
Self-Organization for Coordinating Decentralized
Reinforcement Learning

Chongjie Zhang
Computer Science Department

University of Massachusetts Amherst

Victor Lesser
Computer Science Department

University of Massachusetts Amherst

Sherief Abdallah
Institute of Informatics

British University in Dubai
UMass Computer Science Technical Report UM-CS-2009-007

December 8, 2009

Abstract

Decentralized reinforcement learning (DRL) has been applied to a number of
distributed applications. However, one of the main challenges faced by DRL is its
convergence. Previous work has shown that hierarchically organizational control
is an effective way of coordinating DRL to improve its speed, quality, and like-
lihood of convergence. In this paper, we develop a distributed, negotiation-based
approach to dynamically forming such hierarchical organizations. To reduce the
complexity of coordinating DRL, our self-organization approach groups strongly-
interacting learning agents together, whose exploration strategies are coordinated
by one supervisor. We formalize this idea by characterizing interactions among
agents in a decentralized Markov Decision Process model and defining and an-
alyzing a measure that explicitly captures the strength of such interactions. Ex-
perimental results show that our dynamically evolving organizations outperform
predefined organizations for coordinating DRL.

1 Introduction
A collaborative multiagent system (MAS) consists of a group of agents that interact
with each other in order to optimize a global performance measure. Theoretically, the
underlying decision-making problem can be modeled as a decentralized Markov Deci-
sion Process (DEC-MDP) [1]. However, because of its complexity or the lack of access
to the transition or reward model, it is infeasible to generate an optimal solution offline,
except for the simplest cases. Distributed online learning provides an attractive, scal-
able, and approximate alternative, where each agent learns its policy based on its local
observations and rewards. Example applications include packet routing [2, 3], sensor

1

2. Report abstracted
states and rewards

5

6

7

8

9

4

3

1

2

1
3

5 7

4

9

6 8

Learning
Agent
Network

Supervisors

2

1. Generate abstracted
states and rewards

4. Pass down
supervisory information

3. Make decisions and create
supervisory information

5. Integrate supervisory
information

Figure 1: A supervision process of the organization-based control framework

networks [4, 5], distributed resource/task allocation [6, 7], peer-to-peer information
retrieval [8], and elevator scheduling [9].

However, due to non-stationary environment, communication delay between agents,
and partial observability, the convergence of decentralized reinforcement learning (DRL)
for realistic settings is challenging in terms of speed, quality, and likelihood. To deal
with issues of DRL convergence, previous work by Zhang et al [10] proposed a supervi-
sion framework that employed periodic organizational control to coordinate and guide
agents’ learning exploration. The framework defined a multi-level organizational struc-
ture and a communication protocol for exchanging information between lower-level
agents (or subordinates) and higher-level supervising agents (or supervisors) within an
organization. As shown in Figure 1, subordinates reported their abstract states and
rewards to their supervisors, which in turn generated and passed down supervisory in-
formation. The supervision framework also specified a supervisory policy adaptation
that integrated supervisory information into the learning process, guiding subordinates’
exploration of their state-action space. Empirical results demonstrated that hierarchi-
cally organizational control is an effective way of coordinating distributed learning to
improve its speed, quality, and likelihood of convergence [10].

The supervision framework proposed in [10] , however, suffered from a serious
limitation. The hierarchical organization, which formed the heart of the framework,
was assumed to be given and fixed. Addressing this limitation involves answering the
following questions: can supervisory organizations automatically form while agents
are concurrently learning their decision policies? do such dynamically evolving or-
ganizations perform better than static supervisory organizations? This paper makes a
twofold contribution. First, we formalize joint-event-driven interactions among agents
using a DEC-MDP model and define a measure for capturing the strength of such in-
teractions. Second, we develop a distributed self-organization approach, based on the
interaction measure, that dynamically adapts supervision organizations for coordinat-
ing DRL during the learning process. Unlike the work in [7], our self-organization
process does not change the connectivity of the original agent network, but form a
hierarchical supervisory organization on top of it. The key problem of the organiza-
tion adaptation is to decide which agents need to be clustered together so that their

2

exploration strategies can be coordinated. Our approach to this problem is inspired by
the concept of nearly decomposable systems [11], where interactions between subsys-
tems are generally weaker than interactions within subsystems. In order to improve
the quality and reduce the complexity of coordinating DRL, our approach attempts to
group agents together that strongly interact with each other. Unlike most of the previ-
ous work on self-organization (e.g., [12, 13]), our approach uses dynamic, rather than
static, information about agents’ behaviors based on their current state of learning. In
our approach, the organization adaptation and individual agents’ learning concurrently
progress and interact with each other. Experimental results show that our dynamically
evolving organizations outperform predefined organizations for coordinating DRL.

The rest of the paper is organized as follows. Section 2 reviews some background
knowledge. Section 3 develops a distributed self-organization approach for dynam-
ically evolving supervisory organizations to better coordinate DRL, and extends the
supervision framework [10] to integrate our approach. Section 4 empirically evaluates
our approach. Finally, Section 5 summarizes the contribution of this work.

2 Background
In this section, we review a DEC-MDP model to represent the sequential decision-
making problem in a collaborative MAS, and describe decentralized reinforcement
learning for solving such a problem, when there is no prior knowledge about the tran-
sition or reward function of the DEC-MDP model. The purpose of introducing this
model is to form a basis for characterizing and analyzing interactions between agents
in the following section. This section also describes an organization-based control
framework that improves the DRL performance.

2.1 Average-Reward, Factored DEC-MDP
We use factored DEC-MDP [14] to model the multiagent sequential decision-making
problem in a collaborative MAS. Many online optimization problems in distributed
systems, such as distributed resource allocation [6] and target tracking [15], can be
approximately represented by this model.

Definition 1. An n-agent factored DEC-MDP is defined by a tuple 〈S,A, T,R〉, where
• S = S1 × · · · × Sn is a finite set of world states, where Si is the state space of

agent i
• A = A1 × · · · × An is a finite set of joint actions, where Ai is the action set for

agent i
• T : S × A × S → < is the transition function. T (s′|s,a) is the probability of

transiting to the next state s′ after a joint action a ∈ A is taken by agents in state
s

• R = {R1, R2, . . . , Rn} is a set of reward functions. Ri : S × A → < provides
agent i with an individual reward ri ∈ Ri(s,a) for taking action a in state s.
The global reward is the sum of all local rewards: R(s,a) =

∑n
i=1 Ri(s,a)

A policy π : S×A → < is a function which returns the probability of taking action
a ∈ A for any given state s ∈ S. Similar to [16], the value function for a policy π is
defined relative to the average expected reward per time step under the policy:

ρ(π) = lim
N→∞

1
N

E[
N−1∑
t=0

R(st,at)|π] (1)

3

where the expectation operator E(·) averages over stochastic transitions and st and at

are the global state and the action taken at time t, respectively. The optimal policy is a
policy that yields the maximum value ρ(π).

Factoring the state space of a collaborative MAS can be done in many ways. The
intention of such a factorization is decompose the world state into components, some
of which belong to one agent versus others. This decomposition does not have to be
strict and some components of the world state can be included in local states of multiple
agents. In a collaborative MAS, each agent usually only observes its own local reward
and does not have access to the global reward signal.

Assume that the Markov chain of states under policy π is ergodic. The expected
reward ρ(π) then does not depend on the starting state. Let p(s|π) be the probability of
being in state s under the policy π, which can be calculated as the average probability
of being in state s at each time step over the infinite execution sequence:

p(s|π) = lim
N→∞

1
N

N−1∑
t=0

P (st = s) (2)

Lemma 1. Suppose R(s) is the global reward function. Then the value of policy π is

ρ(π) =
∑

s∈S

p(s|π)
∑

a∈A

π(s,a)R(s,a) (3)

The lemma follows immediately from Equation 2 and the definition of the policy
value in Equation 1 based on the assumption that the state process is ergodic.

2.2 Decentralized Reinforcement Learning
Decentralized reinforcement learning (DRL) is concerned with how an agent learns a
policy, using partially-observable state information, to maximize a partially-observable
system reward function in presence of other agents, who are also learning a policy
under the same conditions. DRL is used to learn efficient approximate policies for
agents in a factored DEC-MDP environment, especially when the transition and reward
function is unknown. Each agent learns its local policy based on its local observation
and reward. The local policy πi : Si × Ai → < for agent i returns the probability of
taking action ai ∈ Ai in local state si ∈ Si. As each agent only observes local reward
signals, the value function of a local policy πi of agent i is defined as:

ρi(πi) = lim
N→∞

1
N

E[
N−1∑
t=0

rt
i |πi] (4)

where the expectation operator E(·) averages over stochastic transitions and nondeter-
ministic rewards and rt

i is the local reward received at time t. Because, in the DEC-
MDP model, the local reward rt

i = Ri(st) depends on the global state st, it appears
nondeterministic from the local perspective. The objective of agent i is to learn an
optimal policy π∗i to maximize ρi(πi).

If, given a joint policy, the chain of global states is ergodic, so is the chain of local
states. Similar to equation 2, we define p(si|π) as the probability of being in local state
si under the joint policy π. Similar to Lemma 1, we can also reformulate the value
function of the local policy.

4

Lemma 2. Suppose E[ri(si)|π] is the expected local reward of taking action ai in state
si given a joint policy π.

ρi(πi|π−i) =
∑

si∈Si

p(si|π)
∑

ai∈Ai

πi(si, ai)E[ri(si, ai)|π], (5)

where p(si|π) as the probability of being in local state si under the joint policy π and
π−i is the set of policies of all agents except agent i.

Although each agent has its own action space, state space, and local rewards, its
local model is not Markovian, because the model’s transition function and reward func-
tion depends on states and actions of other agents. The standard proof for convergence
and optimality of reinforcement learning does not hold anymore for DRL. But this is-
sue seems not to prevent the development of useful systems using DRL. This is because
of not only its simplicity and scalability, but also its effectiveness in some real practical
problems. The following theorem plausibly explains the applicability of DRL.

Lemma 3. The value of a joint policy is the sum of the values of local policies, that is,

ρ(π) =
∑

i

ρi(πi|π−i), (6)

where the joint policy π = (π1, . . . , πn) and π−i is the set of policies of all agents
except agent i.

This lemma can directly be proved by using the definition of factored DEC-MDP
model and value functions of both joint and local policies. As the value of a joint policy
is the sum of the value of local policies of distributed learners, an agent’s attempt to
maximize its local objective function can potentially improve the global system perfor-
mance. The assumption that policies of other agents are fixed when an agent is learning
can usually be relaxed in practical applications, for example, when highly interdepen-
dent agents do not frequently update their policies concurrently.

These general propositions developed in this section and previous section will be
used to understand more directly how interactions of agents’ policies affect the local
and global performance.

2.3 Organization-Based Control Framework For Supervising DRL
Many realistic settings have a large number of agents and communication delay be-
tween agents. To achive scalability, each agent can only interact with its neighboring
agents and has a limited and outdated view of the system (due to communication de-
lay). In addition, using DRL, agents learn concurrently and the environment becomes
non-stationary from the perspective of an individual agent. As shown in [10], DRL
may converge slowly, converge to inferior equilibria, or even diverge in realistic set-
tings. To address these issues, a supervision framework was proposed in [10]. This
framework employed low-overhead, periodic organizational control to coordinate and
guide agents’ exploration during the learning process.

The supervisory organization has a multi-level structure. Each level is an overlay
network. Agents are clustered and each cluster is supervised by one supervisor. Two
supervisors are linked if their clusters are adjacent. Figure 1 shows a two-level orga-
nization, where the low-level is the network of learning agent and the high-level is the
supervisor network.

5

The supervision process contains two iterative activities: information gathering
and supervisory control. During the information gathering phase, each learning agent
records its execution sequence and associated rewards and does not communicate with
its supervisor. After a period of time, agents move to the supervisory control phase.
As shown in Figure 1, during this phase, each agent generates an abstracted state pro-
jected from its execution sequence over the last period of time and then reports it with
an average reward to its cluster supervisors. After receiving abstracted states of its
subordinate agents, a supervisor generates and sends an abstracted state of its cluster to
neighboring supervisors. Based on abstracted states of its local cluster and neighboring
clusters, each supervisor generates and passes down supervisory information, which is
incorporated into the learning of subordinates and guides them to collectively learn
their policies until new supervisory information arrives. After integrating supervisory
information, agents move back to the information gathering phase and the process re-
peats.

To limit communication overhead, learning agents report their activities through
their abstracted states. The abstract state of a learning agent captures its slow dynamics.
It can be defined by features that are projected from fast-dynamics features, such as
visited local states, local policy, or interactions with other agents, by using various
techniques (e.g., averaging over the temporal scale). Similarly, abstracted states of a
cluster based capture its slow dynamics, which can be projected from abstracted states
of its members.

A supervisor uses rules and suggestions to transmit its supervisory information to
its subordinates. A rule is defined as a tuple 〈c, F 〉, where

• c: a condition specifying a set of satisfied states
• F : a set of forbidden actions for states specified by c

A suggestion is defined as a tuple 〈c, A, d〉, where
• c: a condition specifying a set of satisfied states
• A: a set of actions
• d: the suggestion degree, whose range is [−1, 1]

Rules are “hard” constraints on subordinates’ behavior. Suggestions are “soft” con-
straints and allow a supervisor to express its preference for subordinates’ behavior. A
suggestion with a negative degree, called a negative suggestion, urges a subordinate
not to do the specified actions. In contrast, a suggestion with a positive degree, called
a positive suggestion, encourages a subordinate to do the specified action. The greater
the absolute value of the suggestion degree, the stronger the suggestion.

Each learning agent uses the framework’s supervisory policy adaptation to inte-
grate rules and suggestions into its policy learned by a normal multiagent learning
algorithm and generate an adapted policy. This adapted policy is intended to coordi-
nate the agent’s exploration with others. Rules are used to prune the state-action space.
Suggestions bias an agent’s exploration. If an agent’s local policy agrees with its su-
pervisor’s suggestions, it is going to change its local policy very little; otherwise, it
follows the supervisor’s suggestions and makes a more significant change to its local
policy. More formally, the integration works as follows:

πA(s, a) =





0 if R(s, a) 6= ∅
π(s, a) + π(s, a) ∗ η(s)

∗ deg(s, a) else if deg(s, a) ≤ 0
π(s, a) + (1− π(s, a))

∗ η(s) ∗ deg(s, a) else if deg(s, a) > 0

6

where πA is the adapted policy, π is the learning policy, R(s, a) is a set of rules ap-
plicable to state s and action a, deg(s, a) is the degree of the satisfied suggestion, and
η(s) ranges from [0, 1] and determines the receptivity for suggestions.

This supervision framework utilizes a hierarchy of control and data abstraction,
which is conceptually different from existing hierarchical multi-agent learning algo-
rithms that use a hierarchy of task abstraction. Unlike conventional heuristic ap-
proaches, this framework dynamically generates distributed supervisory heuristics based
on partially global views to coordinate agents’ learning. Supervisory heuristics guides
the learning exploration without affecting policy update. In principle, the framework
can work with any multi-agent learning algorithms. However, the supervision frame-
work described in [10] did not specify how to automatically construct proper hierarchi-
cal supervision organizations, which is the specific limitation addressed by this paper.

3 Supervisory Organization Formation
This section describes our approach to dynamically evolving a hierarchical supervisory
organization for better coordinating DRL when agents are concurrently learning their
decision policies. Organization formation is best described via answering two ques-
tions: how agent clusters are formed, and how a cluster supervisor is selected. Our
approach adopts a relatively simple strategy for supervisor selection. Each cluster se-
lects an agent as its supervisor that minimizes the communication overhead between
supervisors and their subordinates. A new supervisor then establishes connections to
supervisors of neighboring clusters based on the connectivity of their subordinates.

Agent clustering is to decide what agents should be grouped together so that their
learning exploration strategies can be better coordinated by one supervisor. Because of
limited resources of computation and communication, it is usually not feasible to put
all agents together and use a fully centralized coordination mechanism. To deal with
bounded resources and maintain satisficing performance of coordination, our clustering
strategy is to cluster highly interdependent agents together, whose interactions have
a great impact on the system performance, and meanwhile to minimize interactions
across clusters. Thus the resulting system has a nearly decomposable, hierarchical
structure, which reduces the complexity of coordinating DRL in a distributed way.

To measure the interdependency between agents, we characterize a type of interac-
tions among agents, called joint-event-driven interactions, in a DEC-MDP model. We
also define a measure for the strength of such interactions, called gain of interactions,
and analyze how interactions between agents contribute to the system performance by
using this measure. Based on this measure, we then propose a distributed, negotiation-
based agent clustering algorithm to form a nearly decomposable organization structure.
Finally, we discuss how to extend supervision framework proposed in [10] to inte-
grate our self-organization approach. For clarity, this paper focuses the discussion on
forming a two-level hierarchy. Our organization formation approach can be iteratively
applied in order to form a multi-level hierarchy.

3.1 Joint-Event-Driven Interactions
Definition 2. A primitive event ej = 〈sj , aj〉 generated by agent j is a tuple that
includes a state and an action on that state. A joint event ~eX = 〈ej1 , ej2 , . . . , ejh

〉
contains a set of primitive events generated by agents X = {j1, j2, . . . , jh}. A joint
event ~eX occurs iff all of its primitive events occur.

7

Note that our definition of a joint event is different from that of an event in [17],
where an event occurs if any one of its primitive events occurs. For brevity, events dis-
cussed in this paper refer to joint events. An event is used to capture the fact that some
agents did some specific activities. A primitive event can be generated by either an
agent or the external environment. For convenience, we treat the external environment
as an agent.

Definition 3. A joint-event-driven interaction iXj = 〈~eX , ej〉 from a set of agents
X onto agent j is a tuple that includes a joint event ~eX and a primitive event ej . A
joint-event-driven interaction iXj is effective iff the event ~eX affects the distribution
over the resulting state of event ej , that is, ∃sj ∈ Sj such that p(st+1

j = sj |et
j = ej) 6=

p(st+1
j = sj |et

j = ej , ~e
t
X = ~eX), where t is the time.

Here we define an interaction between agents as an affecting relationship, which
is uni-directional. An effective interaction on an agent basically changes its transition
function. If there exists an effective interaction 〈〈eX〉, ej〉, then we say that agents X
effectively interact with agent j.

Now we define a measure for the strength of interactions among agents. Let Ej
X =

{~eX |∃ej ∈ Sj ×Aj such that interaction 〈~eX , ej〉 is effective} be all joint events gen-
erated by a set of agents X that effectively interact with agent j. Let Vj(sj |π) =∑

aj
πj(sj , aj)E[rj(sj , aj)|π] be the expected value of being in state sj , where πj is

the policy of agent j, and E[rj(sj , aj)|π] is the expected reward of executing action aj

in state sj .

Definition 4. The gain of interactions from a set of agents X to agent j, given a joint
policy π, is

g(X, j|π) =
∑

~eX∈Ej
X

p(~eX |π)
∑
sj

p(sj |~eX , π)Vj(sj |π),

where p(~eX |π) is the probability that event ~eX occurs and p(sj |~eX) is the probability
of being in state sj after ~eX occurs.

The value of the gain of interactions is affected by two factors: how frequently
agents effectively interact (reflecting on p(~eX |π)) and how well they are coordinated
(reflecting on

∑
sj

p(sj |~eX)Vj(sj |π)). For example, in our experiments of distributed
task allocation, if agents X frequently interact with agent j but they are not well co-
ordinated, then the value of g(X, j) tends to be a large negative value (all expected
rewards are negative). Here ill-coordination means that agents X frequently generate
events that cause agent j to be in states with low expected rewards. For instance, they
send tasks to agent j when it is overloaded.

Obviously, if agents X do not effectively interact with agent j, then g(X, j|π) = 0
(because Ej

X = ∅). Now let us show some properties of the gain of interactions.

Definition 5. Two nonempty disjoint agent sets X and Y are said to ε-mutually-
exclusively interact with agent j iff Ej

X = ∅∨Ej
Y = ∅∨∑

~eX∈Ej
X

∑
~eY ∈Ej

Y
p(st+1

j =

sj , ~e
t
X = ~eX , ~et

Y = ~eY) ≤ (1−ε)·min(
∑

~eX∈Ej
X

p(st+1
j = sj , ~e

t
X = ~eX),

∑
~eY ∈Ej

Y
p(st+1

j =
sj , ~e

t
Y = ~eY)), for all sj ∈ Sj .

Obviously, 0 ≤ ε ≤ 1. If X and Y 1-mutually-exclusively interact, also called
completely mutually exclusively interact, with agent j, then no two effective interac-
tions generated by X and Y , respectively, will simultaneously occur to affect the state

8

transition of agent j. In many applications [2, 4, 5, 7, 8], agents have such a type of
interactions. For example, in network routing [2], the state space is defined by the des-
tination of packages and each decision of an agent is triggered by one routing packet
sent by one agent, so any two agents completely mutually exclusively interact with any
third agent.

Now assume that ∀sjVj(sj |π) ≥ 0. If ∀sjVj(sj |π) ≤ 0, then the inequality ap-
pears in all following properties will be inverse. The ε-mutually-exclusive interaction
has the following property.

Proposition 1. If two nonempty disjoint agent sets X and Y ε-mutually-exclusively
interact with agent j, then

1 + ε

2
[g(X, j|π) + g(Y, j|π)] ≤ g(X ∪ Y, j|π) ≤ g(X, j|π) + g(Y, j|π).

Proof. Let EX and EY be all events generated by X and Y , respectively.

g(X ∪ Y, j|π) =
∑

~eXY ∈Ej
X∪Y

p(~eXY |π)
∑
sj

p(sj |~eXY , π)Vj(sj |π)

=
∑

~eXY ∈Ej
X∪Y

p(sj , ~eXY |π)Vj(sj |π)

=
∑

~eX∈Ej
X

∑

~eY ∈EY

∑
sj

p(sj , ~eX , ~eY |π)Vj(sj |π)

+
∑

~eX∈EX

∑

~eY ∈Ej
Y

∑
sj

p(sj , ~eX , ~eY |π)Vj(sj |π)

−
∑

~ej
X∈EX

∑

~eY ∈Ej
Y

∑
sj

p(sj , ~eX , ~eY |π)Vj(sj |π)

= g(X, j|π) + g(Y, j|π)−
∑

~ej
X∈EX

∑

~eY ∈Ej
Y∑

sj

p(sj , ~eX , ~eY |π)Vj(sj |π) (7)

≥ g(X, j|π) + g(Y, j|π)−
∑
sj

Vj(sj |π)(1− ε)

·min(
∑

~ej
X∈EX

p(sj , ~eX |π),
∑

~eY ∈Ej
Y

(p(sj , ~eY |π))

≥ g(X, j|π) + g(Y, j|π)−
∑
sj

Vj(sj |π)(1− ε)

·1
2
(

∑

~ej
X∈EX

p(sj , ~eX |π) +
∑

~eY ∈Ej
Y

(p(sj , ~eY |π))

= g(X, j|π) + g(Y, j|π)

−1− ε

2
[g(X, j|π) + g(Y, j|π)]

=
1 + ε

2
[g(X, j|π) + g(Y, j|π)]

9

Because we assume that ∀sj ∈ SjVj(sj |π) ≥ 0, from equation (7), we can easily get
the second inequality.

In the rest of this section, we will show how the gain of interactions is related to
local objective functions and the global objective function in a factored DEC-MDP. Let
X be all agents in a system and Xj ⊆ X be a set of agents that effectively interact with
agent j.

Proposition 2. If every two agents in Xj ε-mutually-exclusively with agent j, then

(
1 + ε

2
)dlog

|Xj |
2 e[

∑

x∈Xj

g({x}, j|π)] ≤ ρj(πj |π−j) ≤
∑

x∈Xj

g({x}, j|π).

Proof.

ρj(πj |π−j) =
∑
sj

p(sj |π)Vj(sj |π)|π)

=
∑

~eX∈Ej
Xj

p(~eX |π)
∑
sj

p(sj |~eX)Vj(sj |π)

= g(Xj , j|π)

Using Proposition 1, we can easily prove the result.

Corollary 1. If every pair of agents in X ε-mutually-exclusively interact with any third
agent, then

(
1 + ε

2
)dlog

|X|
2 e ∑

j∈X

∑

x∈X
g({x}, j|π) ≤ ρ(π) ≤

∑

j∈X

∑

x∈X
g({x}, j|π).

When ε = 1, the equality holds in Proposition 1, Proposition 2, and Corollary 1 for
all possible reward functions. They show how interactions are related to the local and
global performance, respectively, that is, the greater the absolute value of the gain of
interactions between two agents, the greater the (positive or negative) potential impact
of their interactions on both the local and global performance. Therefore, the gain of
interactions can reflect the strength of interactions between agents in general cases,
which is the basis of our self-organization approach.

3.2 Distributed Agent Clustering through Negotiation
Our clustering algorithm is intended to form a nearly decomposable organization struc-
ture, where interactions between clusters are generally weaker than interactions within
clusters, to facilitate coordinating DRL. We use the absolute value of the gain of in-
teractions to measure the strength of interactions among agents. Supervisory organi-
zations formed by using this measure will favorably generate rules and suggestions to
improve ill-coordinated interactions (i.e. with a large negative gain) and maintain well-
coordinated interactions (i.e., with a large positive gain), which potentially improve the
performance of DRL. Our algorithm does not require interactions between agents to be
mutually exclusive.

Due to bounded computational and communication resources, we limit the cluster
size to control the quality and complexity of coordination. Our clustering problem
is formulated as follows: given a set of agents X and the maximum cluster size θ,
subdivide X into a set of clusters C = {C1, C2, . . . , Cm}, such that

10

Seller 1

Seller 2Buyer 1

Buyer 2
1. Advertise

1. Advertise

2. Bid 2. Bid1. Advertise 1. Advertise

3. Offer

Figure 2: Self-organization negotiation protocol

1. ∀i = 1, . . . , m, |Ci| ≤ θ,

2. ∪Ci = X and ∀i 6= j, Ci ∩ Cj = ∅,

3. The total utility of clusters U(C) =
∑

Ci∈C U(Ci) is maximal, where U(Ci) is
the utility of a cluster Ci defined as follows:

U(Ci) =
∑

xi,xj∈Ci and xi 6=xj

|g({xi}, xj)| (8)

Note that the total utility U(C) has no direct relation to the system performance
measure ρ(π). The purpose of our clustering algorithm is not to directly improve the
system performance, but form proper supervisory organizations for coordinating DRL
to improve the learning performance.

Our clustering approach is distributed and based on an iterative negotiation process
that involves a two roles: a buyer and a seller. A buyer is a supervisor who plans to
expand its control and recruit additional agents into its cluster. A seller is a supervisor
who has agents that the buyer would like to have. Supervisors can be buyers and
sellers simultaneously. A transaction is to transfer a nonempty subset of boundary
subordinates from a seller’s cluster to a buyer’s cluster. The local marginal utility is
the difference between a cluster’s utility before a transaction and the utility after the
transaction. The social marginal utility is the sum of the local marginal utilities of both
the buyer and the seller.

Based on these terms, our clustering problem can be translated into deciding which
sellers the buyers should attempt to get agents from and which buyers the sellers should
sell their agents to so that U(C) is maximized.

The input to our clustering algorithm is an initial supervisory organization and the
gain of interactions between agents. Figure 2 shows the dynamics of the negotiation
protocol. Each supervisor only negotiates with its immediate supervisors. As our sys-
tem is cooperative, our negotiation decisions are based on marginal social utility cal-
culation. A round of negotiation consists of the following sub-stages:

1. Seller advertising: the supervisor of each cluster Ci sends an advertisement
to each neighboring buyer. The advertisement contains local marginal utility
U lm(Ci/X) = U(Ci)− U(Ci/X) of giving up each nonempty subset X of its
subordinates adjacent to the buyer’s cluster.

11

Organization
Adaptation

Organizational
Supervision

Agent Learning
and Acting

Organization

Supervisory
information

Interactions
between agents

Abstracted states
and rewards

Information gathering

Figure 3: Extended supervision framework

2. Buyer bidding: the supervisor of each cluster Cj waits for a period of time, col-
lecting advertisements from neighboring supervisors. When the period is over,
it calculates local marginal utility U lm(Cj ∪ X) = U(Cj ∪ X) − U(Cj) and
then social marginal utility Usm(Cj , Ci, X) = U lm(Cj ∪X)−U lm(Ci/X) for
introducing each nonempty subset X of subordinates of a seller of cluster Ci. If
Usm(Cj , Ci, X) is the greatest social marginal utility and Usm(Cj , Ci, X) > 0,
then the buyer sends a bid to the supervisor of cluster Ci with the social marginal
utility Usm(Cj , Ci, X); otherwise, do nothing.

3. Selling: given the multiple responses from buyers during a period time, the su-
pervisor of cluster Ci chooses to transfer a subset of subordinates X to the clus-
ter Cj if Usm(Cj , Ci, X) is the maximal social marginal utility that the seller
receives during this round.

The basic idea of our approach is similar to the LID-JESP algorithm [18] and the
distributed task allocation algorithm in [19]. LID-JESP is used to generate offline
policies for agents in a special DEC-POMDP, called ND-POMDP. However, we focus
on agent clustering. Our negotiation strategy is also similar to that in [13], but uses one
less sub-stage in each round of negotiation.

Proposition 3. When our clustering algorithm is applied, the total utility U(C) strictly
increases until local optimum is reached.

Proof. Using our algorithm, only non-neighboring supervisors can transfer some sub-
ordinates to their neighboring clusters and they will only do this if the social marginal
utility is positive, which results in an increase of the total utility U(C). In addition, a
supervisor’s transferring subordinates to a neighboring cluster will not affect the utility
of other neighboring clusters and non-neighboring clusters. Thus with each cycle the
total utility is strictly increasing until local optimum is reached.

3.3 Extended Supervision Framework
The gain of interactions is defined on the transition function, the reward function, and a
specific joint policy. However, as all agents are learning their decision policies, interac-
tions between agents may change over the time. To deal with this issue, we decompose

12

SC

IG

OA

IG

SC

IG

OA

.

epoch 1 epoch 2

Figure 4: Iterations of three activities: information gathering (IG), supervisory control
(SC), and organization adaptation (OA)

the system runtime into a sequence of epochs. The gain of interactions between agents
is approximately estimated from their execution trace during an epoch. Each epoch
contains three activities: information gathering, and supervisory control and organiza-
tion adaptation. The supervision framework proposed in [10] is now extended to al-
low dynamically evolving supervisory organizations for better coordinating DRL when
agents are concurrently learning their decision policies. As shown in Figure 3, the ex-
tended framework contains these three interacting activities. Three activities iterate in
the way as shown in Figure 4 during the whole system runtime.

Both information gathering activity and supervisory control activity have been dis-
cussed in detail in Section 2.3. With this extended framework, during the information
gathering phase, each agent collects information about interactions from its neighbors,
in addition to its execution sequence and reward information. After a period of time,
agents will move to supervisory control phase, at the beginning of which each agent
will calculate the gain of interactions with its neighbors and report it along with other
information (i.e., abstracted states and rewards) to its supervisor. To avoid interfering
the DRL supervision, organization adaption only happens after the supervisory control
phase. However, since there is no communication between learning agents and their
supervisors during the information gathering stage, organization adaption can be con-
ducted concurrently with the next phase of information gathering. During this phase,
using information of subordinates’ interactions with their neighbors, supervisors run
our negotiation-based clustering algorithm and supervisor selection strategy to dynam-
ically adapt the current supervisory organization. The resulting organization will be
used for the next supervisory control activity. Initially, the system starts with a very
simple supervisory organization, where each agent is its own supervisor. Then the
supervisory organization is periodically evolving as agents are learning and acting.

4 Experiments
We evaluated our approach in a distributed task allocation problem (DTAP) [10] with
Poisson task arrival distribution and exponentially distributed service time. Agents are
organized in a network. Each agent may receive tasks from either the environment
or its neighbors. At each time unit, an agent makes a decision for each task received
during this time unit whether to execute the task locally or send it to a neighbor for
processing. A task to be executed locally will be added to the local queue. Agents

13

interact via communication messages and communication delay between two agents is
proportional to the distance between them. The main goal of DTAP is to minimize the
average total service time (ATST) of all tasks, including routing time, queuing time,
and execution time.

4.1 Experimental Setup
We chose one representative MARL algorithm, the Weighted Policy Learner (WPL)
algorithm [20], for each worker to learn task allocation policies, and compared its
performance with and without MASPA. WPL is a gradient ascent algorithm where
the gradient is weighted by π(s, a) if it is negative; otherwise, it will weighted by
(1 − π(s, a)). So effectively, the probability of choosing a good action increases by
a rate that decreases when the probability approaches to 1. Similarly, the probability
of choosing a bad action decreases by a rate that decreases when the probability ap-
proaches to 0. A worker’s state is defined by a tuple 〈l, f〉, where l is the current work
load (or total work units) in the local queue and f is a boolean flag indicating whether
there is a task to be made a decision. Each neighbor corresponds to an action which
forwards a task to that neighbor, and an agent itself corresponds to the action that put
a task to the local queue. The reward r(s, a) of doing an action a for an task is the
negative value of the expected service time to complete the task after doing a in state
s, which is estimated from previous finished tasks. All agents use WPL with learning
rate 0.001.

The abstracted state of a worker is projected from its states and defined by its av-
erage work load over a period of time τ (τ = 500 in our experiments). The abstracted
state of a supervisor is defined by the average load of its cluster, which can be computed
from the abstracted states of its subordinates. A subordinate sends a report, which con-
tains its abstracted state, to its supervisor every τ time period. Supervisors use simple
heuristics to generate rules and suggestions. With an abstracted state 〈l̄〉, a supervisor
generates a rule that specifies, for all states whose work load exceeds l̄, a worker should
not add a new task to the local queue. This rule helps balance load within the cluster. A
supervisor also generates positive (or negative) suggestions for its subordinates to en-
courage (or discourage) them forwarding more tasks to a neighboring cluster that has
a lower (or higher) average load. The suggestion degree for each subordinate depends
on the difference between the average load of two clusters, the number of agents on the
boundary, and the distance of the subordinate to the boundary. Therefore, suggestions
are used to help balance the load across clusters. Our experiments use the receptivity
function η(s) = 1000/(1000 + visits(s)), where visits(s) is the number of visits on
state s.

To allow its supervisor to run our negotiation-based self-organization algorithm,
each agent calculates the gain of interactions from other agents. As mentioned in Sec-
tion 3.3, because of learning, each agent needs to approximately estimate each compo-
nent in the definition of the gain of interactions from the history of its local executions
and interactions with other agents in order to calculate it. In DTAP, one agent only
interacts with its neighbors by forwarding tasks to them and its state does not affect
states of its neighbors. Let ~ej

k be the event of agent k, forwarding a task to agent j, that
effectively interacts with agent j. To calculate g({k}, j|π), agent j estimates p(~ej

k|π)
as the ratio of the number of tasks received from agent k to the total number of received
tasks and p(sj |~ej

k) as the ratio of the number of visits on state sj resulting from ~ej
k to

the total number of visits on this state, and uses its current learned policy πj and reward
function rj .

14

Three measurements are evaluated: average total service time (ATST), average
number of messages (AMSG) per task, time of convergence (TOC), and average cluster
size (ACS). ATST indicates the overall system performance. AMSG takes into account
all messages for routing task, coordination, and self-organization negotiation. To cal-
culate TOC, we take sequential ATST values with certain size. If the ratio of those
values’ deviation to their mean is less than a threshold (we use threshold of 0.025), we
consider the system stable. TOC is the start time of the selected points. ACS is the
average cluster size in the system at TOC.

Experiments were conducted using a 18x18 grid network with 324 agents. All
agents have the same execution rate and tasks are not decomposable. The mean of task
service time is µ = 10. We tested two patterns of task arrival:

Side Load where agents in a 3x3 grid at the middle of each side receive tasks with rate
λ = 0.8 and other agents receive no tasks from the external environment.

Corner Load where only agents in the 8x8 grid at the upper left corner receive tasks
from the external environment. Within that grid, the 36 agents at the upper left
corner has the task arrival rate λ = 0.25 and the rest agents has the rate λ = 0.7.

We compared the DRL performance under four cases: None, Fixed-Small, Fixed-
Large, and Self-Org. In the None case, no supervision is used to coordinate DRL.
Both Fixed-Small and Fixed-Large cases use a fixed organization, the former with 36
clusters, each of which is a 3x3 grid, and the latter with 9 clusters, each of which
is a 6x6 grid. The Self-Org case uses our self-organization approach to dynamically
evolving supervision organization.

In each simulation run, ATST and AMSG are computed every 500 time units to
measure the progress of the system performance. Results are then averaged over 10
simulation runs and the variance is computed across the runs.

4.2 Experimental Results

Times

0 5000 10000 15000 20000

A
T

S
T

10

40

70
100
130

None
Fixed−Small
Fixed−Large
Self−Org

Figure 5: ATST for different structures with side load

Figure 5 and 6 plot the trends of ATST, as agents learn, for different organiza-
tion structures with different task arrival patterns. Note that the y axis in the plots is

15

Times

0 5000 10000 15000 20000

A
T

S
T

20

320

620
920

None
Fixed−Small
Fixed−Large
Self−Org

Figure 6: ATST for different structures with corner load

logarithmic. The supervision framework generally improves both the likelihood and
speed of the learning convergence. Supervision with self-organized structure has a bet-
ter learning curve than that with predefined organization structures. This is because
our self-organization approach clusters highly interdependent agents together, and fo-
cused coordination on them tends to greatly improve the system performance. The
Fixed-Small case has a small cluster size and consequently some highly interdependent
agents are not coordinated well. In contrast, the Fixed-Large case has a large cluster
size, which enlarges both the view and control of each supervisor and potentially im-
prove the system performance. However, with a large cluster size, an abstracted state of
a cluster (generated by a supervisor) tends to lose detailed information about its subor-
dinates, and also weakily interdependent agents are mixed with highly interdependent
agents, both of which degrade the coordination quality.

Under corner load, the system with both None and Fixed-Small cases seems not to
converge. For the None case, due to communication delay and limited views, agents
in the top-left conner do not learn quickly enough knowledge about where light-loaded
agents are. As a result, more and more tasks loop and reside in the top-left 8x8 grid.
This makes the system load severely unbalanced and the system capability not well
utilized, which causes the system load to monotonically increase. For the Fixed-Small
case, because of a small cluster size, a supervisor’s local view of the system may not
be consistent with the global view. Some supervisors of overloaded clusters find their
neighbors having even higher loads and consider their own clusters are “lightly” loaded.
As a result, they generate incorrect directives for their subordinates, which degrade
their normal learning.

Structure ATST AMSG TOC ACS
None 33.47± 1.67 5.81± 0.07 13000 0

Fixed-Small 29.09± 1.27 6.04± 0.11 10000 9
Fixed-Large 29.30± 1.46 6.16± 0.14 8500 36

Reorg 28.98± 1.15 6.59± 0.08 6500 14.50± 0.55

Table 1: Performance of different structures with side load

Table 1 and 2 show different measures for each supervision structure at their

16

Structure ATST AMSG TOC ACS
None N/A N/A N/A 0

Fixed-Small N/A N/A N/A 9
Fixed-Large 44.94± 2.10 11.26± 0.10 12500 36

Self-Org 42.87± 2.06 11.41± 0.05 10500 25.33± 2.16

Table 2: Performance of different structures with corner load

respective convergence time points. Due to the system divergence, both the None
and Fixed-Small cases have no data under corner load. In addition to improving the
convergence rate, the supervision framework also decreases the system ATST. Self-
organization further improves the coordination performance, as indicated by its ATST
and TOC. Because of negotiations, the self-organization case has a slightly heavier
communication overhead than those of fixed organizations.

5 Conclusion
In this paper, we formally define and analyze a type of interactions, called joint-event-
driven interactions, among agents in a DEC-MDP. Based on this analysis, we develop a
distributed self-organization approach that dynamically adapts hierarchical supervision
organizations for coordinating DRL during the learning process. Experimental results
demonstrate that dynamically evolving hierarchical organizations outperform prede-
fined organizations in terms of both the probability and the quality of convergence.

References
[1] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The

complexity of decentralized control of markov decision processes. Mathematics
of Operations Research, 27(4):819–840, 2002.

[2] Justin A. Boyan and Michael L. Littman. Packet routing in dynamically changing
networks: A reinforcement learning approach. In NIPS’94, volume 6, pages 671–
678, 1994.

[3] David H. Wolpert, Kagan Tumer, and Jeremy Frank. Using collective intelligence
to route internet traffic. In In Advances in Neural Information Processing Systems,
pages 952–958. MIT Press, 1999.

[4] Chen-Khong Tham and J. C. Renaud. Multi-agent systems on sensor networks: A
distributed reinforcement learning approach. In Proceedings of the International
Conference on Intelligent Sensors, Sensor Networks and Information Processing
Conference, pages 423–429, 2005.

[5] Ying Zhang, Juan Liu, and Feng Zhao. Information-directed routing in sensor
networks using real-time reinforcement learning. Combinatorial Optimization in
Communication Networks, 18:259–288, 2006.

[6] Chongjie Zhang, Victor Lesser, and Prashant Shenoy. A Multi-Agent Learning
Approach to Online Distributed Resource Allocation. In IJCAI’09, 2009.

17

[7] Sherief Abdallah and Victor Lesser. Multiagent reinforcement learning and self-
organization in a network of agents. In AAMAS’07, 2007.

[8] Haizheng Zhang and Victor Lesser. A reinforcement learning based distributed
search algorithm for hierarchical content sharing systems. In AAMAS’07, 2007.

[9] Robert Crites and Andrew Barto. Improving elevator performance using rein-
forcement learning. In Advances in Neural Information Processing Systems 8,
pages 1017–1023. MIT Press, 1996.

[10] Chongjie Zhang, Sherief Abdallah, and Victor Lesser. Integrating organizational
control into multi-agent learning. In AAMAS’09, 2009.

[11] H. A. Simon. Nearly-decomposable systems. In The Sciences of the Artificial,
pages 99–103, 1969.

[12] Bryan Horling and Victor Lesser. Using quantitative models to search for ap-
propriate organizational designs. Autonomous Agents and Multi-Agent Systems,
16(2):95–149, 2008.

[13] Mark Sims, Claudia Goldman, and Victor Lesser. Self-Organization through
Bottom-up Coalition Formation. In AAMAS’03, pages 867–874, 2003.

[14] Carlos Ernesto Guestrin. Planning under uncertainty in complex structured envi-
ronments. PhD thesis, Stanford University, Stanford, CA, USA, 2003.

[15] Bryan Horling, Regis Vincent, Roger Mailler, Jiaying Shen, Raphen Becker, Kyle
Rawlins, and Victor Lesser. Distributed Sensor Network for Real Time Tracking.
Proceedings of the 5th International Conference on Autonomous Agents, pages
417–424, 2001.

[16] Marek Petrik and Shlomo Zilberstein. Average-reward decentralized markov de-
cision processes. In IJCAI, pages 1997–2002, 2007.

[17] Raphen Becker, Victor Lesser, and Shlomo Zilberstein. Decentralized Markov
Decision Processes with Event-Driven Interactions. In AAMAS’04, volume 1,
pages 302–309, 2004.

[18] Ranjit Nair, Pradeep Varakantham, Milind Tambe, and Makoto Yokoo. Net-
worked distributed pomdps: a synthesis of distributed constraint optimization and
pomdps. In AAAI’05, pages 133–139, 2005.

[19] Michael Krainin, Bo An, and Victor Lesser. An Application of Automated Nego-
tiation to Distributed Task Allocation. In IAT’07, pages 138–145, 2007.

[20] Sherief Abdallah and Victor Lesser. Learning the task allocation game. In AA-
MAS’06, 2006.

18

