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Abstract
Despite numerous efforts to improve their performance
and scalability, Byzantine fault-tolerance (BFT) tech-
niques remain expensive, and few commercial systems
use BFT today. We present ZZ, a novel approach to con-
struct general BFT services with a replication cost of
practically f + 1, halving the 2f + 1 or higher cost in-
curred by state-of-the-art approaches. The key insight in
ZZ is to use f + 1 execution replicas in the normal case
and to activate additional replicas only upon failures. ZZ
uses virtual machines for fast replica activation and sev-
eral novel mechanisms for rapid recovery of these repli-
cas such as using filesystem snapshots to reduce check-
pointing overhead, replaying state updates instead of full
requests, and an amortized state transfer mechanism that
fetches state on-demand. We have implemented ZZ us-
ing the BASE library, Xen virtual machines and the ZFS
file system. Our experimental evaluation shows that the
recovery time of ZZ replicas is independent of the ap-
plication disk state, taking less than 4s for 400MB of disk
state, at the expense of a small increase in request latency
in the fault-mode.

1 Introduction

Today’s enterprises rely on data centers—server and stor-
age farms—to run their critical business applications. As
users have become increasingly dependent on online ser-
vices, any malfunctions are highly problematic, result-
ing in financial losses, negative publicity, or frustrated
users. Service malfunctions can be caused by hardware
failures, software bugs, or malicious break-in. Conse-
quently, maintaining high availability of critical services
has become a pressing need as well as a challenge.

Byzantine fault tolerance (BFT) is a powerful but ex-
pensive technique to maintain high availability while tol-
erating arbitrary (Byzantine) faults. BFT uses replica-
tion to mask faults, and BFT state machine replication
is a well-studied approach to construct general BFT ser-
vices. This approach requires replicas to agree upon the
order of incoming requests and process every request in

the agreed upon order. Despite numerous efforts to im-
prove the performance or fault scalability of BFT sys-
tems [2, 5, 12, 21, 26, 1], they expensive today. Existing
approaches for BFT require at least 2f + 1 replicas to
execute each request in order to tolerate f faults [12, 30].

Our position is that this high cost has discouraged
widespread adoption of BFT techniques for commercial
services. On the other hand, data centers today do em-
ploy fail-stop fault-tolerance techniques or simple mir-
roring of data that require only f + 1 replicas to tolerate
f faults. This suggests that reducing the replication cost
of BFT may remove a significant barrier to its adoption.

In this paper, we present a novel approach to con-
struct general BFT services with a replication cost close
to f + 1, halving the 2f + 1 or higher cost incurred by
state-of-the-art approaches, effectively providing BFT at
the cost of fail-stop fault tolerance. Like [30], our system
still requires 3f + 1 agreement replicas, but it only re-
quires f +1 execution replicas in the common case when
there are no faults. The key insight in ZZ is to use addi-
tional replicas that get activated only upon failures. Fur-
thermore, since not all applications hosted by a data cen-
ter are likely to experience faults simultaneously, ZZ can
share a small pool of free servers across a large number
of applications and multiplex these servers on-demand to
host newly activated replicas, thereby reducing the total
hardware provisioning cost for the data center to practi-
cally f + 1.

We can circumvent “lower bounds” on replication
costs stated in previous work [12], because our approach
employs virtualization to enable additional replicas to be
quickly activated on demand upon fault detection, and
to allow a small number of physical servers to be multi-
plexed as hosts for the recovery replicas. ZZ employs the
following mechanisms to reduce the cost of replication
and checkpointing and to enable rapid recovery.

First, ZZ employs virtualization to enable fast replica
startup as well as to dynamically multiplex a small num-
ber of “auxiliary” servers across a larger number of appli-
cations. This minimizes the cost in physical servers when
running multiple Byzantine fault tolerant applications by
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acknowledging that applications are unlikely to all fail si-
multaneously. Second, ZZ optimizes the recovery proto-
col to allow additional newly-activated replicas to imme-
diately begin processing requests through an amortized
state transfer mechanism that fetches state on-demand.
Third, ZZ exploits the snapshot feature of modern jour-
naled file systems to obtain the benefits of incremental
checkpointing without requiring modifications to appli-
cation source code. This further lowers the barrier of de-
ploying BFT services by reducing the number of modifi-
cations required to existing applications.

We have implemented a prototype of ZZ by enhanc-
ing the BASE library and combining it with the Xen vir-
tual machine and the ZFS file system. We have evaluated
our prototype using a canonical client-server application
and a ZZ-based NFS file server. Our experimental results
demonstrate that, by verifying state on demand, ZZ can
obtain a recovery time that is independent of application
state size—a newly activated ZZ replica with 400MB of
disk state can recover in less than 4s in contrast to over
60s for existing approaches. ZZ incurs minimal over-
head in the fault-free case when utilizing batching, and
the recovery speed comes at the expense of only a small
increase in request latency in the fault-mode due to the
on-demand state verification.

2 Background

2.1 From 3f + 1 to 2f + 1

In the traditional PBFT approach [2], during graceful ex-
ecution a client sends a request Q to the replicas. The
3f + 1 (or more) replicas agree upon the sequence num-
ber corresponding to Q, execute it in that order, and send
responses back to the client. When the client receives
f + 1 valid and matching responses R1, . . . , Rf+1 from
different replicas, it knows that at least one correct replica
executed Q in the correct order. Figure 1 illustrates how
the principle of separating agreement from execution can
reduce the number of execution replicas required to tol-
erate up to f faults from 3f + 1 to 2f + 1. In this sep-
aration approach [30], the client sends Q to a primary in
the agreement cluster consisting of 3f + 1 lightweight
machines that agree upon the sequence number i corre-
sponding to Q and send [Q, i] to the execution cluster
consisting of 2f +1 replicas that store and process appli-
cation state. When the agreement cluster receives f + 1
matching responses from the execution cluster, it for-
wards the response to the client knowing that at least one
correct execution replica executed Q in the correct or-
der. For simplicity of exposition, we have omitted cryp-
tographic operations above.

2.2 State-of-the-art
The 2f+1 replication cost is believed necessary [12, 5, 1]
for BFT systems. For example, Kotla et al. in their pa-
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Figure 1: The PBFT approach versus the separation of agree-
ment from execution.

per describing Zyzzyva (refer Table 1 in [12]) claim that
2f+1 is a lower bound on the number of replicas with ap-
plication state for state machine replication (SMR). How-
ever, more than a decade ago, Castro and Liskov con-
cluded their original paper on PBFT [2] saying “it is pos-
sible to reduce the number of copies of the state to f + 1
but the details remain to be worked out”. In this paper,
we work out those details.

Table 1 shows the cost of existing BFT approaches in-
cluding non-SMR approaches based on quorums in com-
parison to ZZ. All approaches require a total of at least
3f + 1 machines in order to tolerate up to f independent
Byzantine failures, consistent with classical results that
place a lower bound of 3f + 1 replicas for a safe Byzan-
tine consensus protocol that is live under weak synchrony
assumptions [7].

The quorum-based approach, Q/U, requires an even
higher number of replicas but provides better fault scala-
bility compared to PBFT, i.e., better throughput as f in-
creases provided there is low contention across requests.
The hybrid quorum (HQ) approach attempts to achieve
the best of PBFT and Q/U, i.e., lower replication cost
as well as fault scalability, but is unable to leverage the
throughput benefits of batching. Zyzzyva, based on the
more traditional state machine approach, goes a step fur-
ther to incorporate speculative execution, resulting in
fewer cryptographic operations per request while retain-
ing the throughput benefits of batching. Our implemen-
tation of ZZ incurs 2f + 2 additional cryptographic op-
erations per batch compared to PBFT, but this can be re-
duced through more efficient piggybacking of protocol
messages.

Q/U incurs just two one-way network delays on the
critical path when contention is low and is optimal in this
respect. All approaches require four or more delays when
contention is high or when faults occur. However, the
dominant latency in practice is likely to be the wide-area
latency from the client to the replicas and back as the
replicas in a data center are likely to be located on the
same local area network. All approaches except HQ incur
just one wide-area network round-trip latency.

The comparison above is for performance of differ-
ent protocols during fault-free and timeout-free execu-
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PBFT’99 [2] Q/U’05 [1] HQ’06 [5] Zyzzyva’07 [12] ZZ
Total machines 3f + 1 5f + 1 3f + 1 3f + 1 3f + 1
Application state and execution replicas
(with separation’03 [30])

2f + 1 5f + 1 3f + 1 2f + 1 ≈ f + 1

Execution replicas for N apps N(2f + 1) N(5f + 1) N(3f + 1) N(2f + 1) N(f + 1) + N ∗ r ∗ f
Batching b > 1 requests Y N N Y Y
Critical Path NW 1-way latencies 4 2 4 3 4
Crypto operations per request 2 + (8f + 1)/b 2 + 8f 4 + 4f 2 + 3f/b 2 + (10f + 3)/b
Fault-mode latency ratio ≈1 ≈1 ≈ 1 ≈ 1 > 1

Table 1: Properties of various approaches. f is the number of supported faults, r is the ratio of recovery time to mean time to failure
(typically r << 1), and b is the batch size.

tion. When failures occur, the throughput and latency
of all protocols can degrade significantly and a thor-
ough comparison is nontrivial and difficult to character-
ize concisely [23]. When failures occur, a recovering ZZ1

replica incurs a higher latency to execute some requests
until it has fully recovered. Our experiments suggest that
this additional overhead is tolerable. Also, the client can
tentatively accept a replica’s response while waiting to
collect a certificate for the response, and issue other re-
quests that do not depend on this response. In a world
where failures are the uncommon case, ZZ offers valu-
able savings in replication cost while minimally impact-
ing performance.

ZZ is not a new BFT protocol; instead, it is an exten-
sion that can be applied to existing BFT-SMR protocols
in order to lower the effective cost of running such sys-
tems from 2f +1 to about f +1. Our deployment utilizes
the BASE implementation of the PBFT protocol since it
was the most mature and readily available BFT imple-
mentation at the time of writing. In theory, ZZ’s execu-
tion replicas can be interfaced with other agreement pro-
tocols, including Zyzzyva to match its low cryptographic
overhead as well as fault scalability.

Unlike previous approaches, ZZ can exploit server
multiplexing in order to reduce the total cost when run-
ning many applications in a BFT data center. This re-
duces the expected machine cost for running N applica-
tions to N(f + 1) + N ∗ r ∗ f , a significant reduction
compared to other approaches which require N(2f + 1)
or more replicas, as described in detail in Section 3.4.

3 ZZ design

3.1 System model
We assume a Byzantine failure model where faulty repli-
cas or clients may behave arbitrarily. There are two kinds
of replicas: 1) agreement replicas that assign an order to
client requests and 2) execution replicas that maintain ap-
plication state and execute client requests. Replicas fail
independently, and we assume an upper bound g on the

1Denotes sleeping replicas; from the sleeping connotation of the
term “zz..”

number of faulty agreement replicas and an upper bound
f on the number of faulty execution replicas in a given
window of vulnerability. We initially assume an infi-
nite window of vulnerability, and relax this assumption in
Section 4.8. An adversary may coordinate the actions of
faulty nodes in an arbitrary malicious manner. However,
the adversary can not subvert standard cryptographic as-
sumptions about collision-resistant hashes, encryption,
and digital signatures. The notation 〈LABEL, X〉i de-
notes the message X of type LABEL digitally signed by
node i. We indicate the digest of message X as X .

Our system uses the state machine replication (SMR)
model to implement a BFT service. Replicas agree on an
ordering of incoming requests and each execution replica
executes all requests in the same order. Like all previous
SMR based BFT systems, we assume that either the ser-
vice is deterministic or the non-deterministic operations
in the service can be transformed to deterministic ones
via the agreement protocol [2, 12, 30, 21].

Our system ensures safety in an asynchronous network
that can drop, delay, corrupt, or reorder messages. Live-
ness is guaranteed only under eventual synchrony, i.e.,
there is an unknown point in the execution after which
either all messages delivered within some constant time
∆, or all non-faulty clients have received replies to their
requests. Our system model and assumptions are sim-
ilar to those assumed by many existing BFT systems
[2, 12, 30, 21].

ZZ assumes replicas are being run within a virtualized
data center. As a result, it is possible to run multiple repli-
cas on a single host, a situation not encountered in other
BFT systems. To tolerate faults caused by physical server
crashes which would bring down all hosted replicas, ZZ
requires that no more than one replica per application is
hosted on a single physical server. With this requirement,
ZZ does not require a trusted hypervisor; if a malicious
hypervisor crashes a system or maliciously manipulates
application responses, it will only count as a single fault
occurring in each of the hosted applications. We utilize
a hypervisor controlled service for starting and stopping
virtual machines; in the case of a malicious hypervisor,
we assume an out of band mechanism exists to power
down the physical server.
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Figure 2: Various scenarios in the ZZ system for f = 2 faults. Request 22 results in matching responses γ, but the mismatch in
request 23 initiates new virtual machine replicas on demand.

3.2 Design overview
ZZ reduces the replication cost of BFT from 2f + 1 to
nearly f + 1 using virtualization based on two simple
insights. First, if a system is designed to be correct in
an asynchronous environment, it must be correct even if
some or all replicas are arbitrarily slow. Second, during
fault-free periods, a system designed to be correct despite
f Byzantine faults must be unaffected if up to f replicas
are turned off. ZZ leverages the second insight to turn off
f replicas during fault-free periods requiring just f + 1
replicas to actively execute requests. When faults occur,
ZZ leverages the first insight and behaves exactly as if the
f standby replicas were just slow but correct replicas.

Given an ordered request, if the f+1 active replicas re-
turn matching responses, at least one of these responses,
and by implication all of the responses, must be correct.
The problematic case is when the f + 1 responses do
not match. In this case, ZZ starts up additional virtual
machines hosting standby replicas. For example, when
f = 1, upon detecting a fault, ZZ starts up a third replica
that executes the most recent request. Since at most one
replica can be faulty, the third response must match one
of the other two responses, and ZZ returns this matching
response to the client. Figure 2 illustrates the high-level
flow of control for the case when f = 2. Request 22 is
executed successfully generating the response γ, but re-
quest 23 results in a mismatch waking up the two standby
VM replicas.

3.3 Design Challenges
The high-level approach described above raises several
challenges. First, how does a restored replica obtain the
necessary application state required to execute the cur-
rent request? In traditional BFT systems, each replica
maintains an independent copy of the entire application
state. Periodically, all replicas checkpoint their applica-
tion state and discard the sequence of responses before
the checkpoint. The checkpoint is also used to bring up
to speed a very slow replica that has missed several pre-
vious checkpoints by transferring the entire application
state to the slow replica. However, a restored ZZ replica
may not have any previous version of application state. It

must be able to verify that the state is correct even though
there may be only one correct execution replica (and f
faulty ones), e.g., when f = 1, the third replica must be
able to determine which of the two existing replica’s state
is correct.

Second, transferring the entire application state can
take an unacceptably long time. In existing BFT systems,
a recovering replica may generate incorrect messages un-
til it obtains a stable checkpoint. This inconsistent behav-
ior during checkpoint transfer is treated like a fault and
does not impede progress of request execution if there is
a quorum of f + 1 correct execution replicas with a cur-
rent copy of the application state. However, when a ZZ
replica recovers, there may exist just one correct execu-
tion replica with a current copy of the application state.
The traditional state transfer approach may stall request
execution until f recovering replicas have obtained a sta-
ble checkpoint.

Third, ZZ’s replication cost must be robust to faulty
replica or client behavior. A faulty client must not be able
to trigger recovery of standby replicas. A compromised
replica must not be able to trigger additional recoveries
if there are at least f + 1 correct and active replicas. If
these conditions are not met, the replication cost savings
would vanish and system performance can be worse than
a traditional BFT system using 2f + 1 replicas.

3.4 Using Virtual Machine Replicas
ZZ assumes an environment such as a data center that
runs N independent applications; replicas belonging to
each application are run inside separate virtual machines,
which are managed by a hypervisor. In the normal case,
at least f+1 execution replicas are assumed to be running
on a mutually exclusive set of servers. A single physical
server can house replicas from independent applications;
for instance, a server may host multiple agreement or ex-
ecution replicas, each from a different application. The
primary gain in multiplexing comes from maintaining a
pool of free (or under-loaded) servers that are used on-
demand to host newly activated replicas. Assuming that
not all of the N executing applications will see a fault
simultaneously, this free server pool can be multiplexed
across the N applications, allowing the pool to be much
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Figure 3: An example server setup with three fault tolerant
applications, A, B, and C. The recovery pool stores a mix of
paused and hibernated VMs.

smaller than the worst-case needs of N(f +1) additional
execution servers.

The number of free servers needed as a “backup” for
fault-mode execution depends on r, the ratio of the time
for ZZ to recover and replace a faulty replica to the mean
time to failure for an application. This ratio is typi-
cally much less than one, since the recovery time is on
the order of seconds, while mean time to failure can be
days or more. In this case, the expected machine cost
for running N BFT applications in a ZZ data center is
N(f + 1) + N ∗ r ∗ f , a significant reduction compared
to other approaches which require N(2f + 1) or more
execution replicas. Even for a single application without
multiplexing, ZZ provides valuable savings in power and
operational costs as each request is executed only f + 1
times. Finally, if a trusted hypervisor is used, ZZ’s vir-
tual replicas can reduce the number of physical servers
needed to f + 1 even for a single application.

Virtualization also enables fast replica startup by main-
taining extra replicas in a “dormant” state. Replicas can
be stored hibernated to disk, or for faster startup pres-
pawned VMs can be kept in pause mode in memory,
where it consumes no CPU and uses limited memory;
unpausing a VM simply requires scheduling it on the
CPU, causing it to become active within milliseconds.
The ZZ implementation uses the Xen platform and sup-
ports a mix, allowing for some (e.g., important) VMs to
be paused and the rest to hibernate (see Figure 3).

4 ZZ Protocol

This section presents the ZZ protocol for (i) handling
incoming client requests, (ii) graceful execution, (iii)
checkpointing, (iv) fault detection, and (v) replica recov-
ery. We also present our amortized state transfer mecha-
nism and discuss safety and liveness properties of ZZ.

4.1 Client Request
A client c sends a request 〈REQUEST, o, t, c〉c to the
agreement cluster to submit an operation o to the state
machine service with a timestamp t. The timestamps en-
sure exactly-once semantics for execution of client re-

quests as they enforce a total order across all requests
issued by the client. A correct client uses monotonically
increasing timestamps, e.g., the value of the client’s local
clock, and a faulty client’s behavior does not affect other
clients’ requests. After issuing the request, the client
waits for a reply certificate certified by at least f + 1 ex-
ecution replicas.

4.2 Graceful Execution
The agreement cluster 1) assigns an order to incoming
client requests, 2) sends committed requests to the ex-
ecution cluster, 3) receives execution reports back from
the execution cluster, and 4) relays response certificates
to the client when needed.

Upon receiving a client request Q =
〈REQUEST, o, t, c〉c, the agreement replicas execute
an agreement protocol and commit a sequence number
to the request. Each agreement replica j sends an order
message 〈ORDER, v, n,Q〉j that includes the view v and
the sequence number n to all execution replicas.

An execution replica i executes a request Q when
it receives a request certificate 〈ORDER, v, n,Q〉A|2g+1

signed by at least 2g + 1 agreement replicas and it has
executed all other requests with a lower sequence num-
ber. Let R denote the response obtained by executing
Q. Replica i sends a message containing the digests of
the response and the writes 〈EXEC-REPORT, n,R〉i to the
agreement cluster. Replica i also sends a response mes-
sage 〈REPLY, v, t, c, i, R〉i directly to the client.

In the normal case, the client receives f + 1 valid
and matching response messages from execution repli-
cas. Two response messages match if they have the same
values for v, t, c, and R. The client determines a mes-
sage from replica i to be valid if it has a valid signature.
This collection of f + 1 valid and matching responses is
called a response certificate. Since at most f replicas can
be faulty, a client receiving a response certificate knows
that the response is correct.

Request Timeout at Client: If a client does not re-
ceive a response certificate within a predetermined time-
out, it retransmits the request message to all agreement
replicas. If an agreement replica j receives such a re-
transmitted request and it has received f + 1 matching
EXEC-REPORT messages, it sends the response message
〈REPLY-A, v, t, c, j, R〉j . A client considers a response
R as correct when it receives g + 1 valid and matching
REPLY-A messages from agreement replicas and at least
one valid REPLY message from an execution replica.

As in PBFT [2], a client normally sends its request
only to the primary agreement replica, which it learns
based on previous replies. If many agreement replicas
receive retransmissions of a client request for which a
valid sequence number has not been assigned, they will
eventually suspect the primary to be faulty and trigger a
view change electing a new primary. Note that although
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clients can cause view changes in ZZ, they can not trigger
the recovery of standby execution replicas.

4.3 Checkpointing
Execution replicas periodically construct checkpoints of
application state in order to garbage collect their pending
request logs. The checkpoints are constructed at prede-
termined request sequence numbers, e.g., when the se-
quence number is exactly divisible by 1024.

Unlike [30], the checkpoint protocol is not com-
pletely contained within the execution cluster and re-
quires coordination with the agreement cluster. To ap-
preciate why, consider that in existing BFT systems in-
cluding [30], if digital signatures are used, it suffices for
an execution replica to obtain a checkpoint certificate
〈CHECKPOINT, n, C〉E|f+1 signed by f + 1 execution
replicas. It can use this certificate to prove to a recovering
replica during a state transfer that the checkpoint is valid.
However, if message authentication codes (MACs) are
used, then f + 1 checkpoint messages are insufficient for
a replica to prove to a recovering replica that the check-
point is correct. With 2f +1 execution replicas in [30], a
recovering replica is guaranteed to get at least f +1 valid
and matching checkpoint messages from other execution
replicas. However, with just f + 1 execution replicas
in ZZ, a recovering replica may get only one checkpoint
message from other execution replicas.

To address this problem, the execution cluster coor-
dinates with the agreement cluster during checkpoints.
Each execution replica i sends a checkpoint message
〈CHECKPOINT, n, C〉i to the agreement cluster. An
agreement replica waits to receive f + 1 valid, matching
checkpoint messages. If g + 1 or more agreement repli-
cas fail to receive f + 1 valid and matching checkpoint
messages, they issue a recovery request to a subset of the
hypervisors controlling the standby execution replicas.

In practice, applications store state in both memory
and on disk. While previous approaches considered all
types of state equivalently, ZZ differentiates between disk
and memory state objects to allow for optimizations dur-
ing state transfer to recovering replicas. Memory state is
fully checkpointed as in the BASE library, and is trans-
ferred in full to recovering replicas before they start pro-
cessing requests. Disk state objects, in contrast, are ob-
tained by recovering replicas on demand using the amor-
tized state transfer procedure described in the following
sections. We describe how we can exploit file system
level snapshots to produce the disk checkpoints in Sec-
tion 5.3.

4.4 Fault Detection
The agreement cluster is responsible for detecting faults
in the execution cluster. In the normal case, an agree-
ment replica j waits for an execution report certificate
〈EXEC-REPORT, n,R〉E|f+1 for each request, i.e., valid
and matching execution reports for the request from all

f + 1 execution replicas. Replica j inserts this certifi-
cate into a local log ordered by the sequence number of
requests. When j does not obtain an execution report
certificate for a request within a predetermined timeout,
j sends a recovery request 〈RECOVER, n〉j to a subset of
the hypervisors controlling the f standby execution repli-
cas. The number of recovery requests issued by an agree-
ment replica is at least as large as f + 1 minus the size of
the smallest set of valid and matching execution reports
for the request that triggered the recovery.

When the hypervisor controlling an execution replica i
receives a recovery certificate 〈RECOVER, n〉A|g+1, i.e.,
valid and matching recovery requests from g + 1 or
more agreement replicas, it starts up the local execution
replica.

4.5 Replica Recovery
When an execution replica k starts up, it neither has
any application state nor a pending log of requests.
Replica k’s situation is similar to that of a long-lost
replica that may have missed several previous check-
points and wishes to catch up in existing BFT systems
[2, 21, 30, 12]. Since these systems are designed for
an asynchronous environment, they can correctly re-
integrate up to f such recovering replicas provided there
are at least f +1 other correct execution replicas. The re-
covering replica must obtain the most recent checkpoint
of the entire application state from existing replicas and
verify that it is correct. Unfortunately, checkpoint trans-
fer and verification can take an unacceptably long time
for applications with a large application state. Worse,
unlike previous BFT systems that can leverage copy-on-
write techniques and incremental cryptography schemes
to transfer only the objects modified since the last check-
point, a recovering ZZ replica does not have any previous
application state.

To reduce recovery latency, ZZ uses a novel recovery
scheme that amortizes the cost of state transfer across
many requests. A recovering execution replica k first ob-
tains an ordered log of committed requests since the most
recent checkpoint from the agreement cluster. Let m de-
note the sequence number corresponding to the most re-
cent checkpoint and let n ≥ m + 1 denote the sequence
number of the most recent committed request. Some of
the requests in the interval [m + 1, n] involve writes to
application state while others do not. Replica k begins to
replay in order the requests in [m+1, n] involving writes
to application state.

4.6 Amortized State Transfer
How does replica k begin to execute requests without any
application state? The key insight is to fetch and verify
the state necessary to execute a request on demand. Af-
ter fetching the pending log of committed requests from
the agreement cluster, k obtains a checkpoint certificate
〈CHECKPOINT, n, C〉E|g+1 from the agreement cluster.
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Replica k further obtains valid digests for each object in
the checkpoint from any execution replica. The check-
point digest C is computed over the digests of individ-
ual object digests, so k can verify that it has received
valid state objects from a correct execution replica. As
in previous BFT systems [2, 21, 30, 12], execution repli-
cas optimize the computation of checkpoint and object
digests using copy-on-write and incremental cryptogra-
phy schemes.

After obtaining the above checkpoints, replica k be-
gins to execute in order the committed requests [m+1, n]
that involve writes. Let Q be the first request that reads
from or writes to some object p since the most recent
checkpoint. To execute Q, replica k fetches the object on
demand from any execution replica that can provide an
object consistent with p’s digest that k has already veri-
fied. Replica k continues executing requests in sequence
number order and fetches objects on demand until it ob-
tains a stable checkpoint.

4.7 Safety and Liveness Properties
We state the safety and liveness properties ensured by ZZ
and outline the proofs. Due to space constraints, we defer
formal proofs to a technical report [29].

ZZ ensures the safety property that if a client receives a
reply 〈REPLY, v, n, t, c, i, R〉i from f +1 execution repli-
cas or a reply from at least one execution replica and
〈REPLY-A, v, b, t, c, j, R〉j from g + 1 agreement repli-
cas, then 1) the client issued a request 〈REQUEST, o, t, c〉c
earlier, 2) all correct replicas agree on the order of all re-
quests with sequence numbers in [1, n], 3) the value of
the reply R is the reply that a single correct replica would
have produced if it started with a default initial state S0

and executed each operation oi, 1 ≤ i ≤ n, in that order,
where oi denotes the operation requested by the request
to which sequence number i was assigned.

The first claim follows from the fact that the agreement
cluster only generates valid request certificates for valid
client requests and the second follows from the safety of
the agreement protocol [3] which ensures that no two re-
quests are assigned the same sequence number. To show
the third claim, consider a single correct execution replica
e that starts with a default state S0 and executes all op-
erations oi, 1 ≤ i ≤ n, in order. We first show that the
state Si

n−1 of at least one correct active execution replica
i after executing on is equal to the corresponding state Se

n

of the single correct replica. The proof is an inductive ar-
gument over epochs where a new epoch begins each time
the agreement cluster detects a fault and starts up standby
replicas. Just before a new epoch begins, there are at least
f + 1 replicas with a full copy of the most recent stable
checkpoint. The agreement cluster shuts down execution
replicas that responded incorrectly. At least one replica
that responded is correct as there can be at most f faults
with an infinite window of vulnerability.

Verified with f+1 
signatures

Waiting for f+1
signatures

Empty 
disk

m n

Execute requests 
fetching state 
on demand

f+1 

Apply state
updates

Wakeup on fault

Recovery
replica

Active
replicas

Figure 4: ZZ separates request execution from updating state
during recovery.

ZZ ensures the liveness property that if a client sends
a request with a timestamp exceeding previous requests
and repeatedly retransmits the request, then it will even-
tually receive a valid reply certificate. Liveness of the
agreement protocol follows from existing work [3]. The
execution cluster’s liveness property relies on the fact
that there always must be at least one correct execution
replica which will cause the agreement cluster to initial-
ize additional execution replicas if necessary. Once all
2f + 1 execution replicas are active, liveness is guaran-
teed since the correct replicas will provide a sufficient
majority to make progress.

4.8 Optimizations
4.8.1 Reducing the Window of Vulnerability

Our implementation of ZZ currently assumes an infinite
window of vulnerability, however, this assumption can
be relaxed through the use of proactive recovery [3]. By
periodically forcing replicas to recover to a known clean
state, proactive recovery allows for a configurable win-
dow of vulnerability in which f faults can occur. Effi-
cient proactive recovery is crucial to ZZ because it runs
only f + 1 execution replicas during correct operation,
and putting one down for recovery can render the sys-
tem unavailable. Fortunately, ZZ can perform proactive
recovery cheaply since it runs on a virtualization plat-
form and can exploit this to begin proactive recovery of
a replica as a new VM running in parallel to an exist-
ing replica [19]. Such a technique incurs minimal down-
time if the replica being recovered is non-faulty, while
the faulty case can be detected and dealt with like an or-
dinary fault in the system.

4.8.2 Separating State Updates and Execution

A novel optimization enabled by ZZ’s recovery approach
is the separation of state updates from the rest of request
execution to further speed up recovery. A ZZ replica need
only apply state updates without actually re-executing re-
quests since the last checkpoint.

To this end, execution replicas include informa-
tion about state updates in their execution reports.
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During graceful execution, an execution replica i
includes additional information in its execution re-
port 〈EXEC-REPORT, n,W, Hn〉 where W identifies the
writes performed during the execution of the request and
Hn = [Hn−1,W ] summarizes the write history. Let
m be the sequence number of the last stable checkpoint
and let n be the sequence number that caused a fault
to be detected. Replica i also stores the list of writes
Wm+1, . . . ,Wn−1 performed while executing requests
with the corresponding sequence numbers.

Upon recovery, an execution replica j obtains a
checkpoint certificate 〈CHECKPOINT,m, C〉A|g+1 for the
most recent successful checkpoint, and the execution re-
port certificate 〈EXEC-REPORT, n,W, Hn−1〉 for the se-
quence number immediately preceding the fault. Replica
j obtains the list of writes [Wm+1, . . . ,Wn−1] matching
the execution report certificate from an execution replica.
Then, instead of actually executing the requests, j simply
applies the writes in sequence number order while fetch-
ing the most recent checkpoint of the objects being writ-
ten to on demand. This approach is illustrated in Figure 4.
For compute-intensive applications with infrequent and
small writes, this optimization can significantly reduce
recovery latency.

5 ZZ Implementation

We implemented ZZ by enhancing the BASE library so
as to 1) use virtual machines to house and run replicas,
2) incorporate ZZ’s checkpointing, fault detection, rapid
recovery and fault-mode execution mechanisms, and 3)
use file system snapshots to assist checkpointing.

5.1 Replica Control Daemon
Xen does not allow arbitrary code to be run within the hy-
pervisor. As a result, we have implemented a replica con-
trol daemon which runs in Domain-0, a “privileged” do-
main responsible for managing the other virtual machines
on the host. One replica control daemon runs on each
physical host and is responsible for starting and stopping
replicas after faults are detected. The control daemon
uses the certificate scheme described in Section 4.4 to
ensure that it only starts or stops replicas when enough
non-faulty replicas agree that it should do so.

The inactive replicas can be maintained in either a
paused state where they have no CPU cost, but incur a
small memory overhead on the system, or hibernated to
disk which utilizes no resources other than disk space.
Paused replicas can be very quickly initialized after a
fault, while a naive approach to hibernated VMs can
take tens of seconds and is proportional to the amount of
memory allocated to a VM. ZZ uses a paged-out restore
technique that exploits the fact that hibernated replicas
initially have no useful application state in memory, and
thus can be created with a bare minimum allocation of

128MB of RAM. After being restored, their memory al-
location is increased to the desired level. Although the
VM will immediately have access to its expanded mem-
ory allocation, there may be an application dependent pe-
riod of reduced performance if data needs to be paged in.

5.2 Recovery
The implementation of ZZ’s recovery protocol described
in Section 4.5 proceeds in the following steps.
1. Fault Detection: When an agreement replicas receive
f + 1 output messages from execution replicas that are
not all identical, it sends wake-up messages to the replica
control daemons on f servers in the free pool.
2. VM Wake-up: When a replica control daemon receives
f+1 wake-up messages it attempts to “unpause” a replica
if available, and if not, spawns a new VM by loading a
replica hibernated on disk.
3. Checkpoint metadata transfer: A replica upon startup
obtains the log of committed requests, checkpoint meta-
data, and any memory state corresponding the most re-
cent stable checkpoint. The replica also obtain access to
the latest disk snapshots created by all replicas.
4. Replay: The replica replays requests prior to the fault
that modified any application state.
5. On-demand verification: The replica attempts to get
the state required for each request from another replica’s
disk snapshot, and verifies the file contents against the
disk hashes contained in the checkpoint metadata. Upon
retrieving a valid file, the replica copies it to its local disk
and directs all future accesses to that version of the file.
6. Eliminate faulty replicas: With 2f + 1 replies, the
agreement cluster determines which of the original ex-
ecution replicas were faulty. Agreement replicas send
shutdown messages to the replica control daemons list-
ing the faulty replicas to be terminated.

5.3 Exploiting File System Snapshots
Typical data center applications utilize a relatively small
amount of critical in memory state, plus a potentially
much larger amount of disk state. To implement check-
pointing in ZZ we rely on the existing mechanisms in the
BASE library to save the protocol state of the agreement
nodes and any memory state used by the application on
the execution nodes. In addition ZZ exploits the snapshot
mechanism supported by many modern file systems to
make efficient disk checkpoints, lowering memory over-
heads since duplicate copies do not need to be kept in
memory if they are modified between checkpoints and
reducing the number of modifications required to make
existing applications support BFT.

Some modern file systems allow for very efficient
snapshot creation, typically by maintaining a lof of up-
dates in a journal [31, 18]. Creating snapshots is efficient
because copy-on-write techniques prevent the need for
duplicate disk blocks to be created. Snapshots size and
creation time is independent of the size of data stored
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Figure 5: For each checkpoint an execution replica (1) sends
any modified memory state, (2) creates hashes for any modified
disk files, (3) creates a ZFS snapshot, and (4) returns the list of
hashes to the agreement cluster.

since only meta information needs to be updated. ZZ re-
lies on ZFS for snapshot support, and works with both
the native Solaris and user-space Linux implementations.

ZZ includes meta-information about the disk state in
the checkpoint so that the recovery nodes can validate
the disk snapshots created by other execution nodes. To
do so, execution replicas create a cryptographic hash for
each file in the disk snapshot and send it to the agree-
ment cluster as part of the checkpoint certificate as shown
in Figure 5. Hashes are computed only for those files
that have been modified since the previous epoch; hashes
from the previous epoch are reused for unmodified files
to save computation overheads.

Tracking Disk State Changes: The BASE library re-
quires all state, either objects in memory or files on disk,
to be registered with the library. In ZZ we have simpli-
fied the tracking of disk state so that it can be handled
transparently without modifications to the application.
We define functions bft fopen() and bft fwrite() which
replace the ordinary fopen() and fwrite() calls in an ap-
plication. The bft fwrite() function invokes the modify()
call of the BASE library which must be issued whenever
a state object is being edited. This ensures that any files
which are modified during an epoch will be rehashed dur-
ing checkpoint creation.

For the initial execution replicas, the bft fopen() call is
identical to fopen(). However, for the additional replicas
which are spawned after a fault, the bft fopen call is used
to retrieve files from the disk snapshots and copy it to
the replica’s own disk on demand. When a recovering
replica first tries to open a file, it calls bft fopen(foo),
but the replica will not yet have a local copy of the file.
The recovery replica fetches a copy of the file from any
replica and verifies it against the hash contained in the
most recent checkpoint. If the hashes do not match, the
recovery replica requests the file from a different replica,
until a matching copy is found and copied to its own disk.

6 Experimental Evaluation

In this section, we evaluate our ZZ prototype under
graceful execution and in the presence of faults. Specif-
ically, we quantify the recovery times seen by a ZZ
replica, the efficacy of obtaining state on demand, ZZ’s
overhead compared to BASE under correct operation,
and the costs of using virtualization and ZFS snapshots.

Kernel NFS client

NFS
Relay

Andrew 
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NFS server 1

BFT
Wrapper ZFS f1

...
fn
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ClusterCl

ie
nt

VM
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NFS server 2
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BFT
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Figure 6: Experimental setup for NFS. The recovery replica
obtains state on demand from the active servers.

6.1 Experimental Setup
Our experimental setup consists of a mini fault-tolerant
data center that uses a cluster of 2.12 GHz 64-bit Xeon
quad-core Dell servers, each with 4GB RAM. Each ma-
chine runs a Xen v3.1 hypervisor and Xen virtual ma-
chines. Both domain-0 (the controller domain in Xen)
as well as the individual VMs run the CentOS 5.1 Linux
distribution with the 2.6.18 Linux kernel. For ease of
deployment, we use the Linux implementation of ZFS
which runs as a userspace file system on a separate stor-
age node. Each execution replica is given an independent
ZFS file system on the storage node (note that, we place
all ZFS file systems on a single node due to constraints
on the number of machines at our disposal; a true BFT
system would use a separate storage node for each ex-
ecution replica). All machines are interconnected over
gigabit ethernet.

We use f + 1 machines to house our execution repli-
cas, each of which runs inside its own virtual machine.
An additional f machines are assumed to belong to the
free server pool; we experiment with both paused and hi-
bernated pre-spawned execution replicas. The agreement
replicas run on a separate set of machines from the exe-
cution nodes.

Our experiments involve 1) a toy client-server applica-
tion and 2) a fault-tolerant NFS, based on ZZ.

Toy client-server: We modified the generic client
server application from the BASE library to maintain a
configurable amount of state on disk rather than in mem-
ory. Recovery replicas can use either ZZ’s amortized
state transfer technique to fetch state on demand, or a
full transfer scheme which fetches and verifies all state
immediately after fault detection.

Fault-tolerant NFS: BASE provides an NFS client re-
lay and a BFT wrapper for the standard NFS server. We
extendeded this wrapper so that a recovering replica can
communicate with multiple NFS servers. Recovery repli-
cas fetche disk state objects by requesting access to ZFS
snapshots through the NFS servers of existing replicas.
Figure 6 illustrates the system setup for an NFS server
capable of handling one faulty replica, where VM3 is an
initially sleeping recovery replica. We use a combination
of synthetic workloads and the Andrew filesystem bench-
mark in our experiments.

9



 0

 10

 20

 30

 40

 100  200  300  400

Re
co

ve
ry

 T
im

e 
(s

ec
)

State Size (MB)

Full Transfer
On-Demand (10% Dirty)
On Demand (Best case)

(a) Recovery Time

 0

 5

 10

 15

50 0.1  1  10

Sp
ee

du
p

State Modified Since Last CP (%)

400MB
200MB
100MB

(b) On Demand Speedup Factor

Figure 7: The worst case recovery time depends on the amount
of state updated between the last checkpoint and the fault.

6.2 Recovery Time
This experiment uses our client-server application to
study the recovery time after faults are caused in appli-
cations with different state sizes. The disk state at the
server is varied between 50MB and 400MB by varying
the sizes of 500 files. We define recovery time as the de-
lay from when the agreement cluster detects a fault until
the client receives the correct response.

Figure 7(a) compares the recovery time for a replica
that performs full state transfer to one that fetches and
verifies state on-demand. In the best case, a fault occurs
immediately after a checkpoint, meaning that no addi-
tional requests need to be replayed by the recovery node.
While the naive approach can take over 30 seconds to
fully verify 400MB of state, ZZ’s on demand scheme can
recover and begin processing requests in less than 3s. In
practice, a fault is unlikely to occur immediately after
a checkpoint, forcing the recovery replica to replay re-
quests and update its local state before it can respond to
the client. The “10% Dirty” line in Figure 7(a) shows
the recovery cost when the fault occurs immediately be-
fore a checkpoint such that 10% of the application’s state
needs to be fetched during replay. While this increases
the recovery latency, ZZ’s on-demand transfer scheme
still sees significant benefits.

Figure 7(b) shows the speedup gained from getting
state on demand as the amount of state objects modified
since the last checkpoint increases. Having more mod-
ified state objects incurs greater cost since more objects
need to be immediately fetched. Fortunately, checkpoints
can be efficiently performed every few seconds, during
which time most applications will only modify a small
fraction of their total application state. For applications
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Figure 8: The recovery period lasts for less than a second, after
which new requests can be processed. At first, requests see
higher latency since state must be fetched on demand.

with large amounts of state, the on demand scheme can
decrease the recovery time by at least five times when less
than 10% of the state is modified between the checkpoint
and a fault.

6.3 Fault Mode Latency
While obtaining state on-demand significantly reduces
the initial recovery time, it may increase the latency
for subsequent requests since they must fetch and verify
state. In this experiment we examine the throughput and
latency of requests to the client-server application after a
fault has occurred. The client sends a series of requests
involving random accesses to 100KB state objects.

As shown in Figure 8, we inject a fault after 20.2 sec-
onds. The faulty request experiences a latency of about
one second for the initial recovery, after which the ap-
plication can handle new requests. The mean request la-
tency prior to the fault is 5 milliseconds with very little
variation. The latency of requests after the fault has a
bimodal distribution depending on whether the request
accesses a file that has already been fetched or one which
needs to be fetched and verified. The long requests,
which include state verification and transfer, take an aver-
age of 20 milliseconds. As the recovery replica rebuilds
its local state, the throughput rises since the proportion of
slow requests decreases. After 26 seconds, the full appli-
cation state has been loaded by the recovery replica, and
the throughput prior to the fault is once again maintained.

6.4 NFS Recovery Time Breakdown
In this experiment we break down the recovery time of
the NFS server for a workload which creates 200 files
before encountering a fault while reading back a file that
has been corrupted by one of the replicas. We vary the
size of the files to adjust the total state maintained by the
application, which also impacts the number of requests
which need to be replayed after the fault.

We have found that the full state transfer approach per-
forms very poorly since the BFT NFS wrapper must both
retrieve the full contents of each file and perform RPC
calls to write out all of the files to the actual NFS server.
We split the recovery time into two portions: the time to
verify a checkpoint and build the initial file system, and
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the time to replay requests which occurred between the
last checkpoint and the faulty request. Figure 9(a) shows
the time for processing the checkpoints when using full
transfer or ZZ’s on demand approach (note the log scale).
When transferring the full checkpoint, state sizes greater
than a mere 25 megabytes can take longer than 60 sec-
onds, after which point NFS requests typically will time
out. In contrast, the on demand approach has a constant
overhead with an average of 1.4 seconds. Figure 9(b)
shows the time required to replay requests. Since differ-
ent state sizes may require different numbers of requests
to be replayed, we report the average time per request
replayed and the standard deviation. The ZZ system ex-
periences a higher replay cost due to the added overhead
of fetching and verifying state on demand; it also has a
higher variance since the first access to a file incurs more
overhead than subsequent calls. While ZZ’s replay time
is larger, the total recovery time is much smaller when
using on demand transfer.

6.5 NFS Performance
The Andrew filesystem benchmark emulates a software
development workload of reading and modifying disk
files. In this experiment we measure the time to com-
plete the benchmark with and without faults. We use a
scaled up version of the first four phases of the bench-
mark which include recursively creating source directo-
ries, copying source code files, examining file attributes,
and reading files.2 We use a modified version of the

2Phase 5 of the benchmark, which compiles a set of source files,
was omitted since it included old libraries that do not compile without

Phase ZZ ZZ Fault BASE BASE Fault
1 3.09 3.10 2.85 2.85
2 62.70 61.37 50.01 50.26
3 32.01 47.90 25.37 35.95
4 47.77 71.62 35.51 33.95

Total 145.6 184.0 113.8 123.01

Table 2: Completion times for the Andrew benchmark. A fault
is injected during phase 2.

benchmark that can be scaled—instead of creating a sin-
gle source directory, our enhanced benchmark creates N
such directories and performs file operations on each set.

We run the benchmark with N = 50 and inject a fault
during phase 2 (file creation). This represents the worst
possible time to inject a fault since a smaller amount of
state would need to be rebuilt if it occurred earlier. Table
2 compares the completion time of the benchmark with
and without faults; we report the average of three runs.
While the fault occurs earlier on, it is not detected until
phase 3 when the file is accessed, at which point ZZ’s
recovery replica takes an average of 16 seconds to build
and verify the file system structure, and to replay any re-
quests between the last checkpoint and the fault. Since
phase 3 only examines the attributes of files, no files are
copied to the recovery replica until phase 4. The addi-
tional latency of fetching files on demand in this phase
increases the completion time by 23 seconds. In total,
the fault adds 39 seconds of latency, an overhead of 26%
across the full run.

For comparison, we present the completion time for
BASE running the same benchmark. We again introduce
a fault during phase 2 which forces BASE to restart a
replica. Since BASE uses a full 3f + 1 replicas, it is able
to mask the fault and continue operating while the extra
replica recovers. The recovery process slows down the
correct replicas since they must assist the faulty node,
adding 10 seconds to the total completion time. While
BASE is capable of completing the benchmark with only
an 8% performance drop, it does so with significantly
higher cost since all 3f +1 replicas (or 2f +1 with sepa-
ration of agreement and execution) must run at all times.
ZZ only keeps f + 1 replicas active for the majority of
the benchmark; 2f + 1 replicas are only needed for a
few seconds while the additional replica recovers and the
faulty server is identified. Note that in this experiment
the graceful performance of ZZ relative to BASE is re-
duced because the workload is driven by a single client,
preventing ZZ from exploiting pipelining and batching to
reduce overheads as described in the following section.

6.6 Graceful Performance
We next examine ZZ’s performance under correct oper-
ating conditions. To find the minimal cost of the system,
we use our client-server application to send “null” re-

substantial changes on modern Linux distributions.
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Figure 11: Graceful mode performance of ZZ and BASE with
different batch sizes and request types.

quests, which include no processing time or state modifi-
cations. Figure 11(a) illustrates the maximum throughput
obtained for BASE and ZZ under various batch sizes; the
labels indicate the percent performance loss seen by ZZ.
Both systems see a large benefit from employing batch-
ing. With small batch sizes, ZZ’s performance lags be-
hind BASE due to overheads associated with separating
the agreement and execution clusters. However, the ex-
tra cryptographic and network operations required in ZZ
are applied per batch, so increasing the batch size sig-
nificantly reduces this overhead. Figure 11(b) shows that
ZZ sees only a modest latency overhead for requests with
different request/reply sizes. This overhead is due to the
additional cryptographic operations required in ZZ, and
a high throughput can still be maintained with batching.

For realistic applications, the performance of “null” re-
quests has little meaning since actual requests will incur
processing at the execution nodes. Figure 10 demon-
strates how ZZ and BASE perform when each request
is required to perform a small amount of computation.
The computation cost is varied by adjusting the size of
a buffer which is repeatedly encrypted. While ZZ is ini-
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Figure 12: Recovery time increases for larger f from message
overhead and increased ZFS operations.

tially slower than BASE due a small batch size, they are
indistinguishable when the processing cost per request
exceeds 250 microseconds. The Optimal curve repre-
sents the maximum throughput achievable for a given
processing time if there are no network or cryptographic
overheads. As the processing cost rises, it quickly be-
comes the dominant factor in determining throughput and
both protocols perform very close to this upper bound.

6.7 Impact of Multiple Faults
Here we examine how ZZ’s graceful performance and re-
covery time changes as we adjust f , the number of faults
supported by the system. Figure 12(a) shows that ZZ’s
graceful mode performance scales similarly to BASE as
the number of faults increases. This is expected be-
cause the number of cryptographic and network opera-
tions rises similarly in each system.

We next examine the recovery latency of the client-
server application for up to three faults. In each case, we
maintain f paused recovery replicas. We inject a fault to
f of the active execution replicas and measure the recov-
ery time to handle the faulty request. Figure 12(b) shows
how the recovery time for f = 1 to f = 3 increases
slightly due to increased message passing and because
the ZFS server needs to export snapshots for a larger
number of file systems. We believe that the communi-
cation costs could be decreased with hardware multicast
and the use of multiple ZFS storage nodes.

6.8 Replay Vs State Updates
In this experiment we motivate separating computation
from state updates with a microbenchmark comparing the
latency of requests when full requests need to be replayed
versus when only state updates need to be applied. We
test this with a server application which in the ordinary
case, receives a request from a client, performs a compu-
tation, and then writes the result to disk. If full requests
must be replayed, then recovery replicas will have to per-
form this potentially expensive computation. Figure 13
illustrates how the replay time of requests changes as the
cost of computation increases. By having replicas record
and verify state updates as they are performed, recovery
replicas only need to apply the state update (a disk write).
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Operation Time (sec)
Naive Restore (2GB) 44.0
Paged-out Restore (128→2GB) 5.88
Unpause VM 0.29
ZFS Snapshot 0.03
ZFS Clone 0.60

Table 3: Using paused VMs results in the lowest latency, but
ZZ’s Paged-out approach can be used for applications without
strong latency requirements.

6.9 VM Startup and ZFS Overheads
In our previous experiments, the recovery VMs are kept
in a paused state; here we evaluate the feasibility of keep-
ing recovery VMs hibernated on disk for applications
with less stringent latency requirements, and present the
latency incurred by different ZFS operations.

With a naive approach, maintaining replicas hiber-
nated to disk can increase recovery latency by a factor
proportional to the amount of memory allocated to each
VM. This is because restoring a hibernated VM involves
loading the VM’s full memory contents from disk. Ta-
ble 3 shows how our paged-out restore technique can re-
duce the startup time for a VM with a 2GB memory allo-
cation from over 40 seconds to less than 6 seconds.

ZZ utilizes ZFS to simplify checkpoint creation at low
cost. Table 3 illustrates the cost of the snapshot and clone
procedures. Snapshots must be created at each check-
point interval, and ZFS can efficiently support snapshot
creation several times per second. The clone operation is
used during recovery to make snapshots from the previ-
ous checkpoint available to the recovery VMs. This can
be done in parallel with initializing the recovery VMs,
and incurs only minimal latency.

7 Related Work

This section discusses related work not covered else-
where. Lamport, Shostak, and Pease [15] introduced the
problem of Byzantine agreement. Lamport also intro-
duced the state machine replication approach [13] (with a
popular tutorial by Schneider [22]) that relies on consen-
sus to establish an order on requests. Consensus in the
presence of asynchrony and faults has seen almost three

decades of research. Dwork et al. [7] established a lower
bound of 3f + 1 replicas for Byzantine agreement given
partial synchrony, i.e., an unknown but fixed upper bound
on message delivery time. The classic FLP [8] result
showed that no agreement protocol is guaranteed to ter-
minate with even one (benignly) faulty node in an asyn-
chronous environment. Viewstamped replication [17]
and Paxos [14] describe an agreement protocol for im-
plementing an arbitrary state machine in an asynchronous
benign environment that is safe when n > 3f +1 and live
with synchrony assumptions.

Early BFT systems [20, 11] incurred a prohibitively
high overhead and relied on failure detectors to exclude
faulty replicas. However, accurate failure detectors are
not achievable under asynchrony, thus these systems ef-
fectively relied on synchrony for safety. Castro and
Liskov [2] introduced a BFT SMR-based system that re-
lied on synchrony only for liveness. The three-phase pro-
tocol at the core of PBFT is similar to viewstamped repli-
cation [17] or Paxos [14] and incurs a replication cost
of at least 3f + 1. More importantly, they showed that
the latency and throughput overhead of BFT can be low
enough to be practical. ZZ draws inspiration from Cheap
Paxos [16], which advocated the use of cheaper auxiliary
nodes used only to handle crash failures of main nodes.
Our contribution lies in adapting the approach to tolerate
Byzantine faults, demonstrating its feasibility through a
prototyped system, and making it cheap and practical by
leveraging a number of modern systems mechanisms.

Virtualization has been used in several BFT systems
recently since it provides a clean way to isolate services.
The VM-FIT systems exploits virtualization for isolation
and to allow for more efficient proactive recovery [19].
The idea of “reactive recovery”, where faulty replicas are
replaced after fault detection, was used in [24], which
also employed virtualization to provide isolation between
different types of replicas. In ZZ, reactive recovery is
not an optional optimization, but a requirement since in
order to make progress it must immediately instantiate
new replicas after faults are detected.

Rapid activation of virtual machine replicas for dy-
namic capacity provisioning and has been studied in
[10, 25]. In contrast, ZZ uses VM replicas for high avail-
ability rather than scale. Live migration of virtual ma-
chines was proposed in [4] and its use for load balancing
in a data center has been studied in [28]. Such techniques
can be employed by ZZ to intelligently manage its free
server pool, although we leave an implementation to fu-
ture work. Virtualization has also been employed for se-
curity. Potemkin uses dynamically invocation of virtual
machines to serve as a honeypot for security attacks [27].
Terra is a virtual machine platform for trusted computing
that employs a trusted hypervisor [9]; ZZ only requires
a trusted hypervisor if multiple replicas from an applica-
tion are to be hosted on a single physical machine.
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8 Conclusions

In this paper, we presented ZZ, a novel approach to con-
struct general BFT services with a replication cost of
practically f + 1, halving the 2f + 1 or higher cost
incurred by state-of-the-art approaches. Analogous to
Remus [6] which uses virtualization to provide fail-stop
fault tolerance at a minimal cost of 1+ ε, ZZ exploits vir-
tualization to provide BFT at a low cost. Our key insight
was to use f +1 execution replicas in the normal case and
to activate additional VM replicas only upon failures. ZZ
uses a number of novel mechanisms for rapid recovery
of replicas, including the use of filesystem snapshots for
efficient, application independent checkpoints, replaying
state updates instead of full requests, and the use of an
amortized state transfer mechanism that fetches state on-
demand. We implemented ZZ using the BASE library,
Xen and ZFS, and demonstrated the efficacy of our ap-
proach via an experimental evaluation.
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