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Abstract

The high replication cost of Byzantine fault-tolerance
(BFT) methods has been a major barrier to their
widespread adoption in commercial distributed applica-
tions. We present ZZ, a new approach that reduces the
replication cost of BFT services from 2f+1 to practically
f+1. The key insight in ZZ is to use f+1 execution repli-
cas in the normal case and to activate additional replicas
only upon failures. In shared hosting data centers where
multiple applications share a physical server, ZZ reduces
the aggregate number of execution replicas running in the
data center, thereby improving throughput and response
times. ZZ relies on virtualization—a technology already
employed in modern data centers—for fast replica acti-
vation upon failures, and enables newly activated replicas
to immediately begin processing requests by fetching state
on-demand. A prototype implementation of ZZ using the
BASE library and Xen shows that, when compared to a
system with 2f + 1 replicas, our approach yields lower
response times and up to 33% higher throughput in a
prototype data center with four BFT web applications.
We also show that ZZ can handle simultaneous failures
and achieve sub-second recovery.

1 Introduction

Today’s enterprises rely on data centers—server and
storage farms—to run their critical business applica-
tions. As users have become increasingly dependent on
online services, malfunctions have become highly prob-
lematic, resulting in financial losses, negative public-
ity, or frustrated users. Consequently, maintaining high
availability of critical services is a pressing need as well
as a challenge.

Byzantine fault tolerance (BFT) is a powerful repli-
cation approach for constructing highly-available ser-
vices that can tolerate arbitrary (Byzantine) faults.
This approach requires replicas to agree upon the or-
der of incoming requests and process every request in
the agreed upon order. Despite numerous efforts to im-
prove the performance or fault scalability of BFT sys-
tems [3, 7, 14, 22, 26, 1], existing approaches remain ex-
pensive, requiring at least 2f +1 replicas to execute each

request in order to tolerate f faults [14, 28]. This high
replication cost has been a significant barrier to their
adoption—to the best of our knowledge, no commercial
data center application uses BFT techniques today, de-
spite the wealth of research in this area.

Many recent efforts have focused on optimizing the
agreement protocol used by BFT replicas [7, 14]; con-
sequently, today’s state-of-the-art protocols can scale to
a throughput of 80,000 requests/s and incur overheads
of less than 10 µs per request for reaching agreement
[14]. In contrast, request execution overheads for typical
applications such as web servers and databases [26] can
be in the order of milliseconds or tens of milliseconds—
three orders of magnitude higher than the agreement
cost. Since request executions dominate the total cost
of processing requests in BFT services, the hardware
(server) capacity needed for request executions will far
exceed that for running the agreement protocol. Hence,
we argue that the total cost of a BFT service can be
truly reduced only when the total overhead of request
executions, rather than the cost to reach agreement, is
somehow reduced.

In this paper, we present ZZ, a new approach that re-
duces the cost of replication as well as that of request ex-
ecutions in BFT systems. Our approach enables general
BFT services to be constructed with a replication cost
close to f +1, halving the 2f +1 or higher cost incurred
by state-of-the-art approaches [28]. ZZ targets shared
hosting data center environments where replicas from
multiple applications can share a physical server. The
key insight in ZZ1 is to run only f +1 execution replicas
per application in the graceful case where there are no
faults, and to use additional sleeping replicas that get ac-
tivated only upon failures. By multiplexing fewer repli-
cas onto a given set of shared servers, our approach is
able to provide more server capacity to each replica, and
thereby achieve higher throughput and lower response
times for request executions. In the worst case where
all applications experience simultaneous faults, our ap-
proach requires an additional f replicas per application,
matching the overhead of the 2f + 1 approach. How-
ever, in the common case where only a subset of the
data center applications are experiencing faults, our ap-

1Denotes sleeping replicas; from the sleeping connotation of the
term “zz..”
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proach requires fewer replicas in total, yielding response
time and throughput benefits. Like [28], our system still
requires 3f + 1 agreement replicas; however, we have
argued the overhead imposed by agreement replicas is
small, allowing such replicas from multiple applications
to be densely packed onto physical servers.

The ability to quickly activate additional replicas
upon fault detection is central to our ZZ approach.
While any mechanism that enables fast replica activa-
tion can be employed in ZZ, in this paper, we rely upon
virtualization—a technique already employed in modern
data centers—for on-demand replica activation.

This paper makes the following contributions. First,
we propose a practical solution to reduce the cost of BFT
to f+1 execution replicas. ZZ leverages virtualization for
fast replica activation and optimizes the recovery proto-
col to allow additional newly-activated replicas to imme-
diately begin processing requests through an amortized
state transfer strategy. Second, we implement a proto-
type of ZZ by enhancing the BASE library and combin-
ing it with the Xen virtual machine and the ZFS file
system. We evaluate our prototype using a BFT web
server and a ZZ-based NFS file server. Our experimen-
tal results demonstrate the following benefits. (1) In a
prototype data center running four BFT web servers,
ZZ’s use of only f +1 execution replicas in the fault-free
case yields response time and throughput improvements
of up to 66% and 33%, when compared to systems using
3f + 1 (BASE) and 2f + 1 replicas, respectively. (2) In
the presence of failures, after a short recovery period, ZZ
performs as well or better than 2f + 1 replication and
still outperforms BASE’s 3f +1 replication. (3) The use
of paused virtual machine replicas and on-demand state
fetching allows ZZ to achieve sub-second recovery times.
(4) Techniques such as batching proposed to optimize the
agreement protocol have no significant benefits for BFT
applications with non-trivial request execution costs, re-
gardless of whether ZZ or another system is used.

The rest of this paper is structured as follows. Section
2 gives a background on BFT and the design of ZZ is
described in Sections 3 and 4. Sections 5 and 6 describes
the ZZ implementation and evaluation. Related work is
presented in Section 7 and Section 8 concludes the paper.

2 State-of-the-art vs. the Art of
ZZ

In this section, we give an overview of the benefits of ZZ
in comparison to state-of-the-art approaches. As sepa-
ration of agreement and execution [28] is critical to ZZ’s
design, we first explain how this idea reduces the execu-
tion replication cost of BFT from 3f + 1 to 2f + 1.

client client

Q

R1 . . . Rf+1

Q R

[i, Q]

[i, R1], . . . , [i, Rf+1]

3f+1 replicas for 
agreement + execution 2f+1 execution replicas
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machines

Figure 1: The PBFT approach versus the separation of
agreement from execution.

2.1 From 3f+1 to 2f+1

In the traditional PBFT approach [3], during graceful
execution, a client sends a request Q to the replicas.
The 3f + 1 (or more) replicas agree upon the sequence
number corresponding to Q, execute it in that order, and
send responses back to the client. When the client re-
ceives f + 1 valid and matching responses R1, . . . , Rf+1

from different replicas, it knows that at least one correct
replica executed Q in the correct order. Figure 1 illus-
trates how the principle of separating agreement from
execution can reduce the number of execution replicas
required to tolerate up to f faults from 3f +1 to 2f +1.
In this separation approach [28], the client sends Q to
a primary in the agreement cluster consisting of 3f + 1
lightweight machines that agree upon the sequence num-
ber i corresponding to Q and send [Q, i] to the execu-
tion cluster consisting of 2f + 1 replicas that store and
process application state. When the agreement cluster
receives f + 1 matching responses from the execution
cluster, it forwards the response to the client knowing
that at least one correct execution replica executed Q in
the correct order. For simplicity of exposition, we have
omitted cryptographic operations above.

2.2 Circumventing 2f+1

The 2f+1 replication cost is believed necessary [14, 7, 1]
for BFT systems. For example, Zyzzyva (refer Table 1 in
[14]) claims that 2f + 1 is a lower bound on the number
of replicas with application state for state machine repli-
cation (SMR). However, more than a decade ago, Castro
and Liskov concluded their original paper on PBFT [3]
saying “it is possible to reduce the number of copies of
the state to f + 1 but the details remain to be worked
out”. In this paper, we work out those details.

Table 1 shows the replication cost and performance
characteristics of existing BFT approaches, including
non-SMR approaches based on quorums, in comparison
to ZZ. All listed numbers are for gracious execution, i.e.,
when there are no faults and the network is well-behaved.
Note that all approaches require at least 3f+1 replicas in
order to tolerate up to f independent Byzantine failures,
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PBFT’99 [3] SEP’03 [28] Q/U’05 [1] HQ’06 [7] Zyzzyva’07 [14] ZZ

Agreement replicas 3f + 1 3f + 1 N/A 3f + 1 3f + 1 3f + 1

Execution replicas 3f + 1 2f + 1 5f + 1 3f + 1 2f + 1 (1 + r)f + 1

Total 1-way network
delays

4 4 2 4 3 4

WAN round-trip de-
lays (W)

1 1 1 2 1 1

Bottleneck agreement
MACs per request (µ)

2 + 8f+1
b

2 + 12f+3
b

2 + 8f 4 + 4f 2 + 3f
b

2 + 10f+3
b

Peak throughput ≤
min of

( 1
(3f+1)E

, 1
2µ

) ( 1
(2f+1)E

, 1
2µ

) ( 1
(3f+1)E

, 1
(2+8f)µ

) ( 1
(2f+1)E

, 1
(4+4f)µ

) ( 1
(2f+1)E

, 1
2µ

) ( 1
(f+1)E

, 1
2µ

)

Client-perceived
latency ≥

W + E W + E W + E 2W + E W + E W + E

Table 1: ZZ versus existing BFT approaches. Here, f is the number of allowed faults, r � 1 is a configurable
variance parameter formally defined in §4.7.3, and b is the batch size. The quantities W , µ, and E all have the units
of seconds. All numbers are for periods when there are no faults and the network is well-behaved.

consistent with classical results that place a lower bound
of 3f +1 replicas for a safe Byzantine consensus protocol
that is live under weak synchrony assumptions [9].

In contrast to common practice, we do not measure
replication cost in terms of the total number of physical
machines as we assume a virtualized environment that
is common in many data centers today. Virtualization
allows resources to be allocated to a replica at a granular-
ity finer than an entire physical machine. Virtualization
itself is useful in multiplexed environments, where a data
center owner hosts many services simultaneously for bet-
ter management of limited available resources. Note that
virtualization helps all BFT approaches, not just ZZ, in
multiplexed environments. To appreciate this, consider a
data center owner with S physical servers seeking to host
N services. Without virtualization, a BFT approach can
support at most N = S/(3f + 1) services, even though
each replica may be using only a small portion of a phys-
ical server’s resources. However, if each physical server
can support K virtual service replicas, then the data
center can support up to N = KS/(3f + 1) services.
Conversely, for a given N , the provisioning cost incurred
by a data center is at least S = N(3f +1) without virtu-
alization, but just S = N(3f +1)/K with virtualization.

Cost: Our position is that execution, not agreement,
is the dominant provisioning cost for most realistic data
center services that can benefit from the high assurance
provided by BFT. To put this in perspective, consider
that state-of-the-art BFT approaches such as Zyzzyva
show a peak throughput of over 80K requests/second
for a toy application consisting of null requests, which is
almost three orders of magnitude more than the achiev-
able throughput for a database service on comparable
hardware [26]. ZZ nearly halves the provisioning cost for
the data center by nearly halving the number of replicas
actively executing requests (Table 1 row 2).

Latency: Wide-area network (WAN) delays (de-

noted by W) and execution latency (E) dominate client-
perceived response times. Although ZZ like SEP, incurs
two additional one-way LAN delays (row 3) on the crit-
ical path compared to the optimal (Q/U for a workload
with low contention), all approaches except HQ incur
just one WAN round-trip propagation delay. Account-
ing for WAN transmission delays for large requests or re-
sponses further elides the difference between different ap-
proaches with respect to client-perceived response times
(row 7).

Throughput: ZZ can achieve a higher peak through-
put compared to state-of-the-art approaches when exe-
cution dominates request processing cost (row 6). For
a fair comparison, assume that all approaches are pro-
visioned with the same total amount of resources, say
unity. Then, the peak throughput of each approach
is bounded by the minimum of its best-case execu-
tion throughput and its best-case agreement throughput.
Agreement throughput is primarily limited by the over-
head µ of a MAC operation and can be improved signif-
icantly through batching for all approaches except Q/U
and HQ. However, batching is immaterial to the overall
throughput when execution is the bottleneck. All SMR-
based approaches except HQ must execute requests se-
quentially in order to preserve the semantics of a general
SMR service.

Q/U relaxes SMR semantics to that of an object read-
write system and can leverage the throughput benefits
of concurrent execution at the expense of more (5f + 1)
active replicas. HQ combines the benefits of quorum-
based approaches with SMR-based approaches using a
preferred quorum of size 2f + 1 and a total of 3f + 1
replicas. Note that 1/((2f + 1)E) is an upper bound on
HQ’s execution throughput; the remaining f + 1 active
replicas must still participate in state transfer operations
for each request. Although HQ does not explicitly sep-
arate agreement and execution in the sense of SEP, HQ
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reverts to a PBFT-like protocol when a client can not
gather sufficient responses from the preferred quorum,
so it is listed as having 3f + 1 agreement replicas.

The comparison above is for performance of different
protocols during periods when there are no faults and
the network is well-behaved. With faults or long un-
predictable network delays, the throughput and latency
of all approaches can degrade significantly and a thor-
ough comparison is nontrivial and difficult to character-
ize concisely [24, 6]. For example, a very recent paper
[6] shows that faulty clients can abuse MACs and cause
service unavailability in PBFT and Zyzzyva by forcing
repeated view changes. However, this attack technically
impacts the agreement protocol, not the execution proto-
col. ZZ’s current implementation being based on PBFT
is also vulnerable to such attacks, but can in principle be
addressed using similar fixes to the agreement protocol
[6].

When failures occur, ZZ incurs a higher latency to
execute some requests until its failure recovery proto-
col is complete. Our experiments suggest that this ad-
ditional overhead is modest and is small compared to
typical WAN delays. In a world where failures are the
uncommon case, ZZ offers valuable savings in replication
cost or, equivalently, improvement in throughput under
limited resources.

ZZ is not a new “BFT protocol” as that term is typ-
ically used to refer to the agreement protocol; instead,
ZZ is an execution approach that can be interfaced with
existing BFT-SMR agreement protocols. Our prototype
uses the BASE implementation of the PBFT protocol
as it was the most mature and readily available BFT
implementation at the time of writing. The choice was
also motivated by our premise that we do not seek to
optimize agreement throughput, but to demonstrate the
feasibility of the ZZ’s execution approach with a reason-
able agreement protocol. Admittedly, it was easier to
work out the details of augmenting ZZ to PBFT com-
pared to more sophisticated agreement protocols.

3 ZZ design

In this section, we present our system and fault model,
followed by an overview of the ZZ design.

3.1 System and Fault Model

We assume a Byzantine failure model where faulty repli-
cas or clients may behave arbitrarily. There are two
kinds of replicas: 1) agreement replicas that assign an
order to client requests and 2) execution replicas that
maintain application state and execute client requests.
Replicas fail independently, and we assume an upper
bound g on the number of faulty agreement replicas and
a bound f on the number of faulty execution replicas in

a given window of vulnerability. We initially assume an
infinite window of vulnerability, and relax this assump-
tion in Section 4.7. An adversary may coordinate the
actions of faulty nodes in an arbitrary malicious manner.
However, the adversary can not subvert standard cryp-
tographic assumptions about collision-resistant hashes,
encryption, and digital signatures.

Our system uses the state machine replication (SMR)
model to implement a BFT service. Replicas agree on an
ordering of incoming requests and each execution replica
executes all requests in the same order. Like all previous
SMR based BFT systems, we assume that either the ser-
vice is deterministic or the non-deterministic operations
in the service can be transformed to deterministic ones
via the agreement protocol [3, 14, 28, 22].

Our system ensures safety in an asynchronous net-
work that can drop, delay, corrupt, or reorder messages.
Liveness is guaranteed only during periods of synchrony
when there is a finite but possibly unknown bound on
message delivery time. The above system model and as-
sumptions are similar to those assumed by many existing
BFT systems [3, 14, 28, 22].

Virtualization: ZZ assumes that replicas are being
run inside virtual machines. As a result, it is possible
to run multiple replicas on a single physical server. To
maintain the fault independence requirement, no more
than one agreement replica and one execution replica of
each service can be hosted on a single physical server.

ZZ assumes that the hypervisor may be Byzantine.
Because of the placement assumption above, a malicious
hypervisor is equivalent to a single fault in each service
hosted on the physical machine. As before, we assume
a bound f on the number of faulty hypervisors within a
window of vulnerability. We note that even today suf-
ficient hypervisor diversity (e.g., Xen, KVM, VMWare,
Hyper-V) is available to justify this assumption.

3.2 ZZ Design Overview

ZZ reduces the replication cost of BFT from 2f + 1 to
nearly f + 1 using virtualization based on two simple
insights. First, if a system is designed to be correct in
an asynchronous environment, it must be correct even if
some or all replicas are arbitrarily slow. Second, during
fault-free periods, a system designed to be correct de-
spite f Byzantine faults must be unaffected if up to f
replicas are turned off. ZZ leverages the second insight
to turn off f replicas during fault-free periods requiring
just f + 1 replicas to actively execute requests. When
faults occur, ZZ leverages the first insight and behaves
exactly as if the f standby replicas were slow but correct
replicas.

If the f + 1 active execution replicas return matching
responses for an ordered request, at least one of these
responses, and by implication all of the responses, must
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Figure 2: Various scenarios in the ZZ system for f = 2 faults. Request 22 results in matching responses γ, but the
mismatch in request 23 initiates new virtual machine replicas on demand.

be correct. The problematic case is when the f + 1 re-
sponses do not match. In this case, ZZ starts up ad-
ditional virtual machines hosting standby replicas For
example, when f = 1, upon detecting a fault, ZZ starts
up a third replica that executes the most recent request.
Since at most one replica can be faulty, the third re-
sponse must match one of the other two responses, and
ZZ returns this matching response to the client. Figure
2 illustrates the high-level control flow for f = 2. Re-
quest 22 is executed successfully generating the response
γ, but request 23 results in a mismatch waking up the
two standby VM replicas. The fault is resolved by com-
paring the outputs of all 2f + 1 replicas, revealing α as
the correct response.

The above design would be impractical without a
quick replica wake-up mechanism. Virtualization pro-
vides this mechanism by maintaining additional replicas
in a “dormant” state. Additional replicas can be stored
in memory as prespawned but paused VMs; unpausing a
VM simply requires scheduling it on the CPU causing it
to become active within milliseconds. Replicas can also
be hibernated to disk if longer recovery times are accept-
able and memory becomes a bottleneck resource across
the data center. ZZ supports a mix, allowing for some
(e.g., important) VMs to be paused in memory and the
rest to hibernate on disk, as shown in Figure 3.

3.3 Design Challenges

The high-level approach described above raises several
further challenges. First, how does a restored replica
obtain the necessary application state required to exe-
cute the current request? In traditional BFT systems,
each replica maintains an independent copy of the entire
application state. Periodically, all replicas checkpoint
their application state and discard the sequence of re-
sponses before a stable checkpoint. The checkpoint is
also used to bring up to speed a slow replica that has
missed several previous checkpoints by transferring the
entire application state to the slow replica. However, a
restored ZZ replica may not have any previous version of

VM
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Hypervisor 1

VM
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VM

B3

VM

A2

Hypervisor 2

VM

B1

VM

C3

VM

B2

Hypervisor 3

VM

C1 VM

A3

active VM paused VM hibernated 
VM

Figure 3: An example server setup with three fault tol-
erant applications, A, B, and C; only execution replicas
are shown.

application state. It must be able to verify that the state
is correct even though there may be only one correct ex-
ecution replica (and f faulty ones), e.g., when f = 1, the
third replica must be able to determine which of the two
existing replicas possess the correct state.

Second, transferring the entire application state can
take an unacceptably long time. In existing BFT sys-
tems, a recovering replica may generate incorrect mes-
sages until it obtains a stable checkpoint. This inconsis-
tent behavior during checkpoint transfer is treated like a
fault and does not impede progress of request execution
if there is a quorum of f + 1 correct execution replicas
with a current copy of the application state. However,
when a ZZ replica recovers, there may exist just one cor-
rect execution replica with a current copy of the applica-
tion state. The traditional state transfer approach can
stall request execution in ZZ until f recovering replicas
have obtained a stable checkpoint.

Third, ZZ’s replication cost must be robust to faulty
replica or client behavior. A faulty client must not be
able to trigger recovery of standby replicas. A compro-
mised replica must not be able to trigger additional re-
coveries if there are at least f + 1 correct and active
replicas. If these conditions are not met, the replication
cost savings would vanish and system performance can
be worse than a traditional BFT system using 2f + 1
replicas.

4 ZZ Protocol

This section presents the main components of the ZZ
protocol for (i) graceful execution, (ii) checkpointing,
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(iii) fault detection and replica recovery, and (iv) amor-
tized state transfer, followed by a discussion of ZZ’s
safety and liveness properties. The notation 〈label, X〉i
denotes the message X of type label digitally signed by
node i. We indicate the digest of message X as X.

4.1 Graceful Execution

4.1.1 Client Request

A client c sends a request 〈request, o, t, c〉c to the agree-
ment cluster to submit an operation o with a timestamp
t to the service. The timestamps ensure exactly-once se-
mantics for execution of client requests as they enforce
a total order across all requests issued by the client. A
correct client uses monotonically increasing timestamps,
e.g., the value of the client’s local clock, and a faulty
client’s behavior does not affect other clients’ requests.
After issuing the request, the client waits for a response
certified by at least f + 1 execution replicas.

4.1.2 Agreement

Upon receiving a client request Q = 〈request, o, t, c〉c,
the agreement replicas execute an agreement proto-
col and commit a sequence number to the request.
Each agreement replica j sends a commit message
〈commit, v, n, j,Q〉j that includes the view v and the
sequence number n to all execution replicas. If the agree-
ment replicas use the standard three-phase BFT agree-
ment protocol [3], this commit message is the same as
that sent to other agreement replicas in the third phase,
so the transmission to the execution replicas is combined
with the third phase of the agreement protocol.

4.1.3 Execution

An execution replica i executes a request Q when it
gathers a commit certificate {〈commit, v, n, j,Q〉j}, j ∈
A|2g + 1, i.e., a set of 2g + 1 valid and matching com-
mit messages from the agreement cluster, and it has ex-
ecuted all other requests with a lower sequence num-
ber. Let R denote the response obtained by execut-
ing Q. Replica i sends an execution report message
〈exec-report, n, i, R〉i containing the digest of the re-
sponse to the agreement cluster. Replica i also sends
a response message 〈reply, v, t, c, i, R〉i directly to the
client.

In the normal case, the client receives a response cer-
tificate, i.e., a set of responses {〈reply, v, t, c, i, R〉i}, i ∈
E|f +1, from the execution cluster. Since at most f exe-
cution replicas can be faulty, a client receiving a response
certificate knows that the response is correct.

4.1.4 Client Timeout

If a client does not receive a response certificate within a
predetermined timeout, it retransmits the request mes-
sage to the agreement and execution clusters until it ob-
tains a correct response. If the client continues to re-
transmit the request each successive timeout, the agree-
ment cluster will eventually commit a sequence number
to the request [3]. A client can receive a correct response
to a retransmitted request in two ways as follows.

If an agreement replica j receives a retransmitted
request and it has received an execution certificate,
i.e., a set of messages {〈exec-report, n, i, R〉i}, i ∈
E|f + 1, from the execution cluster, it sends a
〈reply-affirm, v, t, c, j, R〉j message to the client.
An affirmation certificate for R is a set of mes-
sages {〈reply-affirm, v, t, c, j, R〉j}, j ∈ A|g + 1, re-
ceived from the agreement cluster and at least one re-
sponse 〈reply, v, t, c, i, R〉i, i ∈ E, received from any ex-
ecution replica. A client considers a response as correct
if it obtains either a response certificate or an affirmation
certificate for the response.

4.2 Checkpointing

Execution replicas periodically construct checkpoints of
application state. The checkpoint serves two purposes.
First, it enables execution replicas that were just started
or that fell behind to obtain a recent consistent copy of
the application state. Second, it enables agreement repli-
cas to garbage collect their pending logs for requests
that have completed execution. The checkpoints are
constructed at predetermined request sequence numbers,
e.g., when it is exactly divisible by 1024.

An execution replica i generates a checkpoint
and sends a 〈checkpoint, n, i, C〉i to all other ex-
ecution replicas as well as all agreement repli-
cas. A checkpoint certificate is a set of messages
{〈checkpoint, n, i, C〉i}, i ∈ E|f + 1. When an ex-
ecution replica receives a checkpoint certificate with a
sequence number n, it considers the checkpoint as sta-
ble and discards earlier checkpoints and request commit
certificates with lower sequence numbers that it received
from the agreement cluster. When an agreement replica
receives a checkpoint certificate with sequence number n
and it has received execution certificates for all requests
with lower sequence numbers, it discards all messages in
its log with lower sequence numbers.

4.3 Fault Detection

The agreement cluster is responsible for detecting faults
in the execution cluster. In the normal case, an agree-
ment replica j waits for an execution certificate, i.e.,
a set of messages {〈exec-report, n,R〉i}, i ∈ E|f + 1,
for each request from the execution cluster. Replica j
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inserts this certificate into a local log ordered by the
sequence number of requests. When j does not ob-
tain an execution report certificate for a request within
a predetermined timeout, j sends a recovery request
〈recover, j, n〉j to a subset of the hypervisors control-
ling the f standby execution replicas. The number of
recovery requests issued by an agreement replica is at
least as large as f + 1 minus the size of the smallest set
of valid and matching execution reports for the request
that triggered the recovery.

When the hypervisor of an execution replica i receives
a recovery certificate {〈recover, j, n〉j}, j ∈ A|g + 1
from the agreement cluster, it starts up the local exe-
cution replica.

4.4 Replica Recovery

When an execution replica k starts up, it neither has any
application state nor a pending log of requests. Replica
k’s situation is similar to that of a long-lost replica that
may have missed several previous checkpoints and wishes
to catch up in existing BFT systems [3, 22, 28, 14]. Since
these systems are designed for an asynchronous environ-
ment, they can correctly re-integrate up to f such re-
covering replicas provided there are at least f + 1 other
correct execution replicas. The recovering replica must
obtain the most recent checkpoint of the entire applica-
tion state from existing replicas and verify that it is cor-
rect. Unfortunately, checkpoint transfer and verification
can take an unacceptably long time for applications with
a large state. Worse, unlike previous BFT systems that
can leverage copy-on-write techniques and incremental
cryptography schemes to transfer only the objects mod-
ified since the last checkpoint, a recovering ZZ replica
has no previous checkpoints.

To reduce recovery latency, ZZ uses a recovery scheme
that amortizes the cost of state transfer across many re-
quests. A recovering execution replica k first obtains an
ordered log of committed requests since the most recent
checkpoint from the agreement cluster. Let m denote
the sequence number corresponding to the most recent
checkpoint and let n ≥ m + 1 denote the sequence num-
ber of the most recent request with a valid commit cer-
tificate. Replica k begins to replay in order the requests
in [m + 1, n].

4.5 Amortized State Transfer

How does replica k begin to execute requests without
any application state? Instead of performing an ex-
pensive transfer of the entire state upfront, a recov-
ering ZZ replica fetches and verifies the state neces-
sary to execute each request on demand. After fetch-
ing the pending log of committed requests from the
agreement cluster, k obtains a checkpoint certificate

{〈checkpoint, n, i, C〉i}, i ∈ E|g + 1 from any (execu-
tion or agreement) replica. Replica k also obtains valid
digests for each object in the checkpoint from any execu-
tion replica. The checkpoint digest C is computed over
the digests of individual object digests, so k can verify
that it has received valid objects from a correct replica.

After obtaining the checkpoint certificate and object
digests, replica k begins to execute in order the commit-
ted requests [m + 1, n]. Let Q be the first request that
reads from or writes to some object p since the most re-
cent checkpoint. To execute Q, replica k fetches p on
demand from any execution replica that can provide an
object consistent with p’s digest that k has already veri-
fied. Replica k continues executing requests in sequence
number order fetching new objects on demand until it
obtains a stable checkpoint.

Recovery is complete only when replica k has obtained
a stable checkpoint. Since on-demand fetches only fetch
objects touched by requests, they are not sufficient for k
to obtain a stable checkpoint, so the replica also fetches
the remaining state in the background. With an infinite
window of vulnerability, this optimization is unnecessary.

4.6 Safety and Liveness Properties

We state the safety and liveness properties ensured by
ZZ and outline the proofs. Due to space constraints, we
defer formal proofs to the appendix.

ZZ ensures the safety property that if a correct client
obtains either a response certificate or an affirmation cer-
tificate for a response 〈reply, v, t, c, j, R〉j , then 1) the
client issued a request 〈request, o, t, c〉c earlier; 2) all
correct replicas agree on the sequence number n of that
request and on the order of all requests with sequence
numbers in [1, n]; 3) the value of the reply R is the reply
that a single correct replica would have produced if it
started with a default initial state S0 and executed each
operation oi, 1 ≤ i ≤ n, in that order, where oi denotes
the operation requested by the request to which sequence
number i was assigned.

The first claim follows from the fact that the agree-
ment cluster generates valid commit certificates only for
valid client requests and the second follows from the
safety of the agreement protocol [4] that ensures that
no two requests are assigned the same sequence number.
The third claim follows from the fact that, with an infi-
nite window of vulnerability, there is always at least one
correct execution replica as at most f can be faulty.

ZZ ensures the liveness property that if a correct client
sends a request with a timestamp exceeding previous re-
quests and repeatedly retransmits the request, then it
will eventually receive a response certificate or an affir-
mation certificate. We need eventual synchrony to be
show this liveness property. If the client repeatedly re-
transmits the request, then the agreement cluster will
eventually assign a sequence number to the request [4]
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and produce a commit certificate. The existence of at
least one correct execution replica ensures that the client
gets at least one valid (but yet uncertified) response. The
agreement cluster ensures that it either obtains an exe-
cution certificate or causes all 2f + 1 execution replicas
to be active eventually. In either case, the agreement
cluster will eventually obtains an execution certificate,
ensuring that the client eventually obtains an affirma-
tion certificate.

4.7 Optimizations

4.7.1 Reducing the Window of Vulnerability

ZZ’s current implementation assumes an infinite window
of vulnerability, i.e., the length of time in which up to
f faults can occur. However, this assumption can be re-
laxed using proactive recovery [4]. By periodically forc-
ing replicas to recover to a known clean state, proactive
recovery allows for a configurable finite window of vul-
nerability. One catch in ZZ is that because it runs only
f +1 execution replicas during correct operation, taking
one down for recovery can render the system unavail-
able. Fortunately, ZZ can exploit virtualization to start
a new VM replica in parallel to the replica being recov-
ered [8], and take down the latter after the new replica
has obtained a stable checkpoint. This technique incurs
no downtime as the replica being (proactively) recovered
is not faulty. For safety to be maintained, the proactive
recovery interval, and therefore the achievable window
of vulnerability, must be at least several times as long
as the maximum time for f replicas to obtain a stable
checkpoint.

4.7.2 Separating State Updates and Execution

ZZ allows for two other straightforward optimizations
during recovery. First, instead of actually replaying the
requests since the most recent stable checkpoint, a recov-
ering replica j can simply apply the writes in sequence
number order while fetching the most recent checkpoint
of the objects being written to on demand. For compute-
intensive applications with infrequent and small writes,
this optimization can significantly reduce recovery la-
tency. However, enabling this optimization using MACs
instead of digital signatures requires coordination with
the agreement cluster. To this end, an execution re-
quest includes a digest of the writes if any performed by
each request in exec-report messages, which allows
the agreement cluster to affirm the sequence of writes
obtained by the recovering replica from (at least one)
correct execution replica. Second, the recovering replica
can jump directly to the request with the sequence num-
ber that caused a fault to be detected. As before, the
replica fetches the objects being read or written to by
each request on demand. If the object was modified by

any request since the most recent stable checkpoint, the
recovering replica just applies the most recent write to
that object before executing the request. This optimiza-
tion amortizes the cost of applying state updates further
reducing the latency penalty experienced by the request
that triggered a fault.

4.7.3 Fault Detection Timeouts

ZZ relies on timeouts to detect faults in execution repli-
cas. This opens up a potential performance vulnerabil-
ity. A low value of the timeout can trigger fault detection
even when the delays are benign and needlessly start
new replicas. On the other hand, a high value of the
timeout can be exploited by faulty replicas to degrade
performance as they can delay sending each response to
the agreement cluster until just before the timeout. The
former can take away ZZ’s savings in replication cost
as it can end up running more than f + 1 (and up to
2f +1) replicas even during graceful periods. The latter
hurts performance under faults. Note that safety is not
violated in either case.

To address this problem, we suggest the following sim-
ple heuristic procedure for estimating timeouts. Upon
receiving the first response to a request committed to se-
quence number n, an agreement replica sets the timeout
τn to Kt1, where t1 is the response time of the first re-
sponse and K is a pre-configured variance bound. If the
agreement replica does not receive f more matching re-
sponses within τn, then it triggers a fault. If the fault was
triggered because of receiving fewer than f responses, it
requests the initiation f new execution replicas. If the
fault was triggered because of receiving f+1 mismatched
responses, the number of new execution replicas that it
requests to be initiated is f + 1 minus the size of the
smallest matching set of responses.

As before, when the new execution replicas have gen-
erated an exec-report for the request that triggered
a fault, an agreement replica requests the shutdown of
1) all existing execution replicas that produced a wrong
response, and 2) randomly chosen (using a procedure
consistent across different agreement replicas) additional
execution replicas so as to keep the number of active ex-
ecution replicas at f + 1.

Lemma 1 If correct execution is guaranteed to return re-
sponses within times varying by at most a factor k, and
a correct agreement replica triggers a fault, then at least
one execution replica is faulty.

Note that a faulty execution replica may instanta-
neously return a garbage response causing a timeout,
but this case trivially satisfies the above lemma. If a
faulty execution replica guessing the right response and
instantaneously returning it is perceived as a credible
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threat, the shutdown strategy above can always choose
to include the execution replica returning the earliest
(correct) response in the second step instead of a purely
random strategy. With this we have,

Lemma 2 If correct execution is guaranteed to return re-
sponses within times varying by at most a factor k, and
a correct agreement replica triggers a fault, at least one
faulty execution replica gets shut down.

In practice, correct execution replicas may sometimes
violate the variance bound due to long but benign execu-
tion or network delays, causing a false timeout. However,
the following lemma bounds the probability of this event
for realistic delay distributions. Suppose the response
times of the f +1 replicas are given by random variables
independently and identically distributed as Ψ. Let Ψ(1)

and Ψ(f+1) be the first and (f + 1)th order statistic, or
the minimum and maximum, of these random variables.

Lemma 3 The probability of a false timeout Π1 is at
most

∫∞
t=0

P[Ψ(1) ≤ t]P[Ψ(f+1) > Kt]dt.

The above lemma can be used to numerically bound
the probability of a false timeout. For example, if Ψ
is exponential with mean 1

λ , then Ψ(1) is also an ex-
ponential with mean 1

(f+1)λ , and Ψ(f+1) is given by
P[Ψ(f+1) < t] = (1− e−λt)f+1.

A faulty replica can potentially inflate response times
by up to a factor of K compared to a fault-free system.
However, the expected value of such delays, referred to
as inordinate delays, is bounded as follows.

Lemma 4 A faulty replica can inordinately delay the re-
sponse time by a factor greater than η with a probability
Π2 that is at most

∫∞
t=0

P [Ψ(1) < t]P [Ψ(f+1) < Kt/η].

Proactive recovery can further limit performance
degradation under faults by limiting the length of time
for which a faulty replica operates undetected. Suppose
each replica is proactively recovered once every R sec-
onds or less. Let the corresponding mean time to failure
be U and the mean time for a newly started replica to
obtain a stable checkpoint be D, both exponentially dis-
tributed. Note that R must be greater than D [4].

Theorem 1 The expected replication cost of ZZ is less
than (1 + r)f + 1, where r = D/U + Π1. Faulty replicas
can inordinately delay requests by a factor η with proba-
bility at most Π2 for a fraction of time fR/U .

Formal proofs for the above claims may be found in the
appendix.

5 ZZ Implementation

We implemented ZZ by enhancing the BASE library so
as to 1) use virtual machines to house and run replicas,
2) incorporate ZZ’s checkpointing, fault detection, rapid
recovery and fault-mode execution mechanisms, and 3)
use file system snapshots to assist checkpointing.

5.1 Replica Control Daemon

We have implemented a ZZ replica control daemon that
runs on each physical machine and is responsible for
starting and stopping replicas after faults are detected.
The control daemon, which runs in Xen’s Domain-0, uses
the certificate scheme described in Section 4.3 to ensure
that it only starts or stops replicas when enough non-
faulty replicas agree that it should do so.

Inactive replicas are maintained in either a paused
state, where they have no CPU cost but incur a small
memory overhead on the system, or hibernated to disk
which utilizes no resources other than disk space. Paused
replicas can be initialized very quickly after a fault. To
optimize the wakeup latency of replicas hibernating on
disk, ZZ uses a paged-out restore technique that exploits
the fact that hibernating replicas initially have no use-
ful application state in memory, and thus can be cre-
ated with a bare minimum allocation of 128MB of RAM
(which reduces their disk footprint and load times). Af-
ter being restored, their memory allocation is increased
to the desired level. Although the VM will immediately
have access to its expanded memory allocation, there
may be an application dependent period of reduced per-
formance if data needs to be paged in.

5.2 Recovery

The implementation of ZZ’s recovery protocol described
in Section 4.4 proceeds in the following steps.
1. Fault Detection: When an agreement replica receives
f + 1 output messages from execution replicas that are
not all identical, it sends wake-up messages to the replica
control daemons on f servers not already hosting execu-
tion replicas for the application.
2. VM Wake-up: When a replica control daemon re-
ceives f + 1 wake-up messages it attempts to “unpause”
a replica if available, and if not, spawns a new VM by
loading a replica hibernated on disk.
3. Checkpoint metadata transfer: A replica upon startup
obtains the log of committed requests, checkpoint meta-
data, and any memory state corresponding the most re-
cent stable checkpoint. The replica also obtain access to
the latest disk snapshots created by all replicas.
4. Replay: The replica replays requests prior to the fault
that modified any application state.
5. On-demand verification: The replica attempts to get
the state required for each request from another replica’s



University of Massachusetts, Technical Report 2009-24 10

Agreement 
Cluster Execution 

Replica

file 1
(1) 

mem
file 2

...
file n

Mem State

(2) 
hash

ZFS

file 3

(3) 
snapshot

(4) 
file hashes

Figure 4: For each checkpoint an execution replica (1)
sends any modified memory state, (2) creates hashes for
any modified disk files, (3) creates a ZFS snapshot, and
(4) returns the list of hashes to agreement nodes.

disk snapshot, and verifies the file contents against the
disk hashes contained in the checkpoint metadata. Upon
retrieving a valid file, the replica copies it to its local disk
and directs all future accesses to that version of the file.
6. Eliminate faulty replicas: With 2f + 1 replies, the
agreement cluster determines which of the original ex-
ecution replicas were faulty. Agreement replicas send
shutdown messages to the replica control daemons list-
ing the replicas to be terminated.

5.3 Exploiting File System Snapshots

Checkpointing in ZZ relies on the existing mechanisms
in the BASE library to save the protocol state of the
agreement nodes and any memory state used by the ap-
plication on the execution nodes. In addition, to effi-
ciently checkpoint disk state of the application, we rely
on the snapshot mechanism supported by modern jour-
naled file systems [29, 20]. Creating disk snapshots is
efficient because copy-on-write techniques prevent the
need for duplicate disk blocks to be created, and the
snapshot overhead is independent of the disk state of
the application. ZZ uses ZFS for snapshot support, and
works with both the native Solaris and user-space Linux
ZFS implementations.

ZZ includes meta-information about the disk state in
the checkpoint so that the recovery nodes can validate
the disk snapshots created by other execution nodes. To
do so, execution replicas create a cryptographic hash
for each file in the disk snapshot and send it to the
agreement cluster as part of the checkpoint certificate
as shown in Figure 4. Hashes are computed only for
those files that have been modified since the previous
epoch; hashes from the previous epoch are reused for
unmodified files to save computation overheads.

Tracking Disk State Changes: The BASE library
requires all state, either objects in memory or files on
disk, to be registered with the library. In ZZ we have
simplified the tracking of disk state so that it can be han-
dled transparently without modifications to the applica-
tion. We define functions bft fopen() and bft fwrite()
which replace the ordinary fopen() and fwrite() calls in
an application. The bft fwrite() function invokes the
modify() call of the BASE library which must be issued
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Figure 5: Experimental setup for a basic ZZ BFT service.

whenever a state object is being edited. This ensures
that any files which are modified during an epoch will
be rehashed during checkpoint creation.

For the initial execution replicas, the bft fopen() call
is identical to fopen(). However, for the additional repli-
cas which are spawned after a fault, the bft fopen call is
used to retrieve files from the disk snapshots and copy it
to the replica’s own disk on demand. When a recovering
replica first tries to open a file, it calls bft fopen(foo),
but the replica will not yet have a local copy of the file.
The recovery replica fetches a copy of the file from any
replica and verifies it against the hash contained in the
most recent checkpoint. If the hashes do not match, the
recovery replica requests the file from a different replica,
until a matching copy is found and copied to its own
disk.

6 Experimental Evaluation

6.1 Experiment Setup

Our experimental data-center setup uses a cluster of 2.12
GHz 64-bit dual-core Dell servers, each with 4GB RAM.
Each machine runs a Xen v3.1 hypervisor and Xen vir-
tual machines. Both domain-0 (the controller domain in
Xen) as well as the individual VMs run the CentOS 5.1
Linux distribution with the 2.6.18 Linux kernel and the
user space ZFS filesystem. All machines are intercon-
nected over gigabit ethernet. Figure 5 shows the setup
for agreement and execution replicas of a generic BFT
app for g = f = 1; multiple such applications are as-
sumed to be run in a BFT data center.

Our experiments involve three fault-tolerant server
applications: a Web Server, an NFS server, and a toy
client-server microbenchmark.

Fault-tolerant Web Server: We have implemented
a BFT-aware HTTP 1.0 Web server that mimics a dy-
namic web site with server side scripting. The request
execution time is configurable to simulate more complex
request processing. We generate web workloads using
httperf clients which contact a local BFT web proxy that
submits the requests to the agreement nodes.

Fault-tolerant NFS: BASE provides an NFS client
relay and a BFT wrapper for the standard NFS server.
We have extended this to support ZZ’s on demand state
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Figure 6: When resources are constrained, ZZ signifi-
cantly increases system throughput by using fewer repli-
cas.

transfer which allows a recovery replica to obtain file
system state from ZFS snapshots as it processes each
request.

Client-Server Microbenchmark: We utilize the
simple client-server application from the BASE library
to measure ZZ’s performance for null requests and to
study it’s recovery costs under different application state
scenarios.

Our experiments compare three systems: ZZ, BASE,
and Separated (SEP). BASE is the standard BFT library
described in [22]. SEP is our extension of BASE which
separates the agreement and execution replicas, and re-
quires 3f + 1 agreement and 2f + 1 execution replicas
similar to [28]. ZZ also requires 3f + 1 agreement repli-
cas, but extends SEP to use only f + 1 active execution
replicas, with an additional f sleeping replicas.

6.2 Graceful Performance

We study the graceful performance of ZZ by emulating
a shared hosting environment running four independent
web apps on four machines. Table 2 shows the place-
ment of agreement and execution replicas on the four
hosts. Since the agreement and execution clusters can
independently handle faults, each host can have at most
one replica of each type per application.

6.2.1 Throughput

We first analyze the impact of request execution cost un-
der ZZ, SEP, and BASE, which require f + 1, 2f + 1,

Graceful performance After failure
h1 h2 h3 h4 h1 h2 h3

BASE 1234 1234 1234 1234 1234 1234 1234

SEPAgree 1234 1234 1234 1234 1234 1234 1234
SEPExec 134 124 123 234 134 124 123

ZZAgree 1234 1234 1234 1234 1234 1234 1234
ZZExec 12 12 34 34 123 124 34
ZZSleep 3 4 1 2 1

Table 2: Placement of the 4 web servers’ virtual ma-
chines (denoted 1 to 4) on the 4 data center hosts (h1 to
h4) under graceful performance and on the 3 remaining
hosts after h4 failure.

and 3f +1 execution replicas per web server respectively.
Figure 6(a) compares the throughput of each system as
the execution cost per web request is adjusted. When
execution cost averages 100 µs, BASE performs the best
since the agreement overhead dominates the cost of pro-
cessing each request and our implementation of sepa-
ration incurs additional cost for the agreement repli-
cas. However, for execution costs exceeding 0.75 ms,
the execution replicas become the system bottleneck. As
shown in Figure 6(b), ZZ begins to outperform BASE at
this point, and performs increasingly better compared
to both BASE and SEP as execution cost rises. SEP
surpasses BASE for request costs over 2ms, but cannot
obtain the throughput of ZZ since it requires 2f+1 repli-
cas instead of only f +1. ZZ provides as much as a 66%
increase in application throughput relative to BASE for
requests with large execution costs.

6.2.2 Latency

This experiment further characterizes the performance of
ZZ in graceful operation by examining the relation be-
tween throughput and response time for different request
types. Figure 7 shows the relation between throughput
and response time for increasingly CPU intensive request
types. For null requests or at very low loads, Figure 7(a),
BASE beats SEP and ZZ because it has less agreement
overhead. At 1ms, ZZ’s use of fewer execution repli-
cas enables it to increase the maximum throughput by
25% over both SEP and BASE. When the execution cost
reaches 10ms, SEP outperforms BASE since it uses 2f+1
instead of 3f + 1 replicas. ZZ provides a 33% improve-
ment over SEP, showing the benefit of further reducing
to f + 1.

6.3 Simultaneous Failures

When several applications are multiplexed on a single
physical host, a faulty node can impact all its running
applications. In this experiment, we simulate a malicious
hypervisor on one of the four hosts that causes multiple
applications to experience faults simultaneously. Host
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Figure 7: For high execution costs, ZZ achieves both higher throughput and lower response times.
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h4 in Table 2 is set as a faulty machine and is configured
to cause faults on all of its replicas 20 seconds into the
experiment as shown in Figure 8. For ZZ, the failure
of h4 directly impacts web servers 3 and 4 which have
active execution replicas there. The replica for server 2
is a sleeping replica, so its corruption has no effect on
the system. The failure also brings down one agreement
replica for each of the web servers, however they are able
to mask these failures since 2f + 1 correct agreement
replicas remain on other nodes.

ZZ recognizes the corrupt execution replicas when it
detects disagreement on the request output of each ser-
vice. It responds by waking up the sleeping replicas on
hosts h1 and h2. After a short recovery period (further
analyzed in the next section), ZZ’s performance is sim-
ilar to that of SEP with three active execution replicas
competing for resources on h1 and h2. Even though h3

only has two active VMs and uses less resources with ZZ,
applications 3 and 4 have to wait for responses from h1

and h2 to make progress. Both ZZ and SEP maintain a
higher throughput than BASE that runs all applications
on all hosts.

6.4 Recovery Cost

The following experiments study the cost of recovering
replicas in more detail using both microbenchmarks and
our fault tolerant NFS server. We study the recovery
cost, which we define as the delay from when the agree-
ment cluster detects a fault until the client receives the
correct response.
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Figure 9: (a) The cost of full state transfer increases
with state size. (b) On Demand incurs overhead when
replaying requests since state objects must be verified.

6.4.1 NFS Recovery Costs

We investigate the NFS server recovery cost for a work-
load that creates 200 files of equal size before encoun-
tering a fault while reading back a file that has been
corrupted by one of the replicas. We vary the size of the
files to adjust the total state maintained by the applica-
tion, which also impacts the number of requests which
need to be replayed after the fault.

ZZ uses an on-demand transfer scheme for deliver-
ing application state to newly recovered replicas. Fig-
ure 9(a) shows the time for processing the checkpoints
when using full transfer or ZZ’s on-demand approach
(note the log scale). The full state transfer approach
performs very poorly since the BFT NFS wrapper must
both retrieve the full contents of each file and perform
RPC calls to write out all of the files to the actual NFS
server. When transferring the full checkpoint, recovery
time increases exponentially and state sizes greater than
a mere 20 megabytes can take longer than 60 seconds, af-
ter which point NFS requests typically will time out. In
contrast, the on-demand approach has a constant over-
head with an average of 1.4 seconds. This emphasizes
the importance of using the on-demand transfer for re-
alistic applications where it is necessary to make some
progress in order to prevent application timeouts.

We report the average time per request replayed and
the standard deviation for each scheme in Figure 9(b).
ZZ’s on demand system experiences a higher replay cost
due to the added overhead of fetching and verifying state
on-demand; it also has a higher variance since the first
access to a file incurs more overhead than subsequent
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calls. While ZZ’s replay time is larger, the total recovery
time is much smaller when using on-demand transfer.

6.4.2 Obtaining State On-Demand

This experiment uses a BFT client-server microbench-
mark which processes requests with negligible execution
cost to study the recovery cost after faults are caused in
applications with different state sizes.

In the best case, when a fault occurs immediately af-
ter a checkpoint, a new replica only needs to load and
resume from a checkpoint. We observe a constant time
of about 2s to recover from state sizes ranging from 50
to 400MB as illustrated by the On-Demand (Best Case)
line in Figure 10(a). If the fault occurs immediately be-
fore a checkpoint, old requests need to be replayed before
recovery replicas can respond to the client. In this case,
the cost of on-demand recovery varies depending on the
amount of application state that was modified since the
last checkpoint. The “10% Dirty” line shows the recov-

ery cost when 10% of the application’s state needs to
be fetched during replay. In that case, ZZ’s recovery
time varies from 5.2s to 7.1s for states of 50 and 400MB,
respectively. This remains much faster than the Full
Transfer technique which requires over 30s to transfer
and verify 400MB of state.

The tradeoff between amount of dirty state and recov-
ery speed is further studied in Figure 10(b). The benefit
of getting state on-demand is very significant with less
than 1% dirty state and it decreases the recovery time by
at least five times when less than 10% of a 400MB state
is modified between the checkpoint and a fault. When
a 100MB state is more than 50% dirty, it becomes more
expensive to replay than to perform a full transfer. For-
tunately, we have measured the additional cost of ZFS
checkpoints at 0.03s, making it practical to checkpoint
every few seconds, during which time most applications
will only modify a small fraction of their total applica-
tion state.

While obtaining state on-demand significantly re-
duces the initial recovery time, it may increase the la-
tency for subsequent requests since they must fetch and
verify state. In this experiment we examine the through-
put and latency of requests after a fault has occurred.
The client sends a series of requests involving random
accesses to 100KB state objects.

As shown in Figure 11, we inject a fault after 20.2
seconds. The faulty request experiences a sub-second
recovery period, after which the application can handle
new requests. The mean request latency prior to the
fault is 5 milliseconds with very little variation. The
latency of requests after the fault has a bimodal dis-
tribution depending on whether the request accesses a
file that has already been fetched or one which needs
to be fetched and verified. The long requests, which in-
clude state verification and transfer, take an average of
20 milliseconds. As the recovery replica rebuilds its local
state, the throughput rises since the proportion of slow
requests decreases. After 26 seconds, the full application
state has been loaded by the recovery replica, and the
throughput prior to the fault is once again maintained.

6.5 Trade-offs and Discussion

6.5.1 Impact of Multiple Faults

We examine how ZZ’s graceful performance and recov-
ery time changes as we adjust f , the number of faults
supported by the system when null requests are used re-
quiring no execution cost. Figure 12(a) shows that ZZ’s
graceful mode performance scales similarly to BASE as
the number of faults increases. This is expected be-
cause the number of cryptographic and network oper-
ations rises similarly in each system.

We next examine the recovery latency of the client-
server microbenchmark for up to three faults. In each
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Figure 13: Throughput of ZZ and BASE with different
batch sizes for a 5ms request execution time.

case, we maintain f paused recovery replicas. We inject
a fault to f of the active execution replicas and measure
the recovery time to handle the faulty request. Figure
12(b) shows how the recovery time for f = 1 to f = 3
increases slightly due to increased message passing and
because each ZFS system needs to export snapshots to
a larger number of recovering replicas. We believe the
overhead can be attributed to our use of the user-space
ZFS code that is less optimized than the Solaris kernel
module implementation, and messaging overhead which
could be decreased with hardware multicast.

6.5.2 Agreement Protocol Performance

The separated architecture employed by ZZ increases
agreement protocol overhead compared to BASE. Var-
ious agreement protocol optimizations exist such as re-
quest batching, but these may have less effect when re-
quest execution costs are non-trivial. While Figure 12(a)
shows a large benefit of batching for null requests, Fig-
ure 13 depicts a similar experiment with a request exe-
cution time of 5ms. We observe that batching improve-
ments become insignificant with non-trivial execution
costs. This demonstrates the importance of reducing
execution costs, not just agreement overhead, for real
applications.

6.5.3 Maintaining Spare VMs

In our previous experiments, the recovery VMs were kept
in a paused state which provides a very fast recovery but
consumes memory. Larger non-interactive applications
that have less stringent latency requirements can keep
their recovery VMs hibernated on disk, removing the
memory pressure on the system.

With a naive approach, maintaining replicas hiber-
nated to disk can increase recovery latency by a factor
proportional to the amount of memory allocated to each
VM. This is because restoring a hibernated VM involves
loading the VM’s full memory contents from disk. The
table below shows how our paged-out restore technique
can reduce the startup time for a VM with a 2GB mem-
ory allocation from over 40 seconds to less than 6 sec-
onds.

Operation Time (sec)
Xen Restore (2GB image) 44.0
Paged-out Restore (128MB→2GB) 5.88
Unpause VM 0.29
ZFS Clone 0.60

ZZ utilizes ZFS to simplify checkpoint creation at low
cost. The ZFS clone operation is used during recovery to
make snapshots from the previous checkpoint available
to the recovery VMs. This can be done in parallel with
initializing the recovery VMs, and incurs only minimal
latency.

7 Related Work

This section discusses work not covered elsewhere. A
Brief History of BFT SMR: Lamport, Shostak, and
Pease [16] introduced the problem of Byzantine agree-
ment. Lamport also introduced the state machine repli-
cation approach [17] (with a popular tutorial by Schnei-
der [23]) that relies on consensus to establish an order on
requests. Consensus in the presence of asynchrony and
faults has seen almost three decades of research. Dwork
et al. [9] established a lower bound of 3f + 1 replicas
for Byzantine agreement given partial synchrony, i.e.,
an unknown but fixed upper bound on message delivery
time. The classic FLP [10] result showed that no agree-
ment protocol is guaranteed to terminate with even one
(benignly) faulty node in an asynchronous environment.
Viewstamped replication [19] and Paxos [15] describe an
asynchronous state machine replication approach that is
safe despite crash failures.

Early BFT systems [21, 13] incurred a prohibitively
high overhead and relied on failure detectors to exclude
faulty replicas. However, accurate failure detectors are
not achievable under asynchrony, thus these systems ef-
fectively relied on synchrony for safety. Castro and
Liskov’s PBFT [3] introduced a BFT SMR-based sys-
tem that relied on synchrony only for liveness. The view
change protocol at the core of PBFT shares similari-
ties with viewstamped replication [19] or Paxos [15] but
incurs a replication cost of at least 3f + 1 for safety.
PBFT showed that the latency and throughput over-
head of BFT can be low enough to be practical. The
FARSITE system [2] reduces the replication cost of a
BFT file-system to f + 1; in comparison, ZZ has simi-
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lar goals, but is able to provide the same cost reduction
for any application which can be represented by a more
general SMR system. ZZ draws inspiration from Cheap
Paxos [18], which advocated the use of cheaper auxiliary
nodes used only to handle crash failures of main nodes.
Our contribution lies in extending the idea to Byzan-
tine faults and demonstrating its practicality through a
system design and implementation.

BFT and Virtualization: Virtualization has been used
in several BFT systems recently since it provides a clean
way to isolate services. The VM-FIT systems exploits
virtualization for isolation and to allow for more effi-
cient proactive recovery [8]. Like ZZ, VM-FIT employs
an amortized state transfer mechanism to efficiently up-
date replicas, but it is designed for a system running
2f+1 execution nodes. The idea of “reactive recovery”,
where faulty replicas are replaced after fault detection,
was used in [25], which also employed virtualization to
provide isolation between different types of replicas. In
ZZ, reactive recovery is not an optional optimization,
but a requirement since in order to make progress it
must immediately instantiate new replicas after faults
are detected.

Rapid activation of virtual machine replicas for dy-
namic capacity provisioning has been studied in [12]. In
contrast, ZZ uses VM replicas for high availability rather
than scale. Live migration of virtual machines was pro-
posed in [5]. Such techniques can be employed by ZZ to
intelligently distribute agreement and execution replicas
in the data center, although we leave an implementation
to future work. Virtualization has also been employed
for security. Potemkin uses dynamically invocation of
virtual machines to serve as a honeypot for security at-
tacks [27]. Terra is a virtual machine platform for trusted
computing that employs a trusted hypervisor [11]; ZZ al-
lows hypervisors to be Byzantine faulty.

8 Conclusions

In this paper, we presented ZZ a new execution ap-
proach that can be interfaced with existing BFT-SMR
agreement protocols to reduce the replication cost from
2f + 1 to practically f + 1. Our key insight was to use
f + 1 execution replicas in the normal case and to ac-
tivate additional VM replicas only upon failures. We
implemented ZZ using the BASE library and the Xen
virtual machine and evaluated it on a prototype data
center that emulates a shared hosting environment. The
key results from our evaluation are as follows. (1) In a
prototype data center with four BFT web servers, ZZ
lowers response times and improves throughput by up
to 66% and 33% in the fault-free case, when compared
to systems using 3f + 1 (BASE) and 2f + 1 replicas,
respectively. (2) In the presence of multiple application
failures, after a short recovery period, ZZ performs as

well or better than 2f + 1 replication and still outper-
forms BASE’s 3f + 1 replication. (3) The use of paused
virtual machine replicas and on-demand state fetching
allows ZZ to achieve sub-second recovery times. (4) We
find that batching in the agreement nodes, which sig-
nificantly improves the performance of null execution
requests, yields no perceptible improvements for realis-
tic applications with non-trivial request execution costs.
Overall, our results demonstrate that, in shared data
centers that host multiple applications with substantial
request execution costs, ZZ can be a practical and cost-
effective approach for providing BFT. Our future work
will focus on using ZZ to provide BFT in multi-tier web
services, by deploying our techniques at each tier and
measuring the end-to-end impact.
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9 Appendix

This appendix contains formal proofs of the lemmas and
theorems in the body of the paper. This section also
rectifies two errors (described in the two footnotes here)
present in the body of the paper.

9.1 Fault Detection Timeouts

9.1.1 Agreeing on the Blame

Lemma 1. If correct execution is guaranteed to return
responses within times varying by at most a factor K,
and a correct agreement replica triggers a fault, then at
least one execution replica is faulty.

Proof: A correct agreement replica i triggers a fault in
two cases.

Case 1: Replica i received fewer than f responses in
the time interval [t1,Kt1] since dispatching the request.
By assumption, correct execution is guaranteed to return
f +1 responses within times varying by at most a factor
K. So, at least one execution replica must be faulty.

Case 2: Replica i received f + 1 responses by time
Kt1 that were not all matching. Since all correct repli-
cas produce matching responses, at least one execution
replica must be faulty.

In order to prove Lemma 2, we first prove a simpler
Lemma 2A below. We also introduce the notion of con-
victable mismatches that allows us to treat timeouts and
mismatches elegantly in a uniform manner.

Lemma 2A. If no timeouts occur and the agreement clus-
ter wakes up new execution replicas, at least one faulty
execution replica gets shut down.

Proof: When no timeouts happen, faults and wakeups
are only due to mismatched responses. A new execution
replica is woken up only if at least g + 1 replicas report
a convictable mismatch. We explain what a convictable
mismatch means with an example first before defining
it formally. Let f = 1 and g = 1; let E1, E2 denote
the two execution replicas, and A1, A2, A3, A4 denote
the four agreement replicas. A new execution replica is
woken up only if at least two agreement replicas, say
A1 and A2, report a mismatch as follows: A1 and A2

report E1 as having returned a common response P
and report E2 as having returned a different common
response Q. Thus, only the last of the four scenarios
below is considered a convictable mismatch. Here,
the four values after the colon represent the responses
reported by the four agreement replicas respectively.

Unconvictable mismatch
E1 : P Q P P
E2 : R P P P
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Unconvictable mismatch
E1 : Q P P P
E2 : Q P P P

Unconvictable mismatch
E1 : Q P P P
E2 : P P P P

Convictable mismatch
E1 : Q Q P P
E2 : P P P P

Definition 1 To formally define a convictable mis-
match, consider a matrix with f + 1 rows and 3g + 1
columns. Each entry (m,n) represents the response re-
ported by agreement replica n as being returned by execu-
tion replica m. An execution replica j is convictable iff
despite removing up to g entries in row j, the row does
not have identical entries. A mismatch is convictable if
at least one execution replica is convictable.

A hypervisor wakes up a new execution replica only
when it gathers evidence of a convictable mismatch (that
by definition implies that at least g + 1 agreement repli-
cas reported a mismatch). A convictable mismatch will
lead to at least one faulty replica being shut down. In
the above example, a new execution replica will be wo-
ken up only in the fourth case, and the corresponding
faulty execution replica (E1) will be shutdown. In all
other cases, no wakeups or shutdowns will occur. By
using digitally signed wakeup messages, it is easy to en-
sure that wakeups are necessarily followed by shutdowns.
This last detail is necessary to prevent (up to g) faulty
agreement replicas from participating in a wakeup but
not cooperating (by not reproducing evidence of the con-
victable mismatch) with the corresponding shutdown.

The formal proof follows from the definition of a con-
victable mismatch. A convictable mismatch always iden-
tifies a convictable execution replica by definition. Wake-
ups happen only upon a convictable mismatch, and at
least one convictable (faulty) execution replica is shut
down as a result.

Lemma 2. If correct execution is guaranteed to return re-
sponses within times varying by at most a factor K, and
the agreement cluster wakes up new execution replicas,
at least one faulty execution replica gets shut down.2

Proof: Agreement replicas can also report a fault due
to a timeout in addition to mismatches. As before, at
least g + 1 agreement replicas must report a timeout
in order to trigger a wakeup, and as a result f new
execution replicas will be woken up. Several different
combinations of timeouts and mismatches are possible

2The statement of this lemma rectifies an error in Lemma 2
stated in the body of the paper.

as exemplified below.

Convictable timeout:
E1 : P P P P
E2 : P̂ P̂ P P

Convictable timeout, convictable mismatch:
E1 : Q Q P P
E2 : P̂ P̂ P P

Convictable timeout, unconvictable mismatch:
E1 : P Q P P
E2 : P̂ P̂ P P

Convictable timeout, unconvictable mismatch:
E1 : P P P P
E2 : P̂ Q̂ P P

Unconvictable timeout:
E1 : P P P P
E2 : P P̂ P P

Unconvictable timeout, unconvictable mismatch:
E1 : P Q P P
E2 : P P̂ P P

Unconvictable timeout, convictable mismatch:
E1 : P P P P
E2 : Q̂ Q P P

It is straightforward to determine the corresponding
shutdowns with the following assumption: If a replica
returns a correct response after time t1, then all correct
replicas will return a correct response by time Kt1, i.e.,
a faulty replica can not return a correct response instan-
taneously and cause a timeout.3

Now, timeouts can be processed similar to mis-
matches, i.e., only if they are convictable. We use the
notation P̂ for a response P received after a timeout and
consider it distinct from P . With this notation, we need
no change to our wakeup rule, i.e., a hypervisor wakes
up a new execution replica only when it gathers evidence
of a convictable mismatch. The replicas to be shutdown
can be determined from the convictable mismatch cer-
tificate as before. Thus, in the above seven examples,
the following shutdowns will happen: 1) E2, 2) E1, 3)
E2, 4) E2, 5) no wakeups or shutdowns, 6) no wakeups or
shutdowns, 7) E2. Note that mismatches are considered
more egregious than late but correct responses, e.g., in
the second example E2 is not considered faulty as it is
clear that E1 sent an early bad response.

The formal proof follows from the observation that
only convictable faults result in wakeups. By definition,

3The body of the paper claims that this assumption is not nec-
essary, which we now think is an error.
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a convictable fault always identifies at least one faulty
execution replica that is shut down after the new execu-
tion replicas have produced a (correct) response to the
request that triggered the wakeup.

9.1.2 Limiting Frivolous Timeouts

Lemma 2 above showed that frivolous wakeups will not
happen if timing assumptions are satisfied. In prac-
tice, correct execution replicas may sometimes violate
the variance bound due to long but benign execution or
network delays, causing a false timeout. However, the
following lemma bounds the probability of this event for
realistic delay distributions. Suppose the response times
of the f + 1 replicas are given by random variables in-
dependently and identically distributed as Ψ. Let Ψ(1)

and Ψ(f+1) be the first and (f + 1)th order statistic, or
the minimum and maximum, of these random variables.

Lemma 3. The probability of a false timeout Π1 is at
most

∫∞
t=0

p[Ψ(1) ≤ t]P[Ψ(f+1) > Kt]dt.

Proof: A false timeout occurs when the timing assump-
tions are not satisfied, i.e., correct execution replicas re-
turn responses within times that vary by more than a fac-
tor K. The probability of a false timeout when the first
response arrives within time t is given by P[Ψ(1) ≤ t]·
P[Ψ(f+1) > Kt | Ψ(1) ≤ t]. The first term is the proba-
bility that the first response arrives within time t and the
second term is the probability that the (f+1)th response
arrives within time Kt conditional on the first response
arriving within time t. Note that Ψ(1) and Ψ(f+1) are not
independent, hence the conditional in the second term.
The probability of a false timeout Π1 is

Π1 =
∫ ∞

t=0

p[Ψ(1) ≤ t] · P [Ψ(f+1) > Kt | Ψ(1) = t]dt

where the integral is over all possible values of t and
the notation p[.] using a small ‘p’ denotes the pdf4, i.e.,
p[Ψ(1) ≤ t] = d

dt (P [Ψ(1) ≤ t]).In order to prove the
lemma, we note that removing the conditional in the
second term inside the integral strictly increases the sec-
ond term for all possible values of t. In other words, the
probability that the (f + 1)th response time is greater
than Kt is greater than the probability that the (f +1)th
response time is greater than Kt conditional on the first
response time being equal to t. Thus,

Π1 ≤
∫ ∞

t=0

p[Ψ(1) ≤ t] · P [Ψ(f+1) > Kt]dt

proving the lemma.
Note that the above lemma is only the probability of a

false timeout at a single correct agreement replica. The
4The notation pΨ(1) (t) would be more commonly used, but the

subscript overkill seemed confusing.

probability of a new execution replica being woken up is
even smaller as g +1 agreement replicas must be able to
produce a convictable timeout.

Corollary 1 The probability of a new execution
replica being unnecessarily woken up despite all execu-
tion replicas being correct is at most Π1.

The above lemma can be used to numerically com-
pute the bound on the probability of a false timeout or
wakeup. For example, if Ψ is exponential with mean 1

λ ,
then Ψ(1) is also an exponential with mean 1

(f+1)λ with a
pdf given by p[Ψ(1) ≤ t] = λ(f +1)e−λ(f+1)t; and Ψ(f+1)

is given by P[Ψ(f+1) > t] = 1− (1− e−λt)f+1.

9.1.3 Limiting Response Time Inflation

Lemma 3 above helps limit the replication cost by lim-
iting the probability of frivolous timeouts. However, a
faulty replica can potentially inflate response times by
up to a factor of K compared to a fault-free system.
Fortunately, the expected value of such delays, referred
to as inordinate delays, is bounded as follows.

Lemma 4. A faulty replica can inordinately delay the
response time by a factor η ∈ [1,K) with a probability
Π2 that is at most

∫∞
t=0

p[Ψ(1) ≤ t] ·P [Ψ(f+1) ≤ Kt/η]dt.

Proof: The reason why we are also able to limit the re-
sponse time inflation due to faulty replicas is that there
is inherent variation even among response times of cor-
rect execution replicas. To see this, suppose that cor-
rect execution replicas have a mean response time of
D=2ms. The “normal” execution response time, i.e.,
the response time when all execution replicas are cor-
rect, in expectation will not be 2ms. It will be the max-
imum of f + 1 distributions as above each with a mean
of 2ms. For example, if response times are exponentially
distributed and f = 3, then the time to receive all f + 1
responses, or the (f + 1)th order statistic, is given by
P [Ψ(f+1) < t] = (1 − e−t/3)4. Thus, its expected value
is

∫∞
t=0

2(1−e−t/2)3e−t/2tdt. Solving this integral numer-
ically yields an expected response time of about 4.2ms.

Suppose exactly one execution replica is correct and
the other f are faulty. To cause the most amount of inor-
dinate delay when the correct execution replica produces
a response within time t, the faulty execution replicas
must return a response after time Kt. On the other hand
f+1 correct execution replicas would have returned a re-
sponse time given by Ψ(f+1). Thus, the probability of an
inordinate delay by a factor η when a correct replica re-
turns a response at time t is given by P [Ψ(f+1) < Kt/η].
The probability Π2 of an inordinate delay by a factor η
is thus
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Π2 =
∫ ∞

t=0

p[Ψ ≤ t] · P [Ψ(f+1) ≤ Kt/η | Θ]dt

where Ψ is the response time distribution of any cor-
rect execution replica. The second term includes a con-
ditional on Θ that is the event that at least one of the
f + 1 response times was equal to t. As K/η ≥ 1, as in
Lemma 3, we can drop the conditional Θ, which yields

Π2 ≤
∫ ∞

t=0

p[Ψ ≤ t] · P [Ψ(f+1) ≤ Kt/η]dt

The analysis above assumed exactly one correct exe-
cution replica, which causes the most inordinate delays.
With f correct replicas and one faulty replica, we obtain
the (tighter) bound on Π2 as stated in the lemma.

For the numerical example above if K = 6, f = 3, D =
2ms, the probability that 3 faulty replicas can actually
cause an inordinate delay by a factor η = 6 is less than
0.2. The expected value of η is less than 1.5, i.e., the
response time could inordinately increase to an expected
value of less than 3ms. Note also that these delay factors
are only for the execution times and do not affect the
WAN propagation and transmission delays.

9.1.4 Further Limiting Response Time Inflation

Proactive recovery can further limit performance degra-
dation under faults by limiting the length of time for
which a faulty replica operates undetected. Suppose
each replica is proactively recovered once every R sec-
onds or less. Let the corresponding mean time to failure
be U and the mean time for a newly started replica to
obtain a stable checkpoint be D, both exponentially dis-
tributed. Note that R must be greater than D [4].

Theorem 2 The expected replication cost of ZZ is less
than (1 + r)f + 1, where r = D/U + Π1. Faulty replicas
can inordinately delay requests by a factor η with proba-
bility at most Π2 for a fraction of time fR/U .

Proof: The theorem follows from Lemmas 3 and 4 above.
The expected replication cost depends on the probability
D/U of a replica being faulty and the probability Π1 of
a false timeout. The combined probability is less than
D/U +Π1. Note that a replica can be faulty for at most
D/U time as it will be convicted and shut down, by
Lemma 2. The replication cost is less than (1 + r)f + 1
even if we assume that f new replicas are woken up upon
each convictable fault. With proactive recovery, a faulty
replica remains faulty for at most R time and a fault
occurs once every U/f time . Thus, inordinate delays
can occur as per Π2 for at most a fraction fR/U time.

9.2 Safety and Liveness Properties

For a formal proof of the safety and liveness of the agree-
ment protocol, refer [4]. The liveness property follows
from the fact that the client eventually either obtains a
response certificate or an affirmation certificate, or the
agreement cluster activates up to 2f + 1 replicas. The
liveness property depends on eventual synchrony and fair
message delivery [28]. The safety and liveness properties
of the proactive recovery protocol follow from [4] as long
as the recovery period and the window of vulnerability
are at least several times the time required for a new
replica to obtain a stable checkpoint.


