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ABSTRACT
Uncertain data streams, where data is incomplete, imprecise,
and even misleading, have been observed in a variety of envi-
ronments. Feeding uncertain data streams to existing stream
systems can produce results of unknown quality, which is of
paramount concern to monitoring applications. In this paper,
we present the Claro system that supports uncertain data
stream processing for data that is naturally captured using
continuous random variables. The Claro system employs a
unique data model that is flexible and allows efficient compu-
tation. Built on this model, we develop evaluation techniques
for complex relational operators, including aggregates and
joins, by exploring advanced statistical theory and approxi-
mation techniques. Our evaluation results show that our tech-
niques can achieve high performance in stream processing
while satisfying accuracy requirements, and these techniques
significantly outperform a state-of-the-art sampling-based
method. Furthermore, initial results of a case study show
that our modeling and aggregation techniques can allow a
tornado detection system to produce better quality results
yet with lower execution time.

1. INTRODUCTION
Uncertain data streams, where data is incomplete, imprecise,

and even misleading, have been observed in a variety of envi-
ronments, such as sensor networks measuring temperature
and light [8, 16], radio frequency identification (RFID) net-
works [18, 30], GPS systems [19], and weather radar networks
[22]. As these data streams are collected by monitoring appli-
cations, they often undergo sophisticated query processing
to derive useful high-level information. However, feeding
uncertain data streams directly to existing stream systems
can produce results of unknown quality. This issue is of
paramount concern to monitoring applications that trigger
actions based on the derived information.

Our work is particularly motivated by two emerging mon-
itoring applications. The first is object tracking and mon-
itoring using RFID readers [30]. Data streams from RFID
readers are highly noisy due to the sensitivity of sensing to
the orientation of reading and many environmental factors
such as metal objects and interference. When such streams
are used to support monitoring applications, for instance,
to detect safety violations regarding flammable objects, the
quality of the alerts raised is a critical issue to address.

The second application is severe weather monitoring [22],
where meteorological data streams are collected from a weather
radar network and processed in a real-time stream system
to predict natural disasters such as tornados. Uncertainty in

such data arises from environmental noise, device noise, and
inaccuracies of various radar components. Such uncertainty
can propagate all the way through the stream system, making
the final detection results error-prone. Given the potential
social impact, it is absolutely vital that the system capture
the quality of the detection results.

In this paper, we address uncertain data stream processing
for data that is naturally modeled using continuous random
variables, such as many types of sensor data and financial
data. Given such data, our work addresses relational query
processing under uncertainty, with a focus on aggregates and
joins. These complex operations are crucial to our target
applications but have not been sufficiently addressed in prior
work for continuous random variables. For each relational
operator, our work aims to fully characterize the distribution
of each result tuple produced from uncertain data. Such
distributions, which we call result tuple distributions, can be
used to return any statistics needed by the application, such
as mean, variance, and confidence intervals. They also allow
the stream system to feed these tuples as input to other opera-
tors and characterize the results of the further processing—it
is evident that merely having statistics such as mean and
variance for those tuples is not enough to do so.

1.1 Challenges
There are two fundamental challenges in uncertain data

stream processing as described above: First, it is computa-
tionally difficult to obtain result distributions of aggregates
and joins for input tuples modeled using continuous random
attributes. Second, such computation must be performed ef-
ficiently for high-volume data streams. While approximation
is a common approach to improving efficiency, the technique
must be able to achieve a small bounded error while meet-
ing performance requirements to be useful to monitoring
applications.

Despite a large body of recent work on probabilistic data
management, the above challenges have not been adequately
addressed. Most probabilistic databases [1, 2, 4, 21, 25, 27, 31]
and stream systems [5, 17, 20] model tuples using discrete ran-
dom variables and evaluate queries using the possible worlds
semantics. The continuous nature of our data, however, pre-
cludes the use of these techniques because the possible values
of a continuous random variable are infinite and cannot be
enumerated.

Recent work on uncertain data processing for continuous
attributes has taken two approaches to handling aggregates:
The integral-based approach [4] performs exact derivation
of the result distribution, for instance, using a two-variable
convolution algorithm for sum. While the result is accurate,



the computation is too slow to be used in stream processing,
as we shall show later in this paper. The sampling-based
approach [14, 28] employs approximation by discretizing
continuous distributions and sampling from the discretized
distributions. However, for real-world data it is difficult,
sometimes impossible, to find the right number of samples
that guarantees both accuracy and efficiency, as we also show
in performance evaluation of this paper. Joins of continuous
random attributes have only been considered at the model-
ing level [28], lacking both implementation techniques and
demonstrated performance for data streams.

1.2 Our Contributions
In this paper, we present the design, implementation, and

evaluation of a probabilistic data stream system, which we
call Claro, that supports relational processing of uncertain
data streams involving continuous random attributes. Our
work has the following main contributions:

Data model. The foundation of Claro is a flexible data
model that allows efficient computation. Based on Gaussian
Mixture distributions, this model subsumes the commonly
used Gaussian distributions and can model arbitrarily com-
plex real-world distributions. Moreover, it allows efficient
computation based on powerful statistical techniques for con-
tinuous random variables and particular Gaussian properties.
Our choice of data model stands in contrast to those based on
histograms [14] and weighted particles [20] which indicate
the use of samples in computation. Finally, our model has the
potential to support a large set of relational operators. While
our work focuses on two complex operators, aggregates and
joins, an extension to other operators is sketched at the end
of the paper.

Aggregates. Our data model empowers us to explore ad-
vanced statistical theory, such as characteristic functions, to
obtain exact result distributions of aggregation at low compu-
tation cost. In particular, our algorithm for exact derivation
completely eliminates the use of integrals, in contrast to the
use of multiple integrals in [4]. However, the formulas for
result distributions that the exact algorithm produces grow
exponentially in the number of aggregated tuples. Hence, we
provide two approximation methods to simplify the formulas
for result distributions. These techniques, when combined,
can satisfy arbitrary application-specified accuracy require-
ments while achieving high speed in stream processing.

Joins. Our data model also allows us to seek efficient and
accurate techniques for joins. Depending on the application
semantics, a join between a continuous random attribute and
a deterministic attribute can often be modeled using an outer
join over a probabilistic view. Our first technique supports
such joins by using regression to efficiently construct the view
and deriving a closed-form solution to join result distributions
based on the view. Joins of continuous random attributes
can also be modeled using the cross-product semantics. Our
second technique supports such joins with not only result
distributions but also an efficient filter that removes the join
results with low existence probabilities.

Performance evaluation. We perform a thorough evalu-
ation of our techniques for joins and aggregates, and com-
pare them with sampling-based methods ([14] for aggregates
and a home-grown method for joins). Results of this study
demonstrate our advantages in both accuracy and speed
over the sampling-based approach, due to the use of our
data model and advanced techniques for continuous random

variables.
We further perform a case study in the severe weather

monitoring application, in which the Claro system is used
to process a raw trace collected from a real tornadic event.
Our initial results show that fitting data to the Claro model
and using its aggregation techniques provides cleaner, more
accurate data to the tornado detection algorithm, resulting in
better detection results and faster computation.

The remainder of the paper is organized as follows. We
describe our motivating applications more in §2. We present
our data model in §3, and main techniques for aggregates
and joins in §4 and §5. Evaluation results are described in §6.
An extension of the Claro system to a larger set of relational
operators is outlined in §7. Finally, §8 covers related work
and §9 concludes the paper.

2. MOTIVATING APPLICATIONS
In this section, we present two motivating applications.

2.1 Object Tracking and Monitoring
In the first application, radio frequency identification (RFID)

readers are used to monitor a large area such as a warehouse,
a retail store, or a library. RFID data is known to be highly
noisy [18, 30]. The read rate of RFID readers is far less than
100% due to environment factors such as occluding metal ob-
jects, and interference. Moreover, mobile RFID readers may
read objects from arbitrary angles, hence particularly sus-
ceptible to variable read rates. Our prior work [30] provides
techniques to transform raw RFID readings into a stream of
location tuples. Each location tuple contains (time, tag id,

xp, yp), where xp and yp denote the inferred location of the
object which is probabilistic in nature.

Despite the data uncertainty, monitoring applications want
to run queries over the location streams to derive high-level
information. The first query illustrates the use in a fire moni-
toring application: “trigger an alert when a flammable object
is exposed to a high temperature.” This query takes two
inputs: a location stream for flammable objects as described
above, and a temperature stream from sensors placed in
the same area (time, sensor id, x, y, tempp), where the
temperature can be uncertain due to sensing noise. The query
joins the location stream with the temperature stream based
on the location. The query is written as if the location of an
object and the temperature at a location were precise.

Q1: Select Rstream(R.tag id, R.x, R.y, T.temp)
From FlammableObject [Now] As R,

Temp [Partition By sensor id Rows 1] As T
Where T.temp > 60 ℃ and

R.x = T.x and R.y = T.y

The second query detects violations of the shipping policy
by the Food and Drug Administration: “foods with and
without peanuts cannot be located closely in the supply
chain.” This query takes two location streams and checks
for the proximity of two types of food. Again, this query is
written as if the location of each object were certain.

Q2: Select Rstream(R.tag id, R.x, R.y, S.tag id, S.x, S.y)
From PeanutFreeFood [Range 3 minutes] As R,

PeanutFood [Range 3 minutes] As S
Where |R.x - S.x| < 3 ft and |R.y - S.y| < 3 ft

2.2 Hazardous Weather Monitoring
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Figure 1: Simplified stream processing in CASA radar system

The CASA Research Center [3] is developing weather radar
networks to detect hazardous weather events such as torna-
dos and storms [22]. A four-radar testbed covering a 7,000
square km region has been deployed in southwestern Ok-
lahoma, a region that receives an average of four tornado
warnings and 53 thunderstorm warnings each year [22].

A CASA radar node rotates to scan. It sends around 2000
pulses per second, alternating between 47 high frequency
pulses and 47 low frequency ones. For each pulse, the radar
listens to 700 echoes reflected from the areas in increasing
distance from the radar. Each echo consists of 4 32-bit raw
floating numbers. Hence, the raw data is generated at a rate
of 175Mb per second. In addition, the raw data is highly
noisy due to electronic device noise, instability of transmit
frequency, quality issues of the system clock, the positioner,
and the antenna, and finally environmental noise.

The raw data streams from the radar nodes are fed to a
real-time system for weather event detection. Such real-time
stream processing is faced with two challenges: highly noisy
data and high data volume, which can easily overwhelm
the stream processing system. The current CASA system
addressed both issues by means of taking average.

Figure 1 shows a simplified diagram of the current system.
The top box in the figure depicts the generation of radial wind
velocity from the raw data. The raw stream is partitioned
into segments based on the frequency used. The velocity
analysis transforms each segment into the frequency domain
using Fast Fourier Transform (FFT) for signal processing. It
then outputs a single velocity value for each segment and
averages the values for high and low frequency segments
close in time. The reflectivity analysis, in the lower box of the
figure, generates reflectivity values also by averaging over
adjacent stream segments. While such average operations can
reduce data volume and gain a smoothing effect, the resulting
data is still highly noisy, causing low quality detection results
and long running time.

In our case study (detailed in §6.3), we explore the use of
distributions, rather than simple average values, to separate
useful data from noise while controlling the data volume. The
output of our data analysis contains tuple streams with dis-
tributions, i.e., (time, azimuth, distance, velocityp) and
(time, azimuth, distance, reflectivityp). We also study
the transformation of these distributions through CASA oper-
ations, specially, the frequently used aggregation operations.
By doing so, we expect to gain better tornado detection
results yet with shorter execution time. Moreover, the dis-
tributions we provide also enable a potential extension of
detection algorithms to use these distributions, and allow
detailed post-facto analysis by the scientists.

3. THE CLARO DATA MODEL
The foundation of the Claro system is a data model

that can capture a variety of uncertainties for continuous
attributes and further allow fast relational processing. Most
notably, Claro models continuous random attributes using
Gaussian Mixture Models (GMMs) to leverage their flexibility
and efficiency in computation. In this section, we introduce
Gaussian Mixture Models, present techniques that transform
real-world data into these models, and finally present the
complete Claro data model for relational processing.

3.1 Gaussian Mixture Models (GMMs)
Gaussian Mixture Models (GMMs) are statistical methods

that are traditionally used for data clustering and density
estimation. As an instance of probability mixture models,
a GMM describes a probability distribution using a convex
combination of Gaussian distributions.

Definition 1 A Gaussian Mixture Model for a continuous ran-
dom variable X is a mixture of m Gaussian variables X1, X2, · · · ,
Xm. The probability density function (pdf) of X is:

fX(x) =
m

∑
i=1

pi fXi (x),

fXi (x) ∼ N(ui, σ2
i ) =

1
σi
√

2π
e
− (x−ui )

2

2σ2
i ,

where 0 < pi < 1, ∑m
i=1 pi = 1.

It is apparent from this definition that the commonly used
Gaussian distribution is a special case of GMM with the
number of components equal to one.

Definition 2 A multivariate Gaussian Mixture Model for a ran-
dom vector X naturally follows from the definition of multivariate
Gaussian distributions:

fX(x) =
m

∑
i=1

pi fXi (x),

fXi (x) ∼ N(ui, Σi) =
1

(2π)k/2|Σi|1/2 e−
1
2 (x−ui)T Σ−1

i (x−ui),

where k is the size of random vector, and each mixture component
is a k-variate Gaussian distribution with the mean ui and the
covariance matrix Σi.

The Claro system adopts Gaussian Mixture Models due
to several key benefits of these models. First, GMMs are a
natural extension to Gaussian distributions that are widely
used in scientific sensing and financial applications. Hence,
they can be easily accepted by end users such as the CASA
scientists we are working with.

Second, GMMs are highly flexible in modeling arbitrary
real-world data distributions. Figure 3 shows several data
distributions from our target applications. Figure 2(a) shows
a bimodal distribution of velocity at the boundary between
a positive velocity area and a negative velocity area in a
tornadic event. In contrast, Figure 2(b) shows a velocity dis-
tribution in a positive velocity area, in which one Gaussian
component captures the peak and the other captures the
noise spread across the entire spectrum. In the RFID applica-
tion, Figure 2(c) shows the location distribution of a recently
moved object produced by our inference algorithm [30]. Here,
the bivariate, bimodal GMM represents the possibilities of
the old and new locations using two mixture components;



(a) Velocity distribution after FFT in Area 430
Azimuth 281.9 degree in a tornadic event

(b) Velocity distribution after FFT in Area 430
Azimuth 282.3 degree in a tornadic event

(c) Location distribution of a recently moved
object detected using RFID readers

Figure 2: Gaussian Mixture Models for real-world data collected from our target applications

each component is a bivariate Gaussian modeling the joint
distribution of x and y locations.

The third benefit of GMMs is efficient computation based
on Gaussian properties and advanced statistical theory. For
instance, the mean and variance of GMMs can be computed
directly from those of the mixture components:

E[X] =
m

∑
i=1

piE[Xi] (1)

Var[X] = E[X2]− (E[X])2 =
m

∑
i=1

piE[X2
i ]− (E[X])2

=
m

∑
i=1

pi(Var[Xi] + (E[Xi])2)− (E[X])2 (2)

Further, the cumulative distribution function (cdf) of a GMM
with a single variable can be written out in closed form:

FX(x) =
∫ x

−∞
fX(x) dx =

m

∑
i=1

ai
2

[1 + er f (
x− ui

σi
√

2
)] (3)

where er f () is the known error function. Values of the error
function can be approximated very accurately using numer-
ical methods. In fact, these values are precomputed and
stored in any numerical library. Hence, computing FX(x = a)
or
∫ b

a fX(x)dx = FX(a)-FX(b) incurs little cost.
Other computation benefits of GMMs, such as the charac-

teristic functions, product distributions, and marginalization,
are described in later sections when they are used.

3.2 Generating GMMs from Real-World Data
Gaussian Mixture Models can be generated from real-

world data in a variety of ways.
Samples. Several recent studies [19, 30] have developed

inference techniques that transform raw data to distributions
and represent those distributions using weighted samples.
Given these samples, GMMs can be generated using exist-
ing tools for density estimation or function fitting. If an
application models data using other distributions, e.g., the
Gamma distribution, it is easy to generate samples from this
distribution and then fit a GMM as described above.

Correlated time series. Time series data is prevalent in
many applications. Values in a time series are temporally
correlated so cannot be viewed as samples to fit GMMs. Two
techniques can be applied in this case:

Fast Fourier Transform (FFT) translates a correlated data
sequence in the time domain to an uncorrelated sequence

in the frequency domain. The latter is essentially a discrete
distribution that can be used to fit a GMM. Although FFT has
the O(n log n) complexity, where n is the sequence length,
doing so for short subsequences of data does not incur high
overhead. In fact, the CASA system has already applied FFT
to the streams arriving at 175 Mb/sec. We will show the use
of this technique in our case study in Section 6.3.

Another method is to use the autoregressive moving aver-
age (ARMA) model which restricts data correlations to the
past n time steps. Our previous study applied ARMA fitting
to the radar data streams with and without a tornado [10].
We discovered that in either case, the ARMA model with
n=5 satisfies the statistical condition for fitting. Given such
models, we can perform sampling at the frequency of once
every n+1 values and feed the samples to fit GMMs.

The Claro system offers all above methods for transform-
ing raw data to tuples modeled using GMMs. Since the data
provider has the best knowledge about the suitable method,
in this work we assume that such transformation is per-
formed on the stream provider side and the input to Claro

has already had uncertain data modeled using GMMs.

3.3 CLARO Data Model
We now present the complete data model that Claro uses

for relational processing. An uncertain data stream is an infi-
nite sequence of tuples that conform to the schema Ad ∪Ap.
The attributes in Ad are deterministic attributes, such as the tu-
ple id and the fixed x-y location of a sensor. The attributes in
Ad are real-valued probabilistic attributes, such as the temper-
ature of a location and the velocity and reflectivity in an area.
The set of probabilistic attributes is further partitioned into
independent attributes Ap

i ∈ Ap and groups of correlated
attributes Ap

j ⊆ Ap. An independent probabilistic attribute
is modeled using a continuous random variable following a
Gaussian Mixture distribution, denoted by f (Ap

i ). A set of
correlated attributes Ap

j is modeled using a set of continuous
random variables following a multivariate Gaussian Mixture
distribution, denoted by f (Ap

j ).
In Claro, the tuple distribution is defined as:

f (Ap) = ∏
i

f (Ap
i ) ∏

j
f (Ap

j ),

which is a multivariate Gaussian Mixture distribution. Then,
the tuple existence probability (Pt) is defined to be the integral



of the tuple distribution over all attributes in Ap.

Pt =
∫
· · ·

∫
Ap

f ([x1 · · · xk] ∈ Ap) dx1 · · ·dxk

Under normal conditions, the Pt of tuples is 1. In particular,
all input tuples to Claro are assumed to have Pt=1 (which is
true in both of our target applications). However, the Pt of
tuples can become less than 1 due to query processing. In
this paper, we first assume the Pt of all tuples to be 1 to focus
on the main techniques. We then relax this assumption in
Section 7 and describe an extension of our techniques.

In general tuples in a stream can be correlated. Inter-tuple
correlations can be modeled using a joint tuple distribution
or lineage [2]. Our current data model does not include such
correlations due to two reasons: First, while raw data is often
correlated, our methods for transforming raw data to tuples,
such as FFT and sampling based on the ARMA model, have
already taken temporal correlations into account. Second,
performance is the key to stream processing. For this reason,
stream systems may sometimes have to sacrifice inter-tuple
correlations to meet stringent performance requirements. For
instance, the CASA system ignores spatial correlations in
any processing prior to final tornado detection, and existing
work on probabilistic stream processing [19, 24] ignores inter-
tuple correlations, for the performance reason. A thorough
treatment of tuple correlations in stream processing is left to
our future work.

In the rest of the paper, we present evaluation strategies
for aggregates and joins under the Claro data model. An
extension of our work to a more general data model and a
larger set of relational operators is delayed until Section 7.

4. AGGREGATION OF UNCERTAIN TUPLES
We first address aggregation of uncertain tuples. In this

work, we focus on aggregation using sum and avg because
they are crucial to our target applications but have not been
sufficiently addressed in prior work.1 Much of existing work
on probabilistic databases [1, 6] focuses on discrete proba-
bilistic attributes and employs possible world semantics for
query processing. For continuous attributes, there have been
two main approaches to supporting aggregates:

The integral-based approach directly manipulates continu-
ous random variables and derives exact result distributions.
Consider the sum of n tuples modeled by n continuous ran-
dom variables. A state-of-the-art solution [4] integrates two
variables at a time, resulting in the use of n-1 integrals for ag-
gregating these tuples. As we shall show in Section 4.1, even
if we use a hand-optimized numerical method for integration,
computing a single integral for each sum operation is still
too slow for data streams. This implies that the approach
using n-1 integrals for each sum operation is infeasible for
stream processing.

The sampling-based approach [14, 28] generates a fixed num-
ber of samples from the distribution of each input tuple,
computes a set of answers using the samples, and constructs
the result distribution from these answers. Despite its gen-
erality, its approach has two main drawbacks: First, it is
unknown how many samples are needed a priori. When a
small number of samples is used, the computation is fast but
with potential loss of accuracy. To accurately characterize

1Our system also supports min and max. The techniques we develop
are similar to those in [4] and hence omitted in this paper.

complex distributions, the number of samples needed can be
large, hence penalizing performance. Further, the sampling-
based approach has no means to acquire the knowledge
about the true result distribution. Hence, it can not adapt to
varying data characteristics and accuracy requirements.

Our work departs from existing approaches by exploring
advanced statistical theory to obtain exact result distributions
while completely eliminating the use of integrals. However,
the formulas for result distributions that the exact algorithm
produces grow exponentially in the number of aggregated tu-
ples. Hence, we provide two approximation techniques to sim-
plify the formulas for result distributions. These techniques
can satisfy varying accuracy requirements while achieving
high speed in stream processing. It is important to note that
such accuracy cannot be guaranteed without the knowledge
of the true result distribution!

In the following, we present our techniques for evaluating
sum(A) and avg(A) over a tuple stream, where A is a con-
tinuous random attribute. For succinctness, our discussion
focuses on sum. The application to avg is straightforward.

4.1 Using Characteristic Functions
In this section, we introduce characteristic functions and de-

scribe how they can be used to derive the result distribution
for sum of a set of tuples.

In probability theory, characteristic functions, as their name
suggests, are used to “characterize” distributions. Specifically,
the charactertistic function of a random variable U completely
defines its distribution as follows (chapter 2, [12]).

ΦU(t) = EeiUt,

where E denotes the expected value and i is the complex
number

√
−1. The pdf of U can be obtained by the inverse

transformation of the characteristic function:

fU(x) =
1

2π

∫ +∞

−∞
e−itxΦU(t)dt

Now let us consider sum(A), with the attribute A in n tuples
being modeled using X1, ..., Xn . Let U = X1 + X2 + ... + Xn.
The characteristic function of U is:

ΦU(t) = EeiUt = Eei(X1+X2+...+Xn)t

= EeiX1teiX2t...eiXnt

= ΦX1(t)ΦX2(t)...ΦXn(t)

The step 2 above holds due to the independence assumption
among the Xi’s. For a GMM, its characteristic function can be
expressed in closed form (i.e., without the integral to compute
the expectation). For example, for a Gaussian mixture of two
components:

f (x) = p1
1

σ1
√

2π
e
− (x−µ1)2

2σ2
1 + p2

1
σ2
√

2π
e
− (x−µ2)2

2σ2
2 ,

its characteristic function is:

ΦX(t) = p1eiµ1t− 1
2 σ2

1 t2
+ p2eiµ2t− 1

2 σ2
2 t2

Therefore, the characteristic function for sum(A) can be di-
rectly written out as the product of characteristic functions of
the input tuples. The above discussion leads to an algorithm
for sum with three steps.



Algorithm 1 Direct approach to sum

Input: Independent tuples, X1, ..., Xn; a given value, x.
Output: fU(x), with U = X1 + ... + Xn

1: Get the characteristic function of each tuple Xi.
2: Take the product of these characteristic functions.
3: Apply the inverse transformation at x.

Given our choice of GMMs, step 1 does not involve any
integration. The computation thus involves a single integral
for the inverse transformation. This gives a boost in perfor-
mance compared to the two-variable convolution method,
which requires n− 1 integrals [4].

The main limitation of this approach is that the result
distribution is symbolic because it involves an unresolved in-
tegral in the pdf formula. To get sufficient knowledge of the
result distribution (e.g., calculating its mean and variance),
one needs to repeat the inverse transformation for a large
number of points. To understand the cost of such repeated
integration in our initial study, we used a numerical solution
called adaptive quadrature [26] to compute integrals. The
task is to average over 10 tuples and compute the pdf values
for 20 points. We applied optimizations such as restricting
the range of integration and limiting the maximum number
of iterations. The throughput obtained is less than 200 tu-
ples/second. This indicates that this technique is inefficient
for our data stream applications. Besides, it is unknown if
the result distribution is a GMM.

4.2 Exact Derivation
The discussion in the previous section motivated us to seek

a solution without using numerical integration. For GMMs, it
turns out that we can obtain the closed-form solution to the
inverse transformation. In addition, when input tuples are
Gaussian mixtures and independent, the result of sum over
those tuples is also a Gaussian mixture that can be directly
obtained from the input tuples.

Theorem 4.1 Let each Xi, (i = 1..n) be a mixture of im compo-
nents identified by the parameters (pij, µij, σij), (j = 1..im). The
result distribution for U = ∑n

i=1 Xi is a Gaussian mixture of
∏n

i=1 im components, each of which corresponds to a unique combi-
nation that takes one component from each input Gaussian mixture
{ij}, (i = 1..n, j ∈ {1..im}) and is identified by (pk, µk, σk):

pk =
n

∏
i=1

pij ; µk =
n

∑
i=1

µij ; σk =

√
n

∑
i=1

σ2
ij

.

Proof:See Appendix.
To the best of our knowledge, we are not aware of any

state-of-the-art book on mixture models showing this result
[13, 11, 23] .

This technique gives an exact solution so the accuracy is
guaranteed. The only computation involved is to enumerate
and compute all components of the result Gaussian mixture.
The number of components in the result distribution, how-
ever, is exponential in number of input tuples. Thus, this
technique cannot scale to a large number of tuples. Our
goal is to settle for simpler distributions that are still good
approximations of the true ones. We next describe our ap-
proximation techniques to achieve this goal.

4.3 Approximation of Closed-Form Solution

In this section, we seek an approximation technique to
simplify the formula of the result distribution while achiev-
ing a bounded error. The nature of this task is similar to
approximate lineage [25], in which the complex lineage for-
mula is replaced with an approximate and simpler one. The
approximate distributions in our work are user-friendly and
allow lower cost in subsequent processing.

For the cases that the result Gaussian mixtures have too
many components, we propose to simplify them by reduc-
ing the number of components while achieving the accuracy
requirements. The idea is to group adjacent Gaussian peaks
together and approximate them with a single component.
We search for the right number of components, K, by start-
ing with a small number and increasing it if the accuracy
is not satisfied. Since we know the property of the result
distribution, we can quantify our approximation on the fly.

The algorithm, referred thereafter as sort-group, has the
following main steps:

Algorithm 2 Approximation with sort-group
1: Start with the number of components K = 1.
2: Enumerate all N components of the result distribution

based on Theorem 4.1. Each component is a Gaussian
N(µi, σi) with a coefficient pi.

3: Sort the components in increasing order of µi.
4: Group the components into K result Gaussian com-

ponents. Each of them replaces b N
K c original compo-

nents; except for the last one which replaces the last
(N − (K − 1)b N

K c) original components.
5: Calculate the approximate point-based variation distance

(VD) to see if it is satisfied the given accuracy constraint.
If so, return the mixture of K Gaussian components; oth-
erwise, increase K and go to step 4.

In step 4, we group each m components and replace them
with a single Gaussian. Formally, this can be written as:
p1N(µ1, σ1) + · · ·+ pm N(µm, σm) =

∑m
i=1 pi

[
p1

∑m
i=1 pi

N(µ1, σ1) + · · ·+ pm

∑m
i=1 pi

N(µm, σm)
]

.
The quantity inside the bracket represents a Gaussian mixture
and is approximated by a single Gaussian with mean and
variance equal to those of the Gaussian mixture.

In step 5, the point-based VD is a metric we use to mea-
sure the distance between distributions. For two continuous
distributions D1(x) and D2(x), it is defined as:

VD =
1
2 ∑

x
|D1(x)− D2(x)|∆x (4)

The values of x are evenly spaced and taken from the range
where the two distributions have most of their density mass
lies. ∆x is the distance between two consecutive x points.
The constant 1

2 ensures that VD is in [0,1]. This idea is similar
to the metric used in [14] in the sense of discretizing continu-
ous distributions except that we use equi-width histograms,
instead of equi-depth ones.

Instead of using a large number of points (i.e., 1000) to
calculate VD as used for accuracy measurement, we use a
smaller number to reduce this computation overhead. It
is experimentally shown that we can achieve a reasonable
approximation of the true VD using 30 points. Also, as we
know the true distribution, the points for the true distribution
can be calculated once and stored to be used later.

The search for the number of components K can be opti-
mized by using information from previous segments of the



Figure 3: Example of Characteristic Function for avg of 10 tuples.

stream to determine the initial K. A simple heuristic is to
use the average of previous K’s. This is applied after the
“warm-up” phase (i.e., when the system is stabilized) so that
we have a sufficient number of segments to take average
from.

4.4 Approximation using Fitting
The previous approximation still enumerates all mixture

components of the result formula and becomes very inef-
ficient when the number of input tuples is large. We next
propose to approximate the result distributions by perform-
ing function fitting in the characteristic function space. This is
based on the property that the characteristic function of sum
can be succinctly represented as a product of n individual
characteristic functions (instead of an exponential number
of components). The goal is to find some Gaussian mixture
whose characteristic function best fits this product function.

We devise an approximation algorithm, named Character-
istic Function (CF) fitting. It works as follows:

Algorithm 3 Approximation with CF fitting

1: Obtain the expression of the CF of the sum, Φsum(t) =
∏n

i=1 ΦXi (t). This is a complex function.
2: Take M points {ti}, (i = 1..M) from a range [C1, C2], ,

and compute {Φsum(ti)}, (i = 1..M).
3: Start with K = 1. Consider a Gaussian mixture of K

components. The corresponding CF is Φ(t).
4: Evaluate the function using the same M points to get
{Φ(ti)}(i = 1..M).

5: Run least squares fitting to minimize:
∑M

i=1
[
(Re(Φ(ti)−Φsum(ti)))2 + (Im(Φ(ti)−Φsum(ti)))2].

6: Get the fitting residual. If this is smaller than a threshold
ε, return the fitted Gaussian mixture. Otherwise, increase
K and go back to step 3.

Note that the objective function for fitting contains both
real and imaginary parts since the characteristic functions are
complex and both parts contribute to the pdf via inverse
transformation.

We further propose several optimizations based on statisti-
cal theory to improve performance and accuracy.

Range of CFs: Since the characteristic function Φ(t) ap-
proaches 0 fast as the magnitude of t increases, the range
[C1, C2] needs to be small and centered around 0. See Figure
3 for an example of CF for avg of 10 tuples. Both real and
imaginary parts of the function are shown. Hence, we use
[−1, 1] in our algorithm as the range can capture the shape
of the CFs in most cases.

Inital guesses: Due to the oscillating behavior of the charac-
teristic functions, the fitting results are quite sensitive to the
initial values and can get stuck in local optima. Finding good
initial guesses for fitting can be as hard as fitting itself. Theo-
rem 4.1 provides insights into choosing these initial guesses.
Specifically, we precompute a fixed number of result compo-

nents (e.g., 40) and use them to derive the guesses. These
components are chosen so that their means are separated to
capture different regions of the result distribution. At each
iteration, they are grouped into K components that are used
as initial guesses.

Choice of fitting residual: The fitting residual ε is chosen to
guarantee the given VD requirement. We have performed an
approximation analysis and derived an upper bound for ε.
The proof is based on the application of Cauchy-Schwartz
inequality to characteristic functions and the property that
these functions approach 0 quickly for points far from the
origin to restrict the integration bounds. Given our choice
of other paramaters, we can show that ε ≤ 6 ∗ 10−5VD2 can
meet the accuracy requirement VD.

Relation to the Central Limit Theorem. The Central Limit
Theorem (CLT) is a special case of our algorithm. It states
that the sum of a sufficiently large number of independent
random variables is normally distributed [12]. This gives
an asymptotic result but our algorithm dynamically deter-
mines when this result applies with a bounded small error.
Our experiments show that the fitted result distributions are
smooth single Gaussians when the number of tuples is large
enough (e.g., ≥ 20). However, when this number is smaller,
our algorithm will fit using a Gaussian mixture to better
capture more complex distributions.

The above aggregation techniques can be directly applied
to stream systems using tumbling windows such as the CASA
system and XStream system [15]. When sliding windows are
used instead, they will repeat computation for each window.

5. JOINS OF UNCERTAIN TUPLES
In this section we consider efficient evaluation of joins un-

der the Claro data model. Consider an example R 1R.a=S.a
S. The evaluation strategies of the join vary significantly
based on the nature of the join attributes. Recent research on
probabilistic databases [1, 2, 20, 31] has mostly focused on
the case that at least one of the join attributes is probabilistic
and the uncertainty is captured using a discrete random vari-
able. Since it is possible to enumerate the values of a discrete
random variable, existing work supports such joins based
on the possible worlds semantics (PWS): in each possible
world, each random variable takes a specific value so a join
can proceed just as in a traditional database.

In a more complex scenario, on which our work focuses,
at least one of the join attributes is probabilistic and the
uncertainty is captured using a continuous random variable.
The approach based on PWS does not apply because we
can no longer enumerate the possible values of a continuous
random variable. The recent work [28] defines the result tuple
distributions of a join to be the result tuple distributions of a
selection following a cross-product. This definition, however,
is useful only in limited situations and does not consider the
performance issue related to the cross product.

Below, we consider joins of continuous random attributes
based on two different types of semantics and propose evalu-
ation and optimization techniques for these joins.

5.1 Joins using Probabilistic Views
We first consider a join between a continuous random

attribute and a deterministic attribute. Query Q1 in Section
2.1 is such an example: the join attributes x and y in the
object location stream are probabilistic, but x and y in the
temperature stream are simply fixed sensor locations. This



type of join is inherently difficult to support because it is not
possible to enumerate the values of the continuous random
attributes xp and yp. Furthermore, each value of xp and
yp has probability 0. Hence, the join results based on the
individual values of xp and yp also have probability 0.

In order to support this type of join, we introduce the
notion of a probabilistic view. In the above example, a prob-
abilistic view on the temperature stream is defined to be
the conditional probability p(temp|x, y), that is, the distri-
bution of temperature given a particular (x,y) value. Once
this view is defined, for any possible value of xp and yp, we
can retrieve the temperature distribution based on this value.
The process of iterating all possible values of xp and yp and
retrieving the corresponding temperature distributions can
be compactly represented by f (xp, yp)p(temp|x, y), yielding
a joint distribution f (xp, yp, tempp).

Formally, let the left join input R be {Ap
1 , · · · , Ap

k , R̄},
where Ap

1 , · · · , Ap
k are the join attributes and R̄ denotes the

rest of R. Let the right input S be {A1, · · · , Ak, B1, · · · , Bl , S̄},
where A1, · · · , Ak are the join attributes, B1, · · · , Bl are the
attributes that can be functionally determined by the join at-
tributes in a deterministic world, and S̄ is for the rest of S. In
our example of Q1, the functional dependency in the temper-
ature stream is (x, y) → temp. Then a probabilistic view can
be defined for the attributes B1, · · · , Bl conditioned on the
attributes A1, · · · , Ak, denoted by VBp

1 ,··· ,Bp
l |A1,··· ,Ak

, which
is essentially characterized by p(B1, · · · , Bl |A1, · · · , Ak). We
now give the definition of the join between R and S based on
the probabilistic view semantics.

Definition 3 Given R = {Ap
1 , · · · , Ap

k , R̄}, S = {A1, · · · , Ak,
B1, · · · , Bl , S̄} with FD: A1, · · · , Ak → B1, · · · , Bl , a join of R
and S based on the probabilistic view semantics (1V) is a left outer
join of R and the probabilistic view VBp

1 ,··· ,Bp
l |A1,··· ,Ak

(S).

R 1V
R.Ap

1 =S.A1,··· ,R.Ap
k =S.Ak

S ≡ R =./
R.Ap

1 ,··· ,R.Ap
k

VBp
1 ,··· ,Bp

l |A1,··· ,Ak
(S)

In this definition, the left outer join preserves each tuple in
R and extends it with the attributes Bp

1 , · · · , Bp
l from S. The

attributes in S that are neither the join attributes nor func-
tionally determined by the join attributes are not included in
the output as the probabilistic view cannot capture them.

Closed-form result distributions. Given the join seman-
tics based on the probabilistic view, we seek a solution to
the tuple distribution of each outer join result. Recall that
the Claro data model describes the join attributes in the left
input using Gaussian Mixture Models (GMMs) or a multivari-
ate GMM if they are correlated. Next, we propose a special
model for the probabilistic view, which we call order-1 linear
regression, that allows us to obtain closed-form join result
distributions also in the form of GMM. While the assumption
of order-1 linearity may sound restrictive, it can be actually
applied to the view at either a global or local scale, hence
amenable to accurate and efficient implementation.

The following two theorems directly offer closed-form join
result distributions. They differ based on the nature of the
attributes used to the construct the probabilistic view.

Theorem 5.1 Given R = {Ap
1 , · · · , Ap

k , R̄}, S = {A1, · · · , Ak,
B1, · · · , Bl , S̄}, assume the following order-1 linear regression:

B̃ = Ãβ + E (5)

where B̃ = (B1, · · · , Bl), Ã = (A1, · · · , Ak), β is a parameter
matrix of k × l, and E is an error vector of length l, which is
normally distribution with mean 0 and covariance matrix ΣE. If
Ã follows a GMM, then the outer join result distribution (Ã, B̃)
follows a multivariate GMM.

Proof sketch: According to (5), we have

B̃|Ã ∼ N(Ãβ, ΣE). (6)

Given Ã ∼ GMM, there exists a random variable C that
captures the mixing distribution of Ã such that

C ∼ Multinomial(m, p1, · · · , pm) (7)

Ã|C = c ∼ N(µÃ,c, ΣÃ,c) (8)

Based on (6) and (8), matrix manipulation can show that

(Ã, B̃)|C = c ∼ N

(
(µÃ,c, µÃ,cβ),

(
ΣÃ,c ΣÃ,cβ

βTΣÃ,c ΣE + βTΣÃ,cβ

))
.

Together with (7), we have (Ã, B̃) follows GMM.
The above proof sketch fully characterizes the join result

distribution, including all its parameters. In practice, β and
ΣE are unknown. They can be estimated using regression
over the tuples in the S input, denoted by Si={Ãi, B̃i}, i =
1, · · · , n. The least square estimates of these parameters are:

β = (ÃTÃ)−1ÃTB̃ (9)

ΣE = B̃T(In − Ã(ÃTÃ)−1ÃT)B̃/(n− k), (10)

where Ã = (ÃT
1 , · · · , ÃT

n )T and B̃ = (B̃T
1 , · · · , B̃T

n )T .

Theorem 5.2 Given R = {Ap
1 , · · · , Ap

k , R̄}, S = {A1, · · · , Ak,
Bp

1 , · · · , Bp
l , S̄}, let B̃p = (Bp

1 , · · · , Bp
l ) and assume it follows

a GMM with r components, each with mean µB̃,j and covariance
ΣB̃,j. Further assume the order-1 linear regression:

µB̃,j = Ãβ
p
j + Ep

j , j = 1, · · · , r (11)

where β
p
j and Ep

j are similarly defined as β and E, and we denote
the covariance matrix of Ep

j as Σp
E,j. Then if Ãp follows a GMM,

we conclude that (Ãp, B̃p) follows a multivariate GMM as well.

Proof sketch: Given B̃p ∼ GMM, there exists a random
variable CB̃ that capures the mixing distribution of B̃p such
that

CB̃ ∼ Multinomial(r, q1, · · · , qr) (12)

B̃p|CB̃ = j, µB̃,j ∼ N(µB̃,j, ΣB̃,j) (13)

According to assumption (11), we have

µB̃,j|Ã ∼ N(Ãβ
p
j , Σp

E,j) (14)

Combining (13) and (14), we obtain

B̃p|CB̃ = j, Ã ∼ N(Ãβ
p
j , Σp

E,j + ΣB̃,j). (15)

Given Ãp ∼ GMM, there exists a random variable CÃ that
captures the mixing distribution of Ãp such that

CÃ ∼ Multinomial(m, p1, · · · , pm) (16)

Ãp|CÃ = i ∼ N(µÃ,i, ΣÃ,i) (17)
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Figure 4: Query plan for the join using a probabilistic view (Q1).

Combining (15) and (17), matrix manipulation can show that

(Ãp, B̃p)|CÃ = i, CB̃ = j

∼ N

(
(µÃ,i, µÃ,iβ

p
j ),

(
ΣÃ,i ΣÃ,iβ

p
j

β
pT
j ΣÃ,i Σp

E,j + ΣB̃,j + β
pT
j ΣÃ,iβ

p
j

))
.

Define C = (CÃ, CB̃), then based on (12) and (16), we have

C ∼ Multinomial(mr, piqj, i = 1, · · · , m, j = 1, · · · , r).

The above two equations show that (Ãp, B̃p) follows a GMM.
In practice, β

p
j and Σp

E,j are unknown. They can be esti-
mated using regression over the tuples in the S input, de-
noted by Si={Ãi, B̃p

i }, i = 1, · · · , n. Also, the distribution
of B̃p

i is given, which is a GMM with mean µB̃,j and covari-
ance ΣB̃,j, j = 1, · · · , r. The least square estimates of these
parameters are:

β
p
j = (ÃTÃ)−1ÃT µ̃ (18)

Σp
E,j = µ̃T(In − Ã(ÃTÃ)−1ÃT)µ̃/(n− k), (19)

where Ã = (ÃT
1 , · · · , ÃT

n )T and µ̃ = (µT
B̃,1, · · · , µT

B̃n
)T .

Evaluation Techniques. The query plan for a join using a
probabilistic view is illustrated in Figure 4 for the example
query Q1. For stream processing, this plan first applies the
windows specified in the query to the two inputs: A Now
window is applied to the location stream, which feeds each
arriving location tuple as the left input to the left outer join.
An update window, [Partition By sensor id Rows k], selects
the most recent k temperature tuples from each sensor into
the window. The probabilistic view is maintained over the
update window and returns the view Vtempp |x,y as the right
input to the left outer join. Finally, the join extends each
location tuple from the left with the attributes presented by
the view, and returns a joint distribution of these attributes.

Given the closed form join result distribution, the main
implementation issue is the construction of the probabilistic
view using regression. While recent research has applied
regression to build models and views over sensor data [16,
9], our work differs by exploring the tradeoffs of applying
order-1 linear regression at a global versus local scale.

Global regression: Take all S tuples in the current update
window. Global regression is straightforward: simply apply
regression equations (e.g., Eq. 9 and Eq. 10) to these tuples to
construct the view defined by the regression (e.g., Eq. 6). As
new S tuples arrive, some old tuples in the update window
are replaced by the new tuples. The view, however, can be
maintained incrementally by updating intermediate matrix
operation results for β, e.g., ÃTÃ and ÃTB̃ in Eq. 9. In our

work, we directly apply the incremental technique proposed
in [16]. Then, when an R tuple arrives, the view is refreshed
by completing the matrix operations for β and those for ΣE.

A fundamental limitation of global regression is that the
order-1 linear assumption may not hold over the entire view.
For our example query Q1, the temperature may not be a
linear function of the location but, for instance, a quadratic
function instead. Hence, global regression may result in
severe error when its assumption fails to match the reality.

Local regression: Our second technique is motivated by re-
cent statistical theory that a smooth function can be well
approximated by a low degree polynomial, often a linear
function, in the neighborhood of any point. Hence, we de-
sign a local regression technique as follows: Given each R
tuple that follows a GMM, use the mean and the variance
of the GMM to dynamically define a local regression region
(LR region). For example, the LR region for an R tuple with
the distribution N(µ, σ) can be [µ + mσ, µ−mσ] with m ≥
2. Then, retrieve the subset of S tuples that reside in the LR
region and apply regression to these tuples.

A key advantage of this technique is that it does not re-
quire the assumption of global linearity, hence allowing more
accurate view construction. However, when given a very
small set of tuples in the LR region, it may not have enough
data points to achieve the accuracy (which is a data problem,
not a model problem). When this problem occurs, we can
collect more data points by adjusting the LR region appropri-
ately, and if needed, also enlarging the update window, that
is, secretly keeping more old tuples for the purpose of regres-
sion. Computation-wise, regression is applied to a small set
of tuples, hence with a low cost. In addition, we can cache
the regression results of two LR regions that significantly
overlap, similar in spirit to the materialized views.

5.2 Joins using the Cross-Product
Depending on the application, joins of continuous random

attributes can also be modeled using the cross-product se-
mantics. Query Q2 in Section 2.1 is such an example: it
compares every pair of objects for their proximity in loca-
tion. Our second join technique supports such joins with
both result distributions and an efficient method to prune
intermediate results of the cross-product.

Before defining join result distributions, we note that if a
join between two continuous random attributes uses equality
predicates, the probability of each join result is always 0.
The solution is to transform the equality comparison into
inequality comparison using a small bound δ. Then, we
define the join result distributions as follows:

Definition 4 Given R = {Ap
1 , · · · , Ap

k , R̄}, S = {Ap
1 , · · · , Ap

k ,
S̄}, let Ã = (Ap

1 , · · · , Ap
k ). The join R 1θ S, where θ= |R.Ap

i −
S.Ap

i | < δ (i=1, · · · , k), produces tuples that each has a joint
probability f (R.Ã, S.Ã) = fR.Ã(R.Ã) fS.Ã(S.Ã), and existence
probability

∫
|R.Ap

i −S.Ap
i |<δ,i=1,··· ,k f (R.Ã, S.Ã) dR.Ã dS.Ã.

A similar definition can be given to a join between contin-
uous random attributes and deterministic attributes based
on the cross-product semantics.

While our definition for joins based on the cross-product
is the same as in [28], our work further considers its efficient
implementation. A cross-product can produce a large num-
ber of tuples, so we must filter most of them early using the



join condition, more precisely, to filter those tuples with low
existence probability. However, the evaluation of the join
condition requires an integration, which can be an expensive
operation. In our work, we devise linear transformation for
GMMs to reduce the dimensionality of integration and fur-
ther perform the integration using fast numerical methods.

Case 1: Ã has a single attribute Ap
1 ; R.Ap

1 is probabilistic
following a GMM and S.Ap

1 is deterministic which then is
reduced as S.A1. Then the existence probability of the join,∫
|R.Ap

1−S.A1|<δ fR.Ap
1
(R.Ap

1 )dR.Ap
1 , can be evaluated with 1-d

Gaussian probabilities.

Case 2: Ã has a single attribute Ap
1 ; Both R.Ap

1 and S.Ap
1

are probabilistic following GMMs. For the sake of sim-
plicity, suppose the distribution of each attribute value is
a mixture of two Gaussian, that is, R.Ap

1 ∼ a1N(µR,1, σR,1) +
a2N(µR,2, σR,2) and S.Ap

1 ∼ b1N(µS,1, σS,1) + b2N(µS,2, σS,2).
Then the cross-product follows ∑i,j=1,2 aibj N(µR,i, σR,i)N(µS,j, σS,j).
Therefore the existence probability of the join,∫

|R.Ap
1−S.Ap

1 |<δ
fR.Ap

1
(R.Ap

1 ) fS.Ap
1
(S.Ap

1 )dR.Ap
1 dS.Ap

1 ,

can be easily carried out, as the integrand is the summation
of the product of two 1-d Gaussian which actually is a 2-d
Gaussian and then a linear transformation can be applied
to reduce the dimensionality of integration. Therefore, the
integral is transformed to a univariate one on the variable
R.Ap

1 − S.Ap
1 , which can be calculated with 1-d Gaussian

probabilities.

Case 3: Ã has multiple attributes; Both ÃR and ÃS are prob-
abilistic following GMMs. For the sake of simplicity, suppose
Ã = (Ap

1 , Ap
2 ). According to the linear transformation prop-

erties of Gaussian distributions, we have R.Ap
1 − S.Ap

1 and
R.Ap

2 − S.Ap
2 follow a bivariate Gaussian distribution in the

integral
∫
|R.Ap

i −S.Ap
i |<δ,i=1,··· ,k f (R.Ã, S.Ã) dR.Ã dS.Ã. There-

fore, the 4-d integral is reduced to a 2-d one. Numerical
integration methods can then be applied to calculate the
integral with the reduced dimensionality (See for example,
[32]).

6. PERFORMANCE EVALUATION
In this section, we evaluate our techniques for joins and

aggregates, and compare them with sampling-based methods
([14] for aggregates and a home-grown method for joins) to
demonstrate our performance benefits. We further perform
a case study in the real-world application of tornado detec-
tion, and show that our techniques can improve the existing
system with better detection results and faster computation.

6.1 Evaluation of Aggregation
We implemented a simulator to generate a tuple stream

with one continuous random attribute. Each tuple is modeled
by a mixture of two Gaussian components. The mean of the
first component is uniformly sampled from [0, 5] and the
mean of the second is from [5, 50]. This way, we can model a
variety of real-world distributions, including bi-modal when
the two means are far apart, asymmetric when they are
somewhat close, and almost Gaussian when they are very
close. The standard deviation of each Gaussian component is

within [0.5, 1] by default. The coefficient of each component
is uniform from [0, 1].

We evaluated avg over the above tuple stream using a tum-
bling window. The window size is measured by the number
of tuples N. We measured both accuracy and throughput.
The accuracy metric is the Variation Distance (VD) defined
in Section 4.3. The default accuracy requirement is VD ≤ 0.1
for each algorithm. All experiments were run on a 3Ghz
dual-core xeon processor with 1GB memory for use in Java.

Expt 1: Compare our algorithms. We first compare the
three algorithms that we proposed: exact derivation, approx-
imation using sort-group, and approximation using charac-
teristic function (CF) fitting. We varied the number of tuples
in each window, N, since it directly affects the result distri-
bution and the computation needed. The throughput and
accuracy results are shown in the Fig. 5(a) and Fig. 5(b).

We observe that the throughout using exact derivation is
high due to being a closed-form solution. However, we can
only apply it to the small values of N because its formulas
grow exponentially in N, hence becoming less and less use-
ful. Sort-group is an approximation of the exact derivation,
yielding simplified formulas. It achieves high throughput
when N is small, e.g., up to 10, and deteriorates quickly after
that. This is again because the size of the formula grows
exponentially in N. In contrast, CF-fitting works well for
large numbers of N, e.g., after 10. This is due to the smoother
result distributions in this range, hence easier to fit, and the
one-time fitting cost being amortized over more tuples.

For accuracy, most algorithms satisfy the requirement of
VD ≤ 0.1. This is because both approximation algorithms
compare with the true distributions through either direct
VD comparison or function fitting with a small residual. We
observe that the hardest range for approximation is 5 to 10
tuples. Result distributions in this range are complex and
require a mixture of many components to fit. An example of
the true and fitted distributions for 5 tuples is shown in Fig.
5(c). From 15 tuples onwards, the result distribution becomes
smoother with fewer peaks. The only case of poor accuracy is
CF fitting for less than 10 tuples. This is because we limited
the maximum number of components it can search for to
gain some performance.

We further did a cost breakdown for the two approxima-
tion algorithms. Table 1 presents different cost components
for both 5 and 15 tuples. For sort-group, there are four cost
factors: (1) enumerate all mixture components to generate
the formula of the result distribution, (2) sort the components
by the mean, (3) group them into K components, and (4) eval-
uate points from the true distribution for VD comparison. As
N is increased from 5 to 15, all cost factors except grouping
increase fast. This is because the number of mixture compo-
nents to enumerate in the result formula is exponential in N,
hence the dramatically increased costs.

The CF fitting algorithm has three cost factors: (1) point
evaluation of the characteristic function of the true distribu-
tion, (2) get the initial guesses, and (3) fit by least squares. As
expected, fitting is the dominating cost. More interestingly,
this cost reduces significantly when the number of tuples
is increased from 5 to 15. This is because more iterations
of fitting are needed for 5 tuples due to the complex result
distribution. Further, the one-time fitting cost occurs less
frequently when we apply it once every 15 tuples rather than
5. This cost breakdown confirms that sort-group works well
for a small number of tuples while CF fitting is the opposite.
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Figure 5: Experimental results for aggregation using our algorithms and histogram-based sampling

Table 1: Cost components of algorithms (msec/100tuples)
Sort-group CF fitting

Num of tuples 5 15 Num of tuples 5 15
Gen. Formula 0.93 258.34 Eval. Points 2.82 2.03
Sort 0.69 52.23 Get Guesses 1.66 0.53
Group 2.84 2.11 Fit 615.03 34.39
Eval. Points 15.35 1042.83

The results of this experiment allow us to obtain a hybrid
solution to combine the advantages of the three algorithms:
When the number of tuples is smaller than 5, we use exact
derivation since it is fast and its formula is not too complex.
For the range of [5, 10], we use the sort-group algorithm.
After that, we switch to CF fitting. This way, we gain the
best throughput and accuracy among the three algorithms.
In addition, when the number of tuples is large enough (e.g.
≥ 20), the result distributions are a smooth Gaussian most of
the time. These distributions can be computed directly using
the Central Limit Theorem (CLT). Hence, we can use CLT as
an optimization and apply it when the number of tuples is
greater than 30 (e.g., in Expt 3 below).

Expt 2: Compare to histogram-based sampling. Next,
we compare our hybrid solution with the histogram based
sampling algorithm [14]. Given N tuples, this algorithm (1)
generates k ∗ µ samples for each tuple, (2) performs aggre-
gation over them to get k ∗ µ result samples, and (3) sorts
the result samples and builds a histogram with k buckets
and µ samples for each bucket. k and µ are the parameters
of this algorithm. Since we found the accuracy of this algo-
rithm to be more sensitive to k, we used three settings in this
experiment: k= 30, 100, or 150 while µ is fixed to 50.

Fig. 5(d) and Fig. 5(e) show the results. As observed, our
hybrid algorithm outperforms the three settings of the his-
togram algorithm in both throughput and accuracy. In terms
of accuracy, only the histogram with k = 150 ensures VD ≤
0.1. The other two violate this in the “hard” range between 5
and 15 tuples (hence these throughput numbers are removed
from Fig. 5(d)). These results show the advantages of our

algorithm over the sampling based approach. Our algorithm
can adapt to the accuracy requirement while maximizing the
throughput. Using sampling, one has to manually choose
the parameters to meet the requirement, and the optimal
parameter setting varies with workloads.

Expt 3: Vary the VD requirement. We further study how
our algorithm behaves given different accuracy requirements.
We varied VD from 0.05 to 0.2 and randomly chose N from
[2,50] for each stream segment. We also included the his-
togram algorithm for comparison. Since its accuracy varies
with the choice of k, we varied k in a wide range of [10, 150].
Fig. 5(f) shows the throughput results. For the histogram
algorithm, throughput is reported only for the points where
VD requirement is satisfied. As observed, our algorithm
ourperforms the histogram algorithm for all values of VD
used. It also confirms that our algorithm adapts well to the
accuracy requirement. That is, under a relaxed condition, we
can achieve better throughput.

6.2 Evaluation of Joins
In this section, we evaluate joins between R={ap}, where

ap is a continuous random attribute, and S={a, b}, where a
is a deterministic attribute. We call R and S the probe and the
update streams below. We design a sampling-based method
as a baseline to compare with our regression-based methods.

Histogram-based sampling method. For each R tuple,
this method takes samples from the distribution of R.ap. It
then extends each sample for a with a sample for b to con-
struct the result distribution f (ap, bp). Given the a sample,
this method searches all S tuples in the update window for
the closest two points based on the a value. It then applies
linear interpolation to these points, with some added ran-
domness, to obtain a b sample (such randomness is needed
for the following step). Then it employs an equi-depth multi-
dimensional histogram to approximately represent the joint
distribution f (ap, bp). Two parameters of the histogram af-
fect performance: the number of buckets for each dimension,
k, and the number of samples per bucket, µ.

In this study, the R stream is an object location stream
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Figure 6: Experimental results of joins using sampling, global regression,
and local regression.

(a) Generated with CASA system.

(b) Generated with distribution-based processing.

Figure 7: Velocity maps of a true
tornadic region.

generated from an RFID simulator [30]. Each location tuple
has a Gaussian distribution. The S stream is produced by
our temperature simulator that generates tuples, each as a
(location,temperature) pair, by adding random noise to the
underlying function between temperature and location. The
underlying function can be either linear or quadratic in our
experiments. The R and S tuples arrive at the same rate. We
compute throughput based on the number of R tuples that
can be pipelined through the left outer join.

Expt 4: Global regression versus sampling. We first use
the linear underlying function to generate the temperature
stream. We compare the histogram-based sampling with
global regression. We use H(k, µ) to represent histograms
with different settings. As seen in Fig. 6(a), the sampling-
based method is highly inaccurate (VD > 0.7) while global
regression is much more accurate. The VD of the sam-
pling method decreases as µ increases, e.g., from H(10,10)
to H(10,50), because it uses a larger number of samples to
construct the histogram. However, the VD worsens when
k increases, e.g., from H(10,50) to H(30,50). This is because
when k is large, the area of each bucket is very small, and
hence the samples in each bucket mostly fit the noise added
during interpolation. While it is possible to keep increasing
µ, we note that sampling is already very slow: the through-
put of H(10,10) is 34.8 and that of H(30,50) is down to 0.5.
Our global regression approach gains a throughput of 1536.1,
outperforming the sampling-based method by 2-3 orders of
magnitude.

Expt 5: Global versus local regression. We next use the
quadratic underlying function to generate the temperature
stream and compare global versus local regression. Since
local regression is sensitive to the number of data points
available, which according to Section 5.1, is affected by both

local regression (LR) region and update window size, we first
set the update window size of local regression as 10, and vary
its the LR region (which has no effect on global regression).
As Fig. 6(b) shows, global regression yields poor accuracy as
expected. The VD of local regression first decreases because
it gets more points to do regression, hence more accurate.
Then the VD increases because the region is too large to meet
the assumption of local linearity; that is, the local regression
is becoming more like the global regression.

We then fix the LR region as 6 and use the method of
enlarging the update window, from 1 to 20, to feed more data
points to local regression (while global regression still uses
the window of size 1). This method is based on our belief that
using a few old tuples will not add stale information because
the underlying function changes slowly. Fig. 6(c) and Fig. 6(d)
show that local regression outperforms global regression in
both accuracy and speed. The increase of the update window
improves the VD of local regression significantly due to the
use of more points. Its throughput decreases for the same
reason. However, even when local regression uses a window
20 times larger, its throughput is still much better than global
regression due to the benefit of local computation.

6.3 Case Study: Tornado Detection
In this study, we evaluate the effectiveness of capturing

uncertainty using distributions in the CASA system [3]. We
focus on the tornado detection algorithm, and modify the
velocity analysis module (see Figure 1) to generate velocity
distributions using Gaussian Mixture Models. We keep the
reflectivity analysis the same as in the current system.

We make a number of changes to the velocity analysis com-
ponent of CASA. In the FFT module, a discrete distribution
of velocity is obtained from Fourier Transform. Instead of



Table 2: Comparison between distribution-based data
analysis and current CASA system (per-scan average).

Analysis Time Detection Time False Positives
CASA 3.6 s 19.25 s 20.5
Distribution 7.17 s 5.75 s 1.75

taking a weighted average from the FFT distribution as in
the current system, we apply three data analysis steps to
generate a velocity distribution. (1) Strength Filter: If the
strength of the FFT distribution is below a threshold, zero
is output as the velocity value. The filter reduces unnec-
essary computation for distributions, as we can rarely get
correct velocity from weak echoes. (2) Gaussian Estimation:
The sample mean and sample variance of the normalized
FFT distribution are used to estimate a Gaussian distribution
N(µ, σ). If µ is close to the velocity with the highest strength
in the FFT distribution and σ is small enough, the estimated
distribution is considered to be accurate. Otherwise, do de-
tailed analysis as follows. (3) GMM Fitting: Fit a mixture
of two Gaussians from the FFT distribution. This model
can capture useful velocity information using one Gaussian
with a narrow peak, and noise using another Gaussian with
a large variance; the latter is simply dropped. If a stream
segment is on the boundary of two velocity regions, a GMM
can also capture a bi-modal distribution of velocity.

For the average operation over the distributions of two
stream segments, we apply the aggregation technique in
Section 4.2 to capture the result distribution. Since the current
tornado detection algorithm does not accept distributions as
input, we feed the mean of distributions to the algorithm.

After applying all three steps of data analysis, we obtain
a much smoother velocity map (Figure 7(b)) compared with
what the current CASA system generates (Figure 7(a)). The
Strength Filter removes many colorful dots on the map, i.e.,
noise, and the GMM Fitting smoothes velocity over the map
by removing more noise. A detailed example of the noise
removal effect of GMM fitting is shown in Figure 2(b) from
Section 3. The velocity calculated in CASA is 5.6m/s. After
dropping the Gaussian component of noise, the mean of the
remaining Gaussian component is 6.4m/s, which is closer
to the true value visually observed. This smoothing effect is
favored as the true velocity changes gradually in space and
the tornado detection algorithm expects smooth input data.

We further measure the speed of data analysis and the
speed and quality of tornado detection. The evaluation is
performed over a trace of 4 sector scans of a tornadic region.
Each scan contains data of 7.25 seconds. As shown in Table 2,
the distribution-based method reduces the detection time
from 19.25s to 5.75s, and results in much fewer false positives.
Although our method costs about twice data analysis time
as the CASA system, it is still faster than the radar sensing
speed. As such, our distribution-based method improves
the detection algorithm to be stream-speed, and significantly
improves the detection quality. We believe that the design
of a distribution-based detection algorithm would give even
better quality of detection results by fully utilizing our data
analysis output.

7. EXTENSION TO CLARO
We now outline an extension of our system to support

selections, projections, joins, and aggregates. First, we extend
our data model by allowing each Gaussian Mixture Model to

carry a selection condition. This condition bounds the GMM
distribution to a finite region. Then, the tuple existence
probability is the integration of the GMM over the selection
region. The support of individual operators is sketched
below:

Selections. Simply attach a selection condition to a GMM,
incurring no computation. Equality predicates are rewritten
to inequality predicates using a small bound δ.

Projections. Marginalize the GMM for the tuple distribu-
tion, eliminating the attributes not in the projection list. This
operation is very efficient for GMMs. In the presence of a
selection condition, directly marginalizing the GMM is equiv-
alent to pushing the projection before the selection. Duplicate
elimination is not needed for continuous attributes.

Joins. Since joins based on the cross-product semantics
commute with selections, if we pull a selection over a join,
the join can be evaluated the same as in §5.2. If probabilistic
views are used instead, selections applied to the left join
input can still commute with the left outer join. Selections
applied to the right input (which is used to build the view)
can filter tuples directly if they are applied to deterministic
attributes, but require an extension of our current techniques
if applied to probabilistic attributes involved in the view.

Aggregates: Since selections do not commute with aggre-
gates, selection conditions attached to GMMs must be dealt
with in aggregation. Consider sum(A) where A’s pdf has a se-
lection condition, denoted by fθ . The effect of θ is to truncate
the pdf and only keep the part within the region defined by
θ. One method is to approximate fθ using f itself if the edges
of truncation have small probabilities. Another method is to
approximate the truncated pdf using a histogram, compute
using samples, and fit the result samples back to a GMM.
Further consider avg(A). The selection applied before avg

makes the existence probability of each tuple less than 1.
Now count does not produce a deterministic value. Its dis-
tribution is further correlated to that of sum due to using the
same set of tuples. To handle this, we will consider advanced
techniques such as Monte Carlo simulation and the Delta
method [12] when the expected number of count is large .

Finally, our discussion above raises interesting questions
regarding query optimization under the Claro data model.
One issue is where to place selections in a query plan. Eval-
uation of selections computes tuple existence probabilities,
which incurs cost, but those probabilities can be used to fil-
ter tuples. Further, in scenarios when GMMs with selection
regions cause difficulty in computation, we can temporarily
switch to a histogram-based representation and use sampling
in computation. This leads to a hybrid system using both
representations. How to apply them to different parts of a
query plan is another interesting issue to address. We will
address these issues in our immediate future work.

8. RELATED WORK
Previous sections have discussed closely related work. Be-

low, we survey several broader areas.
Probabilistic stream processing has gained research atten-

tion very recently. Existing work [5, 17, 20] adopts the finite
and discrete tuple model used in probabilistic databases. As
stated above, many of the techniques for discrete variables
cannot be applied for problems involving continuous vari-
ables. Furthermore, the existing work such as [5] produces
mean, variance, and higher moments to describe the result
distributions, which cannot be easily used to compute the



distribution of subsequent operators.
Models and views over uncertain data. Recent work on

sensor data management [8, 7] builds statistical models to
capture correlations among attributes and their changes over
time. Given a query, such models enable reduced costs of
data acquisition and communication. FunctionDB [29] trans-
forms discrete sensor observations into continuous functions
and supports querying over these functions. More relevant
to us is supporting views over uncertain data [9, 19] where
views are constructed using regression or probabilistic in-
ference. However, the throughput of stream queries can be
limited, e.g., 50 tuples/sec, due to high inference cost.

9. CONCLUSIONS
In this paper, we presented the Claro system for uncertain

data stream processing. Claro employs a unique data model
and advanced techniques for evaluating aggregates and joins
over data streams. Our results show that Claro significantly
outperforms sampling-based methods in accuracy and speed.
Initial results of a case study further show that Claro can
improve a tornado detection system with better quality of
results and lower execution time.

We plan to extend our research in several directions. An
immediate task is to extend Claro to a broader set of rela-
tional operators and address query optimization. We will
also address inter-tuple correlations and explore advanced
techniques such as lineage in stream processing. A third di-
rection is to explore the combination of histograms and Gaus-
sian Mixture Models to support both discrete and continuous
random variables and to improve overall performance.
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Appendix
Proof of Theorem 4.1.

We first consider the sum of two variables, S = X1 + X2, X1 and X2 be mixtures of m1 and m2 components. That is:

f1(x) = p11N(µ11, σ11) + ... + p1m1 N(µ1m1 , σ1m1 )
f2(x) = p21N(µ21, σ21) + ... + p2m2 N(µ2m2 , σ2m2 )

The pdf of the sum S can be written as:

fS(s) =
∫

x1

∫
x2 :(x1+x2=s)

f1(x1) f2(x2)dx2dx1

=
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f1(x) f2(s− x) = [p11N(µ11, σ11) + ... + p1m1 N(µ1m1 , σ1m1 )]
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Substitute into A, we have:
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The integral is equal to 1 since it is the integral of the pdf of a Gaussian distribution. Hence:

A =
p1i p2j

√
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This is one component of a Gaussian mixture with mean (µ1i + µ2j), variance (σ2
1i + σ2

2j) and coefficient p1i p2j.
Therefore, the theorem is proved for the case of N = 2.
The generalization to an arbitrary N is straightforward since we can do the sum for two distributions at a time by
getting the result of previous sum and summing it with the next distribution.


