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ABSTRACT
In this paper, we present a measurement study of the energy
consumption characteristics of three widespread mobile net-
working technologies: 3G, GSM, and WiFi. We find that
3G and GSM incur a high tail energy overhead because of
lingering in high power states after completing a transfer.
Based on these measurements, we develop a model for the
energy consumed by network activity for each technology.
Armed with this model, we seek to reduce the energy con-
sumption of common mobile applications.

Towards this goal, we develop TailEnder, a protocol that
schedules transfers so as to minimize the cumulative en-
ergy consumed while meeting user-specified delay-tolerance
deadlines. We show that the TailEnder algorithm is within a
factor 1.28× of the optimal and show that no deterministic
online algorithm can achieve a better competitive ratio. For
applications like web search that can benefit from prefetch-
ing, TailEnder can aggressively prefetch several times more
data and improve user-specified response times while con-
suming less energy. We evaluate the benefits of TailEnder for
three different case study applications—email, news feeds,
and web search—based on real user logs and show signifi-
cant reduction in energy consumption in each case. Experi-
ments conducted on the mobile phone shows that TailEnder
can download 60% more news feed updates and download
search results for more than 50% of web queries, compared
to using the default policy. Our model-driven simulation
shows that TailEnder can reduce energy by 35% for email
applications, 52% for news feeds and 40% for web search.

1. INTRODUCTION
Mobile phones are ubiquitous today with an estimated

cellular subscription of over 4 billion worldwide [2]. Most
phones today support one or more of 3G, GSM, and WiFi for
data transfer. For example, the penetration of 3G is estimated
at over 15% of cellular subscriptions worldwide and is over
70% in some countries [1]. Recent measurement studies
report that in the daily lives of urban users, cellular and WiFi
availability is about 99% and 50% respectively.

How do the energy consumption characteristics of network
activity over 3G, GSM, and WiFi on mobile phones compare
with each other? How can we reduce the energy consumed by
common applications using each of these three technologies?

To investigate these questions, we first conduct a detailed
measurement study to quantify the energy consumed by data
transfers across 3G, GSM, and WiFi. We find that the en-
ergy consumption is intimately related to the characteristics
of the workload and not just the total transfer size, e.g., a
few hundred bytes transferred intermittently on 3G can con-
sume more energy than transferring a megabyte in one shot.
The key findings of our measurement are summarized below.
These findings remain consistent across three different cities,
diurnal variation, mobility patterns, and devices.

1. In 3G, a large fraction (nearly 60%) of the energy, re-
ferred to as the tail energy, is wasted in high-power
states after the completion of a typical transfer. In
comparison, the ramp energy spent in switching to this
high-power state before the transfer is small. Tail and
ramp energies are constants that amortize over larger
transfer sizes or frequent successive transfers.

2. In GSM, although a similar trend exists, the time spent
in the high-power state after the transfer, or the tail
time, is much smaller compared to 3G (6 vs. 12 secs).
Furthermore, the lower data rate of GSM implies that
more energy is spent in the actual transfer of data.

3. In Wifi, the association overhead is comparable to the
tail energy of 3G, but the data transfer itself is signifi-
cantly more efficient than 3G for all transfer sizes.

Based on these findings, we develop a simple model of
energy consumption of network activity for each of the three
technologies. Armed with these models, we ask how we can
reduce the energy consumption of network activity induced
by common mobile applications. To this end, we design
TailEnder, an energy-efficient protocol for scheduling data
transfers. TailEnder considers two classes of applications: 1)
delay-tolerant applications such as email and RSS feeds, and
2) applications such as web search and web browsing that
can benefit from aggressive prefetching.

For delay-tolerant applications on 3G and GSM, TailEnder
schedules outgoing transfers so as to minimize the overall
time spent in high energy states after completing transfers,
while respecting user-specified delay-tolerance deadlines. We
show that the TailEnder scheduling algorithm is provably
within a factor 1.28× of the energy consumed by an optimal
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offline algorithm that knows the complete arrival pattern of
transfers a priori. Furthermore, we show that no deterministic
online algorithm can be better than 1.28-competitive with
respect to an optimal offline adversary, i.e., the upper and
lower bounds on the competitive ratio are tight.

For applications that can benefit from prefetching, TailEn-
der determines what data to prefetch so as to minimize the
overall energy consumed. Prefetching useful data reduces
the number of transfers and their associated cumulative tail
energy, while prefetching useless data incurs additional trans-
mission energy. TailEnder uses a probabilistic strategy to
balance these concerns. Somewhat counterintuitively, for
applications such as web search, TailEnder fetches several
times more data and improves user-perceived response times,
but still consumes less energy.

We evaluate the performance of TailEnder for three differ-
ent applications: email, news feeds and web search. For each
of these applications, we collect real user traces including
arrival times and transfer sizes. We evaluate TailEnder by
conducting experiments on the mobile phone and find that
TailEnder can download 60% more news feed updates and
download search results for more than 50% of web queries,
compared to using the default policy. Our model-driven sim-
ulation shows that TailEnder can reduce energy by 35% for
email applications, 52% for news feeds and 40% for web
search. Further, we find that, opportunistic WiFi access sub-
stantially reduces energy consumption compared to only us-
ing 3G. Even when WiFi in only available 50% of the time,
sending data over WiFi when available reduces the energy
consumption by over 3 times for all three applications.

2. BACKGROUND AND RELATED WORK

2.1 Cellular power management
Two factors determine the energy consumption due to net-

work activity in a cellular device. First, is the transmission
energy that is proportional to the length of a transmission
and the transmit power level. Second, is the Radio Resource
Control (RRC) protocol that is responsible for channel allo-
cation and scaling the power consumed by the radio based on
inactivity timers.

Figure 1(a) shows the state machine [16] implemented by
the RRC protocol for GSM/EDGE/GPRS (2.5G) as well as
UMTS/WCDMA (3G) networks that follow the 3GPP [4]
standard. The radio remains in the IDLE state in the absence
of any network activity. The radio transitions to the higher
power states, DCH (Dedicated Channel) or FACH (Forward
Access Channel), when the network is active. The DCH state
reserves a dedicated channel to the device and ensures high
throughput and low delay for transmissions, but at the cost of
high power consumption. The FACH state shares the channel
with other devices and is used when there is little traffic to
transmit and consumes about half of the power in the DCH
state. The IDLE state consumes about one percent of the
power in the DCH state.

The transition between the different states is controlled by

IDLE
DCH

FACH

NOT 
CONNECTEDCONNECTED

POWER

(a) (b)

Figure 1: : (a) The radio resource control state ma-
chine for 3GPP networks consisting of three states:
IDLE, DCH and FACH (b) Instantaneous power mea-
surements for an example transfer over 3G showing the
transition time between high to low power state

inactivity timers [16]. Figure 1(b) shows the instantaneous
power measurements for an example transfer. The graph
shows the time taken to transition from a high power to a
low power state. Instead of transitioning from the high to the
low power state immediately after a packet is transmitted, the
device transitions only when the network has been inactive
for the length of the inactivity timer. This mechanism serves
two benefits: 1) it alleviates the delay incurred in moving to
the high power state from the idle state, and 2) it reduces the
signaling overhead incurred due to channel allocation and
release during state transitions. Since lingering in the high
power state also consumes more energy, network operators
estimate the value of the inactivity timer based on this pefor-
mance/energy trade-off [16, 11], with typical values being
several seconds long.

The 3GPP2 standard [3] used by the CDMA2000 tech-
nology is another standard for 3G networks, and 3GPP and
3GPP2 are the most prevalent standards today. Though the
state machine for the radio resource control in the 3GPP2
standard is different from that shown in Figure 1, several
features are similar. In particular, the 3GPP2 standard also
uses an inactivity timer to transition from the high power to
the low power state for performance reasons [16, 23].

2.2 WiFi power management
In comparison, WiFi incurs a high initial cost of associat-

ing with an access point (AP). However, because WiFi on
phones typically uses the Power Save Mode (PSM), the cost
of maintaining the association is small. When associated, the
energy consumed by a data transfer is proportional to the size
of the data transfer and the transmit power level. Our mea-
surements (Section 3) confirm that the transmission energy
consumed by WiFi is significantly smaller than both 3G and
GSM1, especially for large transfer sizes.

2.3 Related work
1We use the terms GSM and 2.5G interchangeably in this paper.
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Energy consumption of network activity in mobile phones
has seen a large body of work in recent times. To our knowl-
edge, our paper presents the first comparative study of energy
consumption characteristics of all three technologies—3G,
GSM, and WiFi—that are under widespread use today. In
particular, our study of the energy consumption characteris-
tics of 3G reveals significant and nonintuitive implications
for energy-efficient application design.

Analytical modeling. Prior work [16, 23, 11] has stud-
ied the impact of different energy saving techniques in 3G
networks using analytical models. These works analyze the
impact of the inactivity timer by modeling the delay and en-
ergy utilization for different values for the inactivity timer.
Their goal is to determine the optimal value of the inactivity
timer from the network operator’s perspective. Yeh et al. [23]
analytically compare the impact of the inactivity timer in
both 3GPP and 3GPP2 networks. In comparison, our study
treats the inactivity timer value as a given and develops algo-
rithms for energy-efficient application design based on real
measurements and application traces.

Measurement. Gupta et al. [13] present a measurement
study of the energy consumption of VoIP applications over
WiFi-based mobile phones. The authors find that intelligent
scanning strategies and aggressive use of PSM in WiFi can
reduce power consumption for VoIP applications. Xiao et
al. [22] measure the energy consumption for Youtube-like
video streaming applications in mobile phones using both
WiFi and 3G. Their focus is on the energy utilization of vari-
ous storage strategies and application-level strategies such as
delayed-playback and playback after download. Nurminen et
al. [18] measure the energy consumption for peer-to-peer
applications from mobile phones over 3G. In comparison to
these application-specific studies, our focus is on reducing
the energy consumption of general network activity across
3G, GSM, and WiFi.

Energy-efficient mobile network activity. Several
previous studies [5, 20, 21, 6] have investigated strategies for
energy-efficient network activity in mobile phones supporting
multiple wireless technologies. Pering et al.[20] develop
strategies to intelligently switch between WiFi and Bluetooth.
Agarwal et al.[5] propose an architecture to use the GSM
radio to wake up the WiFi radio upon an incoming VoIP call
to leverage the better quality and energy-efficiency of WiFi
while keeping its scanning costs low.

Rahmati et al. [21] show that intelligently switching be-
tween WiFi and GSM reduces energy consumption substan-
tially as WiFi consumes less transmission power. However,
in order to avoid the cost of unnecessary scanning in the
face of poor WiFi availability, the authors design an algo-
rithm that predicts WiFi availability, and the device scans for
WiFi access points only in areas where WiFi is available with
high probability. Trevor et al. [6] present application-level
modifications to reduce energy consumption for updates to
dynamic web content. Their key ideas include using a proxy
to 1) only push new content when the portion of the web
document of interest to the user is updated, 2) batch updates

to avoid the overhead of repeated polling, and 3) use SMS on
GSM to signal the selection of WiFi or GSM based on the
transfer size for energy-efficient data transfer. In addition to
confirming these prior findings about GSM and WiFi power
consumption, our measurement study also investigates 3G
that reveals significantly different energy consumption char-
acteristics, which lead us to develop novel energy-efficient
and provably near-optimal data transfer algorithms for 3G.

Algorithms. Prior theoretical works [10, 12, 14, 7]
study the problem of energy minimization while meeting job
deadlines in processors that transition between the sleep and
active state. The model assumed in most of these works is that
a device incurs a large ramp energy overhead in transitioning
from the low power state to the high power state, so the goal
is to minimize the number of transitions. As explained in
Sections 3 and 4, this model cannot be applied as is to mobile
phones because their transition characteristics are different
and include a significant tail energy component. For this
model, we develop a provably near-optimal online algorithm
to minimize energy, and further show that no deterministic
online algorithm can achieve a better competitive ratio.

3. MEASUREMENT
The main goals of our measurement study are to:

1. Compare the energy consumption characteristics of 3G,
GSM and WiFi and measure the fraction of energy
consumed for data transfer versus overhead.

2. Analyze the variation of the energy overhead with geo-
graphic location, time-of-day, mobility, and devices.

3. Develop a simple energy model to quantify the energy
consumption over 3G, WiFi and GSM as a function of
the transfer size and the inter-transfer times.

Next, we describe our measurement methodology and then
present our findings.

3.1 Devices and Tools
Our experiments are performed using four Nokia N95

phones2. Two of the phones are 3G-enabled AT&T phones
that use HSDPA/UMTS technology and two are GSM-enabled
AT&T phones that use EDGE. All four phones were equipped
with an 802.11b WiFi interface. We use Python, PyS60
v1.4.2, developed for the Symbian OS 3rdEd FP 1 to conduct
data transfer experiments.

To measure energy consumption, we use Nokia’s energy
profiling application, the Nokia Energy Profiler (NEP) v1.13.
NEP provides instantaneous power measurements sampled
once every 250 milli-seconds. Using the power measure-
ments, we estimate the energy consumed by approximating
the area under the power measurement curve over a time inter-
val. We subtract the idle power from the energy consumption
2http://en.wikipedia.org/wiki/Nokia N95
3http://www.forum.nokia.com/Resources and Information/Tools/Plug-
ins/Enablers/Nokia Energy Profiler/
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Figure 2: : 3G Measurements: (a) Ramp, transfer and
tail energy for 50K 3G transfer. (b) Average energy con-
sumed for transfer against the time between successive
transfers

estimation when appropriate. Unless stated, all measurement
results are averaged over 20 trials.

3.2 Measurement Methodology

3.2.1 3G and GSM
We conduct measurement study to quantify the: 1) Ramp

energy: energy required to switch to the high-power state,
2) Transmission energy, and 3) Tail energy: energy spent in
high-power state after the completion of the transfer.

We conduct measurements for data transfers of different
sizes (1 to 1000 KB) with varying intervals (1 to 20 seconds)
between successive transfers. We measure energy consump-
tion by running NEP in the background while making data
transfers. For each configuration of (x,t), where x ∈ [1K,
1000K] and t ∈ [1, 20] seconds, the data transfers proceed
as follows: The phone initiates an x KB download by issu-
ing a http-request to a remote server. After the download is
completed, the phone waits for t seconds and then issues the
next http request. This process is repeated 20 times for each
data size. Between data transfer experiments for different
intervals, the phone remains idle for 60 seconds. We conduct
a similar experiment to upload data to a remote server.

We extract the energy measurements from the profiler for
analysis. We use the time-stamps recorded by NEP to mark
the beginning and end of data transfer as well as the begin-

ning and end of the Ramp time and the Tail time. Then, the
energy consumed by each data transfer is computed by ap-
proximating the energy under the power-curve between the
end of Ramp time and the start of Tail time.

3.2.2 WiFi
Our WiFi measurements quantify: 1) Energy to scan and as-

sociate to an access point and 2) transfer energy. We conduct
two sets of measurements. In the first set of measurements,
for each data transfer, we first scan for Wifi access points,
associate with an available AP and then make the transfer. In
the second set of measurements, we only make one scan and
association for the entire set of data transfers to isolate the
transfer energies.

In addition, all three networks, 3G, GSM and WiFi, incur
a maintenance energy, which is the energy used to keep the
interface up. We estimate the maintenance energy per second
by measuring the total energy consumed to keep the interface
up for a time period.

3.2.3 Accounting for idle power
For all measurements, we configure the phone in the low-

est power mode and turn off the display and all unused net-
work interfaces. The energy profiler itself consumes a small
amount of energy, which we include in the idle power mea-
surement. We measure idle energy by letting the energy
profiler run in the background with no other application activ-
ity. The average idle power is less than 0.05 W and running
the energy profiler at a sampling frequency of 0.25 seconds
increases the power to 0.1 W.

3.3 3G Measurements
Figure 2(a) shows the energy consumption for a typical

50KB download over 3G. We find that the Tail energy is
more than 60% of the total energy. The Ramp energy is
significantly small compared to the tail energy, and is only
14% of the total energy. 3G also incurs a maintenance energy
to keep the interface on, and is between 1-2 Joules/minute
(not shown).

Figure 2(b) shows the average energy consumed for data
transfer when the time between successive transfers is var-
ied. We ignore the idle energy consumed when waiting to
transfer the next packet. Consider the data points for trans-
ferring 100 KB data. The energy increases from 5 Joules to
13 Joules as the time between successive transfers increases
from 1 second to 12 seconds. When the time between suc-
cessive transfers is greater than 12.5 seconds, the energy
consumed for 100 KB transfers plateaus at 15 Joules. When
the device waits less than the Tail time to send the next packet,
each data transfer does not incur the total Tail energy penalty,
reducing the average energy per transfer. This observation
suggests that the Tail energy can be amortized using multiple
transfers, but only if the transfers occur within Tail time of
each other. We use this crucial observation to design TailEn-
der, a protocol that reduces the energy consumed by network
applications running on mobile phones.
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Figure 3: : 3G: 50 Energy measurements on three different days: (a) Tail energy (b) Ramp energy. (c) Tail and Ramp
energies measured in different locations with two devices, including a night time measurement.
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versus upload experiments.

3.3.1 Geographical and Temporal variations
We measure the energy consumption across different days

and in different geographical regions. The objective of this
experiment is two-fold. First, we wish to verify that mobile
phones in different cell tower areas are also affected by the
Tail time overhead. Second, we want to evaluate the consis-
tency of Tail time.

Figure 3(a) shows that the Tail energy remains consistent
across three days. On the other hand, Figure 3(b) shows that
the Ramp energy is about 2 and 4 Joules for the measurements
conducted on different days.

We conducted 3G energy measurements in three different
cities, Amherst, Northamption and Boston, in Massachusetts,
USA using two different devices, D1 and D2. Figure 3(c)
shows that Tail energy is consistent across different locations
and for two different Nokia devices. The figure also shows
that the Tail energy and Ramp energy do not vary across
day (9:00 am to 5:00 pm) and night (8:00 pm to 6:00 am).
Based on these measurements, it appears that the Tail time
or the inactivity timer is configured statically by the network
operators and can be inferred empirically. In Section 4, we
use the value of the inactivity timer to design TailEnder.

Figure 4(a) compares the total energy consumed for data
transfers during the day versus night, averaged over three
days. Even though the ramp and tail energies are similar
during night and day (shown in Figure 3(c)), the total energy
consumed during the night is up to 10% lower than during
the day. This is likely due to lower congestion during the
night leading to lower transfer energy.

3.3.2 Uploads
Figure 4(b) shows the tail, ramp and transfer energy for

upload experiments. As observed in the download experi-
ments, the Tail energy consumes more than 55% of the total
energy. Figure 4(c) shows that the transfer energy for uploads
is higher than downloads for larger data sizes. For example,
the transfer energy for upload is nearly 30% more compared
to that for downloads when transferring 100 KB. This differ-
ence is because upload bandwidths are typically smaller than
the download bandwidth.

3.3.3 Mobility
Figure 5 compares energy consumption under mobility

within the town of Amherst, MA for 50K data transfers. Mo-
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nents of 50K 3G transfers with confidence intervals.
(Averaged over 35 mobility trials)

bility in outdoor settings affect transfer rates due to factors
such as signal strength and hand-offs between cell towers
resulting in varying transfer times [17]. Despite the large
variances in the transfer energy compared to the stationary
measurements, we observe that the Tail energy accounts for
nearly 50% of the total energy.

3.4 GSM Measurements
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Figure 6: : GSM Measurements: (a) Proportional en-
ergy consumption for Ramp energy, Tail energy, and
transfer energy. (b) Energy consumption for different
data sizes against the inter-transfer time.

We conducted a set of measurements using the two Nokia
phones equipped with GSM. Figure 6(a) shows the energy
consumption in GSM networks as a proportion of the Tail
energy, Ramp energy and transfer energy for a 50K download.

Unlike in 3G, the Tail energy only accounts for 30% of the
transfer energy. However, similar to 3G, the Ramp energy in
GSM is small compared to the Tail energy and the transfer
energy. We also observed that the Tail time is 6 seconds
and GSM incurs a small maintenance energy between 2-3
J/minute (not shown in figure).

Due to the small Tail time in GSM (unlike 3G), data sizes
dominate energy consumption rather than the inter-transfer
times. Figure 6(b) shows the average energy consumed when
varying the time between successive transfers. The average
energy does not vary with increasing inter-transfer interval.
For example, for data transfers of size 100 KB, the average
energy consumption is between 19 Joules to 21 Joules even
as the time between successive transfers is varied. In compar-
ison, Figure 2(b) shows that the average energy consumption
varies significantly in 3G with varying inter-transfer interval,
until the inter-transfer interval grows to more than the Tail
time.

3.5 Wi-Fi Measurements
Figure 7(a) shows the energy consumption in WiFi com-

posed of scanning, association and transfer, for a 50 K down-
load. We observe that the scanning and association energy
is nearly five times the transfer energy. Our results confirm
previous measurements by Rahmati et al. [21].

Figure 7(b) shows that for WiFi, energy consumption in-
creases when time between successive transfer increases.
Interestingly, energy consumption does not plateau after a
threshold inter-transfer interval like in 3G (Figure 2(b)). The
reason for increasing energy consumption with increasing
inter-transfer interval is the high maintenance energy in WiFi.
We measured the maintenance overhead (not shown) for keep-
ing the WiFi interface on to be 3-3.5 Joules per minute.

3.6 3G vs GSM vs WiFi
Figure 8 compares the energy consumption of 3G, GSM

and WiFi. 3G consumes significantly more energy to transfer
data of all sizes (12-20J) compared to GSM and WiFi. GSM
consumes 40% to 70% less energy compared to 3G. This
is due to two reasons – (1) GSM radios typically operate
at a lower power level than 3G radios and (2) the Tail en-
ergy set for GSM is around 6 seconds, much lower than the
12.5 seconds set for 3G.

Wi-Fi is more energy efficient than both cellular networks
once it is connected to an access point (AP). We find that
the transfer energy for Wifi grows nearly three times slower
compared to the cellular networks. For a transfer of size 10K,
Wifi consumes one-sixth of 3G’s energy and one-third of
GSM’s energy. With increasing data sizes Wifi’s efficiency
increases dramatically. The graph shows that when the cost
of scan and transfer is included (marked in the graph as WiFi
+ SA), WiFi becomes inefficient for small sized transfers
compared to GSM (as also observed by Rahmati et al. [21]).
Surprisingly, when compared to 3G, WiFi is energy efficient
even when the cost of scanning and association is included.
We exploit this observation in Section 5.2.4.
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Figure 7: Wifi Measurements: (a) Proportional energy
consumption for scan/associate and transfer. (b) Energy
consumption for different transfer sizes against the inter-
transfer time.

Figures 9(a) and 9(b) is a qualitative comparison of the
instantaneous power measurements over 3G and GSM re-
spectively. The measurements corresponds to a single 50K
transfer. The lines marked Uplink and Downlink show the
network activities in the uplink and downlink direction re-
spectively (corresponding to request and download). The
profiles show both that GSM radios operate at lower power
levels and that the device returns to the low power mode in a
shorter time in GSM compared to 3G.

Figure 9(c) shows a similar snapshot for a 50K transfer
over WiFi. The initial spikes corresponds to energy consumed
for scanning and association. The WiFi radio frequently
checks the AP for incoming packets, and is shown by the
power spikes corresponding to uplink activity after the initial
scanning and association is complete. Since we set WiFi to
operate in the power-save mode, these checks are terminated
after a fixed idle time of 40 seconds.

3.6.1 Energy model
One of the goals of our measurement study is to obtain

accurate energy models for energy consumption in 3G, GSM
and WiFi. The model enables us to empirically estimate the
energy consumption of different applications using the mea-
surement results (Section 5). We model energy consumption
as a function of the size and the time between successive
transfers. Figure 7(b) and Figure 2(b) show that time between
transfers significantly effects energy consumption.

Table 1 shows the energy model we derive from the mea-
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Figure 8: : Energy consumption of transfers of differ-
ent sizes: WiFi versus cellular networks. x-axis is in
logarithmic scale.

surement study. The energy spent to send x bytes of data
is consists of three components: 1) Ramp energy 2) trans-
mission energy and 3) Tail energy. In case of 3G and GSM,
we use R(x) to denote the sum of the Ramp energy and the
transmission energy to send x bytes and E to denote the Tail
energy. For WiFi, we use R(x) to denote the sum of the trans-
fer energy and the energy for scanning and association, and
we set the Tail energy E to zero. M denotes the maintenance
energy per second and T denotes the Tail time. In addition
to R(x) and E, the total energy to transmit a packet also de-
pends on the time the interface is on. The last row in Table 1
shows an example computation for the average energy spent
to transmit 50K of data with a 20 second interval.

3.7 Summary
We summarize our key measurement findings as follows:

1. In 3G, nearly 60% of the energy is tail energy, is wasted
in high-power states after the completion of a typi-
cal transfer. In comparison, the ramp energy spent in
switching to this high-power state before the transfer is
small. The tail and ramp energies can be amortized over
frequent successive transfers, but only if the transfers
occur within Tail time of each other.

2. In GSM, although a similar trend exists, the tail time
is much smaller compared to 3G (6 vs. 12 secs). Fur-
thermore, the lower data rate of GSM implies that more
energy is spent in the actual transfer of data compared
to in the tail.

3. In WiFi, the association overhead is comparable to the
tail energy of 3G, but the data transfer itself is sig-
nificantly more efficient than 3G for all transfer sizes.
When the scan cost is included, WiFi becomes ineffi-
cient for small sized transfers compared to GSM, but is
still more energy efficient than 3G.

4. PROTOCOL
Informed by our measurement-driven model, we develop

TailEnder, a protocol whose end-goal is to reduce energy
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3G GSM WiFi
Transfer Energy R(x) 0.025(x) + 3.5 0.0357(x) + 1.7 0.007(x) + 5.9
Tail energy E 0.62 J/sec 0.25 J/sec NA
Maintenance4 M 0.02 J/sec 0.03 J/sec 0.05 J/sec
Tail time T 12.5 seconds 6 seconds NA
Energy for 50K (20 second interval) 12.5 J 5.0 J 7.6 J

Table 1: Energy Model for data transfers for the different network technologies. All values except the Maintenance
values for 3G and GSM, are averaged over more than 50 trials.
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Figure 9: Power profiles of WiFi, 3G and GSM networks

consumption on mobile phones. Common network applica-
tions on mobile phones include e-mail, news-feed, software
updates and web search and browsing. Many of these applica-
tions can be classified under two categories: 1) applications
that can tolerate delays, and 2) applications that can benefit
from prefetching. E-mail, news-feeds and software updates
can be classified as applications that can tolerate a small
user-specified delay. For example, a user may be willing to
wait for a short time before e-mail and news-feeds are re-
ceived, if it results in substantial energy savings5. Web search
and browsing can be classified as applications that benefit
from prefetching. Several studies [8, 15, 19] have shown that
prefetching web documents can significantly improve search
and browsing experience for users.

TailEnder uses two simple techniques to reduce energy
consumption for the two different class of applications. For
delay tolerant applications, TailEnder schedules transmis-
sions such that the total time spent by the device in the high
power state is minimized. For applications that can benefit
from prefetching, TailEnder determines the number of doc-
uments to prefetch, so that the expected energy savings is
maximized.

4.1 Delay tolerant applications
First, we present a simple example to illustrate how applica-

tions can exploit delay tolerance to reduce energy utilization.
Assume a user sends two emails within a span of a few min-
utes. The default policy is to send the emails as they arrive,
and as a result the device remains in the high power state for
5Commodity phones such as the iPhone explicitly request the user
to specify a delay-tolerance limit to improve battery life.

two inactivity timer periods. However, if the user can tolerate
a few minutes delay in sending the emails, the two emails can
be sent together, and the device remains in the high power
state for only one inactivity timer period. Our measurement
study shows that for low to moderate email size, the second
strategy halves the energy consumption.

Several theoretical studies consider the problem of opti-
mally scheduling transmissions to minimize energy, called
the Gap minimization Problem [10, 12]. Gap minimization
problem assumes the following model – a device incurs a
large overhead in transitioning from the low power state to
the high power state and the goal is to minimize the number
of times the device transitions between states. Baptiste et
al. [10] show that the Gap minimization problem can be
solved optimally in polynomial time, under certain simplistic
assumptions. Researchers [12, 14, 7] have also designed on-
line algorithms and shown that any online algorithm can at
best achieve an optimal competitive ratio of 2.

Our measurement study shows that the Gap minimization
energy model is not compatible with that of data transfers on
mobile phones: The energy required to transition from the
low power to the high power state is not the primary overhead
during data transfers; rather a significant overhead is the
energy wasted in the high power state after the completion of
transmission, due to the inactivity timer settings. Therefore,
the goal of TailEnder is to minimize the total time spent in
the high power state.

4.1.1 Scheduling transmissions to minimize energy
We adapt the Gap minimization problem formulation to

our setting as follows – Consider n equal-sized requests,
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where each request ri is associated with an arrival time ai

and a deadline di by which it needs to be transmitted. When
the request ri is scheduled to be transmitted at time si, the
radio transitions to the high power state, transfers request
ri instantaneously, and remains in the high power states for
T time units, equal to the Tail time. Also, based on our
measurements, we ignore the energy overhead to switch to
the high-power state. Note that when multiple requests are
transmitted at the same time, the device is in the high power
state only for T time units. Let Z denote the the total time
spent in high-power states for a given schedule of requests.
The problem is to compute a schedule s1, s2, · · · , sn that
minimizes Z, such that ai ≤ si ≤ di.

In practice, we need to solve an online version of the
problem, where arrivals and their deadlines are not known in
advance.TailEnder uses a simple online algorithm to schedule
transmission of an incoming request ri at time t. The main
idea of TailEnder is to transmit a request ri if either

• the request arrives within a time x ·T from the previous
deadline d′, or

• the request’s deadline is reached.

We show that the algorithm provably achieves a compet-
itive ratio of 1.28 compared to the optimal if the value of x
is set to 0.57. Further, we show that no deterministic online
algorithm can achieve a competitive ratio lower than 1.28.
Thus, the TailEnder algorithm achieves the optimal competi-
tive ratio(see Appendix for details). Figure 10 presents the
TailEnder algorithm.

An alternate solution to the scheduling problem is to wait
until deadline, where incoming requests are batched until one
of the requests reaches its deadline [9]. It is easy to show
that the wait until deadline scheme is at best 2-competitive
compared to the optimal. Further, the wait until deadline
scheme can delay requests even if the delay does not provide
any energy benefit. For example, if a new request arrives
immediately after another request is scheduled, the wait until
deadline scheme will delay scheduling the new request, even
though delay provides no energy benefit.

4.2 Applications that benefit from prefetching
Previous work [8] shows that aggressive prefetching can re-

duce delays in networks with intermittent connectivity. How-
ever, it is not straightforward to design a prefetching strategy
whose end goal is to reduce energy consumption. On the
one hand, in the absence of any prefetching, the application
needs to fetch the user-requested documents sequentially. If
the user think-time is greater than the value of the inactivity
timer, then the application incurs a large energy overhead
in fetching each document. On the other hand, if the appli-
cation aggressively prefetches documents and the user does
not request any of the prefetched documents, then the appli-
cation wastes a substantial amount of energy in prefetching.
Clearly, user behavior is key in determining the effectiveness
of prefetching for reducing energy consumption.

TailEnder scheduler (t, ri):

1. set d′ = 0

2. if (t < ai), return

3. If (t < di)

(a) if (d′ + 0.57T < ai), transmit.

(b) else, add the request to queue Q.

4. If (t == di)

(a) Transmit ri

(b) Transmit all requests in Q and set Q = null

(c) Set d′ = di

Figure 10: TailEnder scheduler that makes a decision
about transmitting a request ri at time t
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Figure 11: CDF of the fraction of times a user requests
a web document at a given rank, for Web search ap-
plication. The figure shows the CDF over more than 8
million queries collected across several days.

We consider the prefetching problem in the context of Web
search and browsing. The information retrieval community
and search engine providers collect large amounts of data to
study user behavior on the web. Our goal is to exploit the
user-behavior statistics to make prefetching decisions. We
formulate the prefetching problem as follows: Given user be-
havior statistics, how many documents should be prefetched,
in order to minimize the expected energy consumption?.

4.2.1 Maximizing expected energy savings
Figure 11 shows the distribution of web documents that

are requested by the user when searching the web. The graph
is generated using Microsoft Search logs 6. The logs contain
over 8 million user queries and were collected over a month.
Figure 11 shows that 40% of the time, a user requests for
the first document presented by the search engine. A user re-
quests for a document ranked 11 or more, less than 0.00001%
of the time.

Based on the user-behavior statistics, we estimate the ex-
pected energy savings as a function of prefetched documents

6obtained from Microsoft Live Labs
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Figure 12: Expected percentage energy savings as a
function of the number of documents prefetched.

size. We assume that the user think-times are greater than
the value of the inactivity timer. Let k be the number of
prefetched documents, prefetched in the decreasing rank or-
der and p(k) be the probability that a user requests a docu-
ment within rank k. Let E be the Tail energy, R(k) be the
energy required to receive k documents, and TE be the total
energy required to receive a document. TE includes the en-
ergy to move from the low to the high power state, the energy
to receive a requested document and the Tail energy. The
expected fraction of energy savings if the top k documents
are prefetched is

E · p(k)−R(k)
TE

Figure 12 shows the expected energy savings for varying k
as estimated by Equation 4.2.1. The value of p(k) is obtained
from statistics presented in Figure 11, and E, R(k) and TE
are obtained from the 3G energy measurements (in Table 1).
We set the size of a document to be the average web document
size seen in the search logs.

Figure 12 shows that prefetching 10 web documents maxi-
mizes the energy saved. When more documents are prefetched,
the cost of prefetching is greater than the energy savings.
When too few documents are prefetched, the expected energy
savings is low since the user may not request a prefetched
document. Therefore, for Web search applications, TailEnder
prefetches 10 web documents for each user query. In Sec-
tion 5, we show that TailEnder can save substantial amount
of energy when applied to real Web search sessions.

5. EVALUATION
We evaluate TailEnder using a model-driven simulation

and real experiments on the phone. The goal of our evaluation
is to quantify the reduction in energy utilization when using
TailEnder for different applications, when compared to a
Default protocol.

To show the general applicability of TailEnder, we evaluate
its performance for three applications: emails, news-feeds
and Web search. Both email and news-feeds are applications
that may be able to tolerate a small delay, while Web search
is an application that benefits from prefetching. For all three
applications, the impact of TailEnder for energy minimization
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Figure 13: Arrival times distribution for 3 news feed
topics.

largely depends on the application traffic and user behavior.
For example, if a user receives an email at a periodic interval
of once per hour, or if news-feeds are updated once per hour,
TailEnder is unlikely to provide energy benefits. In our ex-
periments, we collect real application level traces to evaluate
TailEnder.

5.1 Application-level trace collection
To collect traces for evaluating e-mail application, we mon-

itor the mailboxes of 3 graduate students for 10 days and log
the size and time-stamps of incoming and outgoing mails.
Table 2 tabulates the statistics of the resulting email logs.

User 1 User 2 User 3
Incoming 446 405 321

Incoming size 214MB 162MB 161MB
Outgoing 219 183 354

Outgoing size 107MB 66MB 178MB

Table 2: Characteristics of collected e-mail

To collect news feed traces, we polled 10 different Yahoo!
RSS news feeds7 once every 5 seconds for a span of 3 days.
We log the arrival time and size of each new story or an
update to an existing story Table 3 lists the news-feeds we
crawled. The traces cover major news topics, both critical
(e.g., Business, Politics) and non-critical (e.g., Entertainment).
Figure 13 shows the inter-arrival times of updates for three
example news topics – Top stories, Op/Ed and Business.
Updates to the Top stories topic arrive with higher frequency
than the Op/Ed and Business topics and nearly 60% of the
updates for the Top stories topic arrive with an inter-arrival
time of 10–15 seconds.

For Web search, we use the Microsoft Search logs that
contains more than 8 million queries sampled over a period
of one month. The search log contains the time and the
urls that were clicked for each query, as well as the size of
the requested document. We extracted a random subset of
1000 queries from this data set. Figure 11 characterizes the
distribution of clicks for each query.

7http://news.yahoo.com/rss
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Feed Total stories
Opinion/Editorials 507
Health 2177
Technology 4659
Business 5616
Sports 7265
Politics 12069
US News 12389
Entertainment 16757
World 21006
Top Stories 23232

Table 3: News Feeds Collection

5.2 Model-driven evaluation
To quantify the performance of TailEnder for varying pa-

rameters and settings, we conduct a trace-driven evaluation
using the application traces we collected. We obtain an en-
ergy model for per-byte data transmission from our measure-
ment study. We also obtain the Tail time, Tail energy and
Ramp energyform our measurement (see Section 3.7). We
use the energy values obtained from our Amherst, day time,
stationary measurements, shown in Table 1.

The application trace consists of a sequence of arrivals
of the form (si, ai), where si is the size of the request and
the ai is the time of arrival. For example, for the news feed
application, ai is the time a topic is updated and si is the
size of the update. Requests could be downloads as in news
feeds or uploads as in outgoing emails. The Default protocol
schedules transmissions as requests arrive. For delay tolerant
applications, TailEnder schedules transmissions using the
algorithm shown in Figure 10. For applications that benefit
from prefetching, TailEnder schedules transmissions for all
prefetched documents. For both protocols, we estimate the
energy consumption as a sum of the Ramp energy (if the
device is not in high power state), transmission energy and the
energy consumed because of staying in the high power state
after transmission. If a request is scheduled for transmission
before the Tail time of the previous transmission, the previous
transmission does not incur an overhead for the entire Tail
time.

5.2.1 News-feeds
Figure 14 shows the improvement in energy using TailEn-

der for each of the news feed topics. We set the deadline for
sending the news feeds update to 10 minutes; i.e., a newsfeed
content needs to be sent to the user with a maximum delay
of 10 minutes since the content was updated. The average
improvement across all news feeds is 42%. The largest im-
provement is observed for the Tech news feed at 52% and the
smallest improvement for the Top story news feed at 36%.
One possible reason for the top story news feed to yield lower
performance improvement is that 60% of the top story up-
dates arrive within 10 seconds, which is the less than the

Tail time of 12.5 seconds (see Figure 13). Therefore, Default
does not incur a Tail energy penalty for a large portion of the
updates.

Figure 15 and 16 show the expected energy consump-
tion for business news feeds using TailEnder and Default for
varying deadline settings over 3G and GSM respectively. Fig-
ure 15 shows that as deadline increases to 25 minutes(1500 sec-
onds), TailEnder’s energy decreases to nearly half of the
energy consumption of Default, decreasing from 10 Joules
to 5 Joules per update. When sending data over GSM, the
energy decreases from 6 Joules to 4 Joules when using TailEn-
der, compared to Default, yielding a 30% improvement. The
improvements of TailEnder over default are smaller in GSM
compared to 3G. However, the improvements are substan-
tial when considering the relative proportions of GSM’s Tail
energyand transfer energies.

5.2.2 E-mail
Figure 17 shows the energy reduction using TailEnder

as percentage improvement over default, for incoming and
outgoing emails for a set deadline of 10 minutes. We obtain
an improvement of 35% on average for all three users. We
note that we use download energy model for incoming emails
and upload energy model for outgoing emails.

Figure 18 and Figure 19 show the energy consumed by
TailEnder and Default as the deadline increases, when data
is sent on the 3G and GSM networks respectively. This
experiment is conducted using the incoming email traces of
User 2. Increasing the deadline improves energy benefits of
TailEnder in both 3G and GSM. Over 3G, TailEnder reduces
energy consumption by 40% when the deadline is set to
15 minutes. As before, TailEnder provides a lower energy
benefit in GSM compared to 3G. For a 15 minute deadline,
TailEnder decreases energy by only 22% when data is sent
over GSM.

5.2.3 Web search
Figure 20 shows the energy improvement using TailEn-

der for Web search application, when sending data over 3G
and GSM. For Web search, TailEnder prefetches the top 10
documents for each requested query. Default only fetches
documents that are requested by the user. TailEnder reduces
energy by nearly 40% when data is sent over 3G and by about
16% when data is sent over GSM.

To understand the distribution of energy savings per query,
we plot the CDF of the energy improvement in Figure 21.
The plot shows that about 2% of the queries see little en-
ergy improvement. TailEnder reduces energy for 80% of the
queries by 25–33%. For the remaining 18% of the queries,
TailEnder reduces energy by over 40%. We find that the 18%
of the queries that benefits most by TailEnder’s prefetching
are queries for which the user requested 3 or more documents.

5.2.4 Using WiFi for energy savings
Figures 22, 23 and 24 show how utilizing WiFi availability

can reduce energy consumption for news feed, email and
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Figure 14: News feed: Energy im-
provement in using TailEnder for
different news feed topics
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consumption of TailEnder and De-
fault for varying deadline over 3G
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fault for varying deadline over GSM
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sumption of TailEnder and Default
for varying deadline over 3G

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  100  200  300  400  500  600  700  800  900

E
ne

rg
y 

pe
r 

em
ai

l (
Jo

ul
es

)

Deadline (sec)

TailEnder
Default

Figure 19: Email: The energy con-
sumption of TailEnder and Default
for varying deadline over GSM

Web search applications respectively. We assume that the
WiFi interface is switched on only when WiFi is available,
to avoid unnecessary scanning. Related work [21] show that
WiFi availability can be predicted accurately, especially in
stationary scenarios.

Keeping the WiFi interface on incurs a maintenance en-
ergy, as we observe in our measurement study (see Table 1).
Therefore, our algorithm switches the WiFi interface off x
seconds after a transfer if no data packet arrives. We estimate
x as the ratio of the energy required for scanning/association
and the per-second maintenance energy.

When WiFi is always available, the energy consumption is
10 times lower compared to Default and more than 4 times
lower compared to TailEnder for all three applications. Even
when WiFi is available only 50% of the time, sending data
over WiFi reduces energy consumption by 3 times compared
to Default for all three applications. Previous works [21] do
not observe such substantial energy savings when using WiFi
to augment cellular networks. The primary reason is that pre-
vious studies are based on the GSM network. However, 3G
consumes more energy than WiFi, even when accounting for
the WiFi scan and association costs. Therefore, opportunistic
usage of WiFi can provide substantial energy benefits.

5.3 Experiments on the mobile phone
We conduct data transfer experiments on the phone using

application-level traces. We convert an application trace
into a sequence of transfers S = {< s1, a1 >, < s2, a2 >
, · · · , < sn, an >}, such that data of size si is downloaded
by the mobile phone at time ai. Then, from a fully charged

state, we repeatedly run this sequence of transfers until the
battery drains completely.

We run two sequences of transfer, one generated by TailEn-
der and the other by Default. Given an application trace,
TailEnder schedules the transfers according to whether the
application is delay tolerant or can benefit from prefetching.
Default schedules transfers as they arrive. We conduct the
experiments for two applications: downloading Tech news
feeds and Web search. For the news feed application, the
metric is the number of stories downloaded and for Web
search the metric is the number of queries for which all user
requested documents were delivered.

Table 4 shows the results of the news feeds experiment.
TailEnder downloads more than 60% news feed updates com-
pared to Default, and the total size of data downloaded by
protocol increases from 127 MB to 240 MB providing a
47% improvement. Our model-based evaluation showed that
for the Tech news feed, TailEnder reduces energy by 52%
compared to Default.

Default TailEnder
Stories 1411 3900

Total transfer size 127 MB 240 MB

Table 4: News feeds experiment. TailEnder downloads
more than twice as many news feeds compared to De-
fault

Table 5 shows results for the Web search experiment. By
prefetching, TailEnder sends responses to 50% more queries
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Figure 22: News feed. Vertical
bars show 95% confidence interval
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Figure 23: E-mail. Vertical bars
show 95% confidence interval
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Figure 24: Web Search. Vertical
bars show 95% confidence interval
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Figure 20: Web search: Energy im-
provement using TailEnder for Web
search over 3G and GSM
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Figure 21: Web search: CDF of the
Energy improvement using TailEn-
der for each query

for the same amount of energy and the average number of
transfers decreases by 45%. Prefetching is energy efficient,
even though it sends ten times more data for each transfer
on an average. Our model-driven evaluation showed that for
Web search, TailEnder decreases energy consumption by 40%
compared to Default.

Default TailEnder
Queries 672 1011

Documents 864 10110
Transfers 1462 1011

Average transfers per query 9.3K 147.5K

Table 5: Web search experiment. TailEnder downloads
50% more queries compared to Default

6. CONCLUSIONS

Energy on mobile phones is a precious resource. As phones
equipped with multiple wireless technologies such as 3G,
GSM, and WiFi become commonplace, it is important to
understand their relative energy consumption characteristics.
To this end, we conducted a detailed measurement study and
found a significant tail energy overhead in 3G and GSM. We
developed a measurement-driven model of energy consump-
tion of network activity for each technology.

Informed by the model, we develop TailEnder, a protocol
that provably minimizes energy consumption while meeting
user-specified delay-tolerance deadlines. For applications
that can benefit from prefetching, TailEnder aggressively
prefetches data, including potentially useless data, and yet
reduces the overall energy consumed. We evaluate the perfor-
mance of TailEnder for three case study applications—email,
news feeds, and web search—based on real user logs and
find significant savings in energy in each case. Experiments
conducted on the mobile phone shows that TailEnder can
download 60% more news feed updates and download search
results for more than 50% of web queries, compared to using
the default policy. Our model-driven simulation shows that
TailEnder can reduce energy by 35% for email applications,
52% for news feeds and 40% for web search.

APPENDIX
Here we provide optimality analysis for TailEnder. We first
prove that any online algorithm can at most be 1.28 com-
petitive with an optimal offline algorithm. Next, we prove
that the online algorithm TailEnder(SCHED) we describe in
Figure 10 achieves this competitive ratio;

Let OPT be an optimal adversary that has complete knowl-
edge of packet arrivals. OPT schedules transmissions to
minimize Z, the time spent by the mobile device in the high
power state. Let T be the Tail time.

THEOREM 1. Any online algorithm ALG can at most be
1.28-competitive with the offline adversary, OPT, with respect
to the time spent in the high energy state.

PROOF. We prove the theorem by constructing the offline
adversary, OPT, that incrementally generates new requests
after observing the actions of ALG. OPT generates a new
request at time x · T after the ALG schedules a previous
request. We show that Z(ALG)

Z(OPT ) is maximized when x is set to
0.57; in other words, when OPT generates a new request at
0.57T after ALG schedules a request, OPT can force the ALG
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schedule to remain in the high power state for the longest
time compared to its own schedule.

Let the first request be r1 = (a1, d1) and let both ALG
and OPT schedule to transmit r1 at time s1. As a first step,
OPT generates a second request r2 = (a2, d2), where a2 =
s1 + x · T and d2 � T .

ALG can schedule r2 in the following ways:
Choice 1: If ALG schedules r2 at a2, ALG remains in

the high power state for x · T time units. In response, OPT
generates a third request r3 = (a3, d3) such that a3 = d2.
OPT schedules the transmission of r2 and r3 at d2. Therefore
Z(OPT ) = 2T . ALG is forced to schedule r3 at some time
between a3 and d3, incurring an overhead of T . In total,
Z(ALG) = (2 + x) · T and Z(OPT ) = 2T .

Choice 2: If ALG schedules r2 at d2, OPT schedules r2

at a2 and generates no more requests. Therefore Z(ALG) =
2T while Z(OPT ) = (1 + x) · T .

Choice 3: If ALG schedules r2 at time s2, where a2 <
s2 < d2, OPT generates a third request r3 = (a3, d3) such
that a3 = d2 (as in Choice 1). Thus, using the same argument
as Choice 1, Z(OPT ) = 2T , while Z(ALG) ≥ (2 + x) · T .

The competitive ratio for the different choices is

Z(ALG)
Z(OPT )

=
2 + x

2
(Choices 1 & 3)

=
2

(1 + x)
(Choice 2) (1)

The lower bound of the competitive ratio is min( 2+x
2 , 2

(1+x) ).
We compute the value of x that maximizes the lower bound
of the competitive ratio by solving:

2 + x

2
=

2
(1 + x)

(2)

Solving Eq. 2, we get x = 0.57 and plugging it in Eq. 1,
we get Z(ALG)

Z(OPT ) = 1.28; i.e., when OPT introduces a new
request at time 0.57T after the previous schedule, ALG is
forced to be in the high energy state 1.28 times longer than
OPT for any choice it makes. If x > 0.57, then ALG can
schedule according to Choice 2 and reduce the competitive
ratio to less than 1.28. Similarly, if x < 0.57, then ALG can
schedule according to Choice 1 and reduce the competitive
ratio.

In summary, OPT can generate new requests such that
ALG is forced to be in the high energy state 1.28 times longer
than OPT. Therefore any online algorithm ALG can at most
be 1.28 competitive with an offline adversary.

THEOREM 2. SCHED is 1.28-competitive with the offline
adversary OPT with respect to the time spent in the high
energy state.

PROOF. Let the set of incoming requests be r1, r2 · · · rm.
Construction: We first construct a sequence S =

{a′1, d′1, a′2, d′2 · · · } as follows. a′i is the arrival time of a
request ri that occurs after the previous deadline d′i−1 such

Time

a′
1

a′
2 d′

2d′
1

< T > T

a′
k+1a′

k d′
kd′k−1

Figure 25: Construction for Theorem 2.

that, of all arrivals that occur after d′i−1, a′i has the earliest
deadline. The deadline for ri is d′i+1. By definition, the
sequence S is an alternating sequence of a′i and d′i. Figure 25
shows an example construction.

Let a′k be the first arrival time, such that a′k−1 occurs more
than T time units after a′k. If no such request exists, then we
set a′k to be the last arrival time in the sequence.

It is easy to show that both SCHED and OPT schedule the
first request at its deadline. For simplicity, let the first request
be scheduled at time 0.

Claim 1: Z(OPT ) ≥ a′k + T
Since an arrival a′j is at most T time units from the subse-

quent arrival a′j+1 for j < k, the interspersed deadlines are
also at most T time units apart. The first request is scheduled
at its deadline. Therefore, the schedule of the first request and
the deadline of the second request are at most T time units
apart, and so on. This implies that the device remains in the
high power state at least until a′k. The request that arrives at
a′k is scheduled after its arrival, and remains in the high power
state for at least T time units. Therefore, Z(OPT ) ≥ a′k +T .

Claim 2: Z(SCHED) ≤ a′k + 1.43T .
Two cases can occur.
Case 1: If a′k < d′k−1 + 0.57T , SCHED transmits the

request rk, and Z(SCHED) = a′k + T
Case 2: If a′k > d′k−1 + 0.57T , then SCHED transfers

request rk at its deadline d′k−1, and remains in the high energy
state for at most T time units. SCHED schedules the first
k− 1 requests and incurs an overhead of at most a′k + 0.43T .
Note that the latest that SCHED can schedule request rk−1

is at its deadline d′k−1. Since, a′k is at a distance of at least
0.57T from d′k−1, the device remains in the high power state
for at most 0.43T time units after a′k. Adding together, we
get Z(SCHED) ≤ a′k + 1.43T .

If Case 1 occurs Z(OPT ) = Z(SCHED).
If Case 2 occurs, note that a′k ≥ 0.57T , since a′k is at least

0.57T time units from d′k−1. Therefore, Z(SCHED) ≤
0.57T + 1.43T and Z(OPT ) ≥ 0.57T + T and Z(SCHED)

Z(OPT )

is at most 1.28. We can repeat this argument for requests
from rk+1, · · · rm.

Therefore, SCHED is 1.28 competitive with OPT.
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