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ABSTRACT
Recent differentially private query mechanisms offer strong
privacy guarantees by adding noise to the query answer. For
a single counting query, the technique is simple, accurate,
and provides optimal utility. However, analysts typically
wish to ask multiple queries. In this case, the optimal strat-
egy is not apparent, and alternative query strategies can
involve difficult trade-offs in accuracy, and may produce in-
consistent answers.

In this work we show that it is possible to significantly im-
prove accuracy for a general class of histogram queries. Our
approach carefully chooses a set of queries to evaluate, and
then exploits consistency constraints that should hold over
the noisy output. In a post-processing phase, we compute
the consistent input most likely to have produced the noisy
output. The final output is both private and consistent, but
in addition, it is often much more accurate.

We apply our techniques to real datasets and show they
can be used for estimating the degree sequence of a graph
with extreme precision, and for computing a histogram that
can support arbitrary range queries accurately.

1. INTRODUCTION
Recent work in differential privacy [10] has shown that it is

possible to analyze sensitive data while ensuring strong pri-
vacy guarantees. Differential privacy is typically achieved
through random perturbation: the analyst issues a query
and receives a noisy answer. The noise is carefully calibrated
to the sensitivity of the query to ensure privacy. Informally,
the sensitivity of a query measures the total change to the
query output under small changes to the input database.
This query mechanism is simple, efficient, and—for many
queries—quite accurate. In addition, for a single query, this
standard mechanism has also recently been shown to be op-
timal in the sense that there is no better noisy answer to

return under the desired privacy objective [11].
However, analysts typically need to compute multiple statis-

tics on a database. Differentially private algorithms extend
nicely to sets of queries, but there can be difficult trade-
offs among alternative strategies for answering a workload
of queries.

Consider the analyst of a private student database who re-
quires the following quantities: the total number of students,
xt, the number of students receiving each possible grade A,
B, C, D, and F (xA, xB , xC , xD, xF ), as well as the number
of passing students, xp (those receiving at least grade D).
When exact answers are available, handling this workload of
queries is straightforward. The analyst can simply submit
all the queries, or can easily find a subset of queries from
which the rest of the answers can be computed.

When using a differentially private interface, more than
one strategy is possible. A first alternative is to request noisy
answers for just (xA, xB , xC , xD, xF ) and use those answers
to compute xt and xp by summation. The sensitivity of this
set of queries is one because adding or removing one tuple
can change at most one of the five numbers by a value of
one. The noise added to individual queries is therefore low.
Unfortunately, the noise accumulates under summation, so
the estimates for xt and xp are poor.

A second alternative is to request noisy answers for all
quantities (xt, xp, xA, xB , xC , xD, xF ). This query has sen-
sitivity 3 (one change can affect 3 return values, each by a
value of one), and the privacy mechanism must add more
noise to each component. This means the estimates for
xA, xB , xC , xD, xF are worse than above, but the estimates
for xt and xp may be more accurate. There is another con-
cern, however: inconsistency. These query results are re-
lated, and we expect the following constraints to hold for
any consistent answer to the queries: xp = xA+xB+xC+xD
and xt = xp+xF . Receiving noisy answers that violate these
constraints is problematic. For example, xt and xp+xF may
be different estimates for the total number of students, and
the analyst must find a way to reconcile them.

We propose techniques for resolving inconsistency in a
set of queries, and show that doing so can actually increase
accuracy. As a result, we show that strategies inspired by
the second alternative can be superior in many cases.

1.1 Overview of Approach
In this paper we propose novel techniques for deriving pri-

vate but accurate answers to two related histogram tasks,
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to be described shortly. Our approach to private query an-
swering is the following. First, we choose a set of queries
where constraints naturally hold among the query answers.
Second, using a standard differentially private algorithm,
we derive a set of noisy answers. If the true answer set is
x, we write the noisy answer set ex. The noisy answer set
typically violates the constraints. So, third, we introduce a
constrained inference step that computes a new set of an-
swers x that satisfy the constraints and is closest to ex. The
inferred answers x are differentially private and consistent,
and often significantly more accurate than the original out-
put.

The increase in accuracy we achieve depends on the in-
put database and the privacy parameters. Intuitively, there
may be some databases and levels of noise for which the
perturbation tends not to produce answers that violate the
constraints. In this case the inference step cannot help. But
we show that our inference process never hurts: x is never a
worse estimate for the true answer than ex (in expectation).
In practice, we find that many real datasets have data dis-
tributions for which our techniques offer significant accuracy
improvement.

We emphasize that the improvement in accuracy is achieved
with no sacrifice of privacy. The constrained inference step
is applied by the analyst after receiving the output of a dif-
ferentially private algorithm. In addition, the consistency
constraints used in the inference step are derived from prop-
erties of the queries themselves and cannot leak information
about the private database instance. Since the inference
step uses no information from the database other than ex,
it has no impact on the privacy guarantee. Thus, all tech-
niques proposed in this paper satisfy standard ε-differential
privacy [9].

Computing consistent answers from differentially private
outputs has been discussed before [5] for the special case
of contingency tables, although accuracy is not improved.
We are able to exploit a larger set of constraints, and more
general constraints, which offers a boost in accuracy.

1.2 Histogram tasks
We focus on two tasks related to histograms that illustrate

how our inference technique can be applied to diverse con-
straints. For relational schema R(A,B, . . . ), we choose one
attribute A on which histograms are built (called the range
attribute). We assume the domain of A, dom, is ordered.

We explain these tasks by reference to sample data that
will serve as a running example throughout the paper, and is
also the basis of later experiments. The relation R(src, dst),
illustrated in Fig. 1, represents a trace of network communi-
cations between a source IP address (src) and a destination
IP address (dst). It is bipartite because it represents flows
from internal to external addresses.

Unattributed histograms. In an unattributed histogram,
we form disjoint intervals for the range attribute and com-
pute counting queries for each of the specified ranges. The
intervals themselves are irrelevant to the analysis and so we
report only a multiset of frequencies.

In our example, we use src as the range attribute. There
are four source addresses 000, 001, 010, 011 present in the
table. If we ask for counts of all unit-length ranges, then
the unattributed histogram is simply the sequence of (out)
degrees of the source addresses (in the example: 〈2, 0, 10, 2〉).

Table 1: Notational conventions

L Unit-Length query sequence
H Hierarchical query sequence
S Sorted query sequence

L̃, H̃, S̃ Randomized query sequence
H,S Randomized query sequence,

returning minL2

L(I),H(I),S(I) Output sequence (truth)

l̃ = L̃(I), h̃ = H̃(I), s̃ = S̃(I) Output sequence (noisy)

h = H(I), s = S(I) Output sequence (inferred)

Degree sequences are an important instance of an unattributed
histogram because they are a crucial measure of a graph that
is widely studied [16]. If the tuples of R record queries sub-
mitted to a search engine, and A is the search term, then the
unattributed histogram shows the frequency of occurrence
of all terms (but not the terms themselves), and can be used
to study the distribution.

Universal histograms. We also consider more conventional
sequences of counting queries in which the intervals studied
may be irregular and overlapping. In this case, simply re-
turning unattributed counts is insufficient. And because we
cannot predict ahead of time all the ranges of interest, our
goal is to compute privately a set of statistics sufficient to
support arbitrary interval counts and thus any histogram.
We call this a universal histogram.

Continuing the example, a universal histogram allows the
analyst to count the number of packets sent from any single
address (the counts from source addresses 010 and 011 are
10 and 2, respectively), or from any range of addresses (e.g.
the total number of packets is 14, and the number of packets
from a source address matching prefix 01∗ is 12).

These two tasks can enable a wide range of analyses. We
note that a universal histogram is more general than an
unattributed histogram—the former can be used to derive
the latter. But we will see that unattributed histograms can
be evaluated much more accurately than would be possible
using a universal histogram.

1.3 Queries and constraints for histogram tasks
All of the tasks considered in this paper are formulated as

query sequences where each element of the sequence is a sim-
ple count query on a range. We write intervals as [x, y] for
x, y ∈ dom, and abbreviate interval [x, x] as [x]. A counting
query on range attribute A is:

c([x, y]) = Select count(*) From R Where x ≤ R.A ≤ y

Our notational conventions are summarized in Table 1.
When the query sequence Q is evaluated on a database in-
stance I, the output, Q(I), includes one answer to each
counting query, that is, Q(I) is a vector of non-negative
integers. The ith counting query in Q is Q[i].

Unattributed histograms. We consider the common case
of an unattributed histogram over unit-length ranges. The
conventional strategy is to simply compute counts for all
unit-length ranges. This query sequence is denoted L:

L = 〈 c([x1]), . . . c([xn]) 〉, xi ∈ dom

In the example, we assume the domain of src contains
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(a) Trace data

Query Definitions L : 〈C000, C001, C010, C011〉
H : 〈C0∗∗, C00∗, C01∗, C000, C001, C010, C011〉
S : 〈rank1(U) . . . rankn(U)〉 for U = {c([xj ])|xj ∈ dom}

True answer Private output Inferred answer

L(I) = 〈2, 0, 10, 2〉 L̃(I) = 〈3, 1, 11, 1〉
H(I) = 〈14, 2, 12, 2, 0, 10, 2〉 H̃(I) = 〈13, 3, 11, 4, 1, 12, 1〉 H(I) = 〈13, 2, 11, 2, 0, 10, 1〉
S(I) = 〈0, 2, 2, 10〉 S̃(I) = 〈1, 2, 0, 11〉 S(I) = 〈1, 1, 1, 11〉

(b) Query variations

Figure 1: (a) Illustration of sample data representing a bipartite graph of network connections; (b) Definitions
and sample values for alternative query sequences: L counts the number of connections for each source, H
provides a hierarchy of range counts, and S returns an ordered degree sequence for the implied graph.

just the 4 addresses present in the table. So we have query
sequence L defined to be 〈c([000]), c([001]), c([010]), c([011])〉
and L(I) = 〈2, 0, 10, 2〉.

This query implicitly reflects the association between a
count and the range for that count, which is not relevant in
an unattributed histogram. This extra information can be
ignored. But our observation is that, since the association
between L[i] and i is not required, any permutation of the
unit-length counts is a correct response for the unattributed
histogram.

We define a new query sequence S, returning the permuta-
tion of L that is in ascending order. If U is the set of all unit
length counts U = {c([xj ])|xj ∈ dom}, we write ranki(U)
to refer to the ith element in sorted, ascending order. We
define S = 〈rank1(U) . . . rankn(U)〉. In the example, we
have L(I) = 〈2, 0, 10, 2〉 while S(I) = 〈0, 2, 2, 10〉.

This small change does not impact privacy because the
sensitivity is not changed by ordering, as we will show. But
it has a significant impact on accuracy because S has a
powerful set of constraints. We denote the constraint set
γS, which consists of all the inequalities S[i] < S[i + 1] for
1 ≤ i < n. (Note that the constraint set γL for L is empty.)

Our first set of results, given in Section 3, include a differ-
entially private algorithm S̃ and techniques for inferring a
more accurate ordered result from its unordered noisy out-
put.

Universal histograms. The query sequence L described
above is the conventional strategy for computing a universal
histogram as well. Since it returns all unit-length counts, the
result can be used to compute any interval count, c([x, y]),
by summation. This strategy works well only for small
ranges, because the error accumulates as noisy estimates
are added. For large ranges, the estimates can easily be-
come useless.

We propose a different query sequence for supporting uni-
versal histograms, which consists of hierarchical intervals.
The first interval is the entire domain [x1, xn]. We recur-
sively partitioning so that the next intervals are [x1, xn/2]
and [xn/2+1, xn], and so on. The new query sequence, de-
noted H, consists of counting queries for all of the 2n − 1
hierarchical intervals (including the n unit-length intervals
in L). In the example, H is a query sequence with 7 el-
ements, beginning with the total count, then a count for
each half of the src address space, and then a count for each

individual address. The complete description of H is shown
in Fig. 1 and we have H(I) = 〈14, 2, 12, 2, 0, 10, 2〉.

The query sequence H has more counts than L and greater
sensitivity. But it also has a large set of arithmetic con-
straints, denoted denoted γH, which follow from the re-
lationships between the intervals. For example, we know
the following must hold: c([0 ∗ ∗]) = c([00∗]) + c([01∗])
and c([00∗]) = c([000]) + c([001]) and c([01∗]) = c([010]) +
c([011]).

Our second set of results, given in Section 4, include a
differentially private algorithm H̃ and techniques for using
its inconsistent output to infer a more accurate consistent
result.

Contributions
We propose differentially private algorithms to support un-
attributed and universal histograms. Our specific contribu-
tions include:

• For each task, we provide efficient, closed-form expres-
sions for computing the consistent query answer closest
to an observed randomized output.

• For each task, we analyze the inferred output theo-
retically, showing that it never increases error, and in
some cases, that it provides an optimal estimate given
the input.

• We demonstrate significant improvements in accuracy
through experiments on real data sets. Degree se-
quence estimation is extremely accurate, with error at
least an order of magnitude lower than existing tech-
niques. Our approach to universal histograms can re-
duce error for larger ranges by about 45-98%, and im-
proves on all ranges in some cases.

Our results reveal that common differential privacy ap-
proaches can introduce more noise than is strictly required
by the privacy condition. Exploiting constraints through
the proposed inference process is an important method for
avoiding this.

2. BACKGROUND
In this section we review differential privacy, establish no-

tational conventions, and formalize our constrained infer-
ence process as a minimization problem.
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2.1 Differential Privacy
Informally, an algorithm is differentially private if its out-

put is insensitive to small changes in the input. This pro-
vides privacy because if similar databases, say differing by
a single record, produce indistinguishable outputs, then the
adversary cannot use the output to infer the presence of in-
dividual records. For database I, let nbrs(I) be the set of
neighboring instances, which differ in exactly one tuple: i.e.
such that |(I − I ′) ∪ (I ′ − I)| = 1.

Definition 2.1 (ε-differential privacy [9]). An al-
gorithm A is ε-differentially private if for all instances I, any
I ′ ∈ nbrs(I), and any subset of outputs S ⊆ Range(A), the
following holds:

Pr[A(I) ∈ S] ≤ eεPr[A(I ′) ∈ S]

where Pr is a probability distribution over the randomness
of the algorithm.

Dwork et al. [10] present a technique for approximating
the answer to any query in a differentially private way. It
works by adding random noise to the answer, where the
noise distribution is carefully calibrated to the query. The
calibration depends on the query sensitivity—informally, the
maximum amount the query answer can change given any
small change to the database. We adapt the following defi-
nition to the query sequences considered in this paper.

Definition 2.2 (Sensitivity). Let Q be a sequence of
counting queries. The sensitivity of Q, denoted SQ, is the
smallest number such that for all I and I ′ ∈ nbrs(I),˛̨

Q(I)−Q(I ′)
˛̨
≤ SQ

Since Q is a query sequence consisting of counting queries,
Q(I) and Q(I ′) are each vectors non-negative integers. In
the definition above, |Q(I)−Q(I ′)| refers to the L1 distance
between these vectors.

For a query sequence Q of length d, the following algo-
rithm is shown to be ε-differentially private [10] :

Q̃(I) = Q(I) + 〈Lap(SQ/ε)〉d

Here 〈Lap(X)〉d is used to denote a vector of size d con-
sisting of independent random samples, each taken from a
zero-mean Laplace distribution. In the algorithm above, the
scale of the Laplace distribution, SQ/ε, is determined by the
sensitivity of Q.

Thus, Q̃ denotes a randomized algorithm that computes
the true answer to the query, Q(I), and adds Laplacian noise
independently to each component. We use this technique
throughout the paper to construct differentially private al-
gorithms for query sequences.

We briefly review how these existing results are applied to
the query sequence L that is the conventional technique for
both unattributed and universal histograms. Recall that L
returns counts for each unit interval in dom, the domain of
the range attribute, and that |dom| = n:

L = 〈 c([x1]), . . . c([xn]) 〉, xi ∈ dom

The sensitivity of L is 1 because if two instances differ by one
tuple, the result of computing L differs in exactly one posi-
tion by a value of one. Therefore, the following algorithm is
ε-differentially private:

L̃(I) = L(I) + 〈Lap(1/ε)〉n

Analyzing accuracy. To analyze the accuracy of the ran-
domized query sequences proposed in this paper we quantify
their error. A randomized query like Q̃ is computed using
Q(I) as input. Therefore, Q̃ can be considered an estimator
for the true value Q(I). Recall that the L2 distance of two
vectors X and Y is defined as ‖X − Y ‖2 =

P
i |xi − yi|

2.
We use the common Mean Squared Error as a measure ac-
curacy.

Definition 2.3 (Utility). For a randomized query se-

quence Q̃ whose input is Q(I), the error(Q̃) is E
‚‚‚ Q̃−Q

‚‚‚
2
.

Here E is the expectation taken over the possible randomness
in generating Q̃.

For example, error(L̃) = E
P
i(L[i]− L̃[i])2 which simpli-

fies to: nE[Lap(1/ε)2] = 2n/ε2.

2.2 Constrained Inference
For a query sequence Q with constraint set γQ, the con-

strained inference process takes the randomized output of
the query, q̃ = Q̃(I), and finds the “closest” set of query
answers, q̃, that satisfy the constraints γQ. Here closest
is measured according to the L2 distance, and we call the
result the minimum L2 solution:

Definition 2.4 (Minimum L2 solution). Let Q be a
query sequence with constraints γQ. A minimum L2 solu-

tion for noisy query sequence q̃ = Q̃(I), is a vector q that
satisfies the constraints γQ and at the same time minimizes
‖ q̃ − q ‖2.

We shall show that there is unique “closest” query se-
quence for both unattributed histograms and universal his-
tograms. In these cases, we denote this unique solution by
minL2(S̃(I), γS̃) or minL2(H̃(I), γH̃). We also derive closed
form expressions for these quantities.

Uniqueness is one of the main reasons we choose to formu-
late the inference process using L2 distance. If we minimize
L1 distance, we are not guaranteed a unique solution, and
furthermore, some of the possible solutions are less accurate.
In addition, we shall show that the minimal L2 solution
forms the estimator with least error in many cases.

Note that all query sequences considered in the paper con-
sist of sets of counting queries. Thus the output sequences
are always integral, non-negative values. The output of our
randomized queries is neither integral nor non-negative be-
cause we add continuous Laplace noise. Integrality and non-
negativity are typically achieved by moving negative values
to zero, and rounding fractional values to the nearest inte-
ger. They usually do not have a large impact on accuracy.

To simplify the theoretical development, we do not in-
clude integrality and non-negativity as constraints in any
constraint sets γQ, but we do consider them in the experi-
ments in Section 5.

3. UNATTRIBUTED HISTOGRAMS
In this section we describe a query for supporting unattr-

ibuted histograms. First, we define the basic query S and
contrast it with the conventional query L. After defining its
differentially private extension S̃, we use constrained infer-
ence to derive a new estimator S and compare the utility of
S̃ and S.
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To support unattributed histograms, we can use the query
L which will give a sequence of unit-length counts L[1],
L[2], . . . , L[n], where n = |dom|. However for an unattr-
ibuted histogram, we are interested only in the values of
counts L[i], without requiring the association between L[i]
and i. It follows that any permutation of L is a correct
response for the unattributed histogram.

We define a new query S which returns the counts in
ascending order. If U is the set of all unit length counts
U = {c([xj ])|xj ∈ dom}, we write ranki(U) to refer to the
ith element in sorted, ascending order. We define:

S = 〈rank1(U) . . . rankn(U)〉

Thus S[1] is the smallest count and S[n] is the largest count.
Perhaps surprisingly, S has the same sensitivity as L. In
fact, we can make a general statement about the effect of
sorting by value. Given a query sequence Q, let Q′ =
sort(Q) correspond to the query that returns the counts
of Q in sorted order.

Proposition 1. The sensitivity of Q′ is no larger than
the sensitivity of Q.

Proof. Given two vectors X,Y , let l be the minimum L1

distance between X and any permutation of Y . Of course,
|X − Y | ≥ l. It is a fact that |sort(X)− sort(Y )| = l.
Therefore, the sensitivity of Q′ is a lower bound for the
sensitivity of Q.

We showed in Section 2.1 that L has sensitivity 1, so the
sensitivity of S is also 1, and the following algorithm is ε-
differentially private:

S̃(I) = S(I) + 〈Lap(1/ε)〉m

The accuracy of L̃ and S̃ is the same: error(L̃[i]) =

error(S̃[i]) = 2/ε2, for each i. So it would appear as if we

have failed in our task of improving the utility over L̃. How-
ever, we note that S implies a powerful set of constraints
because the elements of S must be increasing. That is,
the constraint set γS contains a set of inequality constraints
S[i] ≤ S[i+ 1] for each i ∈ [1, n− 1]. We show next how to
exploit these constraints.

3.1 Constrained Inference: computing S

The original private output s̃ = S̃(I) will not, in general,
satisfy the inequality constraints of γS. But we know that
prior to the addition of noise, the true sequence S(I) was in
sorted order. So if for some i we observe that s̃[i] > s̃[i+ 1],
we must somehow reconcile this constraint violation. We
could decrease s̃[i] until it equals s̃[i+ 1] or increase s̃[i+ 1]
until it equals s̃[i] or set them both to a value in between
s̃[i] and s̃[i + 1]. Suppose it also turns out that s̃[i + 1] =
s̃[i+2], then this may be supporting evidence that the order
violation is due to positive noise being added to s̃[i] and we
should decrease s̃[i].

More generally, the constraints mean that the most ac-
curate estimate for the ith count should be a function not
only of s̃[i] but of the entire sequence. If the subsequence
s̃[1], . . . , s̃[i − 1] contains many counts that are larger than
s̃[i], then it is likely that s̃[i] is too low. Conversely, if the
subsequence s̃[i + 1], . . . , s̃[n] contains many counts smaller
than s̃[i], this is evidence that s̃[i] is too high. In this man-
ner, the ordering constraints allows us to factor out some of

Table 2: Examples showing the private output s̃ =
S̃(I), which may be unordered, and the correspond-
ing closest ordered sequence s = minL2(s̃, γS).

original output inferred output distance
s̃ s ‖ s̃− s ‖2

〈10, 11, 13〉 〈10, 11, 13〉 0
〈10, 13, 11〉 〈10, 12, 12〉 2
〈14, 9, 10〉 〈11, 11, 11〉 14
〈14, 9, 10, 15〉 〈11, 11, 11, 15〉 14

the noise from s̃, and to infer a new sequence with signifi-
cantly better utility.

We factor out the noise by computing the ordered se-
quence closest to s̃, that is, s = minL2(s̃, γS). We denote
this new estimator for S(I) as S.

Example 1. Table 2 shows examples of noisy outputs s̃
and the their minimum L2 solutions, s. Notice that in the
first row, s̃ = (10, 11, 13) is already ordered, so the clos-
est ordered sequence is just s̃ itself. For the out-of-order
sequence s̃ = (10, 13, 11), the closest ordered sequence is
s = (10, 12, 12).

A method for computing minL2(s̃, γS) is not obvious, but
the following theorem shows that there is in fact a closed-
form solution which can be computed efficiently. Let s̃[i, j]
be the subsequence of j − i + 1 elements: 〈s̃[i], s̃[i + 1],
. . . , s̃[j]〉. Let M [i, j] record the mean of these elements, i.e.

M [i, j] =
Pj
k=i s̃[k]/(j − i+ 1).

Theorem 1. Denote Lk = minj∈[k,n] maxi∈[1,j]M [i, j] and
Uk = maxi∈[1,k] minj∈[i,n]M [i, j]. The minimum L2 solu-
tion s̃ = minL2(s̃, γS), is unique and given by: s̃[k] = Lk =
Uk.

The proof appears in Appendix A.1. Below, we apply the
theorem to the example.

Example 2. Let us see how we compute s when s̃ =
(14, 9, 10, 15). To compute s[1], by the above theorem, we
can either compute L1 or U1 (as both are equal by our The-
orem). Let us compute U1 = maxi∈[1,1] minj∈[i,4]M [i, j],
which is simply minj∈[1,4]M [1, j], i.e. the smallest mean
among the means for subsequences starting from 1. In this
case, it is easy to see that this minimum is M [1, 3] which
gives s[1] = U1 = 11. Similarly, we can compute s[2] and
s[3]. Now let us compute s[4]. We shall compute L4 =
minj∈[4,4] maxi∈[1,j]M [i, j], which is simply maxi∈[1,4]M [i, 4],
i.e. the largest mean among the means for subsequences
ending at 4. In this case, it is easy to see that this min-
imum is at M [4, 4] which gives s[4] = L4 = 15. Thus
s = (11, 11, 11, 15).

3.2 Utility Analysis: the accuracy of S

In this section, we analyze S and show that it has much
better utility than S̃ (and therefore much better utility than

L̃ for unattributed histograms). Before presenting the the-
oretical statement of utility, we first give an example that
illustrates under what conditions S is likely to reduce error.

Example 3. Figure 2 graphically depicts s̃ and s for an
unattributed histogram of length 25. The true sequence S(I)
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has three distinct counts: the first twenty elements of the
sequence equal 10, followed by one count of 14, and then four
counts equal to 18. The circles depict the original private
output s̃ and squares depict the much more accurate inferred
sequence, s. Since s must obey the order constraints, it must
find the monotone non-decreasing path closest to the noisy
observations s̃. For the uniform subsequence from 1 to 20,
this path is very close to the true answer. Essentially, the
noise of neighboring positions in the sequence cancels out.
This is not true for the twenty-first position, and the path
passes directly through the noisy observation. In addition to
showing a single s̃ and s, the figure also depicts the expected
error. The expected error of S̃ (dotted lines) is ±2 at all
positions in the sequence. However, the expected error for
S (solid error bars) varies: it is smallest for positions in
the middle of the uniform subsequence and largest for the
endpoints.
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Figure 2: For a small sample data set, the original
private estimates s̃ = S̃(I) (grey circles) and inferred
estimates s = S(I) (black squares).

The figure suggests that error(S) will be low for sequences
that are concentrated, meaning that many counts are the
same. We now quantify the utility of S precisely.

Denote n and d as the number of values and the number
of distinct values in S(I) respectively. Let n1, n2, . . . , nd be
the number of times each of the d distinct values occur in
S(I) (thus

P
i ni = n).

Theorem 2. There exists constants c1 and c2 indepen-
dent of n and d such that

error(S) ≤
dX
i=1

c1 log3 ni + c2
ε2

Thus error(S) = O(d log3 n/ε2). In comparison, error(S̃) =
Θ(n/ε2).

See Appendix A.2 for proof.
The above theorem shows that error(S) is better than

error(S̃). In particular, if the number of distinct elements

d is 1, then error(S) = O(log3 n/ε2), while error(S̃) =
Θ(n/ε2). On the other hand, if d = n, then error(S) =

O(n/ε2) and thus both error(S) and error(S̃) scale linearly
in n. That is an extreme case, but for most unattributed
histograms found in practice, d � n, and thus error(S̃) is
significantly better than error(S). In Sec. 5, experiments
on real data demonstrate that the error of S can be several
orders of magnitude lower than the error of S̃.

4. UNIVERSAL HISTOGRAMS
In this section we describe our query strategy for support-

ing universal histograms. After defining the basic query, H,
and its differentially-private extension, H̃, we describe the
constrained inference process that transforms H̃ into a con-
sistent answer H. We conclude this section with an analysis
of utility, comparing the expected error of H against that of
H̃ as well as the natural baseline approach of L̃.

The query H is defined with respect to a tree T which
we define next. The tree T is formed by considering a re-
cursive partitioning of dom. Each node v of the tree has
an associated interval in dom, denoted as rangev. The
root node r has range dom. The children of node v, de-
noted succ(v), have ranges that partition rangev. That is,
rangev = ∪u∈succ(v)rangeu and rangeu is disjoint among
the nodes u ∈ succ(v). We denote pred(v) as the parent of
a node v. The height h of the tree is the number of nodes
in the longest path from a leaf to the root. To simplify the
discussion we will assume the following: |dom| = n and T is
a complete tree of degree k (i.e. each node has k children)
and therefore kh−1 = n.

Before defining H, we first show the tree T for the running
example from Figure 1.

Example 4. Figure 3 shows a tree T over the domain of
source IP addresses {000, 001, 010, 011}. Here k = 2 which
results in a binary tree with height h = 3. The root r is
associated with the range ranger = [0 ∗ ∗]. This range is
evenly subdivided among the children of r. Finally, the leaves
of the tree consist of unit-length ranges,

r

u00 u01

u000 u001 u010 u011

range(r) = [0**] 

range(u0) = [00*] range(u1) = [01*] 

range(u00)
= [000] 

range(u01)
= [001] 

range(u10)
= [010] 

range(u11)
= [011] 

range(u1) = [01*] 

Figure 3: Continuation of the example in Figure 1.
Shown is the tree T that defines a recursive parti-
tioning of the domain of source IP addresses. Each
node in the tree is associated with a range over
dom = {000, 001, 010, 011}.

The query sequence H consists of a query for each node
v ∈ T , counting the number of tuples in rangev. We index
H using node identifiers, and write H[v] = c(rangev). Thus
H[r] returns the total number of tuples in the relation R,
and for a leaf u, H[u] returns a unit-length count. Observe
that since H includes all unit-length counts, H contains the
query sequence L.

The counts associated with each internal node must equal
the sum of the counts of their children. Thus, for each v ∈ T ,
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the constraint set γH contains the constraint that H[v] =P
u∈succ(v) H[u].

The sensitivity of H is equal to the height of the tree, h.
If a tuple is added or removed from the relation, this affects
the count for every range that includes this tuple. Since the
tree is a recursive partition of the range, a single tuple is
contained in the range of a single leaf and the ranges of the
nodes along the path from the leaf to the root. Therefore, in
the resulting vector for H, exactly h counts will differ each
by exactly 1. Thus, the following algorithm is ε-differentially
private:

H̃ = H + 〈Lap(h/ε)〉2n−1

Since H̃ is obtained by adding independent noise to each
count, it may fail to satisfy the constraints in γH. Next we
show how to exploit these constraints to improve accuracy.

4.1 Constrained Inference: computing H

We now consider the problem of using the noisy answers
H̃ to derive a consistent estimate for each count in H. For
example, suppose that h̃ = H̃(I) and consider deriving an
estimate for the count at the root. One estimate is sim-
ply h̃[r], the noisy count at the root. However, given the
constraints, an alternative estimate for the root count isP
u∈succ(r) h̃[u]. In fact, one can derive h different estimates

for the root count by summing the counts across each level
of the tree. The estimates become increasingly noisy be-
cause each is a sum of an increasingly larger set of noisy
counts. Nevertheless, since the noise is added independently
to each count, the h estimates are independent observations
of the same unknown quantity. The challenge is combining
them in a natural way so that noisier estimates are given less
“weight.” A second challenge is to do this in such a way that
the final answer is consistent. It turns out that minimum L2

solution addresses both of these issues simultaneously. We
describe it next.

Given the noisy output h̃ = H̃(I), we now characterize the

inferred query answer, h = MinL2(H̃(I), γH). For this we
need some additional notation. Denote n(v) as the number
of nodes in the subtree of a given node v. If v is at height

h(v), then n(v) is simply 1 + k + . . . + kh(v)−1 = kh(v)−1
k−1

.

Next we obtain a possibly inconsistent estimate, z[v], for
each node v as below.

z[v] =

(
h̃[v], if v is a leaf node
kh−1

kh−1
h̃[v] + kh−1−1

kh−1

P
u∈succ(v) z[u], o.w.

This follows the intuition that given an estimate z[u] for
the successors u of v, the quantity

P
u∈succ(v) z[u] is also an

estimate for the count at v. The estimate z[v] is a weighted

sum of this estimate and h̃[v], the noisy count at node v.
Once we have the estimate z[v] for each node v, we can

compute the required consistent estimate h. This is done
in a top-down fashion: we begin by assigning h[r] = z[r]
for the root node r. If at some node u, we have h[u] 6=P
w∈succ(u) z[w], then we adjust the values of each descen-

dant w by dividing the difference h[u] −
P
w∈succ(u) z[w]

equally among the k descendants.
The following proposition, proved in Appendix B.1, shows

that this procedure in fact gives the minimum L2 solution.

Proposition 2. Given the noisy count sequence h̃ = H(I),

the unique minimum L2 solution, h = minL2(h̃, γH), is

given by the following recurrence relation (denoting u =
pred(v)):

h[v] =


z[v], if v is the root node r

z[v] + 1
k

(h[u]−
P
w∈succ(u) z[w]), o.w.

We shall now compare error(H) with other possible esti-

mates obtained using H̃. We restrict ourselves to the class
of linear unbiased estimators, which we define next. An es-
timator E = {E[v]}v∈nodes(T ) is called linear, if for all nodes
v, E[v] can be expressed as a linear combination of the noisy

counts in H̃. Further, E is called unbiased, if for all nodes
v, E(E[v]) = H[v] where the expectation is computed over
randomness in generating E[v]. Next we state a theorem
that shows how H compares with other estimators E. The
proof uses the Gauss-Markov theorem [19] and is included
in Appendix B.2.

Theorem 3. If H is defined as minL2(H̃(I), γH) then H
satisfies the following properties: (i) H is a linear unbiased
estimator, (ii) error(H) is the minimal among the error(E)
of all linear unbiased estimators E.

In particular, since H̃ is also linear and unbiased, we get
error(H) ≤ error(H̃) showing that enforcing constraints
only improves utility.

4.2 Utility Analysis: the accuracy of H

Universal histograms are designed to support the accu-
rate computation of arbitrary range queries. Here we com-
pare the utility of our inferred hierarchical estimates (H)

with the hierarchical estimates H̃ and with the conventional
technique L̃.

We use q to denote a single counting query c([x, y]) for
some x, y ∈ dom. For any such q we use an indicator func-
tion χq that maps leaf nodes of the tree T to {0, 1} such that
the leaf nodes l that are mapped to 1 are exactly those in the
range of q. The answer to q is simply

P
l∈leaves(T ) χq(l)H[l].

Since H is consistent, it is straightforward to use it to com-
pute answers to range queries. Denote Hq as the estimate
of q obtained using H. Thus Hq =

P
l∈leaves(T ) χq(l)H[l].

An estimate for q can also be obtained from H̃. In fact,
since H̃ is inconsistent, multple estimates are possible. For
example, consider query qr = c(dom) which returns the total

number of tuples. We can estimate qr using both H̃[r] (the

noisy count for the root r) and
P
l∈leaves(T ) H̃[l] (the sum

of noisy counts at the leaves). We choose a unique esti-

mate, defining H̃q as the estimate obtained by summing

over the least number of noisy counts in H̃. More precisely,
let T1, . . . , Tk be the set of disjoint subtrees of H̃ such that
the union of their ranges equals [x, y]. The estimator returnsPk
i=1 H̃[ri] where ri is the root of Ti. Thus, for our example

query qr, H̃qr = H̃[r]. Note that this problem of multiple
possible estimates does not arise for consistent count esti-
mators such as H, as all possible ways of estimating q using
H yield the same answer.

Finally, we can also use L̃ to estimate range query answers.
For query q, the estimate is L̃q =

P
l χq(l)L̃[l]. Recall that

L̃ has lower sensitivity than H̃ so the amount of noise added
is less. The expected error for each unit-length count is 2/ε2.

However, for a range query, the expected error of L̃q is linear
in the size of the range.
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The error(H̃) is 2h2/ε2. Notice that H̃ is less accurate

than L̃ for estimating unit-length counts: 2h2/ε2 is worse

than 2/ε2. However, H̃ is much more accurate than L̃ for

estimating counts of large ranges. The estimate H̃[r] for
the total count has error of 2h2/ε2, which is much better

than 2n/ε2 given by L̃ (recall n = 2h). The experiments in
Sec 5 show clearly the accuracy of these two techniques as
a function of range size.

Finally we show additional optimality results for our in-
ferred estimates for range queries. The proof uses the Gauss-
Markov theorem [19] and is included in Appendix B.3.

Theorem 4. (i) error(Hq) ≤ error(E[q]) for all q and
for all linear unbiased estimators E, (ii) error(Hq) = O(h3/ε2)
for all q, and (iii) there exists a query q s.t. error(Hq) ≤
3error(H̃q)

2(h−1)(k−1)
.

(i) error(Hq) ≤ error(E[q]) for all q and for all linear
unbiased estimators E, (ii) error(Hq) = O(h3/ε2) for all q,

and (iii) there exists a query q s.t. error(Hq) ≤ error(H̃q)

h(k−1)
.

In particular, for a height 11 quadtree (i.e. h = 11, k = 4),
the above theorem shows that for some range queries q, the
error of H[q] may be better than that of H̃[q] by as much as
2(h− 1)(k − 1)/3 = 20 times.

Finally we note that a differentially private technique for
answering range queries is also given in [7]. The technique
uses a similar idea of recursive partitioning but creates leaf
nodes that correpsond to equi-depth histograms, as opposed
to the equi-width histogram obtained at the leaf nodes in
the H queries. In terms of utility, this equi-width technique

yields a bound on the error of O(m
4/3

ε2
) where m is the total

number of data values. Since the counts themselves belong
in the range {1, . . . ,m}, this may result in a severe distortion
in the returned estimates. On the other hand, our bound
on error is O(h3/ε2), where h is typically small, say 10, and
thus our technique can return quite accurate results.

5. EXPERIMENTS
In this section, we evaluate the proposed techniques on

real data drawn from three different domains. The results
for unattributed histograms and universal histograms are
described separately. Below, we describe the datasets used
in the experiments.

• NetTrace is derived from an IP-level network trace col-
lected at a major university [1]. The trace monitors
traffic at the gateway between IP addresses internal to
the institution and external IP addresses. From this
data, we derived a bipartite connection graph where
the nodes are hosts, labeled by their IP address, and
an edge connotes the transmission of at least one data
packet. In this context, the differential privacy guaran-
tee ensures that individual connections remain private.

• Social Network is a graph derived from a the friend-
ship relations on an online social network site [4]. The
graph is limited to a population of roughly 11K stu-
dents from a single university. Differential privacy im-
plies that friendships will not be disclosed. The size
of the graph (number of students) is assumed to be
public knowledge. (This is not a critical assumption
and, in fact, the number of students can be estimated

privately within ±1/ε in expectation. Our techniques
can be applied directly to either the true count or a
noisy estimate.)

• Search Query Logs is a dataset of search query logs
over time from Jan. 1, 2004 to the present. For privacy
reasons, it is difficult to obtain such data. Our dataset
is derived from a search engine interface that pub-
lishes summary statistics for specified query terms [2].
We combined these summary statistics with a second
dataset [3], which contains actual search query logs but
for a much shorter time period, to produce a synthetic
data set. In the experiments, ground truth refers to
this synthetic dataset. (See [6] for information on the
privacy breaches that resulted from the publication of
the “anonymized” query logs of [3].) Differential pri-
vacy can guarantee that the output will prevent the as-
sociation of an individual user (or host machine) with
a particular search term.

5.1 Unattributed histograms
The first set of experiments evaluates the accuracy of con-

strained inference on unattributed histograms. We will com-
pare three estimators that use the differentially private out-
put S̃(I) to derive an estimate of the true (hidden) input

S(I). We compare the estimators described earlier: S̃ and

S. Recall that S̃(I) is likely to be inconsistent — out-of-
order, non-integral, and possibly negative. So we consider a
second baseline technique, denoted S̃r, which enforces con-
sistency as follows: if s̃ = S̃(I), then s̃r is derived by sorting
s̃ and rounding each count to the nearest non-negative inte-
ger.

To compare the estimators, we evaluate their performance
on three queries from the three datasets:

1. On NetTrace: the connectivity between internal hosts
and a large subnet of the external hosts (≈ 65K hosts).
The query returns the degree sequence of the external
hosts.

2. On Social Network, the distribution of node degrees
in sorted order (a person’s degree is the number of
“friends”).

3. On Search Query Logs, the frequency distribution over
a 3 month period of the top 20K queries. The output
is a vector where position i is the number of times the
ith ranked query was searched.

The runtime of S varied across datasets and ε, but the
longest query took less than 3 minutes to compute (Net-
Trace, ε = 0.1).

To evaluate the utility an of estimator, we measure its
squared error. Results report the average squared error over
10 random samples from the differentially-private mecha-
nism (each sample produces a new S̃(I)). We also show re-
sults for three settings of ε = {2.0, 1.0, 0.1}; smaller ε means
more privacy and hence more random noise. To facilitate
comparison across datasets and settings of ε, the error is
normalized based on the expected error of S̃. More pre-
cisely, we divide the observed squared error by error(S̃)/n
where n is the size of the unattributed histogram. There-
fore, we expect the normalized error of the first baseline, S̃,
to be 1.
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Figure 4: A comparison of normalized error of three
estimators across varying datasets and ε. Each
triplet of bars represents from left-to-right: S̃ (light

gray), S̃r (gray), and S (black).

Figure 4 shows the results of the experiment. Each bar
represents average performance for a single combination of
dataset, ε, and estimator. The bars represent, from left-to-
right, S̃ (light gray), S̃r (gray), and S (black). The vertical
axis is normalized error on a log-scale; normalized error less
than 1 indicates that the estimator has lower average error
than S̃. The results indicate that the proposed approach re-
duces the error by at least an order of magnitude across all
datasets and settings of ε. Also, the difference between S̃r

and S suggests that the improvement is due not simply to
enforcing integrality and non-negativity but from the way
consistency is enforced through constrained inference. Fi-
nally, the accuracy only improves with decreasing ε (more
noise).

Figure 5 provides some intuition for how inference is able
to reduce error. Shown is a portion of the unattributed his-
togram of NetTrace: the sequence is sorted in descending
order along the x-axis and the y-axis indicates the count.
The solid gray line corresponds to ground truth: a long hor-
izontal stretch indicates a subsequence of uniform counts
and a vertical drop indicates a decrease in count. The
graphic shows only the middle portion of the unattributed
histogram—some very large and very small counts are omit-
ted to improve legibility. The solid black lines indicate the
error of S averaged over 200 random samples of S̃ (with
ε = 1.0); the dotted gray lines indicate the expected error

of S̃.
The inset graph on the left reveals larger error at the be-

ginning of the sequence, when each count occurs once or
only a few times. However, as the counts become more con-
centrated (longer subsequences of uniform count), the error
diminishes, as shown in the right inset. Some error remains
around the points in the sequence where the count changes,
but the error is reduced to zero for positions in the middle
of uniform subsequences.

Figure 5 illustrates that our approach reduces or elimi-
nates noise in precisely the parts of the sequence where the
noise is unnecessary for privacy. Changing a tuple in the
database cannot change a count in the middle of a uniform
subsequence, only at the end points. These experimental
results also align with Theorem 2, which states that the er-
ror of S is a function of the number of distinct counts in

the sequence. In fact, the experimental results suggest that
the theorem also holds locally for subsequences with a small
number of distinct counts. This is an important result since
the typical degree sequences that arise in real data, such
as the power-law distribution, contain very large uniform
subsequences.

5.2 Universal histograms
We now evaluate the effectiveness of constrained infer-

ence for the more general task of computing a universal his-
tograms and arbitrary range queries.

We evaluate three techniques for supporting universal his-
tograms. All three approaches ensure differential privacy,
but they can be distinguished by their choice of query se-
quence and the use of constrained inference. We evaluate the
estimators in terms of accuracy over an arbitrary workload
of range queries.

The first technique uses the unit counts, L̃, as the basis for
its histogram. Since the answer contains only unit counts,
there are no consistency constraints, and one can compute a
range query by simply summing the noisy unit counts. For
range [x, y], if l̃ = L̃(I), then the estimate for the count is

c(x, y) = Σi∈[x,y] l̃[i].

The second technique uses the hierarchy of counts, H̃. In
the experiments, the hierarchy forms a binary tree over dom.
For range query c(x, y), many estimates are possible because
the levels of the hierarchy are not mutually consistent. In
the experiments, we estimate the answer by summing over
the least number of noisy counts in H̃ (see Sec 4.2).

Finally, we compare these two approaches against H, which
is the minimum L2 solution given H̃(I) and γH. Because it
is consistent, the answer to a range query is simply the sum
of the appropriate leaf counts.

We evaluate the accuracy over a set of range queries of
varying size and location. The range sizes are 2i for i =
1, . . . , h− 1 where h is the height of the tree. For each fixed
size, we select the location uniformly at random. We report
the average error over 50 random samplings of L̃(I) and

H̃(I), and for each sample, 1000 randomly chosen ranges.
Using the datasets described above, we evaluate the fol-

lowing histogram queries:

• NetTrace: the number of connections for each external
host. This is similar to the query in Section 5.1 except
that here the association between IP address and count
is retained.

• Search Query Logs: the temporal frequency of the
query term “Obama” from Jan. 1, 2004 to present.
(The temporal resolution is in units of 1.5 hours, 16
units of time per day.)

Figure 6 shows the results for both datasets and varying ε.
The top row corresponds to NetTrace, the bottom to Search

Query Logs. Within a row, each plot shows a different set-
ting of ε ∈ {0.01, 0.1, 1.0, 2.0}. For all plots, the horizontal
axis indicates the size of the range query, and the vertical
axis is the squared error, averaged over sampled counts and
intervals. Both axes are in log-scale.

The results reveal several interesting patterns.

• First, we compare L̃ and H̃. For unit-length ranges,
L̃ yields more accurate estimates. This is unsurprising
since it is a lower sensitivity query and thus has lower
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Figure 5: The unattributed histogram of NetTrace (solid gray), along with the average error of S (solid black)

and S̃ (dotted gray), for ε = 1.0.

expected error. However, the error of L̃ increases lin-
early with the size of the range. In contrast, the error
of H̃ increases linearly with the size of the minimal set
of subtrees spanning the range. For ranges larger than
about 2000 units, the error of L̃ is higher than H̃. For
the root query, the error of L̃ is larger than the error of
H̃ by roughly two orders of magnitude. This conforms
with the theoretical expectation which is n

log2 n
.

• Next, we compare the constrained estimator H against
its input H̃. The error of H is uniformly lower across
all range sizes, settings of ε, and datasets. The per-
formance gap is smallest for the root query. However,
even at the root, the estimate of H is more accurate
because it combines h noisy observations (one per level
of the tree) rather than just the root observation.

• The relative performance of the estimators depends on
ε. At smaller ε, the estimates of H are more accurate
relative to H̃ and L̃. Recall that a smaller ε implies
noisier observations. This suggests that the relative
benefit of statistical inference increases with the un-
certainty in the observed data.

• Finally, the results show that H can have lower er-
ror than L̃ over small ranges, even for leaf counts.
This may be surprising since for unit-length counts,
the Laplacian noise of H is larger than that of L̃ by a
factor of logn. The reduction in error is due to the fact
the these histograms are sparse. When the histogram
contains sparse regions, H can effectively identify them
because it has noisy observations at higher levels of the
tree. In contrast, L̃ has only the leaf counts; thus, even
if a range contains no records, L̃ will assign a positive
count to half of the leaves in the range (in expecta-
tion).

Figure 7 shows a plot of searches for “Obama” over time
for ε = 0.1. The ground truth is shown in black along with
the noisy estimates; and the estimates of the proposed ap-
proach are shown in red. The top figure shows the trends

at the resolution of monthly intervals; the bottom figure is
more fine-grained resolution at daily frequencies. (Because
our approach outputs a single consistent estimate, the data
can be analyzed at different resolutions and the counts will
be consistent.) This graphic illustrates how the approach
provides an extremely accurate reconstruction of the high-
level (monthly) trends — the estimate is almost indistin-
guishable from ground truth. As a the finer-resolution of
daily frequencies, the counts are small and the noise causes
the estimator to misallocate some records to neighboring
days. However, even at the daily resolution, some trends
are quite apparent, such as the spike in July 28, 2004 (the
day following Obama’s speech at the Democratic conven-
tion) and November 5, 2008 (the day after winning the pres-
idential election).
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Figure 7: User searches for “Obama” over time, true
in black and H̃ in red, ε = 0.1.
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Figure 6: A comparison of universal histogram estimators L̃ (diamonds), H̃ (circles), and H (squares) on two
real-world datasets (top NetTrace, bottom Search Query Logs).

6. RELATED WORK
Since differential privacy was introduced [10], it has be-

come an active area of data privacy research (for a compre-
hensive review, see [9]). Below we highlight results closest
to the present work.

The problem of producing query answers that are both
private and consistent was explicitly considered for contin-
gency tables [5]. The proposed algorithm outputs a set of
consistent marginals. Similar to our approach, Laplace noise
is added to guarantee differential privacy. A key difference
from our work is that consistency is addressed by reformu-
lating the query such that random perturbation does not
produce inconsistency. More precisely, instead of returning
noisy marginals, the data is projected onto a set of orthogo-
nal basis vectors and then noise is added to the vector coeffi-
cients. The output defines a contingency table with possibly
fractional/negative counts (which is then post-processed to
achieve non-negativity and integrality). Another important
difference is that the number of constraints is much lower
O(
√
n) since there are at most O(

√
n) marginals in a table

with n entries. As a consequence, enforcing the constraints
does not increase utility. We consider more general con-
straints, and a larger number of constraints (O(n)), and
show they improve utility.

Ghosh et al. [11] prove that, for a single counting query,
the differentially-private mechanism of Laplace noise is, in
fact, optimal in terms of utility. Every user—regardless of
their prior information or utility goals—receives as much
utility from this mechanism as from interacting with any
other differentially-private mechanism. The results holds
for a single counting query; the optimal mechanism for a
sequence of counting queries remains an open problem. Our
work contributes the insight that for a vector of queries the
analogous result does not hold: given that constraints can

reduce noise without violating privacy, this implies that in-
dependent Laplace noise is a sufficient, but not necessary
condition for privacy.

We are aware of ongoing work that uses a differentially-
private mechanism to generate synthetic data [14]. The fo-
cus is on domains that have hierarchical structure (similar
to our universal histogram), and the techniques are based on
an adaptive mechanism where the analyst recursively parti-
tions the domain along paths that contain a sufficient quan-
tity of data. In contrast, our approach descends down all
paths (using a small, logn, privacy budget) and combines
the noisy observations (and associated constraints) to derive
its estimate. Our results suggest that if any adaptive query
goes to depth d, it is worth asking all queries at depth d since
it will not increase sensitivity and the constrained inference
process can add accuracy.

Blum et al. [7] propose an efficient algorithm to publish
synthetic data that can be used to accurately answer half-
space queries. They also present a solution for range queries;
see Sec 4.2 for a direct comparison with the present work.

The analysis of social network data is an important appli-
cation area for privacy research [12, 13, 20]. The focus has
been primarily on publishing transformed networks which
protect anonymity. A common measure of utility for these
techniques has been the distortion of the degree distribution.
Preserving this property of the graph is important since it
has been shown to have profound implications on network
structure and dynamics [16]. Our technique can be used to
publish a degree distribution that is much more accurate,
but the graph remains hidden. Perhaps our technique can
be a component of a privacy-protecting algorithm for gen-
erating synthetic networks.

In our own prior work [18] we have considered techniques
for privately answering queries involving joins, such as the
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number of triangles in a social network. Such queries have
high sensitivity and cannot be accurately analyzed under
differential privacy. That paper considered an alternative
notion of privacy and proposed accurate perturbation tech-
niques that did not apply constraints. The present paper
uses constraints to show that the degree distribution is a
graph property that can be accurately measured under dif-
ferential privacy.

7. DISCUSSION & CONCLUSIONS
Here we recap our results, review the insights gained, and

discuss future directions.

Unattributed histograms. The choice of the sorted query
S, instead of L, is an unqualified benefit, because we gain
from the inequalty constraints on the output, while the sen-
sitivity of S is no greater than that of L. Among other
applications, this allows for extremely accurate estimation
of degree sequences of a graph, improving error by an or-
der of magnitude on the baseline technique. It works best
for sequences with duplicate counts, which matches well the
degree sequences of social networks encountered in practice.

Future work specifically oriented towards degree sequence
estimation could include a constraint enforcing that the out-
put sequence is graphical, i.e. the degree sequence of some
graph.

Universal histograms. The choice of the hierarchical count-
ing query H, instead of L, offers a trade off because the sen-
sitivity of H is greater than that of L. It is interesting that
for some data sets and privacy levels, the effect of the H con-
straints outweighs the increased noise that must be added.
In other cases, the algorithms based on H provide greater ac-
curacy for all but the smallest ranges. We note that in many
practical settings, domains are large and sparse. The spar-
sity implies that no differentially private technique can yield
meaningful answers for unit-length queries because the noise
necessary for privacy will drown out the signal. So while L̃
sometimes has higher accuracy for small range queries, this
may not have practical relevance since the relative error of
the answers renders them useless.

In future work we hope to extend the technique for uni-
versal histograms to multi-dimensional range queries, and to
investigate optimizations such as higher branching factors.

Across both histogram tasks, our results clearly show that
it is possible to achieve greater accuracy without sacrificing
privacy. The existence of our improved estimators S and H
show that there is another differentially private noise dis-
tribution that is more accurate than independent Laplace
noise. This does not contradict exiting results because the
original differential privacy work showed only that calibrat-
ing Laplace noise to the sensitivity of a query was sufficient
for privacy, not that it was necessary. Only recently has
the optimality of this construction been studied (and proven
only for single queries) [11]. Finding the optimal strategy
for answering a set of queries under differential privacy is
an important direction for future work, especially in light of
emerging private query interfaces [15].

A natural goal is to describe directly the improved noise
distributions implied by S and H, and build a privacy mech-
anism that samples from it. This could, in theory, avoid

the inference step altogether. But it is seems quite difficult
to discover, describe, and sample these improved noise dis-
tributions, which will be highly dependent on a particular
query of interest. Our approach suggests that constraints
and constrained inference can be an effective path to dis-
covering new, more accurate noise distributions that satisfy
differential privacy. As a practical matter, our approach
does not necessarily burden the analyst with the constrained
inference process because the server can implement the post-
processing step. In that case it would appear to the analyst
as if the server was sampling directly from the improved
distribution.
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APPENDIX
A. UNATTRIBUTED HISTOGRAMS

A.1 Proof of Theorem 1
We first restate the theorem below. Recall that s̃[i, j]

denotes the subsequence of j− i+ 1 elements: 〈s̃[i], s̃[i+ 1],

. . . , s̃[j]〉. Let M̃ [i, j] record the mean of these elements, i.e.

M̃ [i, j] =
Pj
k=i s̃[k]/(j − i+ 1).

Theorem 1. Denote Lk = minj∈[k,n] maxi∈[1,j]M [i, j] and
Uk = maxi∈[1,k] minj∈[i,n]M [i, j]. The minimum L2 solu-
tion s̃ = minL2(s̃, γS), is unique and given by: s̃[k] = Lk =
Uk.

Proof. In the proof, we abbreviate the notation and im-
plicitly assume that the range of i is [1, n] or [1, j] when j is
specified. Similarly, the range of j is [1, n] or [i, n] when i is
specified.

We start with the easy part, showing that Uk ≤ Lk. De-
fine an n× n matrix Ak as follows:

Akij =

8<: M̃ [i, j] if i ≤ j
∞ if j < i ≤ k
−∞ otherwise

Then minjmaxiA
k
ij = Lk and maximinjA

k
ij = Uk. In any

matrix Ak, maximinjA
k
ij ≤ minjmaxiA

k
ij : this is a simple

fact that can be checked directly, or see [17], hence Uk ≤ Lk.
We show next that if s is a solution of minL2(s̃, γS), then

Lk ≤ s[k] ≤ Uk. If we show this, then the proof of the
theorem is completed, as then we will then have s[k] = Lk =
Uk. The proof relies on the following lemma.

Lemma 1. Let s be a solution of minL2(s̃, γS). Then
(i) s[1] ≤ U1, (ii) s[n] ≥ Ln, (iii) for all k, min(s[k +

1],maxi M̃ [i, k]) ≤ s[k] ≤ max(s[k − 1],minj M̃ [k, j]).

The proof of the lemma appears below, but now we use
it to complete the proof of Theorem 1. First, we show that
s[k] ≤ Uk using induction on k. The base case is k = 1 and
it is stated in the lemma, part (i). For the inductive step,
assume s[k − 1] ≤ Uk−1. From (iii), we have that

s[k] ≤ max(s[k − 1],min
j
M̃ [k, j])

≤ max(Uk−1,min
j
M̃ [k, j])

= Uk

The last step follows from the definition of Uk. A similar
induction argument shows that s[k] ≥ Lk, except the order
is reversed: the base case is k = n and the inductive step
assumes s[k + 1] ≥ Lk+1.

The only remaining step is to prove the lemma.

Proof of Lemma 1. For (i), it is sufficient to prove that

s[1] ≤ M̃ [1, j] for all j ∈ [1, n]. Assume the contrary. Thus

there exists a j such that for s[1] > M̃ [1, j]. Let δ = s[1]−
M̃ [1, j]. Thus δ > 0. Further, for all i, denote δi = s[i]−s[1].
Consider the sequence s′ defined as follows:

s′[i] =


s[i]− δ if i ≤ j
s[i] otherwise

It is obvious to see that since s is a sorted sequence, so is s′.

We now claim that ‖ s′ − s̃ ‖2 < ‖ s− s̃ ‖2. For this note
that since the sequence s′[j + 1, n] is identitcal to the se-
quence s[j+1, n], it is sufficient to prove ‖ s′[1, j]− s̃[1, j] ‖2 <
‖ s[1, j]− s̃[1, j] ‖2. To prove that, note that ‖ s[1, j]− s̃[1, j] ‖2
can be expanded as

‖ s[1, j]− s̃[1, j] ‖2 =

jX
i=1

(s[i]− s̃[i])2 =

jX
i=1

(s[1] + δi − s̃[i])2

=

jX
i=1

(M̃ [1, j] + δ + δi − s̃[i])2

Suppose for a moment that we fix M̃ [1, j] and δi’s, and treat
‖ s[1, j]− s̃[1, j] ‖2 as a function f over δ. The derivative of
f(δ) is:

f ′(δ) = 2

jX
i=1

(M̃ [1, j] + δ + δi − s̃[i])

= 2
`
jM̃ [1, j]−

jX
i=1

s̃[i]
´

+ 2jδ + 2

jX
i=1

δi

= 2jδ + 2

jX
i=1

δi

Since δi ≥ 0 for all i, then the derivative is strictly greater
than zero for any δ > 0, which implies that f is a strictly
increasing function of δ and has a minimum at δ = 0. There-
fore, ‖ s[1, j]− s̃[1, j] ‖2 = f(δ) > f(0) = ‖ s′[1, j]− s̃[1, j] ‖2.
This is a contradiction since it was assumed that s was the
minimum solution. This completes the proof for (i).

For (ii), the proof of s[n] ≥ maxiM̃ [i, n] follows from

a similar argument: if s[n] < M̃ [i, n] for some i, define

δ = M̃ [i, n]− s[n] and the sequence s′ with elements s′[j] =
s[j] + δ for j ≥ i. Then s′ can be shown to be a strictly
better solution than s, proving (ii).

For the proof of (iii), we first show that s[k] ≤ max(s[k−
1],minjM̃ [k, j]). Assume the contrary, i.e. there exists a

k such that s[k] > s[k − 1] and s[k] > minjM̃ [k, j]. In
other words, we assume there exists a k and j such that
s[k] > s[k − 1] and s[k] > M̃ [k, j]. Denote δ = s[k] −
max(s[k − 1], M̃ [k, j]). By our assumption above, δ > 0.
Define the sequence

s′[i] =


s[i]− δ if k ≤ i ≤ j
s[i] otherwise

Note that by construction, s′[k] = s[k]− δ = s[k]− (s[k]−
max(s[k − 1], M̃ [k, j])) = max(s[k − 1], M̃ [k, j]). It is easy
to see that s′ is sorted (indeed the only inversion in the sort
order could have occured if s′[k − 1] > s′[k], but doesn’t as

s′[k − 1] = s[k − 1] ≤ max(s[k − 1], M̃ [k, j]) = s′[k]).
Now a similar argument as in the proof of (i) for the se-

quence s̃[k, j], yields that the error ‖ s′[k, j]− s̃[k, j] ‖2 <
‖ s[k, j]− s̃[k, j] ‖2. Thus ‖ s′ − s̃ ‖2 < ‖ s′ − s̃ ‖2 and s′

is a strictly better solution than s. This yileds a contra-
diction as s is the minumum L2 solution. Hence s[k] ≤
max(s[k − 1],minjM̃ [k, j]).

A similar argument in the the reverse direction shows
that s[k] ≥ min(sk+1,maxiM̃ [i, k]) completing the proof
of (iii).
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A.2 Proof of Theorem 2
We first restate the theorem below. Denote n and d as

the number of values and the number of distinct values in
S(I) respectively. Let n1, n2, . . . , nd be the number of times
each of the d distinct values occur in S(I) (thus

P
i ni = n).

Theorem 2. There exists constants c1 and c2 indepen-
dent of n and d such that

error(S) ≤
dX
i=1

c1 log3 ni + c2
ε2

Thus error(S) = O(d log3 n/ε2). In comparison, error(S̃) =
Θ(n/ε2).

In particular, if the number of distinct elements d is 1,
then error(S) = O(log3 n/ε2), while error(S̃) = Θ(n/ε2).
On the other hand, if d = n, then error(S) = O(n/ε2) and

thus both error(S) and error(S̃) scale linearly in n.
Before showing the proof, we prove the following lemma.

Lemma 2. Let s = S(I) be the input sequence. Call a
translation of s the operation of subtacting from each ele-
ment of s a fixed amound δ. Then error(S[i]) is invariant
under translation for all i.

Proof. Denote Pr(s|s) (Pr(s̃|s)) the probability that
s (s̃) is output on the input sequence s. Denote s′, s′, and
s̃′ the sequence obtained by translating s, s, and s̃ by δ,
respectively.

First observe that Pr(s̃|s) = Pr(s̃′|s′) as s̃ and s̃′ are ob-
tained by adding the same Laplacian noise to s and s′, re-
spectively. Using Theorem 1 (since all Uk’s and Lk’s shift by
δ on translating s̃ by delta), we get that if s = minL2(s̃, γS),
then s′ = minL2(s̃′, γS). Thus, Pr(s|s) = Pr(s′|s′) for all
sequences s. Further, since s[i] and s′[i] yield the same L2

error with s[i] and s′[i] respectively, we get that the expected
error(S[i]) is same for both inputs s and s′.

Lemma 3. Let X be any positive random variable that is
bounded (limx→∞ xPr(X > x) exists). Then

E(X) ≤
Z ∞

0

Pr(X > x)dx

Proof. The proof follows from the following chain of
equalities.

E(X) =

Z ∞
0

x
∂

∂x
(Pr(X ≤ x))

= −
Z ∞

0

x
∂

∂x
(Pr(X > x))

= −[xPr(X > x)]∞0 +

Z ∞
0

(Pr(X ≤ x)− 1)dx (by parts)

= − lim
x→∞

xPr(X > x) +

Z ∞
0

Pr(X > x)dx

≤
Z ∞

0

Pr(X > x)dx

Here the last equality follows as X is bounded and there-
fore the limit exists and is positive.This completes the proof.

We next state a theorem that was shown in [8]

Theorem 5 (Theorem 3.4 [8]). Suppose that X1, X2,
. . . , Xn are independent random variables satisfying Xi ≤
E(Xi) + M , for 1 ≤ i ≤ n. We consider the sum X =Pn
i=1Xi with expectation E(X) =

Pn
i=1E(Xi) and V ar(X) =Pn

i=1 V ar(Xi). Then, we have

Pr(X ≥ E(X) + λ) ≤ e
−λ2

2(V ar(X)+Mλ/3)

For a random variabe X, denote IX the indicator function
that X ≥ 0 (thus IX = 1 if X ≥ 0 and 0 otherwise). Using
Theorem 5, we prove the following lemma.

Lemma 4. Suppose i, j are indices such that for all k ∈
[i, j], s[k] ≤ 0. Then there exists a constant c such that for
all τ ≥ 1 the following holds.

Pr

„
M̃ [i, j]2IM̃ [i,j] ≥ c(

log2 ((j − i+ 1)τ)

(j − i+ 1)ε2
)

«
≤ 1

(j − i+ 1)2τ2

Proof. We apply Theorem 5 on s̃[k] for k ∈ [i, j]. First
note that E(s̃[k]) = s[k] ≤ 0. Further V ar(s̃[k]) = 2

ε2
as s̃[k]

is obtained by adding Laplace noise to s[k] which has this
variance. We also know that s̃[k] ≥ M + s[k] happens with
probaility at most e−εM/2.

For simplicity, call n to be j − i + 1. Denoting X =P
k∈[i,j] s̃[k], we see that E(X) ≤ 0 and V ar(X) = 2n

ε2
. Fur-

ther, set M = 3 log (nτ)/ε. Denote B the event that for
some k, s̃[k] ≥M + s[k]. Thus Pr(B) ≤ ne−εM/2 ≤ 1

2n2τ3 .
If B does not happen, we know that s̃[k] ≤M + s[k] for all
k ∈ [i, j]. Thus we can then apply Theorem 5 to get:

Pr (X ≥ E(X) + λ) ≤ e
−λ2

2(2n/ε2+λ log (nτ)/ε) + Pr(B)

= e
−λ2

2(2n/ε2+λ log (nτ)/ε) +
1

2n2τ3

Setting λ = 8
ε

√
n log (nτ) gives us that

Pr

„
X ≥ E(X) +

8

ε

√
n log (nτ)

«
≤ 1

n2τ2

Since E(X) ≤ 0, we get

Pr

„
X ≥ 8

ε

√
n log (nτ)

«
≤ 1

n2τ2

Also we observe that M̃ [i, j] = X/n, which yields

Pr

„
M̃ [i, j] ≥ 8 log (nτ)√

nε

«
≤ 1

n2τ2

Finally, observe that M̃ [i, j] ≤ c implies that M̃ [i, j]2IM̃ [i,j] ≤
c2. Thus we get

Pr

„
M̃ [i, j]2Imm[i,j] ≥

64 log2 (nτ)

nε2

«
≤ 1

n2τ2

Putting n = j− i+ 1 and using c = 64 gives us the required
result.

Now we can give the proof of Thereom 2.

Proof of Theorem 2. The proof of error(S̃) = Θ(n/ε2)
is obvious since:

error(S̃) =

nX
k=1

error(s̃[i]) = n(
2

ε2
)

In the rest of the proof, we shall show bound error(S).
Let s = S(I) be the input sequence. We know that s consists
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of d distinct elements. Denote sr as the rth distinct element
of s. Also denote [lr, ur] as the set of indices corresponding
to sr, i.e. ∀i∈[lr,ur ]s[i] = sr and ∀i/∈[lr,ur ]s[i] 6= sr. Let
M [i, j] record the mean of elements in s[i, j], i.e. M [i, j] =Pj
k=i s[k]/(i− j + 1).

To bound error(S), we shall bound error(S[i]) separately
for each i. To bound error(S[i]), we can assume W.L.O.G
that s[i] is 0. This is because if s[i] 6= 0, then we can trans-
late the sequence s by s[i]. As shown in Lemma 2 this
preserves error(S[i]), while making s[i] = 0.

Let k ∈ [lr, ur] be any index for the rth distinct element of
s. By definition, error(S[k]) = E(s[k]−s[k])2 = E(s[k]2) (as
we can assume W.L.O.G s[k] = 0). From Theorem 1, we
know that s[k] = Uk. Thus error(S[k]) = E(U2

k ). Here we

treat Uk = maxi≤kminjM̃ [i, j] as a random variable. Now
by definition of E, we have

E(U2
k ) = E(U2

k IUk ) + E(U2
k (1− IUk )) = A+B (say)

We shall bound A and B separately. For bounding A,
denote Uk = maxi≤kM̃ [i, ur]. It is apparent that Uk ≥ Uk
and thus U2

k IUk ≥ U
2
k IUk . To bound A, we observe that

A = E(U2
k IUk ) ≤ E(U2

k IUk )

Further, since Uk = maxi≤kM̃ [i, ur], we know that U2
k IUk =

maxi≤kM̃ [i, ur]
2IM̃ [i,ur ]

. Thus we can write:

A ≤ E(U2
k IUk ) = E

“
maxi≤kM̃ [i, ur]

2IM̃ [i,ur ]

”
Let τ > 1 be any number and c be the constant used in

Lemma 4. Let us denote ei the event that:

M̃ [i, ur]
2IM̃ [i,ur ]

≥ c( log2 ((ur − i+ 1)τ)

(ur − i+ 1)ε2
)

We can apply lemma 4 to compute the probability of ei as
s[j] ≤ 0 for all j ≤ ur (as we assumed W.L.O.G s[k] = 0).
Thus we get Pr(ei) ≤ 1

(ur−i+1)2τ2 .

Define e = ∨uri=1ei. Then Pr(e) ≤
Pur
i=1 Pr(ei) = 2/τ2 (asPur

i=1 1/i2 ≤ 2). If the event e does not happen, then it is
easy to see that

U2
k IUk = maxi≤kM̃ [i, ur]

2IM̃ [i,ur ]

≤ c(
log2 ((ur − k + 1)τ)

(ur − k + 1)ε2
)

Thus with at least probability 1−2/τ2 (which is Pr(¬e)),
we get U2

k IUk is bounded as above. This yields that there ex-

ist constants c1 and c2 such that E(U2
k IUk ) ≤ c1 log2 (ur−k+1)+c2

(ur−k+1)ε2
.

The proof is by the application of Lemma 3 (as Uk is bounded)
and a simple integration over τ ranging from 1 to∞. Finally

we get that A ≤ E(U2
k IUk ) ≤ c1 log2 (ur−k+1)+c2

(ur−k+1)ε2
.

Recall that B = E(U2
k (1 − IUk )). We can write B as

E(L2
k(1 − ILk )) as Lk = Uk. Using the exact same ar-

guments as above for Lk but on sequence −S yields that

B ≤ c1 log2 (k−lr+1)+c2
(k−lr+1)ε2

.

Finally, we get that S[k] = A + B which is less than
c1 log2 (ur−k+1)+c2

(ur−k+1)ε2
+ c1 log2 (k−lr+1)+c2

(k−lr+1)ε2
.

To obtain a bound on the total error(S).

error(S) =

dX
r=1

X
k∈[lr,ur ]

error(S[k])

≤
dX
r=1

X
k∈[lr,ur ]

c1 log2 (ur − k + 1) + c2
(ur − k + 1)ε2

+

dX
r=1

X
k∈[lr,ur ]

c1 log2 (k − lr + 1) + c2
(k − lr + 1)ε2

≤
dX
r=1

c1 log3 (ur − lr + 1) + c2
ε2

Finally noting that ur − lr + 1 is just nr, the number of

occurences of sr in s, we get error(S) =
P
r
c1 log3 nr+c2

ε2
=

O(d log3 n/ε2). This completes the proof of the theorem.

B. HIERARCHICAL HISTOGRAMS

B.1 Proof of Proposition 2
We first restate the proposition below. Let succZ[u] =P
w∈succ(u) z[w].

Proposition 2. Given the noisy count sequence h̃ = H(I),

the unique minimum L2 solution, h = minL2(h̃, γH), is
given by the following recurrence relation (denoting u =
pred(v)):

h[v] =


z[v], if v is the root node r

z[v] + 1
k

(h[u]− succZ[u]), o.w.

Proof. We first show that h[r] = z[r] for the root node
r. By definition of a minimum L2 solution, the sequence h
satisfies the following constrained optimization problem.

minimize
X
v

(h[v]− h̃[v])2

subject to ∀v,
X

u∈succ(v)

h[u] = h[v]

Denote leaves(v) to be the set of leaf nodes in the subtree
rooted at v. The above optimization problem can be rewrit-
ten as the following unconstrained minimization problem.

minimize
X
v

0@(
X

l∈leaves(v)

h[l])− h̃[v]

1A2

For finding the minimum, we take derivative w.r.t h[l] for
each l and equate it to 0. We thus get the following set of
equations for the minimum solution.

∀l,
X

v:l∈leaves(v)

2

0@(
X

l′∈leaves(v)

h[l′])− h̃[v]

1A = 0

The above set of equations can be rewritten as (sinceP
l′∈leaves(v) h[l′] = h[v]):

∀l,
X

v:l∈leaves(v)

h[v] =
X

v:l∈leaves(v)

h̃[v]
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For a leaf node l, we can think of the above equation for l
as corresponding to a path from l to the root r of the tree.
The equation states that sum of the sequences h and h̃ over
the nodes along the path are the same. We can sum all the
equations to obtain the following equation.

X
v

X
l∈leaves(v)

h[v] =
X
v

X
l∈leaves(v)

h̃[v]

Denote level(i) as the set of nodes at height i of the tree.
Thus root belongs to level(h − 1) and leaves in level(0).
Abbreviating LHS (RHS) for the left (right) hand side of
the above equation, we observe the following.

LHS =
X
v

X
l∈leaves(v)

h[v]

=

h−1X
i=0

X
v∈level(i)

X
l∈leaves(v)

h[v]

=

h−1X
i=0

X
v∈level(i)

kih[v] =

h−1X
i=0

ki
X

v∈level(i)

h[v]

=

h−1X
i=0

kih[r] =
kh − 1

k − 1
h[r]

Here we use the fact that
P
v∈level(i) h[v] = h[r] for any

level i. This is because h satisfies the constraints of the tree.
In a similar way, we also simplify the RHS.

RHS =
X
v

X
l∈leaves(v)

h̃[v]

=

h−1X
i=0

X
v∈level(i)

X
l∈leaves(v)

h̃[v]

=

h−1X
i=0

X
v∈level(i)

kih̃[v] =

h−1X
i=0

ki
X

v∈level(i)

h̃[v]

Note that we cannot simplify the RHS further as h̃[v] may
not satisfy the constraints of the tree. Finally equating LHS
and RHS we get the following equation.

h[r] =
k − 1

kh − 1

h−1X
i=0

ki
X

v∈level(i)

h̃[v]

Further, it is easy to expand z[r] and check that

z[r] =
k − 1

kh − 1

h−1X
i=0

ki
X

v∈level(i)

h̃[v]

Thus we get h[r] = z[r].
For nodes v other than the r, assume that we have com-

puted h[u] for u = pred(v). Denote H = h[u]. Once H is
fixed, we can argue that the value of h[v] will be indepen-

dent of the values of h̃[w] for any w not in the subtree of
u.

For nodes w ∈ subtree(u) the L2 minimization problem is
equivalent to the following one.

minimize
X

w∈subtree(u)

(h[w]− h̃[w])2

subject to ∀w ∈ subtree(u),
X

w′∈succ(w)

h[w′] = h[w]

and
X

v∈succ(u)

h[v] = H

Again using nodes l ∈ leaves(u), we convert this mini-
mization into the following one.

minimize
X

w∈subtree(U)

0@(
X

l∈leaves(w)

h[l])− h̃[w]

1A2

subject to
X

l∈leaves(u)

h[u] = H

We can now use the method of Lagrange mulitpliers to
find the solution of the above constrained minimization prob-
lem. Using λ as the Lagrange parameter for the constraintP
l∈leaves(u) h[u] = H, we get the following sets of equations.

∀l ∈ leaves(u),
X

w:l∈leaves(w)

2
“
h[w]− h̃[w]

”
= −λ

Adding the equations for all l ∈ leaves(u) and solving

for λ we get λ = −H−succZ[u]
n(u)−1

. Here n(u) is the number of

nodes in subtree(u). Finally adding the above equations for
only leaf nodes l ∈ leaves(v), we get

h[v] = z[v]− (n(v)− 1) · λ

= z[v] +
n(v)− 1

n(u)− 1
(H − succZ[u]])

= z[v] +
1

k
(h[u]− succZ[u])

This completes the proof.

B.2 Proof of Theorem 3
Theorem 3 is restated below.

Theorem 3. If H is defined as minL2(H̃(I), γH) then H
satisfies the following properties: (i) H is a linear unbiased
estimator, (ii) error(H) is the minimal among the error(E)
of all linear unbiased estimators E.

Proof. For (i), the linearity of H is obvious from the
definition of z and h. To show H is unbiased, we first show
that z is unbiased, i.e. E(z[v]) = h[v]. We use induction:
the base case is if v is a leaf node in which case E(z[v]) =

E(h̃[v]) = h[v]. If v is not a leaf node, assume that we have
shown z is unbiased for all nodes u ∈ succ(v). Thus

E(succZ[v]) =
X

u∈succ(v)

E(z[u]) =
X

u∈succ(v)

h[u] = h[v]

Thus succZ[v] is an unbiased estimator for h[v]. Since z[v]

is a linear combination of h̃[v] and succZ[v], which are both
unbiased estimators, z[v] is also unbiased. This completes
the induction step proving that z is unbiased for all nodes.
Finally, we note that h[v] is a linear combination of h̃[v], z[v],
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and succZ[v], all of which are unbiased estimaors. Thus h[v]
is also unbiased proving (i).

For (ii), we shall use the Gauss-Markov theorem [19]. We

shall treat the sequence h̃ as the set of observed variables,
and l, the sequence of original leaf counts, as the set of
unobserved variables. It is easy to see that for all nodes v

h̃[v] =
X

u∈leaves(v)

l[u] + noise(v)

Here noise(v) is the Laplacian random variable, which is in-
dependent for different nodes v, but has the same variance
for all nodes. Hence h̃ satisfies the hypothesis of Gauss-
Markov theorem. (i) shows that h is a linear unbiased
estimator. Further, h has been obtained by minimizing
the L2 distance with h̃[v]. Hence, h is the Ordinary Least
Squares (OLS) estimator, which by the Gauss-Markov the-
orem has the least error proving (ii).

B.3 Proof of Theorem 4
First, the theorem is restated.

Theorem 4. (i) error(Hq) ≤ error(E[q]) for all q and
for all linear unbiased estimators E, (ii) error(Hq) = O(h3/ε2)
for all q, and (iii) there exists a query q s.t. error(Hq) ≤
3error(H̃q)

2(h−1)(k−1)
.

Proof. For (i), we use the fact that H is the OLS es-
timator. Hence it minimizes the error for estimating any
linear combination of the original counts, which includes in
particular the given range query q.

For (ii), we note that any query q can be answered by
summing at most kh nodes in the tree. Since for any node
v, error(HC[v]) ≤ error(H̃[v]) = 2h2/ε2, we get

error(HC[q]) ≤ kh(2h2/ε2) = O(h3/ε2)

For (iii), denote l1 and l2 to be the leftmost and rightmost
leaf nodes in the tree. Denote r to be the root. We consider
the query q that asks for the sum of all leaf nodes except for
l1 and l2. Then from (i) error(H(q)) is less than the error

of the estimate h̃[r] − h̃[l1] − h̃[l2], which is 6h2/ε2. But,

on the other hand, H̃ will require summing 2(k − 1)(h− 1)
noisy counts in total (2(k-1) at each level of the tree). Thus

error(H̃q) = 4(k − 1)(h− 1)h2/ε2. Thus

error(Hq) ≤
3error(H̃q)

2(h− 1)(k − 1)

This completes the proof.
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