
Incremental Policy Generation for DEC-POMDPs

Christopher Amato and Shlomo Zilberstein
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

{camato,shlomo}@cs.umass.edu

Abstract
Developing optimal algorithms for DEC-POMDPs
is an important challenge. Recently, an ε-optimal
algorithm for the infinite-horizon case was pre-
sented, but this approach is very resource inten-
sive. Consequently, the algorithm cannot find high-
quality solutions within the available amount of
time and memory. As an alternative, we have de-
veloped a more efficient algorithm that is able to
limit the search process based on the structure of
the problem. This method is more scalable than
the previous approach, while maintaining the op-
timality guarantee. We demonstrate that this im-
proved scalability allows higher-valued solutions to
be found for a range of problems. To further im-
prove scalability, we also provide a heuristic exten-
sion which can solve larger problems or produce
better solution quality with the given resources.

1 Introduction
Determining decentralized solutions to sequential decision
making problems is a fundamental research area. A gen-
eral way to model these problems is the decentralized par-
tially observable Markov decision process (DEC-POMDP).
In a DEC-POMDP, the reward function and state of the prob-
lem depend on the actions of all agents. Also, each agent may
receive uncertain information about the state of the system at
each step. Then, using only their own local information, the
agents must choose actions. The goal is to maximize the col-
lective value accumulated over the length of the problem.

There have been several algorithms developed recently
for solving the infinite-horizon DEC-POMDP, which contin-
ues for an infinite number of steps. These include approxi-
mate approaches [Amato et al., 2007; Bernstein et al., 2005;
Szer and Charpillet, 2005] and an ε-optimal approach [Bern-
stein et al., 2008]. The approximate approaches can per-
form well on the chosen test problems, but offer no bound
on optimality. Bernstein et al.’s policy iteration approach will
converge within ε of optimal in a finite number of steps, but
due to very high resource requirements, it often exhausts re-
sources many steps before this bound is achieved.

To improve the efficiency of ε-optimal dynamic program-
ming for infinite-horizon DEC-POMDPs, a better way of gen-

erating policies for the set of agents is needed. The current
approach exhaustively generates all possibilities for a given
step and removes those that have lower value for all states of
the problem and all policies of the other agents. Because the
value of a policy depends on the other agent policies, it is not
obvious how to eliminate policies without exhaustive genera-
tion. To combat this problem, we propose generating policies
for each agent based on those that are useful for a given action
and observation. The action taken and observation seen may
limit the possible next states of the system no matter what ac-
tions the other agents choose, allowing only policies that are
useful for these possible states to be retained. This approach
may allow a smaller number of policies to be generated, while
maintaining ε-optimality. Because solutions are built up for
each action and observation, we call our method incremental
policy generation. The incremental nature of our algorithm
allows a larger number of steps to be completed and thus can
provide higher solution quality.

In order to further improve scalability, we have also de-
veloped a heuristic version of our approach which makes
use of start state information to further reduce the number
of policies considered for each agent. While the heuris-
tic algorithm can no longer guarantee optimality, it is able
produce higher values on our set of test problems. It is
worth noting that any DEC-POMDP algorithm that uses dy-
namic programming backups, such as [Hansen et al., 2004;
Seuken and Zilberstein, 2007], can be made more efficient
by implementing our approach. In general, an incremental
backup can be conducted with much less time and memory
than an exhaustive one. This could reduce the resource usage
of these algorithms, allowing larger problems to be solved
and improving the solution quality on other problems.

The remainder of the paper is organized as follows. We
first provide background on the DEC-POMDP model and
Bernstein et al.’s policy iteration algorithm. We then present
the incremental policy generation approach and proof that it
maintains the optimality guarantee. Our heuristic extension
is described in the next section. Finally, experimental results
showing the improved efficiency of the optimal and heuris-
tic algorithms are then provided. These results suggest that a
step has been taken to reduce a major bottleneck in dynamic
programming algorithms for DEC-POMDPS.

2 Background
We first discuss the DEC-POMDP model and representing
solutions as finite-state controllers. We then describe the
infinite-horizon policy iteration algorithm.

2.1 DEC-POMDPs
A DEC-POMDP can be defined with the tuple
〈I, S, {Ai}, P,R, {Ωi}, O, T 〉 with: I , a finite set of
agents, S, a finite set of states with designated initial state
distribution b0, Ai, a finite set of actions for each agent,
i, P , a set of state transition probabilities: P (s′|s,~a), the
probability of transitioning from state s to s′ when the set
of actions ~a are taken by the agents, R, a reward function:
R(s,~a), the immediate reward for being in state s and taking
the set of actions ~a, Ωi, a finite set of observations for each
agent, i, and O, a set of observation probabilities: O(~o|s′,~a),
the probability of seeing the set of observations ~o given the
set of actions ~a was taken which results in state s′.

A DEC-POMDP involves multiple agents that operate un-
der uncertainty based on different streams of observations.
An infinite-horizon DEC-POMDP unfolds over an infinite se-
quence of stages. At each stage, every agent chooses an ac-
tion based purely on its local observations, resulting in an
immediate reward for the set of agents and an observation for
each individual agent. Because the state is not directly ob-
served, it may be beneficial for each agent to remember its
observation history. A local policy for an agent is a mapping
from local observation histories to actions while a joint pol-
icy is a set of policies, one for each agent in the problem. The
goal is to maximize the infinite-horizon total cumulative re-
ward, beginning at some initial distribution over states b0. A
discount factor, γ, is used to maintain finite sums.

As an elegant way to represent infinite-horizon solutions,
stochastic finite-state controllers can be used. Controllers are
natural infinite-horizon representations and stochasticity al-
lows better use of finite memory. Each controller can for-
mally be defined by the tuple 〈Q,ψ, η〉, where Q is the finite
set of controller nodes. The parameter ψ : Q → ∆A is the
action selection model for each node, which defines a proba-
bility that an action will be chosen in a given node. The pa-
rameter η : Q×A×O → ∆Q represents the node transition
model for each node. This provides the probability of tran-
sitioning from one node to another after an action has been
taken and an observation has been seen. For n agents, the
value for being at nodes ~q and state s is

V (~q, s) =
∑
~a

n∏
i

P (ai|qi)
[
R(s,~a) + γ

∑
s′

P (s′|~a, s)

∑
~o

O(~o|s′,~a)
∑
~q′

n∏
i

P (q′i|qi, ai, oi)V (~q′, s′)
]

These values can be calculated offline in order to find con-
trollers that can be executed online for distributed control.

2.2 Policy iteration for DEC-POMDPs
Recently, an ε-optimal algorithm for solving infinite-horizon
DEC-POMDPs has been developed [Bernstein et al., 2008].
This approach is an extension of policy iteration for POMDPs

[Hansen, 1998] to the multiagent case. The algorithm alter-
nates between improving the controllers of a set of agents
and evaluating them. Each agent begins with an arbitrary
one node controller. In the improvement phase, an exhaustive
backup adds new nodes to each agent’s controller that rep-
resent all possible initial actions and after each observation
is seen, deterministic transitions into the current controller.
Evaluation is then conducted for each possible state of the
system and each possible choice of initial nodes for the set
of agents. Nodes that have lower value for all states of the
problem and initial nodes of the other agents are then pruned.

The linear program used to determine dominated nodes
maximizes the variable ε given:
∀s, q−i V (s, qi, q−i) + ε ≤

∑
q̂i

x(q̂i)V (s, q̂i, q−i)

where the variable x(q̂i) represents the probability of begin-
ning in node q̂i rather than qi for agent i. Constraints are also
added to ensure x(q̂i) is a proper probability. Thus, for a node
qi if ε is nonnegative, then qi can be replaced with the distri-
bution of nodes given by x and value is at least maintained
for each state and initial node of the other agents. After tran-
sitions to the pruned nodes are redirected to the dominating
distribution, the updated controller is evaluated and pruning
continues until no agent can remove further nodes. Back-
ups and pruning are conducted until the the value no longer
changes due to to discounting. This assures the process will
converge in a finite number of steps to a solution within ε of
optimal for any initial state.

3 Incremental policy generation
One of the major bottlenecks of policy iteration is the large
memory use due to exhaustive backups. If policies for the
agents can be generated without first exhaustively generating
all next step possibilities, the algorithm would become more
scalable. Methods such as incremental pruning [Cassandra
et al., 1997] have been developed for POMDPs to combat
this problem, but they cannot be directly extended to DEC-
POMDPs. This is due to the fact that the state of the problem
and the value of an agent’s policy depend on the policies of
all agents, requiring all next step policies for the other agents
to be known before incremental pruning could be applied.

As an alternative, we build up the policies for each agent by
using a one-step reachability analysis. After an agent chooses
an action and sees an observation, the agent may not know the
state of the world, but it can often determine which states are
possible given the current information. For instance, assume
an agent has an observation in which a wall is perfectly ob-
served when it is to the left or right. If the agent sees the wall
on the right, it may not know the exact state it is in, but it can
limit the possibilities to those states with walls on the right.
Likewise, in the commonly used two agent tiger domain [Nair
et al., 2003], after an agent opens a door, the problem tran-
sitions back to the start state of the tiger equally likely to be
located behind either door. Thus, after an open action is per-
formed, the agent knows the exact state of the world.

So, how can we use this information? One way is to limit
the policies that are generated during policy iteration. By us-
ing the state information provided by taking an action and

Algorithm 1: Incremental policy generation
input : A set controllers for all agents, C and an agent index, i
output: A backed up controller for the given agent, C′i
begin

for each action, a do
for each observation, o do

S′ ← possibleStates(a, o)
Ca,o

i ← usefulTrans(S′, C)

Ca
i ← ⊕oC

a,o
i

C′i ← ∪aCa
i

return C′i
end

seeing an observation, these polices do not need to be built
up exhaustively. Instead, we can determine which states are
possible after an agent chooses an action and sees an observa-
tion. Only subpolicies that are useful for the resulting states
need to be considered for that action and observation pair.

We first discuss determining which states are possible after
an action is taken and an observation seen. We then describe
the incremental policy generation algorithm in more detail,
including proof that it will provide an ε-optimal solution.

3.1 Limiting the state
Any agent can calculate the possible states that result from
taking an action and seeing an observation. To determine this
next state exactly, the agent would generally need to know the
probability of the previous state and of the agents selecting
distributions of actions. Since we do not assume the agents
possess this information, the exact state can only be known
in some circumstances, but the set of possible next states can
often be limited.

For instance, given probability of the current state and that
other agents will choose actions, P (~a−i, s|ai), then the prob-
ability of a resulting state s′ after agent i chooses action ai

and observes oi is determined by,

P (s′|ai, oi) =

P
~a−i,~o−i,s P (~o|s,~a, s′)P (s′|s,~a)P (~a−i, s|ai)

P (oi|ai)
(1)

where the normalizing factor is:

P (oi|ai) =
∑

~a−i,~o−i,s,s′

P (~o|s,~a, s′)P (s′|s,~a)P (~a−i, s|ai).

Thus, to determine all possible next states for a given action
and observation, we can assume P (~a−i, s|ai) is a uniform
distribution and retain any state s′ which has a positive prob-
ability. We will call the set of possible successor states S′.

When P (oi|s,~a, s′)P (s′|~a, s) is constant for the given ai

and oi, then it does not depend on the state or other agents’ ac-
tions. Thus,

∑
~a−i,s

P (~a−i, s|ai) = 1 and the state is known
by:

P (s′|ai, oi) =
P (oi|s,~a, s′)P (s′|s,~a)∑
s′ P (oi|s,~a, s′)P (s′|s,~a)

3.2 Algorithmic approach
Our approach is summarized in Algorithm 1. We describe it
from an infinite-horizon perspective, but the same approach

Figure 1: Example of (a) limiting states after actions are chosen
and observations seen and (b) pruning with reduced states.

can be used in finite-horizon dynamic programming. For each
agent, i, assume we have a controller Ci. We can create a
backed up controller, C ′i, by first choosing an action. Assum-
ing we start with action a we need to decide which node in C
to choose after seeing each observation. Rather than adding
all possibilities fromCi as is done in the exhaustive approach,
we only transition to nodes that are useful for some distribu-
tion over possible successor states s′ and initial nodes of the
other agents. That is, for two agents, agent i’s node p is re-
tained if the value of choosing p is higher than choosing any
other node for some distribution of other agent nodes, q and
next states of the system s′. This is formulated as:∑

q,s′

x(q, s′)V (p, q, s′) >
∑
q,s′

x(q, s′)V (p̂, q, s′) ∀ p̂

where x(q, s′) is a distribution over nodes of the other agent
and successor states, p, p̂ ∈ C1, q ∈ C2 and s′ ∈ S′. Thus,
we limit the possibilities after taking action a and seeing ob-
servation o to those nodes that are useful for some such dis-
tribution. The set of nodes that we retain for the given action
and observation for agent i we will call Ca,o

i .
After generating all useful nodes for each observation with

a fixed action, we can conduct a backup for that action. This
is accomplished by creating all possible nodes which begin
with the fixed action, a, followed by choosing any node from
the set Ca,o

i after o has been observed. The resulting num-
ber of nodes for agent i at this step is

∏
o |C

a,o
i |. In contrast,

exhaustive generation would produce |Ci||Ω| nodes. Once all
nodes for each action have been generated, we take the union
of the sets for each action to get the backed up controller for
the agent. We are then able to evaluate the backed up con-
trollers and prune dominated nodes in the same way as de-
scribed for policy iteration. Pruning may further reduce the
number of nodes retained and increase their value.

Example An illustration of the incremental policy genera-
tion approach is given in Figure 1. The algorithm (a) first
determines which states are possible after a given action has
been taken and each observation has been seen. After action
a1 is taken and o1 is seen, states s1 and s2 are both possible,
but after o2 is seen, only s1 is possible. Then, (b) the values
of the nodes from the previous step are determined for each
resulting state and each node for the other agents.

The dimension of the value vectors of the nodes is the same
as the number of states in the system times the number of

possible policies for the other agents. To clarify the illustra-
tion, we assume there is only one possible policy for the other
agents and two states in the domain. As seen in the figure,
when both states are considered, all nodes are useful for some
possible state distribution. When only state 1 is possible, only
p1 is useful. This allows both p2 and p3 to be pruned for this
combination of a1 and o2, reducing the number of possibili-
ties to 1. Because there are still 3 useful subpolicies for the
combination of a1 and o1, the total number of possible nodes
starting with action a1 is 3. This can be contrasted with the 9
nodes that are possible using exhaustive generation.

3.3 Analysis
We first show that using incremental policy generation, only
nodes that would be pruned after exhaustive generation are
not added to the set of possible next nodes, Ca,o

i .

Lemma 3.1. Any node that is is not added by the incremen-
tal pruning algorithm is dominated by some distribution of
backed up nodes.

Proof. We will show that if node p transitions to some node in
the previous controller which is not included by the incremen-
tal policy generation algorithm, then p must be dominated by
some distribution of nodes p̂. For two agents, this is deter-
mined by: V (p, q, s) ≤

∑
p̂

x(p̂)V (p̂, q, s) ∀q, s

Intuitively, this proof is based on the fact that all reachable
next states and all possible next step policies for the other
agents are considered before removing a policy. We will
prove this for two agents, but this proof can easily be gen-
eralized to any number of agents.

Consider the set of nodes generated for agent 1 by start-
ing with action a. If observation, oj

1 was seen, where poj
1

was not included in our set Cap,oj
1 , then we show that p must

be dominated by the set of nodes that are identical to p ex-
cept instead of choosing poj

1
, some distribution over nodes in

Cap,oj
1 is transitioned to instead. We will abbreviate poj

1
by p′

to simplify the notation.
Because p′ was not included in Cap,oj

1 we know there is
some distribution of nodes inC1that dominates it for all nodes
in C2 and at the subset of states that are possible after choos-
ing action ap and observing o1.

V (p′, q′, s′) ≤
∑
p̂′

x(p̂′)V (p̂′, q′, s′) ∀ q′, s′ (2)

Given this distribution x(p̂′) we can create a probability
distribution over nodes which chooses the nodes of p̂′ when
oj

1 is seen, but otherwise transitions to the same nodes that are
used by p. The value of this policy is given by
R(ap, aq, s) + γ

∑
s′

P (s′|ap, aq, s)∑
o1,o2

P (o1, o2|ap, aq, s
′)
∑

p̂′ x(p̂′, o1)V (po1 , qo2 , s
′)

Because the nodes are otherwise the same, from the
inequality in Equation 2, we know that

R(ap, aq, s) + γ
∑
s′

P (s′|ap, aq, s)
∑
o1,o2

P (o1, o2|ap, aq, s
′)V (po1 , qo2 , s

′) ≥

R(ap, aq, s) + γ
∑
s′

P (s′|ap, aq, s)
∑
o1,o2

P (o1, o2|ap, aq, s
′)
∑
p̂′

x(p̂′, o1)V (po1 , qo2 , s
′)

This holds for for any s and q because Equation 2 holds for
any initial state or node of the other agent.

This can also be viewed as a distribution of nodes, x(p̂),
one for each different node that is transitioned to with positive
probability in x(p̂′). Thus, the value of the original node p is
less than or equal to the value of the distribution of nodes for
all q and s. That is,
R(ap, aq, s) + γ

∑
s′

P (s′|ap, aq, s)∑
o1,o2

P (o1, o2|ap, aq, s
′)V (po1 , qo2 , s

′)

≤
∑

p̂

x(p̂)

[
R(ap̂, aq, s) + γ

∑
s′

P (s′|ap̂, aq, s)∑
o1,o2

P (o1, o2|ap̂, aq, s
′)V (p̂o1 , qo2 , s

′)

]

or V (p, q, s) ≤
∑

p̂

x(p̂)V (p̂, q, s) ∀q, s

Theorem 3.2. The incremental policy generation algorithm
returns an ε-optimal infinite-horizon solution for any initial
state after a finite number of steps.

Proof. This proof follows from Theorem 2 in [Bernstein et
al., 2008], which states that policy iteration converges to an
ε-optimal controller. This is due to the use of a discount fac-
tor, which ensures that after some finite number of steps, the
value of a policy will not change more than some ε. Thus,
if enough steps of dynamic programming are performed and
all policies that could contribute to the optimal policy are re-
tained, some set of initial nodes will approach the optimal
value. The pruning steps are shown to not harm this conver-
gence and Lemma 3.1 shows that nodes that are not generated
by incremental policy generation would by pruned in policy
iteration. Also, it is obvious that our approach generates all
undominated nodes. Thus, the incremental policy generation
algorithm can also provide ε-optimal infinite-horizon policies
in a finite number of steps.

4 Heuristic incremental generation
In order to improve the scalability of the incremental policy
generation algorithm, we have developed a heuristic version.
While this algorithm can no longer guarantee ε-optimality is
achieved, in general many more backups can be completed.
This can result in higher valued solutions being produced. An
overview of this approach is provided in Algorithm 2.

Our heuristic algorithm proceeds the same way as the opti-
mal approach by using dynamic programming to improve the
value of an initial solution. On each step, we generate a set

Algorithm 2: Heuristic incremental policy generation
input : A set controllers for all agents, C, and a desired

number of points, m

output: A set of backed up controllers, Ĉ′

begin
P ← pointSet(C, m)
for each agent, i do

C′i ← incrPolGen(C, i)

C′ ← ∪iĈ
′
i

for each belief point, p do
Ĉ′p ← bestSet(C′, p)

Ĉ′ ← ∪pĈ′p
Ĉ′ ← prune(Ĉ′)

return Ĉ′

end

of belief states (state probability distributions) using action
probabilities from the agents’ current controllers. We then
backup the controllers using incremental policy generation.
Finally, we retain only those nodes that are part of the best set
of controllers for each point.

4.1 Algorithmic approach
Due to uncertainty in local observations and about the other
agent’s polices, the agents will not know what the actual state
of the problem, but during execution, only a small part of the
state space may be visited. By sampling in this space, many
more nodes can be eliminated that are not required for a high
valued solution. This allows the policy to be focused on states
that are reachable given the current policies of the agents.

To generate a set of belief points for the agents, we
first estimate the probability of each agent’s action given
the states of the problem, P̂ (ai|s). This is accomplished
by estimating the probability that the node of an agent’s
controller is q given that the current state is s, P̂ (qi|s).
This is found by examining the probability the agent be-
gins in the given node and state or the likelihood it tran-
sitions to the node and state later in the problem as
determined by P̂ (ai|s) =

∑
qi
P (ai|qi)P̂ (qi|s), where

P̂ (qi, s) = p0(q′i, s
′) + γ

∑
s,ai

P (s′|s, ai)
∑

oi
P (oi|s′, ai)∑

q P (ai|qi)P (q′i|qi, ai, oi)P̂ (qi, s) with p0(qi, s) defined as
the initial probably of node qi and state s. The transition and
observation models are estimated for each agent by choosing
random actions for the other agents in the decentralized mod-
els. This quantity can then be normalized to produce P̂ (qi|s).

Once we have an estimate of the probabilities of other
agent’s actions at each state, we can determine the result-
ing state distributions for each action taken and observation
seen. The probability of state s′, given the belief state b, and
agent i’s action ai and observation oi, P (s′|ai, oi, b), is then
given by Equation 1 with a normalizing factor of P (oi|ai, b).
Thus, given the action probabilities for the other agents, and
the transition and observation models of the system, a belief
state update can be calculated.

Starting with the initial problem state, a set of belief points
can then be generated. Once this occurs, the current controller

Two Agent Tiger, |S| = 2, |Ai| = 3, |Ωi| = 2
Iter. Policy Iteration Incremental Generation Value

0 1 in < 1s 1 in <1s -150
1 (3) 3 in <1s 3 in <1s -137
2 (27) 15 in 1s 15 <1s -117.85
3 (675) 255 in 465s 255 in 70s -98.90
4 x (65535)* in 3057s -90.54

Recycling Robots, |S| = 4, |Ai| = 3, |Ωi| = 2
Iter. Policy Iteration Incremental Generation Value

0 1 in < 1s 1 in < 1s 0
1 (3) 3 in < 1s 3 in < 1s 3.01
2 (27) 6 in 1s (8) 6 in < 1s 25.66
3 (108) 20 in 6s 20 in 1s 26.04
4 (1200) 72 in 542s 72 in 6s 26.69
5 (15552)* in 869s 272 in 201s 27.20
6 x (1092) 1058 in 5016s 27.67
7 x (4759)* in 5918s 28.10

Box Pushing, |S| = 100, |Ai| = 4, |Ωi| = 5
Iter. Policy Iteration Incremental Generation Value

0 1 in < 1s 1 in < 1s -2
1 (4) 2 in 2s 2 in 1s -2
2 (128) 9 in 209s 9 in 7s 12.84
3 x (137,137) 131,128 in 4501s 67.87

Table 1: Results of applying policy iteration and incremental policy
generation (IPG) to the test problems. The number of nodes gener-
ated is shown in parentheses beside the number retained after prun-
ing and iterations for which pruning could not be completed with the
given amount of time and memory are marked with *.

can be backed up using incremental policy generation. After
this, instead of retaining all nodes that are produced, only
those that contribute to the solution with the highest value
for each point are retained. This allows many more nodes to
be removed at each step while focusing the solution on the
states that are reached by the agents’ policies. Finally, prun-
ing dominated nodes is conducted as described for policy iter-
ation. The process of generating a new set of points, backing
up the controller and retaining the best nodes continues until
the agents’ controllers no longer change.

5 Experiments
We present results comparing policy iteration with incremen-
tal policy generation on a set of infinite-horizon problems.
These problems are the two agent tiger [Nair et al., 2003],
the recycling robot [Amato et al., 2007] and the box push-
ing [Seuken and Zilberstein, 2007] domains. The incremental
policy generation results also make use of observation com-
pression, which merges observations that provide the same
information. For instance in the tiger problem after open-
ing a door, each observation is possible, but they are cho-
sen randomly. These observations provide the same infor-
mation and thus, can be merged. More formally, two of
agent i’s observations o1

i and o2
i are the same for a given ac-

tion ai if for each set of other agent actions a−i, s and s’
P (o1

i |s, ai, a−i, s
′) = P (o2

i |s, ai, a−i, s
′).

The results are shown in Table 1. Each algorithm was
run until the given memory (2GB) or time (4 hours) was ex-
hausted and the number of nodes in each agent’s controller,
the running time and the resulting value are provided. If the
number of nodes generated was greater than the number re-

Figure 2: Comparison of the heuristic and optimal incremental policy generation algorithms on the two agent tiger, recycling robot and the
box pushing problems.

tained after pruning was completed, the size after generation
is given in parentheses. If the given number of iterations
could not be completed, an ‘x’ is displayed. The initial poli-
cies for each algorithm consisted of each agent repeating the
‘open left’ action in the tiger problem, the ‘pick up large can’
action in the recycling robots problem and the ‘turn left’ ac-
tion in the box pushing problem.

It can be seen that the incremental policy generation ap-
proach requires less time on each dynamic programming iter-
ation and allows more iterations to be completed. This results
in higher solution values for the incremental approach. The
results also show that the incremental approach often gen-
erates the exact same controllers without the need for prun-
ing. That is, while policy iteration produces a large number
of nodes and then prunes many of them, the incremental ap-
proach arrives at the same controller without the added mem-
ory of generating an exhaustive set of nodes or the extra time
needed for pruning these nodes. Even when nodes are re-
moved in the incremental case, only a small number need to
be pruned.

The comparison with the heuristic approach is shown in
Figure 2 with incremental policy generation listed as IPG and
the heuristic version listed as HIPG. Due to randomness in
point generation, the heuristic algorithm was run 10 times and
mean values are reported. The maximum and minimum val-
ues for each iteration are shown with bars. Also, the number
of points used for each problem was 20.

Using the heuristic approach, value is improved in each
problem. In the tiger problem, the same value as optimal ap-
proach is found for the first few steps, but increased value can
be found due to better scalability. In the recycling robot prob-
lem, a higher valued solution is more quickly found and con-
verged to, while the optimal approach cannot reach that value
before resources are exhausted. Lastly, in the box pushing
problem, the two algorithms alternate between producing the
highest value, but due to increased scalability, the heuristic
approach eventually outperforms the optimal approach.

6 Conclusion
In this paper, we introduced the incremental policy generation
approach. This is a more efficient way to produce ε-optimal
solutions for infinite-horizon DEC-POMDPs. We proved the
optimality guarantee and showed that our method is more

scalable than Bernstein et. al’s policy iteration algorithm. As
a result of this increased scalability, we demonstrated that in-
cremental policy generation can provide higher quality solu-
tions. We also presented an approximate version of our ap-
proach and showed that it is able to produce further solution
quality gains on a set of test problems.

Interestingly, the incremental policy generation method
is quite general and can be incorporated into other solu-
tion methods. For instance, incremental policy generation
could be used to improve the efficiency of the optimal finite-
horizon algorithm [Hansen et al., 2004]. Also, our approach
can easily be incorporated into the state-of-the-art finite-
horizon approximate algorithm, IMBDP [Seuken and Zilber-
stein, 2007]. This would likely improve the performance of
IMBDP, allowing larger problems to be solved and produc-
ing high valued solutions. We plan to explore these research
avenues in the future.

References
[Amato et al., 2007] Christopher Amato, Daniel S. Bernstein, and

Shlomo Zilberstein. Optimizing memory-bounded controllers
for decentralized POMDPs. In Proceedings of the Twenty-Third
Conference on Uncertainty in Artificial Intelligence, Vancouver,
Canada, 2007.

[Bernstein et al., 2005] Daniel S. Bernstein, Eric Hansen, and
Shlomo Zilberstein. Bounded policy iteration for decentralized
POMDPs. In Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, pages 1287–1292, Edin-
burgh, Scotland, 2005.

[Bernstein et al., 2008] Daniel S. Bernstein, Christopher Amato,
Eric A. Hansen, and Shlomo Zilberstein. Policy iteration for
decentralized control of Markov decision processes. Technical
Report UM-CS-2008-044, University of Massachusetts, Depart-
ment of Computer Science, Amherst, MA, 2008.

[Cassandra et al., 1997] Anthony Cassandra, Michael L. Littman,
and Nevin L. Zhang. Incremental pruning: A simple, fast, ex-
act method for partially observable Markov decision processes.
In Proceedings of the Thirteenth Conference on Uncertainty in
Artificial Intelligence, San Francisco, CA, 1997.

[Hansen et al., 2004] Eric A. Hansen, Daniel S. Bernstein, and
Shlomo Zilberstein. Dynamic programming for partially observ-
able stochastic games. In Proceedings of the Nineteenth National
Conference on Artificial Intelligence, pages 709–715, San Jose,
CA, 2004.

[Hansen, 1998] Eric A. Hansen. Solving POMDPs by searching in
policy space. In Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence, pages 211–219, Madison,
WI, 1998.

[Nair et al., 2003] Ranjit Nair, David Pynadath, Makoto Yokoo,
Milind Tambe, and Stacy Marsella. Taming decentralized
POMDPs: Towards efficient policy computation for multiagent
settings. In Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, pages 705–711, Acapulco,
Mexico, 2003.

[Seuken and Zilberstein, 2007] Sven Seuken and Shlomo Zilber-
stein. Improved memory-bounded dynamic programming for
decentralized POMDPs. In Proceedings of the Twenty-Third
Conference on Uncertainty in Artificial Intelligence, Vancouver,
Canada, 2007.

[Szer and Charpillet, 2005] Daniel Szer and François Charpillet.
An optimal best-first search algorithm for solving infinite hori-
zon DEC-POMDPs. In Proceedings of the Sixteenth European
Conference on Machine Learning, Porto, Portugal, 2005.

