable parameter
vector and Φ = [Φ1| . . . |ΦK ] ∈ RN×K with each column Φi being a basis function. We assume
without loss of generality that the basis functions are linearly independent. It is also typical for the
number of free parameters to be much smaller than the number of states (K % N ).
Approximate policy evaluation involves computing an approximate value function V̂ = Φw

that represents V π. We describe the following four techniques for solving this problem.1
1The first three techniques were similarly described in [9].
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1. Optimal Approximate Solution (OPT)
If the target value function V π were known, then it is easy to find an approximation V̂ sim-
ply by projecting V π onto the space spanned by the basis functions. This directly minimizes
‖V̂ − V π‖ρ, where the errors for each state are weighted according to distribution ρ. Thus,
the solution is V̂ = Φw = ΠρV

π where Πρ = Φ(ΦT DρΦ)−1ΦT Dρ is a projection matrix
and Dρ is a diagonal matrix Dρ(i, i) = ρ(i). The difficulty of this method is in computing
V π, which can in principle be done using Monte Carlo methods.

2. Bellman Residual Minimization (BR)
This technique computes a solution by minimizing the magnitude of the Bellman residual,
‖T π(V̂ ) − V̂ ‖ρ, where the errors for each state are weighted according to distribution ρ.

min
w

‖T π(V̂ ) − V̂ ‖ρ

min
w

‖T π(Φw) − Φw‖ρ

min
w

‖Rπ + γP πΦw − Φw‖ρ (3)

The least-squares solution to this problem is to find w such that ABRw = bBR where:

ABR = ΦT (I − γP π)T Dρ(I − γP π)Φ

bBR = ΦT (I − γP π)T DρR
π.

This technique, proposed in [3], has also been referred to as the residual-gradient method
[4, 10], the quadratic residual method [9], and as the Bellman residual method [7, 8].

3. Fixed Point Solution (FP)
This technique computes a solution by forcing V̂ to be a fixed point of the Bellman equa-
tion. Since the Bellman operator can back up values out of the space spanned by the basis
functions, it must be followed by a projection onto the column space of Φ (written [Φ]) to
ensure V̂ is a fixed point. Thus, the solution is to minimize ‖ΠρT

π(V̂ ) − V̂ ‖ρ.

min
w

‖ΠρT
π(V̂ ) − V̂ ‖ρ

min
w

‖ΠρT
π(Φw) − Φw‖ρ

min
w

‖Πρ (T π(Φw) − Φw) ‖ρ

min
w

‖Πρ (Rπ + γP πΦw − Φw) ‖ρ (4)

In the third step above, note that Φw = ΠρΦw. The least-squares solution to this problem is
to find w such that AFPw = bFP where:

AFP = ΦT Dρ(I − γP π)Φ

bFP = ΦT DρR
π.
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We refer to this technique as the FP solution to be consistent with previous work [7], but it
has also been referred to as the temporal difference method [10, 9].

4. Hybrid Minimization (H)
The BR solution minimizes the Bellman residual (Eq. 3) and the FP solution minimizes
the projected Bellman residual (Eq. 4). Baird proposed residual algorithms [4] as a way
to combine these techniques. The term “residual” algorithm was used to emphasize that it
was different from a “residual-gradient” algorithm (his terminology for BR). To avoid any
confusion, we refer to residual algorithms as hybrid algorithms. This name also emphasizes
the fact that it is a combination of BR and FP. Baird’s original version was an incremental
algorithm. An update to the weight vector was computed by linearly combining the updates
due to the BR and FP: ∆wH = β∆wBR + (1 − β)∆wFP . We present two ways to formulate
the hybrid technique using least-squares.

3 Hybrid Least-Squares Algorithms
The hybrid approach accounts for both the Bellman residual (which is minimized by the BR) and
the projection of the Bellman residual onto [Φ] (which is minimized by the FP). Our first algorithm
H1 starts from the Bellman equation from which we derive a least-squares equation. The second
algorithm H2, instead of starting from first principles, begins directly from the BR and FP least-
squares solutions. Both H1 and H2 when used with an exact representation (i.e. Φ = IN ) produce
the target value function V π. When using an approximate representation, H1 and H2 produce
different results and have different storage and computational requirements.

3.1 AlgorithmH1

We combine the BR and FP terms in the Bellman equation with a parameter β ∈ [0, 1]. The
problem is to minimize ‖βT π(V̂ ) + (1 − β)ΠρT

π(V̂ ) − V̂ ‖ρ.

min
w

∥

∥

∥
βT π(V̂ ) + (1 − β)ΠρT

π(V̂ ) − V̂
∥

∥

∥

ρ

min
w

∥

∥

∥
β

(

T π(V̂ ) − V̂
)

+ (1 − β)Πρ

(

T π(V̂ ) − V̂
)
∥

∥

∥

ρ

min
w

∥

∥

∥
(βI + (1 − β)Πρ)

(

T π(V̂ ) − V̂
)
∥

∥

∥

ρ

min
w

‖(βI + (1 − β)Πρ) (Rπ + γP πΦw − Φw)‖ρ (5)

A least-squares equation of the form AH1
w = bH1

can be derived from the minimization problem
in Equation 5. To simplify the derivation, let F = βI + (1 − β)Πρ and let G = (I − γP π):

FGΦw = FRπ

(FGΦ)T DρFGΦw = (FGΦ) DρFRπ

ΦT GT F T DρFGΦw = ΦT GT F T DρFRπ.
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It is easy to show that F T DρF = Dρ(β2I + (1 − β2)Πρ). The final result is therefore:

AH1
= ΦT (I − γP π)T Dρ(β

2I + (1 − β2)Πρ)(I − γP π)Φ

bH1
= ΦT (I − γP π)T Dρ(β

2I + (1 − β2)Πρ)R
π.

When the model is unknown or is too large, the matrix AH1
and vector bH1

must be estimated
from samples. To achieve an unbiased estimate, two samples from each state are required [11].
This constraint has been removed in recent work by Antos, Szepesvári, and Munos [8]. They pro-
posed a new Bellman residual algorithm that avoids double sampling by adding an auxiliary func-
tion which must be optimized. Unfortunately, it was shown that with linear function approximation
their algorithm produces the same result as the FP solution. Therefore, we cannot simultaneously
use their technique for avoiding double samples and search for hybrid solutions between the BR
and FP.
To estimate AH1

and bH1
from samples, it is necessary to store three K × K matrices and two

lengthK vectors. This can be seen by rewriting the equations:

AH1
= β2ABR + (1 − β2)AT

FP
C−1AFP

bH1
= β2bBR + (1 − β2)AT

FP
C−1bFP

where C = ΦT DρΦ. Given double samples 〈s, a, r′, s′〉 and 〈s, a, r′′, s′′〉, the updates are

ABR = ABR + ρ(s)(φ(s) − γφ(s′′))(φ(s) − γφ(s′))T

AFP = AFP + ρ(s)φ(s)(φ(s) − γφ(s′))T

C = C + ρ(s)φ(s)φ(s)T

bBR = bBR + ρ(s)(φ(s) − γφ(s′′))r′′

bFP = bFP + ρ(s)φ(s)r′′

where φ(s) is a column vector of lengthK associated with the sth row of Φ (i.e. φ(s) = Φ(s, :)T ).
Both the BR and FP least-squares problems only need to store one K × K matrix and one length
K vector, whereas H1 requires three matrices and two vectors. Moreover, the matrix C must be
inverted when computing AH1

. These issues motivated our second implementation.

3.2 AlgorithmH2

Rather than starting from the Bellman equation, we consider a direct combination of the BR and
FP least-squares solutions:

AH2
= βABR + (1 − β)AFP = ΦT (I − βγP π)T Dρ(I − γP π)Φ

bH2
= βbBR + (1 − β)bFP = ΦT (I − βγP π)T DρR

π.

By definition, this technique returns the BR solution when β = 1 and the FP solution when β = 0.
Only one K × K matrix and one length K vector are required for H2. The incremental update for
each double sample 〈s, a, r′, s′〉 and 〈s, a, r′′, s′′〉 has the form:

AH2
= AH2

+ ρ(s)(φ(s) − βγφ(s′′))(φ(s) − γφ(s′))T

bH2
= bH2

+ ρ(s)(φ(s) − βγφ(s′′))r′′.
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3.3 Difference BetweenH1 andH2

Aside from the difference in data structures used by H1 and H2, it is useful to elucidate any other
differences. To make this comparison more obvious, the least-squares equations can be rewritten
as follows

AH1
= ΦT

(

βGT G + (1 − β)GT ΠG
)

Φ

AH2
= ΦT

(

βGT G + (1 − β)G
)

Φ

bH1
= ΦT

(

βGT + (1 − β)GT Π
)

Rπ

bH2
= ΦT

(

βGT + (1 − β)I
)

Rπ

where we again use the abbreviationG = (I −γP π). For simplicity, the weighting ρ was assumed
uniform and the parameter β was used for H1 (instead of β2). Consider the extreme values of
β. Both H1 and H2 clearly produce the BR solution when β = 1. When β = 0, it is obvious
that FP and H2 are identical. It is less obvious that H1 produces the same solution, but this can
in fact be shown. The interesting case occurs when 0 < β < 1 because the H1 and H2 solutions
differ. For most typical problems where function approximation is required (i.e. when Π is far
from equaling the identity matrix), ‖AH1

‖ < ‖AH2
‖. This in turn means that the H2 solution will

be weighted more toward the FP component whereas the H1 solution will be more weighted toward
the BR component. This relationship did indeed hold up in the experiments. Lastly, in terms of
practical implications, we note that AH2

has a smaller condition number than AH1
which means the

H2 solution can potentially be more robust depending on the particular problem.

3.4 Other Possible Algorithms
The two proposed hybrid algorithms implicitly constrain the Bellman residual by the choice of
the parameter β. This constraint could be made explicit. The problem would be to minimize
the projection of the Bellman residual subject to an inequality constraint on the Bellman residual
(either on its magnitude or component-wise).

min
w

‖AFPw − bFP‖ρ

subject to: ‖ABRw − bBR‖ρ ≤ δ or: ± (ABRw − bBR) ≤ ∆

The parameters δ (a positive scalar) and∆ (a positive vector) must be set appropriately based on the
minimal value of the Bellman residual magnitude attained with the BR.We point out the possibility
of explicitly controlling the Bellman residual to be thorough. However, since this increases the
computational complexity, we limit our discussion to the two simple least-squares algorithms H1

and H2.

4 Analysis

4.1 Projections of the Target Function
The first three approximate policy evaluation techniques were shown to be images of the target
function V π under different projection operations [10]. More specifically, each method X =
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{OPT,BR,FP} produces an approximate value function with the following form: V̂ = Φw =
ΦA−1

X bX = Φ(ΦT DXΦ)−1ΦT DXV π.2 The matrix DX controls the weighting of the projection
and takes on the following values [10]:

DOPT = Dρ

DBR = (I − γP π)T Dρ(I − γP π)

DFP = Dρ(I − γP π)

The hybrid methods have a similar characterization.

DH1
= (I − γP π)T Dρ(β

2I + (1 − β2)Πρ)(I − γP π)

DH2
= (I − βγP π)T Dρ(I − γP π)

4.2 Geometry of the Bellman Equation
Each approximate policy evaluation algorithm uses the Bellman equation in different ways to com-
pute a value function. There is an intuitive geometric perspective to the algorithms when using
linear function approximation. We expand on the original presentation of this perspective in [7].
The Bellman equation with linear function approximation has three components: V̂ , T π(V̂ ),

and ΠρT
π(V̂ ). These components geometrically form a triangle where V̂ and ΠρT

π(V̂ ) reside in
the space spanned by Φ while T π(V̂ ) is, in general, outside this space. This is illustrated in the
leftmost triangle of Figure 1. The three-dimensional space in the figure is the space of exact value
functions while the two-dimensional plane represents the space of approximate value functions
in [Φ]. The angle between subspace [Φ] and the vector T π(V̂ ) − V̂ is denoted θ. The different
approximate policy evaluation methods compute solutions that minimize the length of different
sides of the triangle. The second triangle in Figure 1 shows the BR solution, which minimizes the
length of T π(V̂ ) − V̂ . The third (degenerative) triangle shows the FP solution, which minimizes
the length of ΠρT

π(V̂ ) − V̂ . This length is 0 which means θFP = 90◦. The fourth triangle shows
the H, which minimizes a combination of the lengths of the two sides. In general, θH lies between
θBR and 90◦. The hybrid solution allows for controlling the shape of this triangle.
Empirical evidence suggests the BR is a more stable method, but the FP finds better policies

[7]. This effect was also analyzed theoretically [9, 12]. We have also observed the same behavior.
The BR tends to compute weights w whose greedy policies derived from V̂ do not change much
from iteration to iteration. The FP can compute weights and policies that vary greatly between
iterations. One motivation for the H is to combine the stability of the BR with the FP’s ability
to find better policies. In this light, the BR component of the H solution can be thought of as
implicitly providing regularization. The hybrid algorithms have the flexibility of finding solutions
that are almost fixed points but have more desirable properties (smaller Bellman residuals).

4.3 Chain MDP
To illustrate the differences in stability between the BR and FP, consider the simple six state MDP
described in Figure 2 with discount factor γ = 0.99. The optimal policy is to move right in the first

2The V π term comes from the equality Rπ = (I − γP π)V π .
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Π T πV̂

θ

V̂ = Φw

T πV̂

Φ

θH
θFPθBR

Figure 1: The triangle on the left shows the general form of the Bellman equation. The three
triangles on the right correspond to the different approximate policy evaluation methods (BR, FP,
and H) where the bold lines indicate what is being optimized by each method.

three states and left in the last three states (π∗ = RRRLLL). Let the initial policy be π0 = LLLLLL

and assume there are three basis functions corresponding to the first three proto-value functions, or
eigenvectors of the graph Laplacian [13]. These basis functions are symmetric and are rich enough
to represent an approximate value function whose corresponding greedy policy is π∗. We also
assume the distribution ρ is uniform (Dρ = I), which is appropriate when doing policy iteration
[14]. The approximate value functions V̂ π0

BR
, V̂ π0

FP
, and V̂ π0

H1
were computed according to the least-

squares solutions described in Sections 2 and 3. Then the model was used to determine a policy π1

that is greedy with respect to V̂ . The BR produces a policy π1 = LLLLLL while the FP produces
a policy π1 = RRRRRR. Thus, after one round of policy iteration, the BR converges on the initial
policy and the FP completely flips the policy. Moreover, since the model and basis functions are
symmetric, the FP oscillates forever between LLLLLL and RRRRRR. This example demonstrates the
stability of the BR and the FP’s potential instability. The hybrid method produces a policy π1 in
between the two extremes. The exact policy depends on β and is shown in Figure 3(c). The trade-
off between the Bellman residual and the projection of the Bellman residual is shown in Figure
3(a) and the angle θH1

is shown in Figure 3(b).
While this result clearly holds when the basis functions are symmetric, this behavior also occurs

with asymmetric bases. For example, consider a polynomial basis with φ1(s) = 1, φ2(s) = s, and
φ3(s) = s2, appropriately orthonormalized. The BR still converges to the initial policy, the FP
oscillates between the two extreme policies, and the H finds policies between the two extremes.

1
r=0

2
r=−1

3
r=+1 r=+1

4
r=−1
5

r=0
6

Action=L

0.4 0.2 0.10.40.1 0.2

0.90.8 0.6 0.6 0.80.9

1
r=0

2
r=−1

3
r=+1 r=+1

4
r=−1
5

r=0
6

0.9

0.4 0.2 0.1

0.8 0.6 0.6 0.8

0.40.1 0.2

0.9
Action=R

Figure 2: Reward and transition functions for a six state MDP with two possible actions.
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Figure 3: Results of approximate policy evaluation for H1 while varying β.

5 Experiments

5.1 Grid MDP
We compared all methods on a 10×10 grid MDP. The MDP has 100 states, 4 actions that have
probability 0.9 of success, a 0.95 discount factor, and a reward of +1 in one corner and +2 in the
diagonal corner. Fifteen Laplacian eigenvectors [13] were used as basis functions.
We ran 500 trials. Each trial began with a randomly initialized policy, then policy iteration was

run using each policy evaluation method until the weight vector converged or 500 iterations were
reached. The model was used during policy iteration to avoid any difficulty comparing the various
methods due to sampling. The result of policy iteration is a final policy πf . We evaluate these
policies by computing V πf exactly and comparing it with V ∗. The results, which are broken into
the trials that converged and those that did not converge, are shown in Figure 4. The same results,
along with information about the variance over the 500 trials, are also reported in Table 1.
The results show that BR is more stable but FP finds better policies when it converges (smaller

‖V ∗−V πf‖2). The non-converged trials for BR produced better policies than the converged trials.
Since BR tends to make small changes to the value function between rounds of policy iteration,
it is not surprising that early convergence (starting from a random policy) leads to very subopti-
mal policies. This same phenomenon occurred for H1, β = 0.5-0.9. H1’s performance transitions
between FP at small values of β and BR at large values of β. It does not achieve improved per-
formance at intermediate values. The most interesting aspect of this experiment is the excellent
performance of H2 and the method’s robustness across all β values.

5.2 Tetris
We have presented hybrid least-squares algorithms for approximating value functions, but the same
idea holds for approximating action-value functions. We omit the equations for lack of space, but
they are very similar to those in Section 3. We tested all policy evaluation methods on the problem
of learning an approximate action-value function for Tetris. Ten basis functions over state-action
pairs (s, a) were used. The first four are for the current state s: maximum height, number of holes,
sum of absolute height differences between adjacent columns, and the mean height. The next four
basis functions are the change in the value of the first four features after taking action a from s.
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(c) Number of converged trials.
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Figure 4: Results of policy iteration for the grid MDP. The median value of ‖V ∗ − V πf‖ is plot-
ted versus β for the converged trials (a) and non-converged trials (b). The number of trials that
converged and did not converged (out of the 500 total) is shown in (c) and (d) respectively.

The last two are the change in the score and a constant 1. This feature set was proposed in [15].
Forty episodes of data (∼30,000 samples) were generated using an initial policy wπ0 = [-1,

-10, -1, -1, -2, -11, -2, -2, 50, 10]T . We ran policy iteration starting from wπ0 until the weight
vector converged or 100 iterations were reached. Instead of generating double samples (to form
unbiased estimates of A and b), we used the model to compute the expectation over next-states
and actions. For Tetris, each action results in seven equally likely next-states corresponding to the
seven Tetris pieces. This method of using the model instead of samples is described in [7] (see
LSTDQ-Model).
We tested the learned policies 50 times. Each time, we generated a random ordered set of

pieces that all policies were forced to place to make the comparison more accurate. The average
score over the 50 trials is shown in Table 2. The initial policy wπ0 scored 310 on average. Policy
iteration converged in less than 7 iterations for the FP and H2, whereas the BR and H1 experiments
did not converge. The performance split along this division. The final policy computed using
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Table 1: Results of policy iteration for the grid MDP. The triplets of numbers are the first, second,
and third quartiles to give a sense of the variance.

Converged Trials Non-converged Trials
Technique # Trials # Iterations ‖V ∗ − V πf ‖2 # Trials ‖V ∗ − V πf ‖2

OPT 498 9 / 11 / 16 0.1 / 0.1 / 0.1 2 - / 227.9 / -
BR 377 7 / 8 / 10 78.2 / 132.3 / 159.3 123 7.3 / 29.5 / 136.0
FP 192 17.5 / 69 / 123 0.1 / 7.3 / 7.5 308 152.6 / 197.3 / 225.4

H1, β=0.1 42 7 / 9 / 13 0.1 / 0.1 / 0.1 458 65.8 / 114.3 / 202.6
H1, β=0.2 84 7 / 8 / 11 0.1 / 0.1 / 7.3 416 65.8 / 104.8 / 141.9
H1, β=0.3 12 7 / 8.5 / 9 2.5 / 2.5 / 2.5 488 65.8 / 99.8 / 142.9
H1, β=0.4 83 8 / 10 / 11 100.0 / 100.0 / 100.0 417 16.8 / 93.2 / 148.8
H1, β=0.5 253 8 / 9 / 10 6.6 / 96.9 / 143.7 247 25.3 / 62.6 / 177.7
H1, β=0.6 263 7 / 9 / 10 25.3 / 119.0 / 144.4 237 12.4 / 44.9 / 158.7
H1, β=0.7 339 7 / 9 / 10 6.6 / 106.4 / 150.9 161 13.4 / 62.6 / 154.8
H1, β=0.8 333 7 / 8 / 9 90.4 / 137.4 / 169.3 167 7.3 / 25.3 / 135.2
H1, β=0.9 349 7 / 8 / 9 96.6 / 137.2 / 164.2 151 6.6 / 12.4 / 111.8
H2, β=0.1 154 14 / 52 / 163 0.1 / 7.3 / 7.3 346 7.5 / 62.6 / 156.0
H2, β=0.2 243 10 / 45 / 121 0.1 / 0.1 / 7.3 257 7.5 / 7.5 / 95.4
H2, β=0.3 241 8 / 22 / 69.5 0.1 / 7.3 / 7.3 259 7.5 / 7.5 / 7.5
H2, β=0.4 274 7 / 9 / 22 7.3 / 7.3 / 7.3 226 7.5 / 7.5 / 7.5
H2, β=0.5 214 8 / 9 / 11 7.3 / 7.3 / 7.3 286 7.3 / 7.5 / 7.5
H2, β=0.6 121 7 / 8 / 9 3.0 / 3.4 / 5.7 379 5.7 / 7.5 / 7.5
H2, β=0.7 378 10 / 11 / 12 2.5 / 2.5 / 2.5 122 7.5 / 7.5 / 7.5
H2, β=0.8 500 12 / 14 / 15 2.5 / 2.5 / 2.5 0 -
H2, β=0.9 194 8 / 17 / 20 3.0 / 3.0 / 3.0 306 5.7 / 5.7 / 5.7

the BR rarely removed a line. This was also the case for policies learned using H1 except when
β = 0.4. On the other hand, the FP and H2 policies performed at least as well as the initial policy
and in some cases significantly better. The best policy was computed using H2 with β = 0.1.

Table 2: Results of policy iteration for Tetris. An asterisk indicates policy iteration converged.

Technique Score Technique Score Technique Score Technique Score
BR 0 H1, β=0.4 295 H1, β=0.9 0 H2, β=0.5* 455
FP* 630 H1, β=0.5 60 H2, β=0.1* 800 H2, β=0.6* 395

H1, β=0.1 15 H1, β=0.6 5 H2, β=0.2* 580 H2, β=0.7* 370
H1, β=0.2 0 H1, β=0.7 5 H2, β=0.3* 645 H2, β=0.8* 405
H1, β=0.3 80 H1, β=0.8 0 H2, β=0.4* 515 H2, β=0.9* 330

6 Conclusions
The FP and BR solutions can be combined to form a hybrid approximate policy evaluation al-
gorithm. We proposed two ways to implement a hybrid algorithm using least-squares methods,
thus improving efficiency over the original incremental algorithm [4]. The first implementation is
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derived directly from the Bellman equation. The second implementation is a linear combination
of the fixed point FP and Bellman residual methods. We analyzed the algorithms in terms of pro-
jections of the target function and we showed that hybrid algorithms have an intuitive geometric
interpretation.
Policy iteration experiments were conduced on a simple grid MDP so that the quality of the

learned policies could be determined analytically. Experiments were also run on the challenging
task of learning to play Tetris where learned policies were evaluated empirically. In both domains,
the hybrid algorithm H2 discovered policies that performed much better than BR and as well as
(and in some instances better than) FP. A surprising finding was H2’s robustness for a wide range
of β values. One would expect that for β values close to 1, the difference between BRM and H2

would be minimal. A theoretical explanation of this effect would be useful. Another interesting
area for future work is to provide a mechanism for automatically setting β.
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