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Abstract

This paper describes preliminary work on validating
process definitions by comparing a process definition to
event streams derived from an actual execution of that pro-
cess. The goal of this work is to find and remove discrep-
ancies in the process definition before using that definition
as the basis for various forms of analysis and decision mak-
ing. The paper outlines important issues that need to be
addressed and suggests possible approaches. The example
used in this paper is based on a process from the medical
domain.

1 Introduction

Medical errors are reported to be one of the leading
causes of death in the United States. According to a re-
port by the US Institute of Medicine (IOM), “To Err is Hu-
man” [19], approximately 98,000 people die each year in
the United Stated alone because of avoidable medical er-
rors. This report also asserts that “the problem is not bad
people in health care – it is that good people are working in
systems that need to be made safer.” Another report by the
IOM [21] states that “what is perhaps most disturbing is the
absence of real progress in information technology to im-
prove clinical processes” [italics ours]. Thus, both [19] and
[21] suggest that medical processes need to be improved in
order to reduce medical errors.

Important medical processes, however, are complex and
non-trivial to reason about. Medical processes, such as

chemotherapy or emergency department processes, involve
concurrent executions and synchronization, allocation of
highly contested resources, and multitasking performed by
busy healthcare providers. Healthcare providers often face
exceptional circumstances and find that for these circum-
stances the processes are often not well defined. Their ex-
ecutions of the process vary, increasing the opportunity for
errors, and making it harder to capture the process in a form
that is amenable to analysis that can in turn help identify
sources of medical errors.

In this paper, we use the term process definition to refer
to a formal model of a process created in a process mod-
eling language with well-defined semantics. Such formal
models, as recent work (e.g. [2, 6, 7, 23, 24]) has suggested,
can serve as the basis for various kinds of formal analysis,
such as Finite State Verification [12, 16] that helps detect
traces though the model where important process require-
ments could be violated, Fault Tree Analysis [5, 25] that
determines where a process might be vulnerable to errors if
a task is performed incorrectly or input data is inaccurate,
and simulations [8] that attempt to evaluate the impact of
different resource allocations on quantities of interest such
as patient waiting time. These formal analysis techniques
can in turn help support continuous process improvement
[11].

Since process definitions are the basis for various types
of analyses, analysts and decision makers must be confident
that definitions of large and complex medical processes are
an accurate representation of the real processes before bas-
ing important decisions on the results of those analyses. A
process definition can be inaccurate with respect to the real



process it models in many different ways, such as the omis-
sion or inclusion of steps or the under or over specification
of the ordering among those steps. Among the factors that
make creation of accurate process definitions hard are the
omission of important details during elicitation, the need to
combine different and possibly conflicting perspectives into
a single process definition, access to only a small subset
of process participants, and the inadvertent introduction of
mistakes by the process definition creators.

The focus of this work is to study the problem of vali-
dating process definitions. Validation, as defined by the US
Department of Defense [1], is “the process of determining
the degree to which a model is an accurate representation of
the real-world from the perspective of the intended uses of
the model”. This work concentrates on comparing event
streams, the sequences of naturally occurring events that
arise during the execution of an actual process, to a defini-
tion of that process in order to validate or find inaccuracies
in that definition.

Although, we are still in a preliminary stage of apply-
ing and evaluating our approach to process definition vali-
dation, we have encountered a number of interesting issues
that need to be addressed. This paper focuses on two ma-
jor areas of concern: matching the observed events with the
set of steps or tasks in the process definition and comparing
the observed event streams with the possibly infinite set of
sequences of steps allowed by a process definition.

In the next section of this paper, we discuss related work.
Section 3 presents an example of a medical process, dis-
cusses the Little-JIL language used to create a definition
of that process, and provides a short overview of a hu-
man simulation of that process used to obtain event streams.
Section 4 outlines the two major issues that need to be
addressed when comparing a process definition to event
streams. The conclusion summarizes this work and dis-
cusses possible future directions.

2 Related Work

Comparing process definitions to event streams Cook
and Wolf [9] discuss the problem of comparing event
streams from an executing process to event streams induced
by a process model. They cast the problem as a string
comparison problem and propose two metrics for measur-
ing the difference between two strings. One of the met-
rics uses the number of insertions, deletions, and substi-
tutions needed to transform one string into the other. The
second metric is an enhancement of the first one and takes
into account blocks of consecutive rather than single inser-
tions/deletions. To find the string from a process model that
is the “closest” match to a given string corresponding to
an event stream, Cook and Wolf use a heuristic search in
the space determined by the model states (they assume the

model is in the form of a finite-state machine), the position
in the event stream, and the operation that created the search
state (match, insertion, deletion). We expect to build on this
work as we develop metrics for comparing event sequences
to process definitions.

There has been prior work on monitoring process ex-
ecution and detecting deviations from an existing process
definition. Cugola et. al. [10] have investigated a temporal
logic-based approach that allows monitoring of processes
during execution and detecting deviations from a previously
created process definition. Their approach allows for devia-
tions from the process definition to be tolerated during exe-
cution of the process as long as some global constraints are
not violated.

Obtaining event streams from an actual process There
are many ways for obtaining event streams corresponding
to a process execution. For instance, process participants
can be observed while they perform their work in general
or a specific set of tasks. For this approach, events could
be recorded by a human observer (this method is known as
shadowing and has been used by the Industrial Engineer-
ing community [3]) or with some automated support such
as a camera capable of event recognition or by capturing
”observable” events associated with computer or hardware
devices. Because processes may be very complicated and
because process performers may be engaged in more than
one process at a time, human simulation is sometimes used
because it allows process participants to perform only one
process in a simulated setting that can be carefully observed
and monitored.

Event streams from a process can also be collected by in-
terviewing process participants [15]. For example, different
types of healthcare providers participating in a certain med-
ical process – doctors, nurses, pharmacists – can be asked to
describe step by step how they perform their tasks and the
descriptions can be turned into event streams or scenarios.

3 An Example

3.1 The VPID process

The Verify Patient Identity (VPID) process is a subpro-
cess of virtually any medical process involving the perfor-
mance of patient-related tasks. The goal of the VPID pro-
cess is to ensure that a task gets performed on the right pa-
tient. The VPID process is relatively straightforward but,
at the same time, it is critical to safely performing medical
processes. Unfortunately, the VPID process is sometimes
neglected or performed haphazardly by healthcare providers
[14]. Examples of dangerous medical errors resulting from
incorrect performance of the VPID process are transfusing
the wrong unit of blood, administering medication to the
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wrong patient, or performing a procedure on the wrong pa-
tient.

There are several variations of the VPID process – some-
times the process does not directly involve the patient (e.g.
computerized order entry), sometimes the patient already
has an ID band that can be used as part of the patient’s
identity, and sometimes, for newly-admitted patients for in-
stance, all identification information must be obtained di-
rectly from the patient. The example presented in this pa-
per is the process that healthcare providers follow to ensure
that the correct ID band is placed on a newly-admitted pa-
tient. We used an existing process definition of this varia-
tion of the VPID process and compared it to event streams
from a human simulation of that process. In the next sub-
section, we briefly describe the Little-JIL process definition
language, which was used to create a definition of the VPID
process.

3.2 Little-JIL and the VPID process defi-
nition

Little-JIL [4] is a process definition language with for-
mal semantics and graphical syntax. Our experience with
Little-JIL has indicated that its rich semantic features, such
as support for specification of concurrency/synchronization,
exceptional flow, and resources, make it suitable for captur-
ing complex medical processes. Figure 1 shows part of the
Little-JIL definition of the VPID process. The main build-
ing block of a Little-JIL process definition is the step, rep-
resented iconically by a black bar. A Little-JIL step corre-
sponds to a unit of work, a task that a human or an auto-
mated agent executes in a process. Little-JIL supports hi-
erarchical decomposition that allows steps at a higher level
of abstraction to be decomposed into steps at a lower level
of abstraction. For example, in Figure 1, the step verify
patient identity before placing an ID band on patient is de-
composed into the substeps verify patient FN and LN and
verify patient DOB (where FN is an abbreviation for “first
name”, LN for “last name”, and DOB for “date of birth”).
Thus, a Little-JIL process definition can be viewed as a tree
of hierarchically decomposed steps.

Little-JIL steps can have sequencing badges (located in
the left part of the step bar), which specify the order of exe-
cution of substeps. In Figure 1, the step verify patient iden-
tity before placing an ID band on patient is a parallel step
(denoted by an equal sign on the left of the step bar), which
means that its substeps can be executed in any order, in-
cluding in parallel. Thus, before placing the ID band on a
patient, a healthcare provider needs to verify the patient’s
first/last names and date of birth and this could be done in
any order. The step verify patient FN and LN is a sequen-
tial step (denoted by the right arrow in the step bar), which
means that its substeps need to be executed in left to right

Figure 1. Part of original VPID process defini-
tion

order. Thus, to verify patient FN and LN, one should first
ask patient to state FN and LN, then ask patient to spell FN
and LN, and finally confirm stated FN and LN match FN
and LN on ID band. Another kind of a sequencing badge is
used in Figure 3 (Figure 3 itself is explained in more detail
later). The step ask patient for FN and LN in Figure 3 is
a choice step (denoted by a circle over a line on the left of
the step bar), which means that one of its substeps can be
chosen for execution and when that substep is completed,
the parent step is considered to be completed as well.

In addition to supporting specification of nominal flow,
Little-JIL supports the specification of exceptional flow. A
Little-JIL step can throw an exception when some part of
the execution fails. The exception is then handled by the
youngest matching exception handler attached to an ances-
tor of the step that threw the exception. In Figure 1, the step
confirm stated FN and LN match FN and LN on ID band
can throw the exception InfoDoesNotMatch. In that case,
the exception handler print new ID band (in Little-JIL an
exception handler is attached to an “X” badge on a parent
step and can itself be a step), which matches the thrown ex-
ception, is executed.

The rest of Little-JIL’s features are not relevant to this
paper but a more complete treatment of the language can be
found elsewhere [26].

3.3 Obtaining event streams from VPID
process execution

In this work, we used event streams derived from a hu-
man simulation [13] of the VPID process discussed above.
In particular, the event streams correspond to the actions
that clerks performed while placing an ID band on a newly
admitted patient. The ID band was created before the start
of the simulation, and before placing it on a patient, the
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Figure 2. An example event stream for the
VPID process

clerks had to verify that the information on the ID band
exactly matches the information obtained from the patient.
In this simulation, the actions of the clerks were recorded
by a human observer. To obtain another perspective, the
clerks also wore an eye-tracking device that designated ex-
actly where they were looking at each moment in time. A
careful post-processing of the human observation and eye-
tracking data was done to identify events and to combine
the events from the two perspectives to create event streams
[20]. Figure 2 illustrates an example event stream that can
be derived from human simulation data corresponding to a
clerk performing the VPID process prior to placing an ID
band on a patient.

4 Process Definition Validation

As noted above, the main focus of this work is to inves-
tigate approaches to process definition validation. We sep-
arate process validation into two main problems: mapping
events in the event streams to steps from the process def-
inition to create mapped event streams and comparing the
mapped event streams to the process definition.

4.1 Mapping events from an event stream
to steps from a process definition

Once an event stream of a real process execution is ob-
tained, the events need to be mapped to steps in the process
definition to allow for the comparison of the event stream
to possible executions of the process definition. The most
straightforward type of mapping is what we call direct map-
ping. In this case, an event from an event stream maps pre-
cisely to a task (a step or throwing of an exception) specified
in an existing process definition. For example, the event
asked patient to state DOB from the event stream in Fig-
ure 2 (event 5) constitutes exactly the execution of the step
ask patient to state DOB from the process definition in Fig-
ure 1. Similarly, the event said DOB doesn’t match (event
8) corresponds to the throwing of the exception InfoDoes-
NotMatch by step confirm stated DOB matches DOB on ID

band.
It is often the case, however, that an event in the event

stream does not map precisely to a step in the process def-
inition or an event in the process definition does not cor-
respond to an event in the event stream. The remainder of
this section discusses some of the reasons these mismatches
might occur and how they might be treated.

Variant of a step An event observed during a process ex-
ecution may not correspond exactly to a step in the process
definition, but it may correspond to a variant of that step,
i.e. a different way to perform a step in the process defini-
tion. We identified two types of mappings between an event
and a step in this situation – inferior variant and superior
variant. An event from an event stream is an inferior vari-
ant of a step in a process definition if the event constitutes
an execution of the step but it is not the best or preferred
way of performing the step. For example, the event asked
patient “Are you John Smith?” in Figure 2 (event 1) is an
inferior variant of the step ask patient to state FN and LN
in Figure 1. If a patient is confused or does not understand
the language of the healthcare provider, then the patient can
nod affirmatively or answer “yes” to a question of the form
“Are you X” even if “X” is not the patient’s name. Thus,
in medical practice, the preferred way to obtain a name is
to ask the patient to state, and sometimes even spell, their
name. Similarly, it is possible that an event observed dur-
ing a human simulation is a better way of performing a task
than the step specified in a process definition, and in this
case we say that the event is a superior variant of the step.
For example, if the process definition in Figure 1 contained
only the step ask patient to state FN and LN but not the step
ask patient to spell FN and LN, then some domain experts
could consider the event asked patient to state and spell FN
and LN to be a superior variant of the step ask patient to
state FN and LN.

Difference in level of granularity An event in an event
stream may not correspond exactly to a step in the process
definition because the event is at a different level of granu-
larity than the steps in the process definition. For example,
the events looked at name on ID band and looked at DOB
on ID band from the event stream in Figure 2 are lower level
events that the original Little-JIL definition of the VPID
process in Figure 1 did not include. This process is defined
at a higher level of abstraction, without specifying the detail
of how the person verifying the patient identity must look at
the ID band.

To compare an event stream to a process definition, how-
ever, one may need to map lower-level (higher-level) events
to process steps. We have considered two approaches that
support the mapping of low-level events from an event
stream to process steps.
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Figure 3. Part of VPID process definition after addressing some of the mapping issues

The first approach involves elaborating the process defi-
nition to a lower level of detail so that the steps that corre-
spond to the lower-level events in the event stream are in-
cluded in the process definition. Figure 3, which is a modi-
fied version of the VPID process from Figure 1, is an exam-
ple of how a process definition can be elaborated to address
the issue of difference in the level of granularity. The step
verify patient FN and LN is elaborated by substituting the
substeps ask patient to state FN and LN and ask patient to
spell FN and LN in Figure 1 with the entire subtree rooted
at step obtain FN and LN from patient and from ID band in
Figure 3. Also the step verify patient DOB from Figure 1
is elaborated by substituting its substep ask patient to state
DOB with the subtree rooted at the step obtain DOB from
patient and from ID band in Figure 3. The modified process
definition shown in Figure 3 captures two changes to the
initial process definition in Figure 1. First, to accommodate
the difference in level of granularity, the steps look at FN
and LN on ID band and look at DOB on ID band have been
added to the process definition so that the events looked at
name on ID band and looked at DOB on ID band from the
event stream in Figure 2 can be mapped to them. This also
requires the addition of the parallel steps obtain FN and LN
from patient and from ID band and obtain DOB from pa-
tient and from ID band) to capture the fact that asking the
patient for his/her name (or date of birth respectively) and
looking at the ID band for the name (or for the date of birth
respectively) can be done in any order.

The second change captured by the process definition in
Figure 3 is an interesting example of how the act of map-
ping event streams to process steps can help detect inac-

curacies in the process definition. The change captured by
the process definition in Figure 3 reflects the realization that
the initial process definition in Figure 1 was too restrictive.
While trying to accommodate the difference in the level of
granularity of the event stream and the VPID process def-
inition, one of the domain experts pointed out that asking
the patient to state their name and then asking him/her to
spell it (as specified by the steps ask patient to state FN
and LN and ask patient to spell FN and LN in Figure 1) is
not the only way to obtain the name of a patient. In fact, a
healthcare provider can choose to obtain the patient’s name
in several ways, such as asking the patient to just state first
name and last name, asking the patient to spell their first
and last name, or asking the patient to both state and spell
first and last name, in any order. This is captured by the
subtree rooted at the choice step ask patient for FN and LN
in Figure 3 and represents an improvement in the accuracy
of the original process definition.

Another possible way to deal with events at a lower level
of granularity than the process steps is to keep the process
definition unchanged but to create a set of rules that define
what lower level events from an event stream and executed
in what order constitute the execution of a step from the pro-
cess definition. For example, the initial process definition
from Figure 1 can be kept and a rule can be created saying
that “the occurrence of events asked patient to state DOB
and looked at DOB on ID band in any order constitute the
successful execution of the step ask patient to state DOB.
Of course, elaborating the process definition to a lower level
of detail or creating extra rules are basically equivalent ap-
proaches, where the first embeds the rules in the process
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definition and the second keeps the rules and the process
definition separate.

The above approaches deal with the case when an event
in the event stream is at a lower level of granularity than
the steps in the process definition, but it is also possible that
an event is at a higher level of granularity than any steps in
the process definition. In a hierarchical language it might
be possible to find a location in the hierarchy where the ap-
propriate step could be inserted. Alternatively, when this is
not desirable or for languages that do not support hierarchi-
cal decomposition, external rules could be used that encode
what low-level process steps are considered equivalent to a
high-level event. An example of such a rule can be “the oc-
currence of event verified patient DOB constitutes the suc-
cessful execution of the steps ask patient to state DOB, look
at DOB on ID band, and confirm stated DOB matches DOB
on ID band”. A finite-state automaton or separate process
definition could be used to encode the rule if the order in
which the process steps are executed is important to the
mapping.

In general, even if the language used for the process
definition supports hierarchical decomposition, it may be
hard to map high-level or low-level events to process steps
when the conceptual task decomposition in the process def-
inition is not somewhat similar to the events in the event
stream. Although external rules, similar to the ones dis-
cussed above, could be applied, if the mapping is extensive,
the resulting validation will probably be suspect.

Extra or irrelevant events Sometimes an event in the
event stream may not match a step in the process defini-
tion, and this difference does not appear to be because of a
mismatch in the level of granularity. These events may be
either extra events or irrelevant events

Extra events appear to be relevant to the process and
could impact reasoning about the correctness of the process.
Such events may have been inadvertently omitted from the
process definition, perhaps by mistake by the creator of the
definition or perhaps because of an error in how the process
was actually being executed.

Irrelevant events are those that seem to be extraneous
to the process definition for the types of analyses desired.
An example could be the event answered patient’s question
about phone use in the event stream in Figure 2. It could
be decided that answering patient’s questions concerning
phone use does not affect the process of VPID and thus this
event is irrelevant to the process of VPID captured by the
process definition. This does not necessarily mean however
that the event can simply be deleted from the event stream.
Depending on the kind of steps being performed in the pro-
cess, one may decide to keep such irrelevant events. For ex-
ample, in the VPID process, a clerk is obtaining DOB from
patient, remembering this information for a short period of

time and then comparing it to the DOB on the ID band. One
may insist that the clerk should not be distracted by per-
forming other tasks between obtaining the DOB from the
patient and comparing it to the one on the ID band. Thus,
it may be desirable to keep irrelevant events in the event
stream and take them into consideration during the analy-
sis.

Unobservable steps In addition to mapping the events
from the event streams to steps from the process defini-
tion, one needs to consider the steps in the process that
are not represented in the event stream. The process def-
inition might contain unobservable steps, which are steps
that represent tasks that cannot be observed in an execution
of a process. Thus, these steps will not have corresponding
events in the event streams. One kind of unobservable steps
is the cognitive step, which is an action that an individual
performs mentally and thus cannot be observed while the
individual is performing a process. The step confirm stated
FN and LN match FN and LN on ID band from the process
definitions in Figure 1 and Figure 3 is an example of a cog-
nitive, unobservable step. Unobservable steps can be some
of the most important steps in processes and thus need to
be dealt with when validating process definitions. The step
confirm stated FN and LN match FN and LN on ID band,
for instance, is an essential step as the activity of compar-
ing the first and last names obtained from the patient to the
ones obtained from the ID band is the core of the process
of verifying patient identity and hence needs to be specified
in the process definition. The fact that such unobservable
steps are not part of the event stream does not imply that the
participant did or did not execute them. Thus, before start-
ing the comparison between an event stream and a process
definition, it is important to identify the unobservable steps
in the process definition and handle them appropriately.

We have considered three ways of dealing with unob-
servable steps, particularly cognitive steps, in a process def-
inition to accommodate its comparison to an event stream.
The first approach involves the use of a “think-aloud” pro-
tocol (a knowledge elicitation technique [15]) used while
observing process performers in a real or simulated setting.
This means that process performers are asked to verbalize
certain mental activities they perform. This way, the cogni-
tive steps are exposed to an observer and can be recorded as
events in the event stream.

The second approach for dealing with unobservable
steps involves embedding errors in a simulated process (a
technique used in studying pilot decision making [22]). For
example, in a human simulation of the VPID process, a
wrong patient name can be printed on an ID band. If a
healthcare provider participating in the human simulation
places the ID band on the simulated patient, then it can be
inferred that the healthcare provider either did not perform
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the step confirm stated FN and LN match FN and LN on ID
band or performed it incorrectly.

The third approach for dealing with unobservable steps
involves the development of rules outside the process defi-
nition that specify under what circumstances an unobserv-
able step is considered executed by a process performer.
These rules are similar to the ones proposed for dealing
with difference in the level of granularity between events
and steps. In particular, they would specify what set of low-
level events, perhaps executed in certain order, constitutes
successful completion of a certain step from the process def-
inition. An example of such a rule for the VPID process is
“The occurrence of the events asked patient to state DOB
and looked DOB on ID band (in any order), followed by the
occurrence of the event place ID band on patient means that
the step confirm stated DOB matches DOB on ID band was
performed.”

Distinguishing between cases and dealing with a mis-
match An important issue that arises is to determine
which of the above cases applies when mapping a particular
event to a process step. For example, it is not always easy to
decide whether an event corresponds exactly to a step or if
it is a variant of a step; and when it is a variant, whether it is
a superior or an inferior variant. Similarly, it may be hard to
decide whether an event corresponds to a step omitted from
the process definition or whether the event is at a different
level of granularity.

If it has been determined that an event does not map ex-
actly to a step and that the process definition needs to be
elaborated or external rules need to be created, it needs to be
decided how to change the process definition (or how to cre-
ate a rule that captures the intended mapping). Both distin-
guishing between cases that apply when dealing with map-
pings and changing the process definition (creating rules)
to support the mapping usually require the knowledge and
personal judgment of a domain expert. For example, we
had to consult healthcare professionals when elaborating
the Little-JIL definition of the VPID process to incorporate
the steps looked at name on ID band and looked at DOB on
ID band.

4.2 Comparing a process definition to
event streams

Once the individual events in the event streams have been
mapped to steps in the process definition to create mapped
event streams, these mapped event streams can be compared
to the process definition. This involves comparing individ-
ual event streams to a process definition and then consider-
ing the implications of the results for how the whole set of
event streams compares to a process definition.

The approach we are currently considering views the
process definition validation problem as a string comparison
problem. In particular, each event stream can be represented
as a string such that each event in the stream corresponds to
a symbol from a finite alphabet. The alphabet itself is the
set of all steps/tasks corresponding to events observed dur-
ing a process execution. A process definition, and in fact
any computer program and many formal models, describes
a (possibly infinite) set of event streams. For a process def-
inition, an event stream corresponds to a possible execu-
tion or trace of a process definition, where the events are
steps/tasks in that process definition. Thus, a process defi-
nition denotes a language of strings (event streams) and the
process definition validation problem can be stated in terms
of comparing the strings corresponding to actual executions
of a process to the strings in the language denoted by the
process definition.

Determining whether a given mapped event stream is a
legal execution of the process specified by a process defini-
tion can be viewed as a set membership problem, i.e. “Is the
string corresponding to the mapped event stream a member
of the language denoted by the process definition?”.

To be able to address the set membership problem in an
automated way, we have used finite-state verification and
in particular the FLAVERS system [12]. We first encode a
mapped event stream from the human simulation as a prop-
erty and then run FLAVERS to check whether there is a
path through the VPID process definition (an execution of
the process definition) that satisfies the property. If such a
path exists, then the mapped event stream is a valid execu-
tion of the process, otherwise it is not.

Determining whether a given event stream is a valid exe-
cution of a process definition is just a first step in the process
definition validation problem. Since we formulate the FSV
problem as a “none” property, the event stream represented
by the property is a part of a valid execution of the process
definition if the property is violated. The counter example
trace is just a trace through the process that contains the
event stream. Unfortunately, with this approach, there is no
useful information provided about how to improve the pro-
cess definition, when the event stream is not part of a valid
execution of the process definition.

It may also be useful to characterize the difference be-
tween an event stream and a process definition. Cook and
Wolf [9] have investigated an approach in which they find
the execution of the process model that is “closest” to a
given event stream and then find the locations of the in-
sertions and deletions that need to be applied to the event
stream to transform it into that “closest” process model ex-
ecution. Other information that could be helpful when vali-
dating process definitions is identifying events in the event
stream that were done in different order than the one spec-
ified in the process definition. Since the main goal of our
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work is to improve the process definition, it may be useful
to find automated ways that suggest how the process defini-
tion needs to be changed in order for a given event stream
to become a valid execution.

In addition to comparing a single event stream to a pro-
cess definition, it will be useful to compare a set of event
streams to a process definition. For example, identifying a
common pattern among a set of event streams that are not
valid executions of a process definition could help identify
areas to consider for process definition improvement or ar-
eas that require additional training of personnel. Perhaps the
work on fault localization that considers sets of correct and
incorrect executions could be applied to help localize the
areas of the process that need such consideration [17, 18].

5 Conclusion

Process definitions can be used as the basis for several
analysis techniques that can in turn be used to support con-
tinuous process improvement. In particular, process def-
initions and associated analysis methods seem to be suit-
able approaches for improving medical processes, which
are known to contain faults that may lead to unnecessary
pain and suffering by patients. The inherent complexity of
medical processes, however, makes it hard to create a pro-
cess definition that is an accurate representation of the real
process and at the same time is rigorous and detailed enough
to support meaningful analyses. Thus, it is of overriding im-
portance that definitions of medical processes be validated
before being used as the basis for analyses that will inform
decision makers about vulnerabilities or lack of vulnerabil-
ities in these processes.

This paper outlines some important issues that arise
when trying to validate a definition of a medical process
and suggests some approaches to deal with these issues.
Our work is still in a preliminary stage but an interesting
future direction for this research will be to extend existing
techniques for process definition validation and detection of
deviations (e.g. [9, 10]) to address the outlined issues.

In addition to supporting continuous process improve-
ment, in the long term, process definitions can be used
to support process guidance. After various analysis tech-
niques are applied to improve the definition of a medical
process, that process definition can be used to guide the
tasks of various human and automated agents and detect
undesirable deviations.
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