
Constraint Relaxation for Learning the Structure of
Bayesian Networks

Andrew Fast and David Jensen
Department of Computer Science, University of Massachusetts Amherst

140 Governors Drive
Amherst, MA 010002

Abstract

This paper introduces constraint relaxation,
a new strategy for learning the structure of
Bayesian networks. Constraint relaxation
identifies and “relaxes” possibly inaccurate
independence constraints on the structure
of the model. We describe a heuristic al-
gorithm for constraint relaxation that com-
bines greedy search in the space of undirected
skeletons with edge orientation based on the
constraints. This approach produces signif-
icant improvements in the structural accu-
racy of the learned models compared to four
well-known structure learning algorithms in
an empirical evaluation using data sampled
from both real-world and randomly gener-
ated networks.

1 Introduction

Constraint-based algorithms for learning the structure
of Bayesian networks (BNs) are designed to recover the
underlying structure of the distribution that generated
the training data. These algorithms utilize a series of
conditional independence tests to identify constraints
on the possible model structure. This is in contrast
to search-and-score algorithms that search for model
structures that maximize some scoring metric.

When applied to samples of reasonable size, the con-
ditional independence tests used to identify the con-
straints are prone to both false positive (type I) and
false negative (type II) errors (Spirtes et al., 2000).
In the context of Bayesian networks, false positive er-
rors indicate an edge in the learned model that does
not appear in the true model, and false negative er-
rors indicate an edge in the true model that does not
appear in learned model. These errors result in inac-
curate constraints and corresponding reductions in the
accuracy of the learned structure.

In this paper, we introduce constraint relaxation, a
new strategy for improving the structural accuracy
of Bayesian network structure learning. The goal of
constraint relaxation is to identify potentially inac-
curate constraints and “relax” or ignore those con-
straints when orienting edges. Constraint relaxation
searches the space of all possible directed acyclic
graphs (DAGs), unlike previous constraint-based and
hybrid approaches which only search a subset of the
space. By using the complete search space, this ap-
proach can address both false negative and false pos-
itive errors. This contrasts with previous attempts at
improving structural accuracy, which have focused pri-
marily on reducing false positive errors (Li and Wang,
2009; Tsamardinos and Brown, 2008). In addition,
constraint relaxation is a general strategy that can be
easily combined with these existing approaches.

In Section 3, we describe the Relax algorithm for con-
straint relaxation. This algorithm combines a greedy
search in the space of skeletons with a novel edge
orientation algorithm based on the constraints. De-
spite considering a larger search space, empirical re-
sults on data sampled from both randomly-generated
BNs and BNs drawn from real decision support prob-
lems demonstrate that constraint relaxation produces
significant improvements in structural accuracy over
existing structure learning algorithms.

2 Background and Related Work

Structure learning algorithms identify the presence
and orientation of edges in a Bayesian network from
data. A Bayesian network is a directed, acyclic, graph-
ical model representing a joint probability distribution
over a set of variables (Pearl, 1988). The structure of
the graph encodes probabilistic independencies among
the variables. In this work, we focus on constraint-
based algorithms for structure learning. These algo-
rithms typically operate in two phases: skeleton iden-
tification and edge orientation.

2.1 Skeleton Identification

Constraint-based algorithms utilize a series of condi-
tional independence tests to learn a set of constraints
on the final model structure. These constraints are
typically represented in two parts. The first part of
the constraints is an undirected skeleton indicating
the presence and absence of edges in the model but
not their final orientation. The process of learning
constraints is called skeleton identification. The con-
straints also contain separating sets, commonly called
sepsets. For each pair of variables that were found
to be independent, the sepset for that pair contains
the (possibly empty) set of conditioning variables that
were sufficient for proving independence.

Skeleton identification algorithms can differ in both
the algorithm used to order the statistical tests and
the type of statistical test used. We use the first and
most widely used ordering algorithm drawn from steps
A and B of the PC algorithm (Spirtes et al., 2000).
This is called Fast Adjacency Search (FAS) in the
TETRAD IV1 package. Other ordering algorithms in-
clude Max-Min Parents Children (Tsamardinos et al.,
2006) and Three-Phase Dependency Analysis (Cheng
et al., 2002).

For discrete data, the FAS algorithm uses either the G2

test or the χ2 test to determine independence. These
tests are known to have low statistical power when run
with small samples and large conditioning sets, result-
ing in errors in the constraints (Spirtes et al., 2000).
Since the performance of constraint-based algorithms
depends on the quality of the constraints, many at-
tempts have been made to understand and improve the
accuracy of the statistical tests used to determine in-
dependence. Alternative approaches include Bayesian
tests of independence (Dash and Druzdzel, 2003), tests
of mutual information (Cheng et al., 2002), and using
approaches based on False Discovery Rate (FDR) (Li
and Wang, 2009; Tsamardinos and Brown, 2008).

2.2 Edge Orientation

Once constraints have been learned, constraint-based
algorithms utilize the skeleton and sepsets to orient
the edges appearing in the skeleton. When causal suf-
ficiency can be assumed, an algorithm consisting of
Steps C and D in the PC algorithm, which we call
PC-Edge, has been proven sound and complete in the
sample limit (Spirtes et al., 2000). A corresponding
algorithm, called FCI, is sound and complete without
the assumption of causal sufficiency and in the pres-
ence of selection bias, though we do not address that
situation in this work (Spirtes et al., 1999, 2000).

1http://www.phil.cmu.edu/projects/tetrad/

PC-Edge uses the sepsets to orient colliders in the
skeleton. A collider is a structure X → Z ← Y
such that X ⊥⊥ Y and Z $∈ Sepset(X, Y). These col-
lider constraints do not consider the full sepset. This
procedure, however, is not stable as small changes in
the constraints can lead to large changes in the final
structure (Spirtes et al., 2000). Badea (2004) and
Steck and Tresp (1996) both describe post hoc ap-
proaches for revising the learned structure based on
the (in)consistency of the constraints.

There are two alternatives to PC-Edge that use a
greedy search to produce a final edge orientation. Hy-
brid algorithms use the skeleton to constrain a greedy
search for the final structure (Tsamardinos et al.,
2006). Only edges appearing in the skeleton are con-
sidered for inclusion in the final model. Abellan et al.
(2006) use unconstrained greedy search to refine the
model produced by the PC algorithm. This refinement
does not consider either the skeleton or the sepsets in
determining the final orientation.

2.3 Evaluation of Structural Accuracy

For evaluation purposes, structural accuracy of learned
networks can be measured with a variety of different
metrics that compare the pattern (essential graph) of
both the learned and true models. This requires the
structure of the true model to be known a priori. The
first metric is the accuracy (percent of edges correct) of
edges in the model (Badea, 2004; Bromberg and Mar-
garitis, 2009; Spirtes et al., 1999). A closely related
metric is the precision and recall of causal structures
(Mani and Cooper, 2006). We use precision and re-
call of compelled edges, where compelled precision is
defined as the percentage of compelled edges that are
correct in the learned model. A compelled edge is an
edge that has the same orientation in every member
of the equivalence class of the learned model (Chick-
ering, 2002). For simplicity, we will report a single
number, the compelled F-measure, which is the har-
monic mean of compelled precision and compelled re-
call (Croft et al., 2009) and is a general purpose metric
of the causal structure.

An alternative metric is structural Hamming distance
(SHD) based on the raw counts of errors in the learned
model (Tsamardinos et al., 2006). The SHD of a model
is a type of graph edit distance and is equal to the
number of edge deviations between the model and the
true model. It is often expedient to consider decom-
positions of the SHD, particularly into skeleton errors
(false positive and false negative errors) and orienta-
tion errors (errors of edge direction). We will also use
the number of true positive edges (number of correct
edges) for evaluation.

3 Constraint Relaxation

Constraint relaxation is a new strategy for improving
the accuracy of constraint-based structure learning. In
the following section, we provide additional motivation
for constraint relaxation and describe the first algo-
rithm for performing constraint relaxation.

3.1 Motivation

Despite recent advances in the accuracy of the statis-
tical tests used in skeleton identification, learned con-
straints are still likely to contain errors. In particular
approaches bounding the false discovery rate of the
skeleton identification procedure provide no bound on
the type II (false negative) error rate (Tsamardinos
and Brown, 2008). Therefore, alternative approaches,
such as constraint relaxation, are still necessary to
identify and address possible false positive and false
negative errors appearing in the model.

Orienting edges based on constraints is sound in the
sample limit and permits model structures that con-
tain a larger number of parameters than would be
learned using a penalized likelihood score such as
BDeu. Therefore, constraint relaxation is designed to
combine the power of constraint-based edge orienta-
tion with the relaxation of both independence and de-
pendence constraints.

Our conception of constraint relaxation is inspired by
but distinct from constraint relaxation in the partial
constraint satisfaction literature (Freuder and Wal-
lace, 1992). In this scenario we are not relaxing con-
straints to achieve a consistent solution but remov-
ing constraints from the knowledge base to improve
performance. Additionally, if we believe that some
of the constraints are incorrect, then constraint relax-
ation would be valuable even if there exists a structure
which is consistent with the current constraints.

3.2 Greedy Relaxation Algorithm

Here we present a simple greedy algorithm for con-
straint relaxation, called Relax (Algorithm 1). We
show in Section 5 that this approach for relaxation
leads to significant improvements in the structural ac-
curacy of learned models. To learn the constraints,
we use the FAS algorithm, but any skeleton algorithm
that learns both an undirected skeleton and sepsets
could be used instead. After the constraints have been
learned, we use a local greedy search over possible re-
laxations of the constraints. Each time through the
while loop, the algorithm chooses the single constraint
which, if relaxed, leads to the largest improvement in
the score. If the best relaxation produces a model with
a higher score than the current best model, then the

relaxation is applied to the constraints and the algo-
rithm continues searching for additional relaxations. If
no relaxation leads to an improvement, the algorithm
halts with the current structure.

Algorithm 1 Constraint Relaxation
procedure Relax(Data)

C = Learn-Constraints(Data)
B = Orient-Edges(C)
S = BDeu(B, Data)
C∗ = C, B∗ = B, S∗ = S
updated = True
while updated=True do

updated = False
for c ∈ C do

// Relax the constraint

C ′ = C/c
B′ =Orient-Edges(C ′)
S′ =BDeu(B′, Data)
if S′ > S then

B = B′, S = S′, C = C ′

end if
end for
if S > S∗ then

B∗ = B, S∗ = S, C∗ = C
updated = True

end if
end while
return B∗

end procedure

Since constraints directly correspond to the absence
or presence of an edge, this procedure is a search over
undirected skeletons. To relax a constraint we simply
toggle the corresponding edge in the current network
and update the sepset accordingly. If we toggle a con-
straint from dependence to independence, the sepset
is set to the empty set; if we toggle from independence
to dependence, the sepset can be ignored since the
edge now exists. We then orient the edges based on
the current formulation of constraints. Thus, we use
an approach similar to the approach of Steck (2000);
however, we choose an orientation at each step to max-
imize the number of constraints satisfied and not a
likelihood score. As detailed in the following section,
this approach cannot be used with existing edge ori-
entation algorithms.

4 Edge Orientation as Constraint
Optimization

Algorithm 1 requires that the Orient-Edges proce-
dure produce a model that can be scored using BDeu

or other penalized likelihood measure. Unfortunately,
it is not possible to use PC-Edge as the edge orienta-
tion algorithm. As currently defined, PC-Edge often
results in networks with bidirected edges. There is
currently no known parameterization of these models
for discrete data (Spirtes et al., 2000), precluding their
use with our constraint relaxation framework.

Therefore, to make a greedy relaxation algorithm pos-
sible, we developed a novel edge orientation algorithm,
called Edge-Opt, as a replacement for PC-Edge
(See Algorithm 2). The Edge-Opt algorithm uses a
new formulation of constraints, based on a dependency
model, that is sound in the sample limit yet permits
search over possible structures. Like Bromberg and
Margaritis (2009), our formulation of constraints uses
the full separating set. In Section 4.3, we demonstrate
that the Edge-Opt performs no worse than the PC-
Edge algorithm in structural accuracy.

4.1 Constraints as a Dependency Model

Skeleton identification can be viewed as a process of
recovering the dependency model M corresponding to
the empirical distribution given by the training data.
A dependency model (Pearl, 1988) is a set of assertions
of the form (X ⊥⊥ Y |Z) indicating that “X is indepen-
dent of Y given Z.” A DAG D is a Bayesian network
of M (Pearl, 1988) if and only if every independence
assertion in M corresponds to a valid d-separation re-
lationship in D; that is, D is a minimal I-map of M .
Therefore, if we let our constraints correspond exactly
to the independence assertions in the learned depen-
dency model M , then structure learning can be viewed
as a search for a DAG D which satisfies all of the con-
straints. Note that in this formulation, dependence
constraints are implied by the absence of an indepen-
dence.

If we make the assumptions of Spirtes et al. (2000)—
no latent variables, the distribution represented by the
training data is faithful to a DAG, and the statistical
decisions made from the data are correct (e.g., made
in the sample limit)—then it follows directly from the
definitions of a dependency model and a Bayesian net-
work that our constraint formulation is sound. A DAG
which satisfies all of the constraints will be equivalent
to the structure of the generating distribution.

In practice, however, the set of learned independence
constraints are rarely consistent and cannot be repre-
sented by a DAG. Given this situation, it is natural to
view edge orientation, and structure learning in gen-
eral, as a constraint optimization problem where the
goal is to identify a DAG which maximizes the number
of satisfied independence constraints.

4.2 Edge Orientation Algorithm

Given an undirected skeleton S, indicating the pres-
ence of edges in the model, we develop an edge ori-
entation algorithm based on constraint optimization,
called Edge-Opt, with the goal of satisfying as many
learned independence constraints as possible. We de-
fine an independence constraint (X ⊥⊥ Y |Z) to be sat-
isfied by a DAG D if Z is a minimal d-separator of X
and Y in D. To check whether a constraint holds in
D we use Algorithm 1 of Tian et al. (1998).

Ideally, we would like to use a complete search algo-
rithm to find the best orientation of S. However, this
is not feasible with reasonably sized networks, as the
number of possible orientations grows exponentially
with the number of edges appearing in S. Addition-
ally, since d-separation constraints are defined in terms
of paths, approaches from traditional constraint satis-
faction are not applicable because the resulting con-
straint graph is fully connected.

Instead, we use greedy heuristic search over possible
orientations of the skeleton S, which is fixed during
edge orientation. Each state in the search process is
a fully directed, acyclic graph D. The initial state is
oriented by choosing a random ordering over the vari-
ables and orienting the edges to be consistent with
that ordering. Each successor state is generated by
an application of an original search operator called
Toggle-Collider. For every triple of variables in
D, Toggle-Collider either makes the triple into a
collider (right to left in Figure 1) or breaks the ex-
isting collider in each of three possible ways (left to
right in Figure 1). The successor states consist of the
set of DAGs that differ from D by at least one col-
lider. Note that changing one collider may introduce
one or more additional colliders. Since the successors
states contain the same skeleton but a different set of
colliders from D, the successor states are not in the
same equivalence class as D (though multiple succes-
sors may be in the same equivalence class) (Verma and
Pearl, 1990). The size of the search space depends on
the number of triples in S.

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Figure 1: The Toggle-Collider operator

To choose among possible successors, we count the
number of constraints satisfied by each successor and

choose the successor that satisfies the maximum num-
ber of constraints. In the case of ties, we choose the
successor with the higher BDeu score. This scoring
scheme gives each constraint an implicit unit weight.
We considered alternative weighting schemes such as
using the statistical power of the test but found no im-
provement in the performance of our algorithm. In ad-
dition, we add a hard (infinite weight) acyclicity con-
straint to guarantee that the best successor is always
a DAG. This is necessary for the overall constraint re-
laxation approach (see Section 3).

Algorithm 2 Edge Orientation via Constraint Opti-
mization

procedure Edge-Opt(Constraints C, k,
numRestarts)

// Get skeleton and dependency model.

(S, M) = C
D∗ = nil // Global best structure.

for i = 1 to numRestarts do
D = Random-Orientation(S)
while True do

N = Successors(D)
if |N| == 0 then

break
end if
D′ = Best-Successor(N)
if Score(D′) > Score(D∗) then

D∗ = D′

end if
end while

end for
return D∗

end procedure

procedure Successors(D)
T = Triples(D)
N = {}
for t ∈ T do

n = Toggle-Collider(t,D)
if Score(n) > Score(D) then

N = N ∪ n
end if

end for
return N

end procedure

procedure Best-Successor(N)
N = Shuffle(N)
size = Max(1, k ∗ |N|)
N′ = {N1, . . . , Nsize}
return Best(N′)

end procedure

We incorporate two strategies for avoiding local max-

ima: a k-greedy approach (Nielsen et al., 2003) and
random restarts. The k-greedy strategy consists of
choosing the successor randomly from a fraction of the
set of improved successors as defined by k, k ∈ (0, 1].
If k = 1, all of the successors are considered and pure
greedy search is performed. If k is sufficiently small,
then a successor is chosen at random. We found that
the choice of k didn’t affect the performance and for
all of the experiments described in this paper we used
k = 0.5. We observed that only a small number
of random restarts were sufficient to produce struc-
tural accuracies that were equivalent or better than
PC-Edge. When we ran Edge-Opt alone, we used
numRestarts = 25; for runs as part of constraint re-
laxation, we used numRestarts = 3. Due to space
considerations, we have not provided results of the pa-
rameter search here.

4.3 Evaluating Constraint Optimization

To evaluate our new constraint optimization approach
as a replacement for the PC-Edge algorithm, we com-
pared the structural accuracy of models produced by
both our constraint optimization approach and the
PC-Edge algorithm. Evaluating structural accuracy
requires data generated from a known structure. To
satisfy this requirement, we trained on data with a
range of sample sizes generated from the following
networks drawn from real-world domains: Alarm, In-
surance, Powerplant2, and Water3. We also trained
on data generated from 25 random networks created
using the BNGenerator4 software (Ide and Cozman,
2002). We used the following parameter settings:
nNodes chosen uniformly between 15 and 25, minIn-
Degree=4, maxOutDegree=5, maxVal=5. The sample
sizes we considered for Alarm, Insurance and Water
were n = {250, 500, 1000, 2000, 5000, 7500, 10000} and
for Powerplant and the synthetic networks we consid-
ered n = {500, 5000, 10000}.

We compare the structural accuracy of the PC-Edge
and Edge-Opt algorithms using the True Positive
(TP) metric (Figure 2). The constraint optimization
approach performs significantly better (p = 0.01) than
PC-Edge on three of the five scenarios we consid-
ered (Powerplant, Water, and Synthetic) and is sta-
tistically indistinguishable in the other cases. Perfor-
mance is averaged over five training runs on each real
network, and averaged across all 25 structures for the

2Available from http://bndg.cs.aau.dk/Bayesian_
networks/powerplant.net

3Alarm, Insurance, and Water are available from the
Bayesian Network Repository: http://compbio.cs.huji.
ac.il/Repository/

4http://www.pmr.poli.usp.br/ltd/Software/
BNGenerator/index.html

alarm

sample size

0
1
0

2
0

3
0

4
0

0 5000 10000

T
ru

e
 P

o
s
it
iv

e
s

Edge!Opt
PC!Edge
Ceiling

insurance

sample size

0
1
0

2
0

3
0

4
0

0 5000 10000

powerplant

sample size

0
5

1
5

2
5

3
5

0 5000 10000

water

sample size

0
1
0

3
0

5
0

0 5000 10000

synthetic

sample size

0
5

1
0

1
5

2
0

2
5

0 5000 10000

Figure 2: True Positive rates of PC-Edge and Edge-Opt. Differences are significant at p = 0.01 on Powerplant,
Water, and Synthetic networks. The ceiling is the number of edges correctly included in the skeleton.

synthetic data. To test the significance of the differ-
ences between the learning curves, we used the ran-
domized ANOVA approach developed by Piater et al.
(1998). These results indicate that constraint opti-
mization is a suitable replacement for the PC-Edge
algorithm within our constraint relaxation algorithm
which requires an edge orientation algorithm that is
guaranteed to produce a DAG.

5 Experimental Evaluation

We evaluated the Relax algorithm on data gener-
ated from the 4 real-world Bayesian networks and
25 synthetic networks described in Section 4.3. We
also evaluated widely used algorithms from four dif-
ferent classes of structure learning algorithms: (1) the
constraint-based PC algorithm (Spirtes et al., 2000),
(2) a hybrid algorithm (Hybrid) (Tsamardinos et al.,
2006), (3) unconstrained greedy hill-climbing (GS),
and (4) Greedy Equivalence Search (GES), which
searches in the space of equivalence classes. The Re-
lax, PC, and Hybrid algorithms all use constraints
learned using the FAS algorithm. GES, while not a
constraint-based algorithm, has been proven correct
in the sample limit. We used our own implementation
of each of the algorithms with the exception of GES,
where we used the implementation in the TETRAD
package. Note that the GES algorithm did not termi-
nate successfully on Water. Our software is available
at the first author’s webpage5.

A summary of results on the real data (shown in Ta-
ble 1) shows that Relax outperforms the compari-
son algorithms across all metrics with few exceptions.
We highlight the compelled F-measure score and the
structural Hamming distance in Figure 3 as they are
good summary measures of the causal interpretability
of the model and the overall structural accuracy, re-
spectively. Learning curves for the additional metrics
can be viewed in the supplementary materials. On
the four real-world datasets, Relax produces models

5URL withheld

Table 1: Proportion of runs on Alarm, Insurance, Pow-
erplant, and Water where Relax equals or exceeds the
performance of the other algorithms.

Measure PC Hybrid GS GES Edge-Opt

TP 0.929 0.858 0.642 0.746 0.916
Prec. 0.831 0.575 0.858 0.881 0.716
Recall 0.871 0.825 0.425 0.701 0.920

F 0.849 0.708 0.617 0.701 0.818
SHD 0.551 0.433 0.967 0.985 0.449
Skel. 0.147 0.167 1.000 0.985 0.147

Orient 0.876 0.733 0.883 0.761 0.836
BDeu – 0.867 0.017 0.896 1.000
LogLL – 0.825 0.050 0.896 1.000

with the highest compelled F-measure6 (Figure 3). At
small sample sizes, GS produces models with better
compelled F-measure but also has significantly worse
structural Hamming distance when compared to the
Relax algorithm. To test whether these improve-
ments were significant, we again used the randomized
ANOVA test of Piater et al. (1998). This test is de-
signed to determine the significance of the differences
between two learning curves such as the ones shown in
Figure 3. The p-values of the Relax algorithm com-
pared to the other algorithms are shown in Table 2.
These p-values indicate the strength of the main effect
as measured using 1000 randomization trials.

The results on the randomly generated networks are
markedly different from the results on the real net-
works. The Relax algorithm performs significantly
better than PC-Edge but significantly worse than both
greedy search and Hybrid. An examination of the
parameters of the true networks shows that distribu-
tions of the parameters vary significantly between the
real and synthetic networks (Figure 4). The parame-
ters on the real networks depend on the nature of the

6Due to time constraints, the Powerplant results show
only a limited number of relaxations, however, permitting
more relaxations should only improve the score

alarm

0
.0

0
.4

0
.8

C
o

m
p

e
lle

d
 F
!

s
c
o

re

Relax
PC
Hybrid
GS
GES

insurance

0
.0

0
.4

0
.8

powerplant

0
.0

0
.4

0
.8

water

0
.0

0
.4

0
.8

synthetic

0
.0

0
.4

0
.8

sample size

0
2
0

4
0

6
0

0 5000 10000

S
H

D

sample size

0
2
0

4
0

6
0

8
0

0 5000 10000

sample size

0
4
0

8
0

1
2
0

0 5000 10000

sample size

0
2
0

4
0

6
0

8
0

0 5000 10000

sample size

0
1
0

3
0

5
0

0 5000 10000

Figure 3: Evaluation of structural accuracy using compelled F-measure and structural Hamming distance.

0.0 0.5 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Distribution of Parameter Values

Probability

D
e
n
s
it
y

Real

Synthetic

Figure 4: Distribution of the parameters of the true
networks.

domain, whereas the BNGenerator software generates
the parameters of the synthetic networks uniformly at
random (Ide and Cozman, 2002).

Comparing the results from Relax and Edge-Opt
indicates that using constraint relaxation leads to con-
sistent improvements over edge orientation alone. The
one exception is skeleton errors. Since Relax is per-
mitted to search a larger space of models, it tends
to incur a small number of additional skeleton errors.
These errors, however, are more than compensated
for by the corresponding decrease in orientation errors
that relaxation permits.

Table 2: P-values of the differences in compelled F-
measure and structural Hamming distance (SHD) be-
tween Relax and the baseline algorithms. Italics in-
dicate that Relax has worse performance.

Network PC Hybrid GS GES Edge-Opt

F
-m

ea
su

re Alarm 0.006 0.006 0.027 0.01 0.035
Insurance 0.01 0.135 0.617 0.052 0.007

Powerplant 0.006 0.087 0.01 0.009 0.488
Water 0.00 0.018 0.094 – 0.157

Synthetic 0.00 0.000 0.000 0.00 0.00

S
H

D

Alarm 0.541 0.523 0.007 0.008 0.451
Insurance 0.00 0.733 0.006 0.00 0.53

Powerplant 0.006 0.021 0.00 0.00 0.472
Water 0.00 0.00 0.00 – 0.00

Synthetic 0.00 0.122 0.02 0.00 0.009

6 Discussion and Future Work

Constraint relaxation is a new approach for learning
accurate structure of Bayesian networks. We show
that a simple greedy algorithm for constraint relax-
ation produces models with significantly higher struc-
tural accuracy across a wide range of metrics. In par-
ticular, we highlight the improvements in causal inter-
pretability as measured by the compelled F-measure.
Constraint relaxation performs comparably to existing
algorithms on structural Hamming distance.

The primary challenge of using this approach is the
computational overhead. The Edge-Opt algorithm
requires running the minimal d-separation computa-
tion many times in the evaluation of each successor.
We are exploring opportunities for caching and reusing
d-separator computations to improve performance.

We are exploring applying constraint relaxation in con-

cert with alternative approaches such as identifying
inaccurate constraints using the recently proposed ap-
proach based on the logic of argumentation (Bromberg
and Margaritis, 2009) and techniques for controlling
the false discovery rate during skeleton identification
(Li and Wang, 2009; Tsamardinos and Brown, 2008).

References

J. Abellan, M. Gomez-Olmedo, and S. Moral. Some
variations on the PC algorithm. In Proceedings of
the 3rd European Workshop on Probabilistic Graph-
ical Models, 2006.

L. Badea. Determining the direction of causal influ-
ence in large probabilistic networks: A constraint-
based approach. In Proceedings of the 16th European
Conference on Artificial Intelligence, pages 263–267,
2004.

F. Bromberg and D. Margaritis. Improving the relia-
bility of causal discovery from small data sets using
argumentation. Journal of Machine Learning Re-
search, 10:301–340, February 2009.

J. Cheng, R. Greiner, J. Kelly, D. Bell, and
W. Liu. Learning Bayesian networks from data: An
information-theory based approach. Artificial Intel-
ligence, 137(1-2):43–90, 2002.

D. Chickering. Optimal structure identification with
greedy search. Journal of Machine Learning Re-
search, 3:507–554, November 2002.

W. B. Croft, D. Metzler, and T. Strohman. Search En-
gines: Information Retrieval in Practice. Addison-
Wesley, 2009.

D. Dash and M. Druzdzel. Robust independence test-
ing for constraint-based learning of causal structure.
In Proc. of the 19th Conference on Uncertainty in
Artificial Intelligence, pages 167–174, 2003.

E. Freuder and R. Wallace. Partial constraint satisfac-
tion. Artificial Intelligence, 58(1-3):21–70, 1992.

J. Ide and F. Cozman. Random generation of Bayesian
networks. In Proceedings of the 16th Brazilian Sym-
poisum on Artificial Intelligence, pages 366–375.
Springer, 2002.

J. Li and Z. J. Wang. Controlling the false discovery
rate of the association/causality structure learned
with the pc algorithm. Journal of Machine Learning
Research, 10:475–514, February 2009.

S. Mani and G. F. Cooper. Causal discovery algo-
rithms based on y structures. In NIPS 2006 Work-
shop on Causality and Feature Selection, 2006.

J. Nielsen, T. Kocka, and J. Pena. On local optima
in learning Bayesian networks. In Proceedings of the
Nineteenth Conference on Uncertainty in Artificial
Intelligence, pages 435–442, 2003.

J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems. Morgan Kauffman, 1988.

J. H. Piater, P. R. Cohen, X. Zhang, and
M. Atighetchi. A randomized ANOVA procedure
for comparing performance curves. In Proceedings
of the 15th International Conference on Machine
Learning, pages 430–438, 1998.

P. Spirtes, C. Meek, and T. Richardson. An algorithm
for causal inference in the presence of latent vari-
ables and selection bias. In C. Glymour and G. F.
Cooper, editors, Computation, Causation and Dis-
covery, pages 211–252. MIT Press Cambridge, MA,
USA, 1999.

P. Spirtes, C. Glymour, and R. Scheines. Causation,
Prediction and Search. MIT Press, 2nd edition,
2000.

H. Steck. On the use of skeletons when learning in
Bayesian networks. In Proceedings of the Sixteenth
Conference on Uncertainty in Artificial Intelligence,
pages 558–565, 2000.

H. Steck and V. Tresp. Bayesian belief networks
for data mining. Proceedings of the 2nd Work-
shop on Data Mining und Data Warehousing als
Grundlage Moderner Entscheidungsunterstutzender
Systeme, pages 145–154, 1996.

J. Tian, A. Paz, and J. Pearl. Finding minimal d-
separators. Technical Report R-254, UCLA Com-
puter Science Department, February 1998.

I. Tsamardinos and L. E. Brown. Bounding the false
discovery rate in local Bayesian network learning. In
Proceedings of the 23rd AAAI Conference on Artif-
ical Intelligence, 2008.

I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The
max-min hill-climbing Bayesian network structure
learning algorithm. Machine Learning, 65(1):31–78,
March 2006.

T. Verma and J. Pearl. Equivalence and synthesis of
causal models. In Proceedings of the Sixth Confer-
ence on Uncertainty in Artificial Intelligence, pages
220–227, 1990.

Supplementary Material Included below are the learning curves for all metrics considered in “Constraint
Relaxation for Learning the Structure of Bayesian Networks”. Results are on training data sampled from
four real-world Bayesian networks and 25 randomly generated networks.

alarm

1
5

2
5

3
5

0 5000 10000

T
ru

e
 P

o
s
it
iv

e
s

insurance

1
0

2
0

3
0

0 5000 10000

powerplant

0
5

1
0

2
0

0 5000 10000

water

5
1
0

1
5

2
0

2
5

0 5000 10000

synthetic

1
0

2
0

3
0

4
0

5
0

0 5000 10000

Figure 1: True Positives: Number of edges correct. (higher is better)

alarm

0
.0

0
.4

0
.8

0 5000 10000

C
o

m
p

e
lle

d
 P

re
c
is

io
n

insurance

0
.0

0
.4

0
.8

0 5000 10000

powerplant

0
.0

0
.4

0
.8

0 5000 10000

water

0
.0

0
.4

0
.8

0 5000 10000

synthetic

0
.0

0
.4

0
.8

0 5000 10000

Figure 2: Compelled Precision: Percentage of learned compelled edges also appearing in the true model.
(higher is better)

alarm

0
.0

0
.4

0
.8

0 5000 10000

C
o

m
p

e
lle

d
 R

e
c
a

ll

insurance

0
.0

0
.4

0
.8

0 5000 10000

powerplant

0
.0

0
.4

0
.8

0 5000 10000

water

0
.0

0
.4

0
.8

0 5000 10000

synthetic

0
.0

0
.4

0
.8

0 5000 10000

Figure 3: Compelled Recall: Percentage of true compelled edges also appearing in the learned model. (higher
is better)

1

alarm

1
0

3
0

5
0

0 5000 10000

S
k
e
le
to
n

insurance

1
0

2
0

3
0

4
0

5
0

0 5000 10000

powerplant

2
0

4
0

6
0

8
0

0 5000 10000

water

4
0

6
0

8
0

0 5000 10000

synthetic

1
0

2
0

3
0

4
0

0 5000 10000

Figure 4: Skeleton Errors: Incorrect addition or subtraction of edges in the learned model. (lower is better)

alarm

2
4

6
8

1
2

0 5000 10000

O
ri
e
n
ta
ti
o
n

insurance

1
0

1
4

1
8

0 5000 10000

powerplant

0
5

1
0

2
0

0 5000 10000

water

5
1
0

1
5

2
0

0 5000 10000

synthetic

0
1
0

2
0

3
0

4
0

0 5000 10000

Figure 5: Orientation Errors: Edges where the orientation differs between the learned model and the true
model. (lower is better)

alarm

!
1
4
0
0
0
0

!
1
2
0
0
0
0

0 5000 10000

L
o
g
lik
e
lih
o
o
d

insurance

!
1
5
0
0
0
0

!
1
4
0
0
0
0

0 5000 10000

powerplant

!
2
5
0
0
0
0

!
1
5
0
0
0
0

0 5000 10000

water

!
1
3
6
0
0
0

!
1
3
0
0
0
0

0 5000 10000

synthetic

!
2
4
0
0
0
0

!
1
8
0
0
0
0

0 5000 10000

Figure 6: Loglikelihood: Likelihood of the learned model on a held-out test set of 10000 instances sampled
from the true model. (higher is better)

alarm

!
1
e
+
0
5

!
4
e
+
0
4

0 5000 10000

B
D
e
u

insurance

!
1
4
0
0
0
0

!
6
0
0
0
0

0

0 5000 10000

powerplant

!
1
5
0
0
0
0

!
5
0
0
0
0

0 5000 10000

water

!
1
2
0
0
0
0

!
6
0
0
0
0

0

0 5000 10000

synthetic

!
2
0
0
0
0
0

!
1
0
0
0
0
0

0 5000 10000

Figure 7: BDeu: BDeu score of the learned model on a held-out test set of 10000 instances sampled from
the true model. (higher is better)

2

