
Inference and Learning in Large Factor Graphs
with Adaptive Proposal Distributions and a Rank-based Objective

Khashayar Rohanimanesh, Michael Wick, and Andrew McCallum

CMPSCI Technical Report
UM-CS-2009-008

May 26th, 2009 Department of Computer Science

University of Massachusetts
140 Governors Drive

Amherst, Massachusetts 01003



Abstract

Large templated factor graphs with complex structure that changes during inference have
been shown to provide state-of-the-art experimental results in tasks such as identity uncertainty
and information integration. However, inference and learning in these models is notoriously
difficult. This paper formalizes, analyzes and proves convergence for the SampleRank al-
gorithm, which learns extremely efficiently by calculating approximate parameter estimation
gradients from each proposed MCMC jump. Next we present a parameterized, adaptive pro-
posal distribution, which greatly increases the number of accepted jumps. We combine these
methods in experiments on a real-world information extraction problem and demonstrate that
the adaptive proposal distribution requires 27% fewer jumps than a more traditional proposer.

1 Introduction

Relational factor graphs are a popular framework for modeling structured prediction problems
where there are dependencies amongst the hidden variables. Some of the first applications, such as
sequence labeling, exploited the linear-chain factorization of the graph to efficiently perform exact
structured prediction. More recently however, the expressive power of probabilistic programming
languages [16, 14, 7, 13] have given rise to graphs with notoriously difficult learning and inference
problems. The purpose of this work is to propose and analyze an approach to learning and inference
that empirically has produced state-of-the-art results.

First we consider the problem of learning. Traditionally, gradient based methods (e.g., maximum-
likelihood method) have been used for learning parameters in simple factor graphs. However, com-
puting gradients typically involves expensive inference routines; for example, maximum-likelihood
requires computing marginals. The problem with these methods is that the inference step is per-
formed inside the inner loop of parameter updates of learning (between each gradient update). A
number of approaches address this issue to various degrees with different approximations to the
gradient [1, 2, 10, 9]. For example, Collin’s perceptron avoids marginal computations, but requires
decoding; contrastive divergence approximates marginals with sampling; and LASO scores partial
configurations based on whether or not they could lead to the ground truth. On the same thread,
the SampleRank algorithm computes gradients between complete (but incorrect) neighboring con-
figurations from a chain induced by Markov-Chain Monte Carlo (MCMC) [3]. There are three
advantages to this approach (1) parameter updates are in the inner-most loop, avoiding inference
at each step; (2) the resulting objective function has more constraints than maximum likelihood
which may prevent over-fitting; (3) any configuration pair is a potential training example taking
advantage of more data.

Previous work has demonstrated the empirical success of SampleRank; for example, [4] acheives
state of the art results on an information extraction task; however, there has been no theoretical
analysis of SampleRank’s properties. One of the contributions of our paper is that we establish
the convergence of SampleRank for the first time, and derive the necessary conditions for the al-
gorithm to realize a rank-based objective. A corollary of the proof is that SampleRank does not
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require strict MCMC to converge, allowing the use of alternative inference methods (such as local
search).

At the heart of the SampleRank algorithm is a jump function that induces a random walk
through the configuration space; in practice, however, the performance of the algorithm depends
significantly on the quality of these jumps. A second contribution of this work is the development
of a novel approach for learning a parameterized jump function that uses the cross entropy method
(CEM) [5, 6] to shift the sampling distribution toward the true model.

We also present some initial results showing that the learned jump function can guide the
algorithm to the goal configuration using 27% fewer inference steps when compared to its non-
adaptive counterpart.

The rest of this paper is organized as follows: in Section 2 we present an overview of relational
CRFs and the cross entropy method. In Section 3 we outline the proof of convergence for the
SampleRank algorithm. In Section 4 we introduce a new class of adaptive proposers based on the
cross entropy method. In Section 5 we present some experimental results. Finally in Section 6 we
conclude and outline a few directions for future work.

2 Preliminaries

This section serves to provide a brief overview of relational CRFs and the cross entropy method
(CEM). For clarity, we first introduce the notation used throughout the paper. We use upper case
bold-faced notation to represent collections of variables, and lower case bold-faced notation to
represent individual variables (for example X = {xi,xij}, Y = {yi,yij}, etc). We use non-
bold-faced notation for a particular assignment to the variables (for example X = {xi, xij}, Y =
{yi, yij}, etc). Depending on the context, when we refer to a particular instantiation of variables,
we use subscript indexing (e.g., Yk, Yt), however for clarity the index will appear as a superscript in
the individual variables (for example Yt = {yt

i , y
t
ij}). We also use X to denote the set of individual

objects (or observations) in the world, whereas an Xi denotes a particular partition of X . For
simplicity we only use X whenever a particular partitioning of the inputs is implied.

2.1 Relational CRFs

We briefly overview some of the basic definitions and concepts in relational CRFs (for more de-
tails see [3]). A conditional random field (CRF) [12] is a discriminative factor graph that gives a
conditional probability distribution over an assignment to a set of hidden variables Y = Y given a
set of observed variables X = X . However, in relational CRFs, an assignment to the hidden vari-
ables denotes a particular hypothesis (e.g., a relation, a property, etc) over the observables. This is
further illustrated in Figure 1 which shows a partially instantiated factor graph for a generic clus-
tering problem. Observations are indicated by the geometric shapes, and the dotted circles show
the current clustering (hypothesis). In general, the hidden variables encode various relationships
among the observations: for example variables yis indicate whether or not a relationship within
a cluster of observations (i.e., xis) holds. Other types of hidden variables can also be defined to
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Figure 1: Factor graph representation of a relational CRF (partially instantiated).

capture additional relationships; for example, variables yijs indicate some compatibility between
a pair of clusters of observations (i.e., xi and xj) 1.

Next, the conditional probability distribution P (Y |X) is computed as:

P(Y = Y |X = X, Θ) =
1
ZX

∏
yi∈Y

fw(yi, xi)
∏

yi,yj∈Y

fb(yij , xij)
(1)

where ZX is the input-dependent normalizer, factor fw parameterizes the within-cluster compat-
ibility, and factor fb parameterizes the between-cluster compatibility2. Traditionally, a log-linear
model of potential functions (i.e., fw and fb) is employed given the model parameter Θ and a set
of features φ = {φk} 3:

fw(yi, xi) = exp

(∑
k

Θk φk(xi, yi)

)
A desirable facet of our model is that it factorizes into clusters of data rather than pairs (Equation
1). This enables us to define features of entire clusters using first-order logic features: features
that can universally and existentially aggregate properties of a set of objects. This model can be
intuitively described as follows: every possible clustering of the data induces a different set of
instantiations of Y variables and gives different assignments to them. The conditional distribution
P(Y = Y |X = X, Θ) gives the probability of a configuration Y = Y measured in terms of

1In general the inference and learning methods could be applied to a variety of model structures.
2In the above equation we use the notation xij to denote a pair of clusters xi and xj .
3Here we just show the within cluster factor representations (e.g., fws), the between cluster factors (e.g., fbs) can be

similarly represented.
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Algorithm 1 SR-Learn
1: Inputs:

M≡ 〈X , φ, Θ〉: model
Yt+1 ← J (Yt,X ;λ): (parametrized) proposer
F(Y ): Performance metric (e.g., F1 metric)
Y0: Initial state

2: Initialization:
Set Θ̄ = 0

3: Output:
Parameter vector Θ̄

4: for t = 1, . . . , T do
5: Generate a training instance:

Yt+1 ← J (Yt,X ;λ)
6: Compute:

Y + = argmaxY ∈{Yi,Yt+1}F(Y ) and
Y − = arg minY ∈{Yt,Yt+1}F(Y )

7: Let: ScoreΘ
X (Y ) = Θ . φ(X , Y )

8: if ScoreΘ̄
X (Y +)− ScoreΘ̄

X (Y −) < 0 then
9: Θ̄ = Θ̄ + φ(X , Y +)− φ(X , Y −)

10: end if
11: end for

a normalized score of how likely that configuration is. We parameterize this score with a set of
potential functions that evaluate the compatibility of both within-cluster attributes and between-
cluster attributes.

Maximum-likelihood estimate of the parameter gives:

∂

∂Θk
L(Y ;X, Θ) = ED[φk]− EM[φk]

where ED[gk] denotes the expected value of some feature gk with respect to the empirical distri-
bution in training data D, and EM[gk] denotes the expected value of the feature gk with respect to
the distribution given by the model (parametrized by Θ). The second term in the above equation
involves computing model expectations over features, requiring a summation over all hypothesis
Y which is intractable in relational CRFs.

[3] introduced the SampleRank algorithm that incorporates perceptron-style updates while per-
forming a random walk in the hypothesis space (i.e., Y) in order to learn a model that agrees with
the correct ranking of the hypotheses (according to the ground truth). The proposed algorithm as-
sumes MAP inference is performed with Markov Chain Monte-Carlo and then updates parameters
with approximate gradients at each MCMC step. More specifically, each step of MCMC induces
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a neighbor configuration pair by modifying a hypothesis Y to produce a new hypothesis Y ′. If the
number of y ∈ Y variables modified is a constant, then the difference between Y ′ and Y is small
and computing their gradient is efficient (in practice this often involves computing just a constant
number of factors, for more details refer to [3]).

Algorithm 1 shows the detail of the SampleRank algorithm. The system is initialized at a ran-
dom hypothesis Y0 (for example by placing every observation in single cluster). At every iteration
of the algorithm, a proposal distribution produces samples Yt+1 ← J (Yt,X ;λ) by stochastically
proposing (small) modifications to the current hypothesis (for example it could propose to ran-
domly split a cluster, or randomly merge to clusters). Next, a perceptron style update on model
parameters is performed if and only if the model does not correctly rank the current and new hy-
potheses according to the ground truth (e.g., the performance metricF). Once the model is learned,
the most plausible hypothesis can be found by simply hill climbing the learned rank function given
by the model. The convergence of the SampleRank algorithm has not been established previously.
In Section 3 we derive a set of conditions and establish the convergence of the SampleRank algo-
rithm under these conditions.

2.2 The Cross-Entropy Method

In this section we present an overview of the cross entropy method (CEM) which is a powerful
method for solving rare event simulation (RES), and combinatorial optimization problems (COPs).
For a complete discussion we refer the reader to [5, 6]. In this approach, the original optimization
problem is first transformed into an associated stochastic problem, and then an iterative adaptive
algorithm is used to solve it. In brief, the CEM iterative algorithm consists of two steps: (1) gen-
erate a set of samples (hypothesis, sample solutions, etc) according to some parameterized random
mechanism; (2) update the parameters of the random process that is responsible for generating
samples on the basis of the performance of the generated samples in order to produce better sam-
ples in the next round. To further illustrate this, consider an optimization problem where we wish
to maximize some performance function F(Y) over samples of Y:

γ∗ = max
Y
F(Y)

First, the above deterministic optimization is transformed into a RES by introducing a family of
parametrized pdfs {J (Y;λ)|λ ∈ Λ} as follows:

l(γ) = Pλ(F(Y ) ≥ γ) = Eλ[I{F(Y )≥γ}]

where λ is some parameter governing the distribution induced by J (Y;λ). We can think of the
event of ”maximum score” as the rare event of our interest in this RES problem. Next, CEM itera-
tively generates a sequence of pair of estimates {〈γ̂1, λ̂1〉, 〈γ̂2, λ̂2〉, . . . , 〈γ̂∗, λ̂∗〉} which converges
to very tight neighborhood of the optimal estimates 〈γ̂∗, λ̂∗〉.

Algorithm 2 outlines the detail of this algorithm (borrowed from [6]). The parametrized pro-
posal distribution J (Y;λ) is initialized by a random parameter λ0. at every iteration t of the

6



Algorithm 2 CEM-Optimize (Cross Entropy Method )
1: Input: J (Y;λ): Parametrized proposal distribution

F(Y ): Performance metric (e.g., F1 metric)
ρ: Percentage of top samples to keep

2: Initialization set λ0 = 0̄
3: Outputs: Parameter vector λ∗, Y ∗

4: while not converged do
5: Generate a set of N samples:

{Y1, Y2, . . . , YN} ∼ J (Y;λt)
6: Sort samples according to the performance metric F(Yi) in ascending order:

{F(1),F(2), . . . ,F(N)}
7: let γ̂t = F(dρNe)
8: Solve:

λ̄ = arg maxλ Eλt−1 [I{F(Y )≥γ̂t} logJ (Y ;λ)]
9: λt+1 = λ̄

10: end while

algorithm, a set of N samples (where the number N is user defined) are generated from J (Y;λt).
Next these samples are sorted according to the performance metric F(Y), and a top-portion of
these samples (specified by the user defined percentage ρ) are selected for updating the param-
eter of the proposal distribution for the next round. In order to to update the parameters CEM
requires solving an internal optimization (the equation in line 8 of the Algorithm 2). The stochastic
counterpart of this optimization can be casted as:

λ̄ = arg maxλ
1
N

N∑
k=1

[I{F(Yk)≥γ̂t} logJ (Yk;λ)] (2)

[6] demonstrated that when J (Y;λ) belongs to Natural Exponential Family (e.g., Gaussian, dis-
crete Bernoulli), then closed form solution can be obtained for Equation 2. In general, however it
may not be trivial to derive a closed for solution and thus we may rely on numerical methods in
order to find an approximate solution.

In practice, whenever a new parameter λ̄ is estimated by solving Equation 2 we may use an
smoothed version, where we replace the line 9 of the Algorithm 2 by:

λt+1 = αλ̄ + (1− α)λt

In Section 4 we describe an approach based on CEM for optimizing the performance of family
of proposal distributions for generating more plausible jumps in relational CRFs when used in
SampleRank algorithm.
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3 Convergence Results

In this section we sketch a proof of convergence for the SampleRank algorithm.
Definition 1 For an input X , let Y(X ) be a function that enumerates the set of all possible

structured outputs Yi. Also, let DY denote the set of Yi ∈ Y(X ) involved in a training data set
D = {Yi|X}ni=1 (note that the input observations Xi that are partitions of X are implied by Yi).

Definition 2 For any Y ∈ DY , define:

L<
X (Y ) = {Y − ∈ DY |F(Y −) < F(Y )} (3)

Definition 3 For any instance Y and parameter vector Θ, define:

ScoreΘ
X (Y ) = Θ . φ(X , Y ) (4)

Definition 4 A training set D = {Yi|X}ni=1 is called separable with margin δ > 0 if there exists
some vector with ‖ U ‖= 1 such that:

∀Yi,∀Ȳ ∈ L<
X (Yi), ScoreU

X (Yi)− ScoreU
X (Ȳ ) ≥ δ (5)

Definition 5 We say that the SampleRank algorithm (Algorithm 1) with parameter vector Θ makes
an error on a training instance Yi if ∃Ȳ ∈ L<

X (Yi), such that ScoreΘ
X (Yi)− ScoreΘ

X (Ȳ ) < 0.
Theorem 1 For any training set D = {Yi|X}ni=1 generated by Algorithm 1 that is separable with
margin δ, for any value of T, then for the SampleRank algorithm (Algorithm 1):

Ne ≤
R2

δ2

where R is a constant such that ∀i,∀Ȳ ∈ L<
X (Yi):

‖ φ(X , Yi)− φ(X , Ȳ ) ‖≤ R

and Ne is the number of errors made (according to the Definition 5) during training.

Proof: We build on the proof of convergence of perceptron algorithm in [1]. Let Θ̄k be the param-
eter vector before the kth error is made at some ith example, where Θ̄−1 = 0. Now, let Yi+1 =
J (Yi,X ;λ) and let Y + = arg maxY ∈{Yi,Yi+1}F(Y ) and Y − = arg minY ∈{Yi,Yi+1}F(Y ). This
implies that Y − ∈ L<

X (Y +). Since this training instance incurs an error, it must have been the case
that :

ScoreΘ̄k

X (Y +)− ScoreΘ̄k

X (Y −) < 0 (6)

and this causes an update Θ̄k+1 = Θ̄k + φ(X , Y +)− φ(X , Y −). Taking the inner product of both
sides with U(‖ U ‖= 1) yields:

U.Θ̄k+1 = U.Θ̄k + U.φ(X , Y +)− U.φ(X , Y −)

= U.Θ̄k + ScoreU
X (Y +)− ScoreU

X (Y −)

≥ U.Θ̄k + δ
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the inequality follows because of the separability assumption in Equation 5. Since Θ̄−1 = 0, we
have U.Θ̄−1 = 0. By induction on k, it follows that for all k, U.Θ̄k+1 = kδ. By Cauchy–Schwarz
inequality we have U.Θ̄k+1 ≤‖ U ‖‖ Θ̄k+1 ‖, which gives:

‖ Θ̄k+1 ‖≥ kδ (7)

We also derive an upper bound for ‖ Θ̄k+1 ‖2:

‖ Θ̄k+1 ‖2 = ‖ Θ̄k ‖2 + ‖ φ(X , Y +)− φ(X , Y −) ‖2 +

2Θ̄k.(φ(X , Y +)− φ(X , Y −))

= ‖ Θ̄k ‖2 + ‖ φ(X , Y +)− φ(X , Y −) ‖2 +

2(ScoreΘ̄k

X (Y +)− ScoreΘ̄k

X (Y −))

≤ ‖ Θ̄k ‖2 +R2

the inequality follows because of the assumption in the Theorem (‖ φ(X , Yi)−φ(x, ȳ) ‖≤ R),
and the fact that ScoreΘ̄k

X (Y +) − ScoreΘ̄k

X (Y −) < 0 (Equation 6). By induction on k, it follows
that for all k:

‖ Θ̄k+1 ‖2≤ kR2 (8)

Combining the lower and upper bounds established in Equations 7 and 8, we obtain:

k2δ2 ≤‖ Θ̄k+1 ‖≤ kR2

⇒ k ≤ R2

δ2

Definition 6 Given a training set D = {Yi|X}ni=1, for a pair 〈U, δ〉, define:

mi =U.φ(X , Yi)− U.φ(X , Ȳ ), where Ȳ ∈ L<
X (Yi)

εi =max{0, δ −mi}

D〈U,δ〉 =

√√√√ n∑
i=1

ε2i

(9)

Theorem 2 For any training set D = {Yi|X}ni=1, for the first pass over the training set of the
SampleRank algorithm (Algorithm 1):

Ne ≤ min
〈U,δ〉

(R +D〈U,δ〉)2

δ2

where R is a constant such that ∀i,∀Ȳ ∈ L<
X (Yi):

‖ φ(X , Yi)− φ(X , Ȳ ) ‖≤ R
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min is taken over δ > 0, ‖ U ‖= 1, and Ne is the number of errors (according to the Definition 4)
made during training.

Proof: The proof is a straight-forward application of the related theorem in [1].

4 Efficient Decoding with the Cross Entropy Method

In a relational CRF, decoding refers to the inference problem of finding the most probable hypoth-
esis (setting of the hidden variables) given the observed data. [3] uses Metropolis-Hastings (MH)
with annealing in order to identify the hypothesis with the highest score. However, computing
the forward and backward jump-probabilities required for Metropolis-Hastings is not trivial for
arbitrary jump functions.

To overcome this problem, we introduce an alternative approach based on CEM that avoids the
strict requirement of constructing a valid Markov chain. Our algorithm performs a random walk in
the hypothesis space that is guided by a family of parameterized proposal distributions J (Yt,X ;λ)
capable of shifting toward the model’s probability distribution. During inference (e.g., over the test
domain) the system hill climbs the learned rank objective while adjusting the parameters of the
proposal distribution using CEM.

More formally, the decoding problem is defined as:

Y ∗ = argmax
Y

P(Y|X ,Θ)

One immediate idea would be to use CEM to directly solve this problem by introducing some
parameterized random mechanism J (X ;λ) to generate sample hypothesis Y , and then use the
function CEM-Optimize(J (X ;λ), ScoreΘ

X (), ρ) (Algorithm 2) where we use the model score as
the performance metric (Equation 4) and ρ is the user defined parameter for the CEM algorithm.
However, there are two potential problem with this idea. First, it is not trivial to define a model that
generates all possible hypothesis in the feasible region of the hypothesis space. For example, one
could suggest using a graph based approach where all vertices are the individual observations and
an edge between to vertices vi and vj is added with some unknown probability Θij . This model
does not guarantee generating all feasible hypothesis (for example it does not enforce the transi-
tivity property among the objects). Second, the complexity of the set |Y| = O(Bell(|X |)) which
is still a large space to cope with. Another difficulty with this approach is that scoring samples
requires computing all the factors in the instantiated graph pertaining to a particular hypothesis.

Inspired by the fact that computing the difference between neighboring configurations can be
done efficiently, we can immediately avoid the aformetioned computational problems. For exam-
ple, in the clustering view of the model, we can create new clusterings (hypothesis) conditioned on
a current clustering by simply splitting an existing cluster, or merging two existing clusters. The
split-merge style proposers have been widely used in MCMC, in particular with the Metropolis-
Hastings algorithm [8, 11, 15, 14, 3]. Our approach differs from all of these methods in that our
split-merge proposer learns to perform better splits or merges as we take a random walk in the
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Algorithm 3 CEM-Decode
1: Inputs:

Model:M≡ 〈X , φ, Θ〉
Proposer: Yt+1 ← J (Yt,X ;λ0)
Initial State: Y0

Tolerance: ε > 0
2: Output: Y ∗ ≈ argmaxY Θ . φ(X ,Y)
3: for t = 0, . . . , do
4: λt+1 ← CEM-Optimize(J (Yt,X ;λt), ScoreΘ

X (), ρ)
{learn the proposer parameter}

5: Yt+1 ← J (Yt,X ;λ) {Generate next state}
6: if ScoreΘ

X (Yt+1)− ScoreΘ
X (Yt) > ε then

7: Y ∗ ← Yt+1

8: else
9: return Y ∗

10: end if
11: end for

hypothesis space. We can summarize our approach as follows: first we define a parametrized split-
merge proposer Yt+1 ← J (Yt,X ;λ) that generates a new hypothesis Yt+1 given some current
hypothesis Yt by splitting a cluster, or merging a pair of clusters in Yt. Then while taking a walk in
the hypothesis space, we optimize proposer’s parameters using CEM (using either a learned-model
or a ground truth signal as the performance metric). Intuitively, the parameters may be tied allow-
ing splits and merges to generalize across the entire configuration space. Note that the proposer
could be parameterized over the same feature space that is used to learn the model.

We now describe one scheme for defining a parametrized split-merge proposer. We use a
relational CRF factor graph, where the within cluster factors (i.e., fws) and between cluster factors
(i.e., fbs) are parametrized by the parameter vector λ (which serves as the parameter vector for the
proposer). It is important to note that this model is totally separate from the model that we learn
by the SampleRank algorithm. Then, given some current hypothesis Yt, we can sample the next
hypothesis Yt+1 ∼ J (Yt,X ;λ) based on the following mixture model:

J (Yt,X ;λ) =
βQsplit(.|Yt,X , λ) + (1− β)Qmerge(., .|Yt,X , λ)

(10)

where:

Qsplit(y
t
i |Yt,X , λ) =

fw(yt
i , x

t
i)∑

yt
j∈Yt

fw(yt
j , x

t
j)

Qmerge(yt
i , y

t
j |Yt,X , λ) =

fb(yt
ij , x

t
ij)∑

{yt
k,yt

l}∈Yt
fb(yt

kl, x
t
kl)

(11)
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and 0 ≤ β ≤ 1 is a fixed mixture parameter that determines how often we prefer to sample the next
hypothesis by either splitting a cluster, or merging two clusters. In Equation 11,Qsplit(y

t
i |Yt,X , λ)

gives a normalized measure of within cluster disparity of some cluster yi
t in the current hypothesis

Yt. Similarly Qmerge(yt
i , y

t
j |Yt,X , λ) gives a normalized measure of between cluster affinity for a

pair of clusters yt
i and yt

j in the current hypothesis Yt. During learning, we would expect that the
parameter vector is adjusted so that it produces a higher within cluster disparity score for incorrect
clusters, and as a result these clusters get sampled for splitting with a higher frequency. Similarly,
we would expect that the learned parameters increase the between cluster affinity score for a pair
of clusters (that should be merged) so that get sampled for merges with a higher frequency.

The details of this approach is outlined in Algorithm 3. The proposer is initialized with some
random parameter λ0 and the system is also initialized to some random hypothesis Y0. At every
step of the algorithm, we optimize the proposer J (Yt,X ;λ) using the CEM algorithm where we
use the learned model (i.e., by SampleRank) or the ground truth (for example, accuracy) as the
performance metric. The algorithm uses the best proposed hypothesis as the next state, and repeats
until it converges to the best encountered hypothesis (hopefully a tight neighborhood around the
best hypothesis). Note that the complexity of the computations pertaining to the proposer (comput-
ing the within-cluster disparity and between-cluster affinity scores) at each step is at most O(N2

t )
where Nt is the total number of clusters (i.e., the number of yt

i ∈ Yt variables that are ”on”) at time
t. This overcomes the computational barriers of the initial idea that we described in the beginning
of this section (where the whole configurations need to be sampled, instantiated and scored).
Remark 1: Recall from Section 2.2 that the CEM optimization requires solving the Equation 2.
Our parametrized split-merge proposer (Equation 10) is a linear mixture of two exponential family
probability distributions, thus it is a convex function. The summation in Equation 2 is the sum of
the logs of convex functions and is therefore concave. Note that maximizing a concave function is
equivalent to minimizing its convex counterpart. Thus we are justified in using numeric methods
(e.g., L-BFGS) to solve the maximization problem in Equation 2.

5 Experiments

In this section we evaluate the performance of the adaptive proposal distribution that we introduced
in the previous section. In the first experiment we compare the adaptive proposer to a traditional
uniform split-merge proposer in terms of the number of jumps required to reach within 95% of
the ground-truth configuration. Then, in the second experiment we demonstrate the adaptive pro-
poser’s ability to identify variables in the configuration space that are incorrectly set. Both sets
of experiments evaluate the algorithm on a factor graph used for modeling newswire coreference.
Newswire coreference is the problem of clustering textual mentions into real-world entities. For
example, a newspaper article about some current event might include textual mentions “Biden”,
“he”, “the Vice President”, all of which must be clustered into the same entity (implicitly referring
to Vice President Joe Biden).

The factor graph we use for modeling coreference contains a hidden variable for each hypothet-
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ical set of mentions. That is, each hidden variable is a binary decision (yes, indicating coreferent
or no otherwise). We can view the graph shown in Figure 1 as a model for coreference where the
observed x variables are the individual mentions (e.g., x1=Biden, x2=Obama), the y variables are
binary coreference variables indicating whether a cluster is coreferent, and the factors are the dot
products of feature functions and parameters. For a more detailed description of the type of factor
graph used for modeling coreference see [4].

This problem is particularly enticing because the factor graph modeling it exhibits combinato-
rial complexity; in particular, the number of possible instantiations of the graph is Bell(n) number
where n is the number of mentions in a particular document. Furthermore, the graph structure pre-
cludes an efficient dynamic program since there are no overlapping sub-problems to exploit. Next,
we present our initial results based on the following two experiments:
• The purpose of the first experiment is to demonstrate that in the context of SampleRank, the

cross entropy based proposer (CEMP) is able to reach the MAP configuration in fewer jumps than
the traditional uniform split merge proposer (USMP) that was mentioned in §2. In particular we
run SampleRank algorithm with both CEMP and USMP as proposers and record the number of
jumps taken when the system gets within 95% of the MAP configuration (according to the ground
truth signal).

As previously described, the USMP proposer makes a single jump per local-search step. How-
ever, for a fair comparison, we allow the SMP proposer to sample as many jumps as the CEMP
proposer would have used to learn its parameters. In particular, CEMP performs a round of learn-
ing every five (or ten, see Table 1) jumps. During learning steps, fifty samples are taken for each of
the twenty CEM iterations, and the proposer parameters are updated according to the cross entropy
method. For non-learning steps, only five samples are taken and the maximum returned as the pro-
posed jump. We similarly allow the uniform distribution to propose 1000 samples every fifth step
and five (or ten) samples every other step. As is the case with the CEMP, the maximumal scoring
sample is returned as the proposed jump.

We use a subset of the ACE 2004 data-set for newswire coreference. In particular we randomly
selected 30 documents, containing between 20 and 115 mentions each. Table 1 compares the
number of samples required to get to a configuration within 95% of the true MAP score for both
the cross entropy method proposer (CEMP) and the uniform split merge proposer (USMP). The
“#samples” column refers to the number of samples between learning the steps.

Proposer Total # of Samples Total # of jumps Average # of jumps per document
SR+CEMP 5 2942 98.1
SR+USMP 5 3988 132.9
SR+CEMP 10 2534 84.5
SR+USMP 10 2822 94.1

Table 1: A comparison of the number of samples required to get to a configuration within 95% of
the ground-truth using the Cross Entropy Method Proposer (CEMP) and the Uniform Split Merge
Proser (USMP) during
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The top two rows of Table 1 compare CEMP and USP when learning takes place every five
rounds (that is, every five rounds 1000 samples are taken and the maximum returned). We are
pleased to see that CEMP requires far fewer jumps than USMP (27% fewer to be exact). The
second two rows of the table double the number of samples taken during non-learning rounds to
ten. In this case CEMP also requires fewer samples than USMP, but the results are not quite as
dramatic. Note that CEMP with only five samples per step does almost as well as USMP with ten
samples.
• In the second experiment, we evaluate the cross-entropy proposal distribution’s ability to

identify incorrect coreference clusters for splitting. For this experiment we took the same thirty
ACE documents, initialized each to the ground truth, then randomly selected two clusters to merge
into a single incorrect cluster. The strategy of guessing a cluster uniformly at random would result
in an accuracy of 1/c where c is the number of non-singleton clusters. In fact over the course of
100 samples per document, the uniform split-merge proposer (USMP) was only able to identify the
incorrect cluster 15% of the time. However, the cross entropy proposer trained with 10 iterations
and 100 samples per iteration was able to achieve a selection accuracy of 50.0%; meaning that half
the time CEMP was able to correctly identify the only incorrect cluster in the configuration.

6 Conclusions

In this paper we presented a convergence proof for the SampleRank algorithm. We also developed
a decoding algorithm based on CEM that adapts a jump proposer to produce more fruitful jumps
using the samples generated by a random walk in the hypothesis space. We presented initial results
that evaluates the performance of the new proposer in a real world information extraction domain.

There are a number of open questions and interesting directions for further investigation. The
mixing rate of the split and merge (i.e., β in Equation 10) is fixed and not learned. It would be
helpful to be able to learn a mixing rate that can generalize across different configuration. The
adaptive proposal distribution that we presented uses simple jumps such as traditionally used splits
and merges. More complex jumps could be incorporated in the model. These are some of the open
problems that we will investigate in future work.
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