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Abstract

Hybrid algorithms for learning the structure of Bayesian
networks combine techniques from both the constraint-
based and search-and-score paradigms of structure learn-
ing. One class of hybrid approaches uses a constraint-
based algorithm to learn an undirected skeleton identify-
ing edges that should appear in the final network. This
skeleton is used to constrain the model space considered
by a search-and-score algorithm to orient the edges and
produce a final model structure. At small sample sizes, the
performance of models learned using this hybrid approach
do not achieve likelihood as high as models learned by un-
constrained search. Low performance is a result of errors
made by the skeleton identification algorithm, particularly
false negative errors, which lead to an over-constrained
search space. These errors are often attributed to “noisy”
hypothesis tests that are run during skeleton identification.
However, at least three specific sources of error have been
identified in the literature: unsuitable hypothesis tests, low-
power hypothesis tests, and unexplained d-separation. No
previous work has considered these sources of error in com-
bination. We determine the relative importance of each
source individually and in combination. We identify that
low-power tests are the primary source of false negative er-
rors, and show that these errors can be corrected by a novel
application of statistical power analysis. The result is a
new hybrid algorithm for learning the structure of Bayesian
networks which produces models with equivalent likelihood
to models produced by unconstrained greedy search, using
only a fraction of the time.

1 Introduction

Algorithms for learning the structure of Bayesian
networks usually fall into one of two broad cate-
gories: constraint-based algorithms and search-and-score.
Constraint-based algorithms use a series of statistical de-

cisions to identify structures that are consistent with the
conditional independencies entailed by the training data.
Search-and-score techniques treat structure learning as an
optimization problem using a heuristic search technique to
find structures that maximize the desired scoring metric.
Tsarmardinos et al. [14] recently introduced a two-phase
hybrid approach for structure learning to combine the ef-
ficiency of constraint-based algorithms with the consistent
high performance of search-and-score algorithms. Under
this approach, during the first phase, called skeleton identi-
fication, a constraint-based algorithm is used to identify the
skeleton of the learned Bayesian network. A skeleton is set
of undirected edges indicating possible dependence among
variables in the final network. During the second phase,
or heuristic search phase, a search-and-score algorithm is
used to determine whether edges appearing in the skeleton
will be included in the final model, and if so, the orientation
of that edge.

Skeleton identification algorithms use a series of local
statistical decisions to efficiently identify conditional inde-
pendence relations among variables appearing in the train-
ing data [5, 11, 14]. If two variables can be shown to
be conditionally independent, then there should not be an
edge connecting those variables in the final model structure,
and possible structures that contain that edge can be safely
excluded from further consideration. When two variables
cannot be shown to be conditionally independent, skeleton
identification algorithms add an edge to the skeleton be-
tween those variables.

Since skeleton identification algorithms reduce the num-
ber of possible structures considered by the heuristic search
phase, skeleton identification can be viewed as providing
constraints limiting the heuristic search. Ideally, if skeleton
identification is able to identify many conditional indepen-
dence relations, then the search space considered by heuris-
tic search is reduced, leading to dramatic improvements
in search efficiency. However, if too many edges are re-
moved from the skeleton, then the search can become over-
constrained, making it impossible to identify high-scoring
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model structures.
Over-constrained search is often the result of errors made

during skeleton identification, particularly false negative er-
rors. Such errors occur when an edge appearing in the true
network is erroneously removed from the skeleton during
skeleton identification. Although often attributed to noise
in training samples [2, 12], false negative errors can arise
from one of three causes identified in prior work on learn-
ing the structure of Bayesian networks. Unsuitable hypoth-
esis tests occur when the data being tested does not conform
to the requirements and assumptions of the hypothesis test
used to determine independence [11, 14]. Low-power sta-
tistical tests can fail to detect a dependence in the data even
when the dependence exists in the true model [11, 14]. And
Unexplained d-separation results from hypothesis tests that
produce inconsistent results, often as a result of errors in
previous tests [5, 12].

No work has examined these sources of error in com-
bination to identify their relative importance and the inter-
actions among possible solutions. In this paper, we deter-
mine the relative importance of each of these sources of
error and evaluate possible corrections for false negative
errors, including the first correction for low-power statis-
tical tests based on statistical power analysis. We show that
low-power tests are the primary source of false negative
errors produced by skeleton identification algorithms and
that these errors can be corrected with a novel application
of statistical power analysis. Including this correction dur-
ing skeleton identification results in a hybrid algorithm that
learns models with likelihoods that are statistically indis-
tinguishable from models learned by unconstrained greedy
search, but in significantly less time on most datasets.

2 Background

2.1 Two-Phase Hybrid Algorithms

The goal of structure learning algorithms is to iden-
tify from data the presence and orientation of edges in
the Bayesian network. A Bayesian network is a directed,
acyclic, graphical model of a joint probability distribution
over the variables appearing in a dataset. The edges in
the graph represent probabilistic dependence between vari-
ables. Structure learning for Bayesian networks has been
extensively studied; for additional background information
see Pearl [10] and Buntine [3].

We focus on two-phase hybrid algorithms. These hy-
brid algorithms differ from full constraint-based algorithms
only in the choice of edge orientation; constraint-based al-
gorithms use deterministic edge orientation rules whereas
hybrid algorithms use a heuristic search procedure to pro-
duce a final model [5, 11, 14]. Therefore, any constraint-
based algorithm (without edge orientation) can be paired

with a generic constrained search procedure to create a hy-
brid algorithm.

2.1.1 Skeleton Identification

There are many different varieties of skeleton identification
algorithms appearing in the literature. To describe some of
the main design decisions of these algorithms we highlight
the differences between three prototypical skeleton algo-
rithms: PC [11], Max-Min Parents Children (MMPC) [14],
and Three-Phase Dependency Analysis (TPDA) [5]. The
PC1 algorithm is a prototypical skeleton algorithm that runs
hypothesis tests in increasing order of conditioning set size
trying all pairwise tests first, followed by tests conditioned
on a single variable, and so on until no more tests can be
run. For categorical data, the PC algorithm uses a G2 statis-
tic to determine independence [11]. G2 is asymptotically
distributed as χ2. PC uses a rule of thumb to determine
whether to continue running tests. The rule of thumb states
that the G2 test is reliable if there are five or more instances
per degree of freedom of the test. If the test is not reliable,
PC makes a default decision to include the edge in the skele-
ton. MMPC was recently introduced as the skeleton phase
of the Max-Min Hill Climbing algorithm, the first exam-
ple of a two-phase hybrid algorithm [14]. MMPC is similar
to PC in every way except that it runs all reliable tests for
a single target variable before considering other variables,
choosing variables to add to the conditioning set with the
Max-Min Heuristic [14]. TPDA uses a different approach
to learn a skeleton than either PC or MMPC [5]. Rather than
using classical hypothesis tests, TPDA relies on tests of mu-
tual information to determine independence. As its name
implies, TPDA operates in three phases. At each phase, the
algorithm considers pairs of variables and either adds or re-
moves an edge depending on the conditional mutual infor-
mation score. TPDA restricts its conditioning variables to
those variables that appear on an undirected path between
the variables being tested. Unlike PC and MMPC, TPDA
does not make any determination of test reliability, instead
choosing to run every hypothesis test.

We chose to consider these three algorithms because they
represent three different strategies for learning undirected
skeletons from data and all three are widely used or have
been shown to perform well in comparison with other struc-
ture learning algorithms. The PC algorithm is widely used;
the textbook describing the PC algorithm currently has been
cited over 1400 times 2. In addition, many variants of the
PC algorithm appear in the literature [1, 15]. A hybrid al-
gorithm using MMPC has been shown to outperform six
leading non-hybrid structure learning algorithms on many
datasets with varying characteristics [14]. The TPDA algo-

1PC is named for its creators Peter (Spirtes) and Clark (Glymour)
2Citations according to http://scholar.google.com as of July 7, 2008
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rithm is also widely used; the software package containing
the TPDA algorithm has been downloaded over 2000 times
[5].

2.1.2 Heuristic Search Phase

For the heuristic search phase, our experiments use a greedy
hill-climbing algorithm with a tabu list. The search opera-
tors search all possible edge additions, deletions, and re-
versals from the current network. We use a BDeu score as
the metric, though any likelihood or penalized likelihood
metric could be used. Greedy hill-climbing is simple, easy
to implement, and generally performs quite well; in fact,
it is often considered to be state-of-the-art for Bayesian
network learning [13]. Any search algorithm that can be
constrained to the skeleton could be used for the heuristic
search phase. If skeleton identification produces a fully-
connected graph, then the heuristic search phase is equiva-
lent to unconstrained greedy search.

2.2 Hypothesis Tests

By definition, constraint-based skeleton algorithms use
a series of hypothesis tests to determine whether an edge
should be added to the skeleton. A hypothesis test spec-
ifies a null hypothesis defining the distribution we would
expect if the variables were truly independent. The signifi-
cance threshold is defined in terms of the probability of the
observed correlation or of a more extreme value being ob-
served under the null hypothesis. For classical hypothesis
tests, the standard significance threshold is p <= 0.05; if
the probability of the observed value is 0.05 or less then
the null hypothesis is rejected. The significance threshold
bounds the rate of type I errors, called α, of a hypothesis
test. Type I errors are incorrect rejections of the null hypoth-
esis when it is true. The type II error rate, β, is of particular
interest for skeleton identification. A type II error occurs
when the null hypothesis is incorrectly accepted when it is
false.

The probability of detecting a significant effect given that
it exists in the data is 1 − β. This value is also called the
statistical power of the test and is useful for determining
whether to run a test in structure learning for Bayesian net-
works. Statistical power depends on the sample size N , the
degrees of freedom of the test, the significance threshold α,
and the expected effect size w [6]. The effect size of a test
defines a specific alternative hypothesis to compare against
the null and indicates the minimum strength of correlation
that is detectable by the hypothesis test. Since w is unfamil-
iar to most researchers, Cohen [6] suggests values of w for
small (w = 0.1), medium (w = 0.3), and large (w = 0.5)
effects.

3 Errors in Skeleton Identification

Since skeleton identification algorithms rarely operate in
the sample limit, errors are bound to occur. As with hypoth-
esis tests, there are two kinds of errors made during skele-
ton identification: false positive and false negative errors.
A false positive error is made when an edge not appearing
in the true network is added to the skeleton. This type of
skeleton error could be caused by a type 1 error of the hy-
pothesis test or by other means, such as a default decision to
add an edge if the hypothesis test is determined to be unreli-
able due to insufficient data. False negative errors are most
frequently due to type II errors in hypothesis tests but could
also be caused by inconsistencies between the results of hy-
pothesis tests. The potential outcomes of assessing both test
reliability and statistical significance are shown in Figure 1.

In hybrid algorithms, false negative errors are much
more costly than false positive errors. Once an edge has
been erroneously removed from the skeleton it cannot be
corrected by the heuristic search phase. In contrast, a false
positive error can still be corrected by the heuristic search
phase. In general, the goal of hybrid algorithms is to pro-
duce a high-likelihood model while reducing the runtime of
heuristic search by constraining the possible search space.
If skeleton identification produces too many false negative
errors combined with few false positive errors, then the
search space becomes over-constrained and may exclude
high-quality networks. In contrast, if too few edges are re-
moved, then the network is under-constrained and the hy-
brid approach does not lead to decreased runtimes. The
ideal skeleton identification algorithm would be a “conser-
vative” approach that would add a superset of the correct
edges to the skeleton to avoid over-constrained search but
not so many edges as to increase the runtime of heuristic
search.

Prior work in structure learning has identified three
sources of false negative errors: (1) unsuitable hypothesis
tests, (2) low-power hypothesis tests, and (3) unexplained d-
separation. In categorical data, unsuitable hypothesis tests
occur when the expected frequencies in some of the cells
of the contingency table are small, either due to small sam-
ple sizes or large contingency tables [11, 14]. When this
occurs,the G2 statistic is known to deviate from the χ2-
distribution resulting in inaccurate p-values [8]. Even if
the hypothesis test is suitable for the data, low-power sta-
tistical tests may result in false negative errors. The power
of a hypothesis test depends on a combination of the de-
grees of freedom of the test, the sample size, and the effect
size appearing in the data (See Section 2.2). Unexplained
d-separation produces a false negative error when a vari-
able (or set of variables) can be used to show that two vari-
ables are independent, but that variable does not appear on
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Figure 1. Determining which edges are in-
cluded in the skeleton. A hypothesis test can
be unreliable if the test is unsuitable for the
data or has low statistical power.

a path between the variables being tested [5, 12]. This fol-
lows from d-separation rules that define conditional inde-
pendence relationships is terms of the structure of the graph-
ical model. Pearl [10] provides more information about the
possible d-separation relationships.

Based on an empirical comparison of existing hybrid
algorithms on data generated from a standard benchmark
dataset, we observe that hybrid algorithms almost always
produce models with lower likelihood than models pro-
duced by greedy search, although the runtimes are much
faster than greedy search. This provides evidence that exist-
ing skeleton identification algorithms over-constrain search.
Figure 2 shows the comparison of the performance of our
implementation of the PC, MMPC, and TPDA skeleton
algorithms learning the structure of the ALARM network.
The ALARM network is a standard benchmark dataset for
Bayesian network structure learning available from the
Bayesian Network repository3. We conjecture that the ap-
parent over-constrained search produced by existing skele-
ton algorithms is a result of failing to control for all sources
of false negative errors. On the ALARM network, skeleton
identification algorithms exclude between 20% and 33% of
the true edges from the skeleton with only 500 samples.

4 Corrections for False Negative Errors

The goal of this work is to improve the likelihood of the
hybrid approaches by reducing the number of false nega-
tive errors produced by skeleton identification algorithms.
There are two primary approaches appearing in the litera-
ture to correct false negative errors: the rule of thumb and

3http://compbio.cs.huji.ac.il/Repository/

the necessary path condition. In addition, we describe a
novel correction, called the POWER correction, to prevent
false negative errors due to low-power hypothesis tests.

4.1 The Rule of Thumb Correction

The rule of thumb correction used in both the PC and
and MMPC skeleton identification algorithms is sufficient
to account for errors due to unsuitable hypothesis tests. The
correction is motivated by Monte Carlo studies comparing
the p-value of the G2 statistic with a χ2 test against the ex-
act p-value produced using computationally intensive statis-
tics to generate the sampling distribution [8]. These studies
showed that the G2 statistic is not a suitable approxima-
tion of the χ2 distribution and does not produce accurate p-
values if ratio of the sample size and the degrees of freedom
falls below 5. Consequently, the rule of thumb correction is
based on this ratio and prevents the running of a hypothesis
test if the test is unsuitable, that is, if the ratio of the sample
size to the degrees of freedom of the test is less than 5.

Although the rule of thumb correction is intended to also
prevent errors due to low-power statistical tests, it can pro-
vide only a weak bound on the statistical power. The rule of
thumb and other approaches of limiting the size of the con-
tingency table, such as limiting the size of the conditioning
set [15], do not account for all of the factors that determine
statistical power. In particular, they do not account for the
possible effect sizes present in the data. If the effect size we
wish to detect is small, then the test could have low statis-
tical power and produce false negative errors despite using
the rule of thumb correction. The minimum power permit-
ted under the rule of thumb for small effect sizes are shown
in Figure 3. Our experiments show that effect sizes actually
occurring in the benchmark data result in low-power statis-
tical tests under the rule of thumb (See Section 5.3).

4.2 The POWER Correction

To account for potentially small effect sizes in the data,
we developed a novel correction for low-power statistical
tests based on statistical power analysis [6]. Statistical
power analysis provides an analytical framework for com-
puting the exact statistical power of the test (1 − β), given
an accurate estimate of the expected effect sizes in the data.
For the POWER correction, the estimated effect size can be
supplied by the user or estimated using cross-validation.
The POWER correction is easy to implement and can be
used in any skeleton identification algorithm that uses the
rule of thumb, including PC and MMPC. In addition, the ef-
fect size parameter provides a knob for varying the perfor-
mance of skeleton identification algorithms between con-
strained and unconstrained skeletons.
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Figure 2. Comparison of hybrid algorithms using PC, MMPC and TPDA skeleton algorithms on the
Alarm network. There are 46 edges in the true network. Error bars indicate a 95% confidence interval
around the mean. The likelihood of the hybrid algorithms is less than the likelihood of greedy search
(with the exception of the PC algorithm at 2000 samples), but runtimes of the hybrid algorithms are
also significantly less.
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Figure 3. Minimum statistical power permit-
ted under the rule of thumb.

4.2.1 Statistical Power Threshold

Like the rule of thumb, the POWER correction defines a
limit on the acceptable ratio between the degrees of free-
dom of the test and the sample size. Since the sample size
N is fixed for a particular test, the POWER correction de-
termines whether a test with the given degrees of freedom
has sufficient statistical power. The desired level of statis-
tical power can be determined by the user. We set the de-
sired power level to be 0.95. This corresponds to β of 0.05,
matching the standard level for α. When N , α, the degrees
of freedom, and effect size w are specified, it is possible
to compute the statistical power of the test [6]. In skeleton

identification algorithms, the value of N and the degrees of
freedom are determined by the data and the specific test, re-
spectively. The values of α (typically 0.05) and w are set by
the user before running the algorithm. Recall, the power of
a statistical test is 1−β, where β is the probability of reject-
ing the alternative when it is true. The statistical power cor-
responds to the area under the alternative distribution that
exceeds the critical value specified by α. For categorical
data, the alternative distribution is specified by a noncentral
χ2 distribution with noncentrality parameter, λ = w2N [6].
The evaluation of 1 − β requires an infinite summation of
the noncentral χ2 distribution [9]. We use the efficient two-
stage approximation identified by Milligan when computing
power [9]. Other implementations of power calculations are
found in many common statistical packages (e.g., R [4]).

In practice, rather than computing statistical power for
every test, we determine a range of degrees of freedom cor-
responding to high-power tests. Since power is inversely
proportional to the degrees of freedom, we identify the
threshold by computing the statistical power for every pos-
sible degree of freedom starting at one and increasing until
the statistical power falls below our desired level. The com-
putation is efficient and can be performed quickly before
starting structure learning. We chose this approach due to
its simplicity of implementation; many existing algorithms
already make reliability decisions based the degrees of the
freedom of the test, we simply substitute a new threshold
based on statistical power. For categorical data, the degrees
of freedom is (r − 1)(c − 1)d, where r and c are the num-
ber of distinct values taken on by the two variables whose
dependence is being tested, and d is the number of possible
joint values of the set of conditioning variables.
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4.2.2 Choosing Effect Size with Cross-Validation

For the power threshold to be effective, the value of w must
be set as close to the true minimum effect size as possible.
If w is set too high, then the algorithm risks false negative
errors due to low-power tests. If w is set too low, then the
search may not be as efficient as possible as few edges can
be safely removed from the skeleton. Fortunately, there are
boundaries on the useful values of w. If the goal is con-
straining search at all, the minimum value of w should be
large enough to run tests with a single degree of freedom.
This minimum varies with the available sample size. To
ensure that our new threshold is an improvement over the
existing approaches, the maximum value of w must fall be-
low the value corresponding to the effect detectable by the
rule of thumb with the desired level of power.

We use ten-fold cross-validation to determine the opti-
mal value of w for each skeleton identification algorithm.
Following the standard cross-validation procedure, we di-
vide each training set into ten folds. We then run both
phases of the hybrid algorithm (skeleton identification and
heuristic search) to learn a Bayesian network from train-
ing data composed of nine of the folds, and then compute
the likelihood of data contained in the last fold given the
learned model. We repeat this procedure for a range of w at
each sample size.

4.3 Necessary Path Correction

The necessary path condition requires that for a variable
z to d-separate x and y then z must fall on an undirected
path between x and y [12]. Enforcing this condition leads
to fewer variables being considered as possible conditioning
variables, which results (at least in theory) in fewer edges
being removed from the skeleton. Abellan et al. [1] use a
stricter form of the necessary path condition that only con-
ditions on variables in the minimum cut set appearing be-
tween the two variables.

The necessary path condition is used by the TPDA al-
gorithms and at least two variants of the PC algorithm (but
not the original) to prevent false negative errors due to un-
explained d-separation [1, 5, 12]. To enforce the path con-
dition, the skeleton identification algorithm must maintain a
superset of all the edges that could be included in the skele-
ton. Both TPDA and PC maintain a superset of the possible
skeleton edges. MMPC uses a depth-first approach which
does not maintain a superset of the paths between two vari-
ables. Steck and Tresp [12] use the necessary path con-
dition to identify inconsistent regions produced by the PC
algorithm, but do not return a single model.

4.4 Other Approaches

An alternative approach for correcting false negative er-
rors is to use a different type of hypothesis test such as tests
of mutual information or tests using a Bayesian score such
as BDeu [1, 5]. These tests typically use a weak signifi-
cance threshold, such as determining whether the score is
greater than zero, to determine independence. Unlike the
POWER correction, these approaches do not permit a statis-
tical bound on false negative errors. A statistical bound is
necessary for determining the expected rate of false negative
errors, which is critical for improving performance. Hutter
[7] shows that point estimates of mutual information, such
as those used by TPDA, are inaccurate and the that con-
sideration of the second-order distribution is necessary to
improve accuracy.

5 Experimental Results

We ran a series of experiments to determine the impor-
tance of each correction individually and in combination.
The corrections we considered are listed in Table 1. Each
correction was applied to both the PC and MMPC skeleton
identification algorithms, with the exception of the neces-
sary path correction, which was only applied to the PC al-
gorithm. The weak correction was included as a baseline
correction. If no correction was applied then every possible
test would be run. This is neither feasible due to runtime
considerations nor sensible as conditioning on many vari-
ables would likely result in a conclusion of independence
for all pairs of variables.

Table 1. Corrections for false negative errors.

Weak Correction Permit tests with at least 1 instance
per degree of freedom.

Rule of Thumb Permit tests with at least 5 instances
per degree of freedom.

POWER Run tests with sufficient power
(with estimated effect size parame-
ter).

Necessary Path Only condition on variables on a
path (PC Only).

5.1 Benchmark Data Considered

To evaluate the performance of the various corrections,
we consider five networks from the Bayesian Network
Repository. These five networks cover a number of different
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domains such as medical diagnosis, insurance risk, meteo-
rology, and agriculture (see Table 2). For each network, we
generated random samples of 500, 1000, 2000, and 5000
samples for use in training. To assess how well the learned
structure approximates the generating distribution, we mea-
sured the log-likelihood of a large test sample (500,000 in-
stances). Performance measurements were averaged over
five training samples at each sample size.

Table 2. A summary of the Bayesian networks
used.

Network No. No. In/Out Domain
Vars. Edges Degree Size (Avg.)

Alarm 37 46 4/5 2-4 (2.8)
Barley 48 84 4/5 2-67 (8.8)
Hailfinder 56 66 4/16 2-11 (4.0)
Insurance 27 52 3/7 2-5 (3.3)
Mildew 35 46 3/3 3-100 (17.6)

5.2 Implementation Details

We re-implemented both the PC and MMPC skeleton al-
gorithms (and heuristic search with tabu lists for the search
phase) in our own Java package so that we could easily in-
corporate the corrections to both algorithms. Every effort
was made to reproduce the original algorithms as described.
When possible, we compared the results of the original soft-
ware to our re-implementation and found no substantial dif-
ferences in performance.

5.3 Determining the Effect Size Parame-
ter Via Cross-Validation

Although cross-validation produces good estimates of
the minimum effect size w, it not does not permit fast learn-
ing of Bayesian network structure. To avoid running cross-
validation every time we wish to run structure learning, we
learned the optimal values of w for each sample size on
two randomly selected benchmark datasets: INSURANCE
and MILDEW.

We then used cross-validation to determine the optimal
setting of w for each of those datasets at each sample size.
We considered values of w between the largest effect size
that results in an unconstrained skeleton (i.e., no hypothe-
sis will be run) and the effect that corresponds to the rule
of thumb. In addition to these endpoints, we considered
three values equally spaced between the minimum and max-
imum effect sizes. The best effect size at each sample size
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Figure 4. Results of cross-validation to select
the best effect size parameter. The dashed
grey lines indicate the outer limits consid-
ered during cross-validation. The minimum
indicates the largest effect size where no
tests are run and the maximum indicates the
tests that are run under the rule of thumb
threshold.

is shown in Figure 4. To compute a suggested effect size
for other datasets, we averaged the results at each sample
size over the two algorithms. The suggested values of w are
shown in Table 3.

5.4 Evaluating Corrections

We then compared the number of false negative errors re-
sulting from each correction on the remaining three datasets
(see Table 4). We found that applying the POWER correc-
tion using the suggested effect size parameters resulted in a
significant decrease in false negative errors across all three

Table 3. The effect size parameters chosen
via cross-validation.

Sample Size Suggested
Effect Size

500 0.2183
1000 0.1518
2000 0.1204
5000 0.0766
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datasets when compared to the rule of thumb. Using the
necessary path correction resulted in a significant decrease
in false negatives on only the ALARM dataset. Using the
rule of thumb resulted in a significant decrease in false neg-
atives over the weak correction on two of the three datasets.
Since the suggested effect size parameters are consistently
below the effect size parameter corresponding to the rule of
thumb, the POWER correction subsumes the rule of thumb
correction.

Table 4. Number of false negative errors af-
ter applying corrections. Combined results
of PC and MMPC skeleton identification. Re-
sults are averaged over five training sets at
each sample size. Bold text indicates a sig-
nificant reduction compared to the rule of
thumb. Italics indicate a significant increase
from the rule of thumb. The necessary path
correction can only be applied using the PC
algorithm. Differences were significant at the
0.05 level using a t-test.

Dataset Correction 500 1000 2000 5000

Alarm

Weak 13.1 8.5 4.9 3.4
Rule of Thumb 11.8 7.8 4.6 3.4

POWER 6.1 3.9 3.0 2.1
RoT + Path 7.4 4.6 2.6 2.0

POWER + Path 5.4 3.6 2.4 2.0

Barley

Weak 30.0 23.4 22.6 20.4
Rule of Thumb 15.0 13.8 16.4 14.4

POWER 1.2 1.6 4.4 3.8
RoT + Path 12.2 11.8 15.2 14.4

POWER + Path 1.2 1.6 4.4 3.8

Hailfinder

Weak 15.6 13.6 10.8 6.7
Rule of Thumb 13.3 9.6 8.0 4.3

POWER 2.9 1.6 2.8 1.6
RoT + Path 12.8 9.0 7.4 4.0

POWER + Path 3.0 1.6 2.8 1.6

We also compared a two-phase hybrid algorithm using
the PC algorithm with a combination of the POWER and
necessary path corrections to unconstrained greedy search
and the PC algorithm using only the rule of thumb (see Fig-
ure 5). In addition to a significant reduction in false nega-
tive errors, we found that using the POWER correction also
resulted in models with significant increases in likelihood
in two datasets over models produced using only the rule
of thumb. The likelihood of the models learned with the
POWER correction are statistically indistinguishable from
the likelihood of model learned with unconstrained greedy
search. On the ALARM and HAILFINDER datasets, using
the POWER correction also resulted in a significant decrease
in runtime. The number of false positive errors shown in

Figure 5 indicates that using the POWER correction does
not result in a completely connected skeleton. On the BAR-
LEY network, using the POWER correction does result in
an increase in likelihood of the final model, but does not
constrain the model space enough to result in a decrease in
runtime over unconstrained search. To achieve faster run-
times at the expense of likelihood, it would be necessary to
increase the minimum effect size parameter from the sug-
gested values.

6 Conclusions

In this paper, we show that low-power statistical tests
are the largest source of false negative errors from skeleton
identification algorithms. We describe POWER, a correction
for false negative errors that uses a novel application of sta-
tistical power analysis to correct for errors due to low-power
tests. This correction results in a significant reduction in
false negative errors caused by skeleton identification, sub-
sumes the rule of thumb threshold previously used to correct
these errors, and can be combined with other corrections
such as the necessary path correction. The POWER correc-
tion is easy to implement and improves any skeleton identi-
fication algorithm that previously used the rule of thumb.

The POWER correction relies on the proper setting of an
effect size parameter w to achieve these improvements. We
present the results of cross-validation experiments to learn
suggested values of w. We also show that these suggested
values of w generalize across datasets. In addition, the w
parameter provides a principled parameter for determining
the trade-off between runtime and likelihood of two-phase
hybrid algorithms. Although the suggested values of w can
result in a significant decrease in runtime, it is possible that
the suggested values may not provide many constraints on
search. If long runtimes are a concern, increasing the sug-
gested effect sizes would result in stronger constraints and
improved runtimes, at the expense of the likelihood of the
models.

We show that a two-phase hybrid algorithm incorporat-
ing the POWER and necessary path corrections is able to
produce models with equivalent likelihood to models pro-
duced by unconstrained greedy search. These corrections
resulted in a significant reduction in runtime on two of the
three test datasets. These results indicate that hybrid ap-
proaches which constrain search using skeleton identifica-
tion algorithms are an efficient alternative to unconstrained
greedy search.

The suggested effect size values presented in this paper
work well as a general starting point when considering ap-
plying the POWER correction. However, we would like to
explore efficient alternatives to cross-validation for deter-
mining a setting of w that is best for a particular dataset.
An alternative would likely consider the cardinality of vari-
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Figure 5. Comparing the combination of the Power and necessary path correction with the rule of
thumb correction on the PC algorithm. Error bars indicate a 95% confidence interval about the
mean.

ables to determine the number of possible tests that could
be run at each level of w. This would also allow an easy
method for determining how many tests will be affected by
changing the w parameter.
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