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ABSTRACT

BitTorrent, the immensely popular file swarming system, has
a fundamental problem: availability. Although swarming
scales well to tolerate flash crowds for popular content, it is
less useful for unpopular or rare files as peers arriving after
the initial rush find the content unavailable.

Our primary contribution is a model to quantify content
availability in swarming systems. We use the model to an-
alyze the availability and the performance implications of
bundling, a strategy commonly adopted by many BitTorrent
publishers today. We find that even a limited amount of
bundling exponentially reduces content unavailability. Fur-
thermore, for swarms with highly unavailable publishers, the
availability gain of bundling can result in a net improve-
ment in download time, i.e., peers obtain more content in
less time. We empirically confirm the model’s conclusions
through experiments on PlanetLab using the mainline Bit-
Torrent client.

1. INTRODUCTION

Despite the tremendous success of BitTorrent (es-
timated to account for 30-50% of all Internet traffic
today), it suffers from a fundamental problem: avail-
ability. Although peer-to-peer content dissemination
through swarming in BitTorrent scales impressively to
tolerate massive flash crowds for popular content, swarm-
ing does little to disseminate unpopular content as their
availability is limited by the presence of a seed or pub-
lisher. The extent of publisher unavailability is severe,
e.g., our measurement study shows that 40% of the
swarms have no publishers available more than 50% of
the time.
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To appreciate the availability problem, consider a
swarm for an episode of a popular TV show. When a
publisher first posts the episode, a flash crowd of peers
joins the swarm to download it. The original publisher
goes offline at some point, but peers may continue to
obtain the content from other peers while the swarm is
active. If a peer arrives after the initial popularity wave,
when the population of the swarm has dwindled down
to near-zero, though, it finds the content unavailable
and must wait until a publisher reappears.

Our primary contribution is a mathematical model to
study content availability in swarming systems such as
BitTorrent. We use an M/G/oo queue to model the self-
scaling property of BitTorrent swarms, i.e., more peers
bring in more capacity to the system. The key insight
is to model uninterrupted intervals during which the
content is available as busy periods of that queue. The
busy period increases exponentially with the arrival rate
of peers and the time spent by peers in the swarm.

Our model also allows us to analyze the impact of
bundling, a common strategy adopted by BitTorrent
publishers wherein, instead of disseminating individual
files via isolated swarms, a publisher packages a num-
ber of related files and disseminates it via a single larger
swarm. To appreciate why bundling improves content
availability, consider a bundle of K files. The popular-
ity of the bundle is roughly K times the popularity of
an individual file as a peer requesting any file requests
the entire bundle. The size of the bundle is roughly K
times the size of an individual file. ~ Our model sug-
gests that the busy period of the bundled swarm is a
factor e®(K”) larger than that of an individual swarm.
Indeed, if the busy period lasts until the publisher reap-
pears, the content will be available throughout.

Surprisingly, in some cases, the improved availability
can reduce the download time experienced by peers, i.e.,
peers download more content in less time. The down-
load time of peers in the system consists of the waiting
time spent while content is unavailable and the service
time spent in actively downloading content. If the re-
duction in waiting time due to bundling is greater than



the corresponding increase in service time, the down-
load time decreases. We validate this conclusion in Sec-
tion 4 through large-scale controlled experiments us-
ing the mainline BitTorrent client over Planetlab. Our
controlled experiments also show that the conclusions
of our model qualitatively hold even with realistic ar-
rival patterns, peer upload capacities, and heteroge-
neous popularities.

In summary, we make the following contributions.

1) A large-scale measurement study showing that (a)
content availability is a serious problem due to intermit-
tently available publishers; and (b) bundling is widely
prevalent and bundled content is more available.

2) A novel analytic model for content availability in
swarming systems. Applying coverage processes to an-
alyze peer-to-peer systems, our model is the first to ac-
count for waiting due to content unavailability.

3) A formal analysis of the performance and availabil-
ity implications of bundling, a prevalent yet unexplored
phenomenon in peer-to-peer systems, showing that it
provides significant availability gains and reduces the
download time for unpopular content with highly un-
available publishers. We empirically validate of the con-
clusions of the model based on controlled experiments
with the mainline BitTorrent client on PlanetLab.

2. MEASURING CONTENT AVAILABILITY
AND BUNDLING IN BITTORRENT

In this section, we present a large-scale measurement
study of BitTorrent that shows that 1) content avail-
ability is a serious problem in BitTorrent today, and
2) bundling of content is widely prevalent and bundled
content has higher availability. We begin with a brief
overview of how swarming in BitTorrent works and why
content becomes unavailable.

2.1 Why unavailability?

A swarm consists of a set of peers concurrently shar-
ing (downloading or uploading) content (a file or a bun-
dle of files) of common interest with the help of a coordi-
nating tracker. Content is divided into blocks and peers
obtain metadata about constituent blocks as well as
identities of other peers in the swarm from the tracker.
A peer exchanges blocks with other peers using a tit-for-
tat incentive strategy until it completes its download.
Peers that have not yet completed their download are
called leechers while peers that possess all blocks in the
content are called seeds.

Content is available if either at least one seed is present
or sufficiently many active leechers are present so as to
collectively make all constituent blocks available. Seeds
may become unavailable in practice due to several rea-
sons. Publishing sites serving a large number of files
may take down seeds after the initial popularity wave
subsides in order to reduce bandwidth costs. A seed

may also be an average user publishing home-generated
content that can not afford to stay online all the time.
Seeds illegally uploading copyrighted material often dis-
appear quickly for obvious reasons. Even for legitimate
content, maintaining highly available seeds entails ad-
ministrative effort and cost, which runs counter to the
goals of content publishers that value BitTorrent as a
cheap alternative to a client-server approach. !

Throughout this section, we measure content avail-
ability by equating it with seed availability. In the next
section, we model content availability resulting both
from seeds as well as from leechers alone.

2.2 Measuring unavailability

How available is content in BitTorrent swarms to-
day? To answer this question, we conducted a seven-
month long measurement study of BitTorrent swarms as
follows. We developed and deployed BitTorrent moni-
toring agents at 300 nodes on Planetlab from August
3, 2008 to March 6, 2009. Once every hour, a host
at the University of Massachusetts Amherst receives
an RSS feed advertised by GoogleReader of recently
created torrent URLs from Mininova (a large torrent
hosting site), and sends each URL to a subset of the
monitoring agents on Planetlab. The agents fetch the
torrent metadata by joining the swarm and begin to
monitor its peers. Our agents leverage the Peer Ex-
change (PEX) protocol extension, that enables it to dis-
cover new neighbors from other peers in addition to the
tracker. To avoid copyright issues, our agents collect
information only about the control plane without actu-
ally uploading or downloading content, which suffices
for our purposes as we equate content availability with
seed availability.

To distinguish seeds from leechers, our agents record
the bitmaps received from connected peers. The bitmaps
are part of the BitTorrent protocol and a peer uses them
to convey the blocks it possesses to its neighbors. Each
entry in the trace collected by the agents consists of a
swarm identifier, a peer identifier (IP address and port
number) and its bitmap recorded roughly periodically
for each discovered peer in the swarm. Our traces con-
sist of more than 14 million distinct IP addresses and
66K distinct swarms.

Figure 1 shows the distribution of seed availability
for the monitored swarms. The solid curve shows the
availability in the first month after the creation of the
swarm, when we expect the content to be more popular.
The extent of publisher unavailability is severe: less
than 35% of the swarms had at least one seed available
all the time. The availability of swarms over the entire
duration of the measurement is even lower as shown
by the dotted curve: almost 80% of the swarms are

Henceforth, we use the terms publishers and peers inter-
changeably with seeds and leechers respectively.



unavailable 80% of the time.
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Figure 1: CDF of seed availability in 45,693
swarms each monitored for at least one month.

2.3 Content bundling

Bundling of content is a common practice in Bit-
Torrent today. In this section, we study the extent of
bundling and its impact on availability. The trace used
in this section is a snapshot of BitTorrent swarms taken
on May 6, 2009. For each of the 1,087,933 swarms in this
snapshot, we record its content category (e.g., movies,
TV, books etc.), names and sizes of constituent files,
creation date, and instantaneous number of seeds and
leechers.

2.3.1 Extent of bundling

We analyze the extent of bundling in three of the
nine categories present in Mininova, namely, music, TV
shows and books. These three categories together ac-
count for 45.98% of the swarms and 31.93% of the peers
in the system. We chose these three categories because
it is easier to automatically detect bundling by checking
for the presence of multiple files with known extensions
(e.g., .mp3 for songs, .mpg for TV shows and .pdf for
books). Detecting bundling is nontrivial in some cate-
gories, e.g., a DVD for a single movie is often organized
as a collection of video files that are never distributed
individually, making it difficult to check for the presence
of multiple movies without manual inspection.

Among music swarms, albums are common. We clas-
sify a music swarm as a bundle if it has two or more
files with common audio file extensions such as .mp3,
.mid and .wav, which results in 193,491 of the 267,117
monitored swarms being classified as bundles.

Among TV show swarms, many bundles consist of
sets of episodes in a season. We classify swarms that
have two or more files with common video file exten-
sions such as .mpg and .avi as bundles, which results
in 25,990 of the 164,930 monitored swarms being clas-
sified as bundles.

Among book swarms, we observe that collections, i.e.,
torrents containing the keyword “collection” in their ti-

tles, usually consist of a bundle of contents connected
by a broad theme, e.g., the “Ultimate Math Collection
(1)” of size 5.81 GB has 642 books. We classified 841 of
the 66,387 monitored swarms as collections. Classifying
swarms that contain 2 or more files with common docu-
ment file extensions such as .pdf and .djvu as bundles
results in an additional 6,270 bundles.

2.3.2 Bundled content is more available

In this section, we present evidence suggesting that
bundling is correlated with higher availability. We first
consider book swarms. We find that 62% of all book
swarms had no seed available on May 6, 2009, whereas
that number drops to 36% if we consider only collec-
tions. Furthermore, the average number of downloads
for a typical book swarm is 2,578, whereas for collec-
tions it is 4,216.

One reason for higher seed availability may be that
content publishers are intrinsically more willing to sup-
port seeds for bundled content. The higher number of
downloads for bundled content may be either because of
higher demand for bundled content (as any peer seek-
ing any of the constituent files may opt to download
the bundle), or because of higher availability, or both.
Higher seed availability in turn may in part be because
of the increased number of downloads as some peers
may choose to altruistically disseminate the content fur-
ther. Although it is difficult to discern cause and ef-
fect in our measurement data, our analytic model in
the next section quantifies how the higher demand and
higher seed availability for bundled content cause im-
proved content availability.

We next analyze our traces more closely for content
that is available both in isolation and as part of a big-
ger bundle. We observe that among the unavailable
collections, some of them were subsets of bigger collec-
tions, e.g., the 23 swarms consisting of collections of
Garfield comics from 1978 to 2000 had no seeds. How-
ever, each of these collections can be found in a single
super-collection aggregating all Garfield comics. The
super-collection had seven seeds. After a manual in-
spection of all 841 book collections, we concluded that
210 had no seeds and were not subsets of other collec-
tions, which results in 210/841 = 25% unavailability for
content disseminated through collections (compared to
62% above for a typical swarm).

As another example, we consider swarms for the pop-
ular TV show “Friends”. There were a total of 52
swarms associated with this show. Among them, 23
had one or more seeds available, and the remaining 29
had no seeds. The 23 available swarms consisted of 21
bundles (and 2 single episodes), whereas the 29 unavail-
able swarms consisted of only 7 bundles. These obser-
vations suggest a strong correlation between bundling
and higher availability. The next section presents an
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Figure 2: Illustration of busy and idle periods.

analytic model that quantifies the causal relationship
between the two.

3. MODEL

In this section, we develop a model for content avail-
ability in BitTorrent. The key insight underlying the
model is to view BitTorrent as a coverage process or
equivalently an M/G/oco queuing system. The model
shows that 1) bundling improves availability, and 2) for
swarms with highly unavailable publishers, the avail-
ability benefit of bundling more than offsets the in-
creased time to actively download more content, result-
ing in a net decrease in user-perceived download times.

3.1 Model overview

Figure 2 illustrates how content availability in BitTor-
rent depends upon the arrivals and departures of pub-
lishers and peers. Each horizontal line segment repre-
sents the time interval during which a peer (represented
using thin lines) or a publisher (represented using thick
lines) stays online. A swarm is initiated by the arrival of
a publisher, which also marks the start of the first busy
period. The swarm’s lifetime is divided into alternating
busy and idle periods. Content is available during busy
periods and unavailable during idle periods. If a pub-
lisher is always online, the first busy period lasts forever
and content remains always available.

A busy period ends when the following two conditions
are satisfied: 1) there are no publishers online, and 2)
the coverage, i.e., the number of peers currently on-
line, drops below a fixed small threshold (causing some
blocks to become unavailable). For example, Figure
2 shows that after all publishers leave at time %1, the
busy period continues with the help of peers alone until
a publisher reappears at time t5. A busy period may al-
ternate any number of times between a phase consisting
of one or more publishers (Phase 1) and a phase con-
sisting of peers alone (Phase 2). Peers arriving during

either phase in a busy period will find the content avail-
able. At t4, there are no publishers and the number of
peers drops below the coverage threshold (assumed 3 in
this example). This initiates an idle period that lasts
until a publisher reappears at time t5. Extant peers at
the end of a busy period as well as peers arriving during
the idle period find the content unavailable (represented
by dotted lines). Because of idle waiting, these peers
experience longer download times defined as the times
since a peer arrives until it completes the download.
Our goal is to understand how content availability
and the download times experienced by peers in a swarm
depend upon 1) its popularity or the peer arrival rate
A; 2) the mean time s/p that a peer takes during a
busy period to actively download the content of size s
at a rate equal to the effective average capacity p of the
swarm; and 3) the arrival rate r of publishers and the
mean time u that a publisher stays online. We have im-
plicitly assumed that v must be long enough for at least
one copy of the file to be served in each busy period. For
simplicity, we have assumed that peers are selfish and
leave as soon as they complete their download; §3.3.4
extends the model to incorporate altruistic lingering.
To appreciate why bundling improves content avail-
ability, consider the special case of a highly unavailable
publisher, i.e., its arrival rate » and mean residence time
u are small. Then, the length of a busy period is deter-
mined primarily by peer arrivals and departures. As-
suming Poisson peer arrivals and a coverage threshold
of one, the length of a busy period can be shown to
be €=1, Bundling K files increases the peer arrival
rate for the bundle to K\ as each peer desiring any
of the constituent files requests the entire bundle, and
increases the time spent by each peer in the swarm to
Ks/p. As a result, the length of the busy period

2 s
for the bundled swarm is %, which translates

to a reduction in unavailability by a factor e®®”). For
highly unavailable publishers, the availability gains of
bundling can outweigh the cost of the increased time to
download K times as much content resulting in a re-
duction in the download time, i.e., peers obtain more
content in less time.

The rest of this section formalizes the above claims
and derives closed-form expressions for the total down-
load time experienced by peers with and without bun-
dling. Unless otherwise stated, we assume that inter-
arrival times of peers and publishers, residence time of
publishers, and file download times are all exponentially
distributed.

3.2 A simple model for content availability

We present a simple instance of the above model to
analyze content availability and show that bundling im-
proves availability. The model makes several simplify-
ing assumptions (which we progressively relax in subse-



Variable Description (units)
Ak peer arrival rate (1/s)
A= Efil Ak bundled peer arrival rate (1/s)
Sk file size (bits)
S=%K s. bundle size (bits)
I mean download rate of peers (bits/s)
Tk arrival rate of publishers (1/s)
R arrival rate of publishers
for the bundle (1/s)
U, mean publisher residence time (s)
U mean bundled publisher residence time (s)
Metric Description (units)
Py unavailability
P unavailability of bundle
Ty download time (s)
T bundle download time (s)

Table 1: Variables denoted by lower case charac-
terize swarm k € {1,2,--- , K} in isolation, while
variables denoted by capital letters characterize
the bundle of K files. Metrics for the swarms in
isolation and for bundles are denoted by plain
and stylized letters, respectively. Subscripts are
dropped when homogeneous files are considered.

quent sections), but brings out the key insight underly-
ing all of our results.

Assumptions: Content is available if and only if
there is at least one publisher online. A peer arriv-
ing during an idle period finds the file unavailable and
immediately leaves, i.e., it does not queue up until a
publisher arrives. ¢

Availability of an individual swarm.

In swarm k, let r; and ui be the arrival rate and
residence time of publishers (refer to Table 1 for nota-
tion). Swarm k cycles through busy and idle periods,
with average length F[Bg] and 1/ry, respectively. The
probability Py that a peer arrives to swarm k to find
the content unavailable is

1/Tk
P, = —1°% k=1,....K 1
k E[By] + 1/r (1)
and
erkuk 71
E[B) = —— (2)
Tk

The above follows from classical results for the busy
period of an M/G/oo queue [19].

Availability of a bundled swarm.

Let R and U be the arrival rate and residence time of
publishers for the bundle, respectively. The probability
‘P that a peer arrives to find the content unavailable in
the bundled swarm is

1/R

P EB R ©

where the average length of a busy period for a bundle
of K files is

(4)

Consider the special case when the publishers arrival
rates are the same for all files, i.e., rp, = r and their
residence times are also the same, i.e., up = u for all K
files. If R and U scale as R = Kr and U = Ku,

6K2RU 1
BB = (5)
1/R

P = FRU1J(KR)+ 1/R (©)

Note that E[B] is a factor ¢®%”) larger than the cor-
responding value for an individual swarm. It can also
be verified that —log P, = ©(1) and —log P = O(K?).
Thus, bundling reduces the probability of not finding
the content by a factor e~ OK?),

Availability with publishers and peers.

Assumptions: The busy period is defined w.r.t. a
coverage threshold of one, i.e., a peer arriving during a
busy period always finishes the download in that busy
period and the last peer to finish ends the busy period. ¢

Content may be available even if there are no pub-
lishers online. Let the aggregate arrival rate of peers
and publishers to the individual swarm and to the bun-
dle be A + 7, and A + R, respectively. We consider
the special scenario in which publishers are willing to
disseminate at most one copy of the file every time they
return to a swarm. In this case, u; = s;/p (assumption
relaxed in the following section),

erktAe)se/n _q

E[Bk} - e + Ak

. k=1,....K (7

and

2B e(B+M)S/u _ 1 .
Bl=—%7r ®)
If, for all K files, A\, = A and s = s then A = K\ a121d
S = Ks. The bundled busy period is E[B] = e®¥"),
Thus, bundling reduces the unavailability by e~OK?)
even if the bundled publisher arrival rate is equal to the

publisher arrival rate of the individual swarms.

3.3 A model for content availability and down-
load time

Next, we quantify content availability and the mean
download time experienced by peers in the case where
1) peers may wait for content to become available, 2)
the mean residence time of the publisher may differ from
the service time of peers and 3) the coverage threshold
may be greater than one. We begin by presenting the
theoretical background required by our model.



Our results rely on those reported by Browne and
Steele [2] on the busy period of an M/G/oco queue where
the customer initiating the busy period has an excep-
tional residence time. In what follows, we derive the
expected busy period for the scenario of interest in this
section.

Let customers arrive according to a Poisson process
with rate 3. The residence time of the customer initi-
ating a busy period is draw from an exponential distri-
bution with mean 6. The residence time of all other cus-
tomers, X, takes the form of one of two exponentially
distributed random variables, X; or X5, with averages
ay and s, respectively; X = X; with probability ¢
and X = X, with probability ¢o = 1 — ¢;. The ex-
pected busy period is

© i b . Joi—j 14§ 1—j+i

i q1g "oy Ty 0
FEBl =406 -
[B] +ZZ:; 7! jz::o (]) oy + jlog + Oaqi — Oaqj

(9)
The reader can find the derivation of equation (9) as
well as the proofs of the results that follow in the Ap-
pendix. In the rest of this section, unless otherwise
stated, we assume that all files have the same size and
demand and that the publishers arrival rates and resi-
dence times are the same across all swarms. Assuming
homogeneous swarms allows us to drop the subscripts
of variables referring to individual swarms. In the Ap-
pendix we show that most of our results extend to the
case where different swarms have different characteris-
tics.

3.3.1 Availability with impatient peers

Assumptions: Publishers arrive to individual swarms

at rate r and stay in the system for a mean time u. For
the bundled swarm, publishers arrive with rate R and
stay for a mean time U. Peers that arrive during an
idle period leave immediately. ¢

We are interested in determining the probability that
a request leaves without being served. Denote this
as P and P for the individual and bundled systems,
respectively. Then

1/r 1/R

P= E[B]+1/R (10)

 EB]+1)r

The average busy period for each individual swarm,
E[B], is obtained from (9) by setting the parameters
as follows: B =A+r,0=u,a =s/u, 1 = )\%LT,
g = U.

For the bundled swarm, the aggregate peer arrival
rate is A = K\ and the size is S = Ks. The average
busy period, E[B], is obtained from (9) as follows: 5 =
A+R7 9:Ua aq :S/M, (I1:A¢73,062:Uo

The following lemma concerns the number of peers
served in a busy period. Assuming that both the bundle
publisher arrival rate, R, and publisher residence time,

U, are independent of K, yields

LEMMA 3.1. The number of2pee7“s served in a busy
period, E|N], increase as e®E) by bundling K files.

Note that this result is qualitatively similar to the
case when publishers and peers stay online for the same
mean time (Section 3.2).

We now consider the scenario where peers have skewed
preferences. Given K contents, let pi denote the prob-
ability that a request is for content k, £k = 1,..., K.
Assume that p, = ¢/k%, & > 0 (Zipf’s law). Letting A
denote the aggregate peer arrival rate for all K swarms,
the arrival rate for swarm k is Ay = ppA. Under the as-
sumption that the time to download the bundle scales as
K /u, one can show that the lemma above still holds (de-
tails in the Appendix).

In the theorem below we relate the asymptotics of
the busy period to the probability that a request is not
served. Under the same assumptions of lemma 3.1 we
have,

THEOREM 3.1. (Awailability theorem) Bundling K files
together decreases unavailability by a factor eOK?)

In the result above the publisher arrival rate for the
bundle, R, is assumed to be constant and independent
of K. Nevertheless, in the Appendix we show that even
if R = Q(e %), ¢ > 0, the availability of the bundle
is still greater than the availability of the individual
swarm by a factor eOE?), When enough files are
bundled, the long busy periods of the bundled swarm
make it mostly self-sustaining. Peers can almost always
download the content even in the absence of publishers.

3.3.2  Mean download time with patient peers

Assumptions: Peers that arrive during an idle
period wait for a publisher to become available. The
other assumptions are the same as in Section 3.3.1. ¢

We wish to compare the download time of peers with
and without bundling. To this aim, we first compute
the average busy period length in an individual swarm,
E[B]. When content is unavailable and a publisher ar-
rives to start a busy period, the group of waiting peers
immediately begins to be served. Neglecting the pos-
sible impact of this group of peers on the duration of
the busy period, the average busy period E[B] can be
obtained from (9) by setting 5 = A +r, a1 = s/pu,
q = /\%_T, oy = 0§ = u. In the Appendix we also pro-
vide an expression for E[B] accounting for the possible
impact of the group of peers that begins to be served
when the publisher arrives.

The average download time, E[T], is given by

LEMMA 3.2. The average download time of a file when
peers are patient is



B =54lp (11)

For the bundled swarm, the mean busy period length,
E[B], can be obtained from (9) by setting S = A+ R,
o = S/p, = Aﬁ—R, as = 0 = U. Once E[B] is
obtained, the mean download time for the bundle, E[7],
can be derived from (11) replacing s, r and E[B] by
their bundle counterparts S, R and E[B].

In the following theorem we relate the mean download
times of bundles and individual swarms,

where P =

THEOREM 3.2. (Download time theorem) Bundling K
files can,

(a) increase the mean download time by at most a fac-
tor K;

(b) decrease the mean download time of each file by a
factor ©(1/R) which grows unbounded as R — 0.

Part (a) of the theorem above holds when service times

dominate mean download times, in which case bundling

decreases performance. Nevertheless, from part (b) of

the theorem we conclude that if publishers become highly
unavailable, peers may experience arbitrarily smaller

download times when downloading bundles.

3.3.3 Threshold coverage

Assumptions: The assumptions are those described
in §3.1. ©

If a peer leaves the system carrying the last copy of
a chunk, content may become unavailable even if the
number of peers online, i.e., the coverage, is greater
than one. Our aim now is to determine the availabil-
ity and the mean download time experienced by peers
in the general case where content becomes unavailable
when no publisher is online and the coverage reaches a
threshold m. In Section 4.3.1 we validate the download
time derived in this section against experiments.

Let B(n,m) be the expected length of a residual busy
period that begins with n leechers and ends as soon
as the population size reaches m. The average busy
period corresponds to B(1,0). B(n,m) is given by

LEMMA 3.3. For all n,
"5 5 = 8\ (n 4 i) —nli!
Bn,():{ — + - (*)7 12
(n,0) ;zu u; i il(n+ )i (12)
For m < n, B(n,m) is obtained using the recursion

B(n,m) = B(n,0) — B(m,0).

We use lemma 3.3 to estimate the unavailability prob-
ability and the expected download time of peers in the
scenario described in §3.1 and depicted in Figure 2. We

assume that 1) the distribution of the residual busy pe-
riod is concentrated around its mean and 2) publishers
stay long enough in the system so that, when Phase 2
begins, the population of peers is in steady state. We
denote the mean residual busy period starting when the
system transitions to Phase 2 by B(m),

00 e*%(ﬁ @

B(m) = ZT“

=0

B(i,m) (13)

Noting that the number of times that the system cycles
through Phases 1 and 2 before transitioning to Phase 3
is described by a geometric random variable with aver-
age e"B(M) yields

THEOREM 3.3. For a threshold coverage of m, the
probability that a request leaves without being served is

P = exp(—r(u + B(m))) (14)

For patient peers, the expected download time is ob-
tained by substituting (14) into (11). The corre-
sponding expression for bundled swarms is obtained by
replacing s, A, r and u by their bundled counterparts,
S, A, R and U. In particular, if R = Kr and U = Ku
the availability and download time theorems still hold.
In Section 4.3.1, we validate the mean download time
estimated using (11) and (14) against experiments.

3.3.4 Altruistic lingering

Assumptions: Peers remain in the system for
an average amount of time 1/v after completing their
downloads. The other assumptions are the same as in
Section 3.3.2. ¢

Peers may stay online as seeds after completing their
downloads, either because they are altruistic or because
publishers provide them incentives to do so. In the Ap-
pendix we show how to parameterize a general version of
equation (9) to derive the availability probability and
the mean download time of peers that stay online as
seeds after completing their downloads. Furthermore,
we also show that the availability and the download
time theorems still hold.

To illustrate the consequences of peers staying longer
in the system, consider two swarms with file sizes s; and
so and popularities Ay and Ay. We wish to compare the
performance of the individual swarms with that of a
bundle with similar availability [s1A1/p+A1/7 = (M1 +
A2)(s1 + s2)/p]. The residence time for requestors of
content 1 is equal to

ﬂ+l _ (A1 + A2)(s1 + 52) _ s1+ 8 (1_~_§) (15)
wooy pAL I A1
For the bundled swarm, the download time of peers is
given by (s1 + s2)/p.
Assume swarm 1 is associated with a small and un-
popular content while the swarm 2 content is large and
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Figure 3: Bundles may reduce download time.

popular, s; < s2, A1 < 1 <« Ag. Since content 1 is
very unpopular (peer interarrival time very large), high
availability depends on peers staying for a long time in
the system after concluding their downloads (in equa-
tion (15), 14+ A2/A — o0 as Ay — 0). If swarm 1
is bundled with swarm 2, on the other hand, the over-
head incurred by the peers only interested in content
2 is marginal (since s; < s2) but the gains for peers
interested in content 1 is remarkable, since requestors
for content 1 experience the same availability and per-
formance as those requesting file 2.

3.4 When can bundling reduce download time?

In this section we use the proposed model to illustrate
when bundling reduces mean download time. We nu-
merically evaluate equations (11) and (9) by setting
the parameters as described in the legend of Figure 3.
Figure 3 shows the expected download time as a func-
tion of the bundle size. = For seven of the scenarios
(1/R € [500 —1100]), increasing K to its optimal value,
K = 3, leads to a decrease in the expected download
time, while setting K = 1 is the best strategy for the
remaining four. In each curve, as K increases the mean
download time first increases, then decreases and finally
increases again. The initial performance degradation
occurs because small bundles may increase service times
without sufficiently increasing the busy period.  Fig-
ure 3 also shows that the benefits of bundling increase
as the value of R decreases.

4. EXPERIMENTAL EVALUATION

In this section, we conduct controlled experiments us-
ing real BitTorrent clients to validate the two main con-
clusions of our model: 1) bundling improves availabil-
ity, and 2) bundling can reduce download times when
publishers are highly unavailable. We use an instru-
mented version of the mainline BitTorrent client [8]
and experiment with private torrents deployed on Plan-
etlab. Our experimental setup thus emulates realistic
wide-area network conditions, client implementation ar-
tifacts, and the impact of realistic upload capacity dis-
tributions and arrival patterns that are difficult to cap-

ture in an analytic model.

4.1 Experimental setup

Our experiments were conducted using approximately
150 Planetlab hosts and two hosts at the University of
Massachusetts Amherst one of which is designated as
the controller of the experiment and another as a Bittor-
rent tracker. The controller causes peer arrivals, pub-
lisher arrivals, and publisher departures by dispatching
via ssh a command to start or stop the BitTorrent client
on a randomly chosen unused Planetlab host. At the
end of the experiment, the controller collects the remote
traces logged by the instrumented BitTorrent clients.
Each client’s trace logs the instantaneous download and
upload rates every second as well as the fraction of the
file downloaded up to that time.

Experimental parameters. Our experiments consist of
torrents that publish either a single file of size S = 4 MB
or a bundle of K files of aggregate size K.S. The peer
arrival rate for a bundle is assumed to be the sum of the
arrival rates of its constituent files. The uplink capacity
of each peer is ;1 = 33 KBps (1 = 50 KBps in §4.3). The
publisher’s upload capacity is 50KBps for individual as
well as bundled torrents. There is only one publisher
that alternates between being on and off. The peer
arrival rate A and on/off behavior of the publisher are
varied according to the experimental goals as described
below.

4.2 Bundling improves availability

Our model suggests that bundling reduces unavail-
ability by increasing the length of busy periods and
thereby reducing the reliance on a stable publisher. As
an extreme case, we consider a publisher that initiates
a swarm and then goes offline never to come back, and
look at how long the swarm remains available after the
publisher goes offline. We ensure that the publisher
stays online long enough for at least one peer to fully
download the file. Each peer leaves the system imme-
diately after downloading the file.

We set A=1/150 per second for each file and all other
parameters to their default values, and study how the
availability of the publisher-less swarm varies with the
level of bundling K.

Figure 4 shows the number of peers served between
0 and 1500 seconds of the experiment for K=1, 2, 4,
6, 8 and 10. No peer completes its download in the
first 300 seconds of the experiment: the publisher is
either waiting for the first peer to arrive or is serving
the first peer in each case. However, when the first peer
completes its download and the publisher goes offline,
the curves for K = 1,2, 4 exhibit a very different trend
compared to K = 6,8,10. For K = 1,2,4, only a small
number of additional peers are able to complete their
download before parts of the content start to become
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Figure 4: Availability of seedless swarms and the
tradeoff in the choice of the bundle size.

unavailable. On the other hand, for K = 6,8, 10, the
number of completed downloads increases linearly, i.e.,
the swarm is self-sustaining even in the absence of a
publisher.

In steady state, the length of time the swarm remains
self-sustaining after the publisher goes offline is given
by the mean residual busy period, B(m). To compute
B(m) we use eq. (13) with ¢ = 33KBps, s = 4MB and
A = 1/150 peers/s. A threshold coverage of m = 9
leads to the following values of B(m) for K = 1 to 8,
(0, 0, 47, 569, 2816, 8835, 256446, 75276). These values
capture the fact that for K > 5 the swarms remained
self-sustaining throughout our measurement.

Although the system goes from being unavailable to
being available as K increases from 4 to 6, further in-
creasing K only results in increased download times.
The average download time of peers when K = 10 is
roughly 66% higher than that for K = 6 (not shown in
Figure 4). This suggests a delicate tradeoff in choosing
K—it should be large enough to bridge gaps in pub-
lisher unavailability, but beyond that point bundling
only increases download times. We study this tradeoff
in more detail next.

4.3 Bundling can improve download time

In this section, we consider an intermittently avail-
able publisher with capacity 100KBps that alternately
remains on and off for (exponentially distributed) mean
times of 300s and 900s respectively. The arrival rate of
peers for each file is A = 1/60 per second and the ca-
pacity of each peer is u=50 KBps. We study how the
average download time of peers varies with the level
of bundling.

Figures 5(a)-(c) show peer arrivals and departures
over time. Each line segment starts at the instant that
the peer arrives and terminates when the peer departs.
For each value of K the experiment lasts for 10 runs
of 1200s each.  Figure 5(a) shows that for K = 2,
many peers complete their download at roughly the
same time. These flash departures indicate that the
swarm is not self-sustaining. They happen because ex-
tant as well as newly arriving peers get stuck soon after

the publisher goes off, and must wait until the publisher
reappears and serves the missing blocks allowing them
to complete their downloads On the other hand, setting
K=3 (Figure 5(b)) reduces the likelihood of peers get-
ting blocked, and setting K = 4 (Figure 5(c)) nearly
eliminates blocking as the swarm sustains itself during
periods of publisher unavailability.

Figure 6(a) shows the mean download time as func-
tion of K. For K = 1 and 2, the download time re-
mains high as it is dominated by the time peers spend
waiting for the publisher. The high variance is be-
cause of the variance in the downtime of the publisher.
When K = 3, the mean download time reduces signifi-
cantly, however the variance remains high as the down-
load times are still partly determined by peers waiting
for the publisher to reappear. The optimal bundle size
is K = 4. The mean and the median download time as
well as the variance are the lowest for this value of K as
bundling eliminates gaps in publisher availability. For
values of K > 4 the download time increases linearly
with respect to K as the download time is dominated
by the time to actively download increasingly bigger
bundles. The variance continues to remain low as the
swarm is increasingly self-sustaining with increasing K.

4.3.1 Evaluation of the analytical model

Next, we validate our analytical model (Section 3.3.3)
against the experimental results above. We compute
the download time using equation (11) and adapting
(14) to account for the fact that there is only one pub-
lisher in the system to obtain

o exp(—E2Asy(E2as)t
» exp|(—R> ", - B(i,m) "
N UR+1 (16)

The derivation of the formula is in the Appendix. Set-
ting s/p = 80s, A = 1/60 peers/s, 1/r = 900 arrivals/s,
u = 300s and m = 9, our model predicts the results
observed in Figure 6(a) pretty well. The model leads to
an optimal bundle size of K = 5, whereas the optimal
observed in the experiments was K = 4, and correctly
captures the trend of the download time curve.

4.3.2 Heterogeneous upload rates

Next, we repeat the above experiment with hetero-
geneous peer upload capacities. The upload rate distri-
bution was taken from the measured data used to gen-
erate Figure 1 in the BitTyrant study [12]. The aver-
age upload rate is 280KBps and the median is 50KBps.
Using realistic peer upload capacities does not quali-
tatively change the behavior of the system (compare
Figures 6(a) and Figures 6(b)). However, the optimal
bundle size is now K = 5. This is consistent with the
increase in the average upload capacity compared to
the values obtained from the experiments with homo-
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geneous capacities (u=50 KBps). The higher upload
capacity implies that a bigger bundle is needed to in-
crease the length of its busy periods so as to make
the swarm self-sustaining during periods of publisher
unavailability—a conclusion that agrees with our model.

4.3.3 Heterogeneous file popularites

Next, we study the impact of bundling when different
files have different popularities. We consider a bundle
of K = 4 files. We assume that the popularities of
the files inside the bundle are distributed as follows:
A1 =1/8, X2 =1/16, A3 = 1/24 and Ay = 1/32. We run
5 experiments, the first four corresponding to swarms
with individual files (experiments 1, 2, 3 and 4) and the
last one to a bundle of all the files (experiment 5). In
experiment ¢ (1 < i < 4) we set \; as described above,
and in experiment 5 we set A = Zle A = 1/3.84. All
other parameters are set to their default values.

The mean download times are illustrated in Figure 6(c).

The boxplots and lines show the distribution quartiles
and 5th and 95th percentiles. For the individual files,
as we move to the right in Figure 6(c) (i.e., as the pop-
ularity of the files decreases) the mean download time
increases. When we consider a bundle of 4 files (ex-
periment 5, extreme right in 6(c)) the mean download
time is 405s. The mean download time of the bundle

is larger than the download time of 329s experienced
for file 1 in isolation but smaller than the download
times for files 2, 3 and 4 in isolation. These results are
explained as follows. File 1 is the most popular and
stands little to gain in availability, so the cost of down-
loading more content outweighs the availability benefit
of bundling. However, for the less popular files 2, 3 and
4, bundling reduces the download time by keeping the
swarm self-sustaining during periods of publisher un-
availability. In summary, if contents have different pop-
ularities, bundling may increase the download times of
peers downloading the most popular contents but can
benefit those downloading unpopular files. In this ex-
ample, bundling slightly increases the download times
of 48% of peers who download the most popular content
but significantly benefits the majority of the population.

4.3.4  Arrival patterns

Our model as well as experiments so far assumed
Poisson peer arrivals at a steady rate. To evaluate if our
conclusions are sensitive to the Poisson assumption, we
repeated experiments similar to those in Figure 6 using
scaled versions of real arrival patterns observed in our
measurement traces collected in §2. We found that us-
ing trace-driven arrivals does not qualitatively change
our conclusions (refer to the Appendix for details).

However, we believe our model’s conclusions may not
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hold if the mean arrival rate is not steady for a long
enough duration. In particular, our model will overes-
timate the length of the busy period and consequently
availability if the arrival rate decreases significantly be-
fore the end of the busy period determined by the cur-
rent arrival rate. Nevertheless, we found a significant
number of swarms with relatively steady arrival rates in
our measurement traces. For example, out of the 1,155
swarms associated with the TV show “Lost”, 911 were
published more than one month before we started our
measurement. Figure 7(a) shows a typical new swarm
in its first month and a typical old swarm after two
years of its creation. The arrival rates of old swarms
show much less variation compared to the arrival rates
of new swarms. Our model can be used to predict the
availability, download times, and the impact of bundling
for such swarms.

5. RELATED WORK

A large body of prior work has investigated availabil-
ity, performance and incentive issues in BitTorrent [3].
To our knowledge, this paper presents the first ana-
lytical model for content availability in BitTorrent-like
swarming systems. We were also unable to find prior
work studying the availability or performance implica-
tions of bundling in BitTorrent.

Ramachandran et al. [16] study the blocked leecher
problem, where extant as well as arriving peers may
have to wait for a long period of time for some blocks
of the file that are no longer available. To address the
problem, they propose BitStore, a token-based incen-
tive architecture to obtain the missing blocks cached at
other peers that had previously downloaded the file.

Neglia et al. [11] perform a large-scale measurement
study to investigate availability in BitTorrent. They
find that tracker availability is a serious enough prob-
lem that many torrents use replicated or DHT-based
trackers for fault tolerance. Our focus is not on the
availability of the tracker (or control plane), but on con-
tent availability (or data plane).

Both Susitaival et al. [18] and Wong et al. [21] relate
the busy period of the M/G/oco queue to content avail-
ability in BitTorrent. Our model differs in two ways
as it 1) quantifies content availability while accounting
for publisher dynamics, and 2) quantifies the impact of
bundling on availability and download time.

Qiu and Srikant [15] (building upon earlier work by
Veciana et al. [20]) present a fluid model to analyze the
download time performance of BitTorrent in steady-
state. In contrast, our model that accounts for both
performance and availability similar in spirit to per-
formability [7]. A naive adaptation of the fluid model in
[15] to bundles suggests strictly longer download times,
whereas our model shows that bundling can improve
download time by improving availability.

Many recent works have studied performance and
fairness of a single swarm [8, 9, 10, 1, 4]. Collaboration
across swarms was investigated by Guo et al. [6] sug-
gesting many unexplored inter-torrent opportunities for
block exchanges. Piatek et al. [13] suggest that prop-
agating peer reputations limited to one hop can incent
exchanges across swarms. Sirivianos et al. [17] propose
an architecture where a commercial content provider
provides “credits” to incent more cooperation between
peers. Bundling is complementary to inter-swarm col-
laboration based on micropayment schemes for improv-
ing content availability. Micropayment schemes require
a central bank to enable transactions and a tracking
mechanism across swarms for peers to locate each other.
In contrast, bundles are simple to set up and require no
change to existing trackers or clients and is already in
widespread use.

Economics of bundling.

Product bundling is a common commercial market-
ing strategy. The economics literature distinguishes be-
tween two forms of bundling [5]. In pure bundling or
tying, a consumer can purchase the entire bundle or
nothing at all. In mixed bundling, consumers have a
choice to select parts of the package.

Both forms of bundling exist and have their pros
and cons in BitTorrent’s “bandwidth market” as well.
Publishers can implement pure bundling by distributing
bundled content as a zip archive. By forcing peers to
download the whole bundle, pure bundling may make
unpopular files more available, while subsidizing band-
width costs for the publisher. However, it can delay
those seeking exclusively popular files by forcing them
to download content they do not want.

Mixed bundling is more common and can also im-
prove availability. Publishers typically bundle files ac-
cording to user interests, thus bundling can serve as
a mutually beneficial recommendation system. A user
seeking one episode of a TV show may decide to fetch
the entire season for possible future viewing. A pub-



lisher might recommend a movie as part of a bundle
to a user who may preview it and choose to pay for it
after all [14, 21]. Even a small fraction of users opt-
ing to download more content than they strictly sought
can significantly improve availability. Both mixed and
pure bundling in BitTorrent have a beneficial side-effect:
they replicate unpopular or rare content implicitly in-
creasing their durability in the long run, i.e., it reduces
the likelihood of rare content being lost permanently.

6. CONCLUSIONS

Peer-to-peer swarming in BitTorrent scales impres-
sively to tolerate massive flash crowds, but falls short on
availability. Although it is fashionable to observe that
BitTorrent accounts for up to half of all Internet traffic
today, it is less well known that half of the swarms are
unavailable half of the time—an observation that does
not bode well for the increasing commercial interest in
integrating swarming with server-based content dissem-
ination. Our work is a first step towards developing
a foundational understanding of content availability in
swarming systems.

By viewing BitTorrent as a queueing system, we were
able to model content availability. The model suggests
two important implications for bundling of content, a
common practice among swarm publishers today. First,
bundling improves content availability. Second, when
the publisher is highly unavailable, bundling reduces
the download time experienced by peers to obtain un-
popular content. The latter implication is particularly
intriguing as peers take less time to download more con-
tent. Although the model makes several simplifying
assumptions, we were able to empirically validate its
conclusions through large-scale controlled experiments
with the mainline BitTorrent client over Planetlab.
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APPENDIX
Background

Our results rely on those reported by Browne and Steele
[2] on the busy period of an M/G/co queue where the
customer initiating the busy period has an exceptional
residence time.

Let customers arrive according to a Poisson process
with rate 8. If we allow customers initiating a busy pe-
riod to draw their residence times from a distribution
H(-) with Laplace transform h(-) and mean 6 while all
other customers draw their residence times from a dis-
tribution G(-), the expected busy period length is given

E[B] = 9+§:ﬁ,—i OO(l—H(x))[/OO (1—G(u)>durdx

=1 70 x
(17)
When G(z) =1 — e~*/® i.e., all customers except the
first draw their service times from an exponential dis-
tribution, the equation above reduces to

Bl =0+ i (Ba)ia[li!; h(i/a)]

(18)

If the customer initiating a busy period also draws its
service time from an exponential distribution,

_0+a02l|a+20 (19)

Finally, if 0 = «,

E[B] = (¢ -

/B (20)

Proofs
Throughout the proofs, let Ag = max{\r}, Ay = min{\},

ss = max{si}, sy = min{sy}.
Derivation of equation (9)

PROOF. We use equation (17) to obtain (9). Let the
download time of customers that arrive during the busy
period be given by

X = {X1
Xs

where E[X;] = ;. Then,

with probability ¢;
with probability ¢ =1 — 1

G) = 1 - que " — e~

and

(22)
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Using integration by parts to solve (26) and substituting
the result into (22) leads to

(z,4)dz equals

_ B~ (i\ g g 1ok + 5D
Bl=o+3 53 () His ==
= a1 Qa2 63} @2
(27)
and if h(s) = 071/(071 + ),

i qiqz J +j é—j-&-ie
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=1 7=0
(28)

O

Proof of lemma 3.1

PROOF. Since all the terms in Bj, are lower bounded
and upper bounded by terms that do not depend on K,
one can show that F[Bj] is bounded hence log By, =
o(1).

To show that log B = ©(K?) we consider a special
process where the following conditions hold,

e during the k}){llsy period, customers arrive with rate
B=R+> 4\
e the residence times of customers arriving in a busy

period are drawn from an exponentially distributed
random variable with mean «,

e o« and 3 are upper bounded by

a < Lt U (29)
8 < Klx+R (30)
e o and ( are lower bounded by
KS[
a > — (31)
1
B > KX (32)



Since residence times of customers arriving in a busy
period are drawn from an exponentially distributed ran-
dom variable with mean o = 6, the average busy period,
E[B*], is given by (20)

BB = (™ - 1)/5 (33)
First, we show that log E[B*] = O(K?).

eKzss)\s/u+o(K2) -1

EB1] < 4
5 (3)
. log E[B*]
dm = (35)
Next, we show that log E[B*] = Q(K?).
eKZS[)\j/[L -1
EB > ———
(57 2 Kls+ R (36)
K2
lim ————
Koo log E[B*] = (37)
Therefore,
log E[B*] = ©(K?) (38)

To extend the result above to the parameterization
of E[B] made in Section 3.3.1 we proceed as follows.

For the upper bound, log E[B] = O(K?), consider a
modified process in which the residence times of all cus-
tomers arriving during a busy period are drawn from an

exponential random variable with mean o = max (U, m

Denote the busy period of the modified process by B.
For K sufficiently large, o = % Noting that condi-
tions (29)-(32) hold it follows that log E[B] = O(K?2).
Since E[B] > E[B], log E[B] = O(K?).

For the lower bound, log E[B] = Q(K?), consider a
modified process in which the residence times of all cus-
tomers arriving during a busy period are drawn from an

exponential random variable with mean oo = min(U, %)

Denote the busy period of the modified process by B.
For K sufficiently large, o = % Noting that condi-

tions (29)-(32) hold it follows that log E[B] = Q(K?).
Since E[B] < E[B], log E[B] = Q(K?).

Finally, one can show that the results above extend
to EN| = E[AB],

log EIN] = ©(K?) (39)
O
Proof of remark following lemma 3.1
Let 7, = r and \y = Apg for all £k = 1,... K.

A scales as KA. Without loss of generality, si 1
forall k=1,... K.

PROOF. We begin considering a process similar to
the special one described in lemma 3.1 to characterize
the bundled swarm,

Ksg

e during the busy period, customers arrive with rate
B=R+ Y5 My

e the residence times of all customers arriving in a
busy period are drawn from an exponentially dis-
tributed random variable with mean «,

o a satisfies K/p <a < K/u+U.

The busy period of this process is denoted by B*.
For the individual swarm k,

e during the busy period, customers arrive with rate
/8 =r+ )\kh
e the residence times of all customers arriving in a

busy period are drawn from an exponentially dis-
tributed random variable with mean «,

e « satisfies 1/u < a<1/u+u.

The busy period of this process is denoted by Bj.
The probability that a request is for content k is pg,

pkzk%, a>0, k=1,...,K (40)
where
K K
c_lzz;ok:Zl/k“ (41)
k=1 k=1

which is known to diverge if @ < 1 and converge when
a > 1. In particular, py — 0 if a <1 and p; — ¢ > 0 if
a> 1.

Let n; be the ratio of the mean busy period dura-
tion of the bundled swarm over the mean busy period
duration of individual swarm k,

E[B*]

* T e—— pr—
n = E[B,:]’ k=1,....K (42)
and let
E *
> k1 PE[Bf]
Note that

2 2
o (O DRy
k= (B it ot 1) [(r + K py)

yields, after some algebraic manipulation, log n; = ©(K?).
Similarly,

2 2
. (KM utolKT) _ 1) /(R 4+ K)\) (45)
Zszl pk(eK)\pk/H+o(K2) — ]_)/(7' + K/\pk)

yields logn* = ©(K?). The later follows since

K JKXpi/pto(K?)
logn* = K2)\/ u—logc—lo ( e—)—I—o K2
g /pu—log c—log kz::l I (K?)
(46)
Note that
o) RO/ itolh) QRN utolic) -
ke ke - ke (47)



Let
Coo = Klgnoo log e (48)

If @ > 1 then ¢ < 00 and (46)-(47) yield logn* =
O(K?). If a < 1 then ¢y, = O(In K) and, again, (46)-
(47) yield logn* = ©(K?).

To extend the result above to the parameterization
of E[B] made in Section 3.3.1 we proceed as in the con-
clusion of lemma 3.1. To illustrate, let us prove that

E[B] 2
=0(K 49
Consider a process in which the residence times of
all customers arriving during a busy period are drawn
from an exponential random variable with mean a =

max (U, %) Denote the busy period of the process by

log ), = log

B. For K sufficiently large, @ = £. Consider a second

process in which the residence times of all customers

arriving during a busy period are drawn from an expo-
1

nential random variable with mean o/ = min(u, +)- De-

note the busy period ofA this second process by B. Equa-
tion (44) yields log % — O(K?). Since E[B] > E[B]
and E[B] < E[By], logn, = O(K?). O

Proof of theorem 3.1

PROOF. Since all the terms in P are lower bounded
and upper bounded by terms that do not depend on
K, one can show that E[By] is bounded hence log P, =
o(1).

We rewrite — log P as

1/R
E[B]+1/R
—log(1/R) + log(E[B] + 1/R)
—log(1/R) +1og(e® ™) + 1/R) (50)
where the last equality follows from lemma 3.1.

We now show that —log P = ©(K?). First, we prove
that —log P = O(K?),

—log? = —log

. —logP . log(e@(K2) +1/R)
A TR S K? =
(51)
Then, we show that —log P = Q(K?),
K? 1
lim = lim —— < oo (52)
K—oo —logP K—oo Ko + log (60(;2)+1/R)

from which we conclude that —log P = ©(K?). O

Proof of remark following theorem 3.1

PROOF. Agsume that R decrease2s as K increases. If
R = Q(e=K") then 1/R = O(ef") and the proof of
theorem 3.1 holds.

If R increases as K increases, conditions (29)- (30) in
lemma 3.1, used to prove that log E[B] = O(K?), may
not hold. In particular,

af = KQ% +o(K?) (53)

may not hold. Nevertheless, one can still show that
log E[B] = Q(K?) and P = e~ 2" [

Proof of lemma 3.2

Consider the group of peers that wait for a publisher
to arrive and immediately begins to be served when the
busy period starts. In the following proof, we account
for the possible impact of this group of peers on the
duration of the busy period.

PROOF. Let Q denote the queueing time of a request.
The average queueing time conditioned on the event
that a request queues is

EQIQ > 0] =1/r (54)

Let T denote the time required to download content.
It’s average, E[T], is

ﬂﬂ=P@=®Z+P@>m(Z+M@Q>N>

B EB] s 1/r s
SEs> crades cIGRRLLED)
El 1/r 1

p t+E[B]r

where E[B] is the expected length of a busy period of
an M/G/oo queue with special distribution for the first
customer, as we detail next.

Recall that, since peers arriving during an idle pe-
riod wait for a publisher, when a publisher arrives a
group of peers immediately begins to be served. This
group is modeled using a virtual customer, with res-
idence time Y. Y is the maximum of all the down-
load times of the queued peers that enter simultane-
ously into service and the residence time of the pub-
lisher. Y = max{X1,..., X, X111} where Xq,..., X,
are exponential random variables with mean s/p and
Xr+1 is exponential with mean u. L is a geometric
random variable with support {0, 1, ...} and parameter
r/(A+r), denoting the number of Poisson arrivals with
rate A in an exponentially distributed interval of aver-
age length 1/r. Let h(s) be the Laplace transform of Y’
and § = E[Y].

To fully parameterize equation (18) it remains to de-
rive h(s). To this end, let the random variable Y} be

defined as
Yy = max{X;, Xo,..., Xy, Z} (55)

where X,..., X are exponential random variables with
mean s/p and Z is an exponential random variable with



mean u.
tomers,

Conditioning on the number of queued cus-

h(s) = Y _h(s|L=f)P(L=f) (56)
=0

= > hi(s)P(L=f) (57)
=0

where hy(s) is the Laplace transform of Y7.
Our goal now is to compute hy(s). First, we present
a closed formula expression for E[Y7],

—i—%(F—&-\I/(f—&-l))

(58)
is the Euler’s constant, ¥U(z) is the

u

C(f+ (1 u)(s/p), f)
where I' = 0.5772...

di-gamma function,

ElYy] =

U(z) = i1nr() F(z):/oo e tt* 7t (59)

dz 0
and C(m,n) = T(m+1)/(T(n+ 1)I'(m
generalized binomial coefficient.

E[Yy] can be obtained noting that the cdf of Y is

—n+1)), the

F(z) = P(Yf < x) =(1- e—%x)f(l . e—(l/u)z)’
(1+ Z 1DIC(f, j)e” 59%)(1 — e~ (1/w))
and E[Yy] = f;io(l — F(z))dx, which yields (58) after

some algebraic manipulation.
We proceed with the computation of the Laplace trans-
form of Y. Let W; be the it" order statistic among

{X1,..., Xy, Z}. Consider the event
Wy <o S Wiy S Z < Wiy <000 S Wy

We compute the Laplace transform of Yy conditioning
on the value of i*,

f+1
hy(s) =Y P = j)hs(sli* = j) (60)
j=1
where P(i* = j) equals
1 7 /s —i+1)

(f*j+1)(u/8)+1/ui1;[1 (f =i+ 1)(u/s)+1/u

Let U; denote an exponential random variable with rate
(f—i4+1)(u/s)+ (1/u) (1 <i<i*)and V; denote an
exponential random variable with rate i(u/s) (1 < i <
f—1i"+1). Then

hf(S'Z* _ ]) _ E[e_smaX{W(l)"“’W("’*)""’W”)}"L.* :]] _

) J f—j+1
:EkﬂQ: U+zf”xm]:IIE 4U II Ele ﬂv
i=1

Foi+l .
i(p/s)
H i(u/s) + s

=1

f—i+D)(p/s)+
—Z+1 )(w/s) +

(1/u)
(1/u) + s

Substltutmg this last expression into (60) yields h¢(s). O

Remark on the proof of lemma 3.2. The system cy-
cles through idle and busy periods. Consider one idle
period. In that idle period, let L be the total num-
ber of requests queued up. Let QU) be the queueing
time of the j*" request. The average queueing time of a
customer conditioned on the customer being queued is

B[, QUIQ > 0]
E[L|Q > 0]

EQIQ > 0] =

where E[L|Q > 0] = 1 and

(61)

L

L
Z DNQ > 0] = Z (L=1L>0E])_ QYIL=1

=1

PIHS H

l
PO+ DA+ Y

=1 =1 >\+T
O LI+
7; r/(A+1) (A (A +1)) 172@”)
A+
==
Therefore
EQIQ >0 =+ (62

Let the average of the waiting times of peers arriving
in an idle period be denoted by @',

[Z] 1Q

EQIQ >0 =E Q" >0 (63)

Then,

E[Q|Q > 0] :ip L=IL>0E[Q|L =]
=1

1 l

¥y

[+1
- 2\ + 1)

<1+/\41—T> (64)

Equation (62) may be contrasted with (64). Even though
the average wait time experienced by a peer arriving
during an idle period is 1/r (equation (62)), the ex-
pected value of the average wait time in an idle period
is smaller than or equal to 1/r (equation (64)).

End of remark.

Proof of theorem 3.2

i SN+ YN N+ 7))

r/A+ )N/ (A+r)

Mg T

~

N |



Proor. Part (a) follows immediately from the fact
that E[7] = Ks/u+ P/R, E[T] = s/u+ P/R and
P < P.

Part (b) follows since

e limg .o P =0 and

K
lim E[T] = —> (65)
K—oo 12
e limp .o P =1 and
. s 1
1121LI10 E[T) = M + = (66)

Assuming that the optimal bundle groups files that are
of interest to all users downloading the bundle, 2

ot PTGt E ]
IIQILHOKIEHOO E[T]/K s/uR B G)(E) (67)

Note: In the derivation above K and R are indepen-
dent. Nevertheless, if K = 4/log(1/R) the result still

holds,
. E[T) 2 4 K . 1
1 = ] = Ky_9(=
Koo E|T)/K s+ %efe(m) (™) (R)
(68)

where the first equality follows from theorem 3.1. O

V/log(1/R) then

Ezxtension of theorem 3.2 If K =
E[T)/E[T] = 9(%)'

log(1/R)

Vlog(1/R),

Proor. If K =

CE[] . S+
A BT T eeeam — (O

= 0(c""/K) :e(R\/lo;(W)

where the first equality follows from theorem 3.1. O

Proof of lemma 3.3

PROOF. Due to the memoryless property of the ex-
ponential random variable, the virtual customer that
starts the residual busy period is characterized by a ran-
dom variable Y = max{Xj,..., X, } where X1,..., X,

2Note that in the rest of this paper the download time of an
individual content, E[T7], is compared against the download
time of the bundle, E[7], rather than E[7]/K. The former
comparison is applicable if only one of the files inside the
bundle is of interest to each user while the later is more
adequate if all users downloading the bundle are interested
in all files. In the remark following the proof of 3.2 we derive
t]%l[% ]download time theorem in case the metric of interest is

E[T
W rather than W

are exponential random variables with mean s/u. There-
fore, Y is an hypoexponential distribution with parame-
ters (s/u, 8/(21), ..., s/(nu)), which has Laplace trans-
form H?zl(iu/s)/(erw/s) and mean ), 7~ Hence,
equation (18) can be used to compute B(n,0) for any
value of n. B(n,0) equals

S S 1—h(i/(s
[Z +Z A(s/w)" /u)z[!l h(i/(s/w))]

which, after some algebraic manipulation, leads to (12).
Let us denote by T; ; the time it takes for a residual busy
period which starts with ¢ peers to reach a population
size of j < i peers, where B(i,j) = E[T;,]. For n >
land n > k > [, we have that T},; = T, + Ti,.
Therefore, in general E[T,, ;] = E[T, ] + E[Ty,;] and
in particular, E[T,, ;] = E[T,0] — E[T} 0] which if used
with equation (12) provides a way to compute B(n,l)
for arbitrary values of n and I <n. O

Proof of theorem 3.3

Proor. The probability that a request leaves with-
out being served, P, is

1/r
E[B]+1/r
We now compute E[B], the expected length of the busy
period of a system which cycles between three phases:
(1) one or more publishers are available; (2) no pub-
lisher is available but content is still available; (3) the
content is not available.

We denote by G the expected length of a residual
busy period after the number of publishers vanishes to
zero. Assuming peers reached steady state,

(AS)
G = Z B(i, m) (72)

P= (71)

The system starts in (1). It cycles between (1), (2),
(1), (2) and so on up to reaching phase (3). Let us
denote the number of times that it goes through (1) and
(2), before reaching (1) for the last time and finally (2)
and (3), by a geometrically distributed random variable
C'. C has support {0, 1, ... } and success probability p,

p=P{X>G}=e"C (73)
where X is an exponentially distributed random vari-

able with rate r. Therefore,

1-— 1—e "¢
oje) [

74
D e~ TG ( )

Phase (1) takes on average < , the busy period of
a population formed only by pubhshers Phases (1) and
(2) together, when not followed by (3), take on average

eru

-1, E[X|X <G (75)



where
L (L+G)ee

EX|X <G = e (76)
The expected busy period is

TU __ 1 TW __ 1
E[B] = E[C)(“—— + EX|X < G]) + =—— + G
(77)

Substituting (72), (74) and (76) into (77) yields

r(G+u) _ 1
B(B)= 2 (79)
Replacing (78) into (71) leads to

P =exp(—r(u+ G)) (79)

O

Proof of remark following theorem 3.3.
If R= Kr and U = Ku the availability and download
time theorems still hold.

ProOF. If R = Kr and U = Ku then, from (79),

P = e OK (80)
therefore the availability theorem holds. Since
s 1
ET|=K—+ = 81
7= K2+ 5P (51)
and P = 'e_e(Kz)7
s 1 1/r
BIT] + BB, (82)
E[T] Ki + %P
If % = eKz,
B[] 4% 2 1
li =L B _gEf)=0(=) ®3
KU B[T] T K2+ 4P (™) (R) (83)

which grows unbounded as K — oo (R — 0). O

Another remark on the proof of theorem 38.3.

If the Laplace transform of the residual busy period
G*(s) is known then E[X|X < G] is given as follows.

The probability of zero arrivals of a Poisson process
with rate r in an interval G is

P{X > G} = /000 e "g(x)dr = G*(r) (84)

Substituting (84) into E[X], which is given by

E[X|X <GJ(1-P{X > G})+E[X|X > G]P{X > G}

leads to

EX) = 1= BIX|X < Gl - G*() + (- + Q)& ()
(85)

and

Lo +6)GW)

1—G*(r)

EIX|X < G] = (86)

End of remark.
Derivation of equation (16)

PrOOF. The derivation is similar to the one of theo-
rem 3.3. Using the same nomenclature, phases (1) and
(2) together, when not followed by (3), take on average

U+ EX|X <G| (87)
where

1 1 —RG
B (E + G)e
1— e RG

EX|X <G] =
The expected busy period is
E[B) = EIC)(U + EIX|X <G]) + U +G  (89)
Substituting (88) and (74) into (89) yields

eS(UR+1) —1
R

E[B] =

and
B 1/R B e BG
" 1/R+E[B] UR+1

O

Altruistic lingering

The availability and download time theorems hold
in the scenario with altruistic lingering since adding a
constant to the residence time of each peer does not
change the asymptotics of the system when K — oo.

To model altruistic lingering we use equation (17).
Let S be an exponentially distributed random variable
with mean u, representing the residence time of publish-
ers. Let L be the sum of two exponentially distributed
random variables with means 31 = s/ and By = 1/
representing the residence time of peers after starting
the download. The distribution of L is

(1/B) (e F" 1) = (1/B)(e 2" — 1)
(1/B2) — (1/51)
if 81 # (2 and Erlang(2, (1) otherwise. A customer

arriving in a busy period draws its residence time X as
follows,

L(x) =

(92)

. o (93)
S with probability 1 — ¢}

v {L with probability ¢}
where ¢; = A/(A + ). Therefore, we parameterize (17)
setting 8 = A+r, H(z) = 1—e ", 0 = u, G(z)
(1— )S(2) + L L(x).
For the bundled swarm, 8 = A+ R, H(z) = 1—e"U?,
0=U, ¢ =A/(A+R),S(z)=1—e-Ux, 51 =5/u
and B = 1/v. O



Trace driven arrivals

In this section we report results obtained using peer ar-
rival patterns observed in real swarms. We selected
two files from the 2008 Olympic game opening cere-
mony (which we refer to as files A and B). We scaled
the arrival rates so that the swarms in isolation were not
popular but as a bundle were popular enough to be self-
sustaining. In this Planetlab experiment, we set pub-
lisher up and down times, U and D, to be exponentially
distributed with mean of 500s and 1500s, respectively.
Both files have size S=10 MB and we set the capac-
ity of peers and publishers as 50KBps and 100KBps,
respectively.

For each of the three scenarios that we considered
[(1) bundle, (2) file A isolated and (3) file B isolated]
we ran a Planetlab experiment for 12 hours. The down-
load distributions for the three considered scenarios are
shown in Figure 8. The dots mark the mean and the
box plots show the 1st, 2nd and 3rd quartiles and, the
5 and 95 percentiles. Note that the mean and variance
in the bundled case are significantly smaller than the
ones for the two individual files, with an improvement
in download time of 39% and 41%, respectively.
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Figure 8: Experiment using trace-driven arrivals
(Mean, quartiles, 5th and 95th percentiles)



