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Abstract

Virtualization can provide significant benefits in data
centers by enabling dynamic virtual machine resizing
and migration to eliminate hotspots. We present Sand-
piper, a system that automates the task of monitoring
and detecting hotspots, determining a new mapping of
physical to virtual resources, resizing virtual machines
to their new allocations, and initiating any necessary
migrations. Sandpiper implements a black-box approach
that is fully OS- and application-agnostic and a gray-box
approach that exploits OS- and application-level statis-
tics. We implement our techniques in Xen and conduct
a detailed evaluation using a mix of CPU, network and
memory-intensive applications. Our results show that
Sandpiper is able to resolve single server hotspots within
20 seconds and scales well to larger, data center environ-
ments. We also show that the gray-box approach can
help Sandpiper make more informed decisions, particu-
larly in response to memory pressure.

1 Introduction

Data centers—server farms that run networked
applications—have become popular in a variety of
domains such as web hosting, enterprise systems, and
e-commerce sites. Server resources in a data center
are multiplexed across multiple applications—each
server runs one or more applications and application
components may be distributed across multiple servers.
Further, each application sees dynamic workload fluc-
tuations caused by incremental growth, time-of-day
effects, and flash crowds [1]. Since applications need
to operate above a certain performance level specified
in terms of a service level agreement (SLA), effective
management of data center resources while meeting
SLAs is a complex task.

One possible approach for reducing management com-
plexity is to employ virtualization. In this approach,
applications run on virtual servers that are constructed
using virtual machines, and one or more virtual servers

are mapped onto each physical server in the system. Vir-
tualization of data center resources provides numerous
benefits. It enables application isolation since malicious
or greedy applications can not impact other applications
co-located on the same physical server. It enables server
consolidation and provides better multiplexing of data
center resources across applications. Perhaps the biggest
advantage of employing virtualization is the ability to
flexibly remap physical resources to virtual servers in
order to handle workload dynamics. A workload in-
crease can be handled by increasing the resources al-
located to a virtual server if idle resources are available
on the physical server, or by simply migrating the vir-
tual server to a less loaded physical server. Migration is
transparent to the applications and modern virtualiza-
tion platforms support this capability [6, 16]. However,
detecting workload hotspots and initiating a migration
is currently handled manually. Manually-initiated mi-
gration lacks the agility to respond to sudden workload
changes; it is also error-prone since each reshuffle might
require migrations or swaps of multiple virtual servers to
rebalance system load. Migration is further complicated
by the need to consider multiple resources—CPU, net-
work, and memory—for each application and physical
server.

To address this challenge, this paper studies auto-
mated black-box and gray-box strategies for virtual ma-
chine provisioning in large data centers. Our techniques
automate the tasks of monitoring system resource usage,
hotspot detection, allocating resources and initiating any
necessary migrations. More importantly, our black-box
techniques can make these decisions by simply observ-
ing each virtual machine from the outside and without
any knowledge of the application resident within each
VM. We also present a gray-box approach that assumes
access to a small amount of OS-level statistics in addi-
tion to external observations to better inform the provi-
sioning algorithm. Since a black-box approach is more
general by virtue of being OS and application-agnostic,
an important aspect of our research is to understand
if a black-box approach alone is sufficient and effective
for hotspot detection and mitigation. We have designed
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and implemented the Sandpiper system to support either
black-box, gray-box, or combined techniques. We seek
to identify specific limitations of the black-box approach
and understand how a gray-box approach can address
them.

Sandpiper implements a hotspot detection algorithm
that determines when to resize or migrate virtual ma-
chines, and a hotspot mitigation algorithm that deter-
mines what and where to migrate and how many re-
sources to allocate. The hotspot detection component
employs a monitoring and profiling engine that gathers
usage statistics on various virtual and physical servers
and constructs profiles of resource usage. These profiles
are used in conjunction with prediction techniques to de-
tect hotspots in the system. Upon detection, Sandpiper
grants additional resources to the overloaded servers if
available. If necessary, Sandpiper’s migration manager
is invoked for further hotspot mitigation. The migration
manager employs provisioning techniques to determine
the resource needs of overloaded VMs and uses a greedy
algorithm to determine a sequence of moves or swaps to
migrate overloaded VMs to underloaded servers.

We have implemented our techniques using the Xen
platform [3]. We conduct a detailed experimental eval-
uation on a testbed of two dozen servers using a mix
of CPU-, network- and memory-intensive applications.
Our results show that Sandpiper can alleviate single
server hotspots in less than 20s and more complex multi-
server hotspots in a few minutes. Our results show that
Sandpiper imposes negligible overheads and that gray-
box statistics enable Sandpiper to make better migration
decisions when alleviating memory hotspots.

The rest of this paper is structured as follows. Section
2 presents some background and Sections 3-6 present our
design of Sandpiper. Section 7 presents our implemen-
tation and evaluation. Finally, Sections 8 and 9 present
related work and our conclusions, respectively.

2 Background and System
Overview

Historically, approaches to dynamic provisioning have ei-
ther focused on dynamic replication, where the number
of servers allocated to an application is varied, or dy-
namic slicing, where the fraction of a server allocated
to an application is varied. With the re-emergence of
server virtualization, application migration has become
an option for dynamic provisioning. Since migration is
transparent to applications executing within virtual ma-
chines, our work considers this third approach—resource
provisioning via dynamic migrations in virtualized data
centers. We present Sandpiper1, a system for automated
resource allocation and migration of virtual servers in a

1A migratory bird.
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Figure 1: The Sandpiper architecture.

data center to meet application SLAs. Sandpiper as-
sumes a large cluster of possibly heterogeneous servers.
The hardware configuration of each server—its CPU,
network interface, disk and memory characteristics—is
assumed to be known to Sandpiper. Each physical server
(also referred to as a physical machine or PM) runs a vir-
tual machine monitor and one or more virtual machines.
Each virtual server runs an application or an applica-
tion component (the terms virtual servers and virtual
machine are used interchangeably). Sandpiper currently
uses Xen to implement such an architecture. Each vir-
tual server is assumed to be allocated a certain slice of
the physical server resources. In the case of CPU, this is
achieved by assigning a subset of the host’s CPUs to each
virtual machine, along with a weight that the underlying
Xen CPU scheduler uses to allocate CPU bandwidth. In
case of the network interface, Xen is yet to implement
a similar fair-share scheduler; a best-effort FIFO sched-
uler is currently used and Sandpiper is designed to work
with this constraint. In case of memory, a slice is as-
signed by allocating a certain amount of RAM to each
resident VM. All storage is assumed to be on a network
file system or a storage area network, thereby eliminat-
ing the need to move disk state during VM migrations
[6].

Sandpiper runs a component called the nucleus on
each physical server; the nucleus runs inside a special
virtual server (domain 0 in Xen) and is responsible for
gathering resource usage statistics on that server (see
Figure 1). It employs a monitoring engine that gathers
processor, network interface and memory swap statistics
for each virtual server. For gray-box approaches, it im-
plements a daemon within each virtual server to gather
OS-level statistics and perhaps application logs.

The nuclei periodically relay these statistics to the
Sandpiper control plane. The control plane runs on a
distinguished node and implements much of the intelli-
gence in Sandpiper. It comprises three components: a
profiling engine, a hotspot detector and a migration & re-
sizing manager (see Figure 1). The profiling engine uses
the statistics from the nuclei to construct resource us-
age profiles for each virtual server and aggregate profiles
for each physical server. The hotspot detector contin-
uously monitors these usage profiles to detect hotspots
—informally, a hotspot is said to have occurred if the



University of Massachusetts, Technical Report 2009-25 3

aggregate usage of any resource (processor, network or
memory) exceeds a threshold or if SLA violations occur
for a “sustained” period. Thus, the hotspot detection
component determines when to signal the need for re-
source adjustments and invokes the resource manager
upon hotspot detection, which attempts hotspot mitiga-
tion via resizing or dynamic migrations. It implements
algorithms that determine how much of a resource to al-
locate the virtual servers (i.e., determine a new resource
allocation to meet the target SLAs), what virtual servers
to migrate from the overloaded servers, and where to
move them. The resource manager assumes that the
virtual machine monitor implements a migration mech-
anism that is transparent to applications and uses this
mechanism to automate migration decisions; Sandpiper
currently uses Xen’s migration mechanisms that were
presented in [6].

3 Monitoring and Profiling in
Sandpiper

Sandpiper supports both black- and gray-box monitor-
ing techniques that are combined with profile generation
tools to detect hotspots and predict VM resource re-
quirements.

3.1 Unobtrusive Black-box Monitoring

The monitoring engine is responsible for tracking the
processor, network and memory usage of each virtual
server. It also tracks the total resource usage on each
physical server by aggregating the usages of resident
VMs. The monitoring engine tracks the usage of each re-
source over a measurement interval I and reports these
statistics to the control plane at the end of each interval.

In a pure black-box approach, all usages must be
inferred solely from external observations and with-
out relying on OS-level support inside the VM. Fortu-
nately, much of the required information can be deter-
mined directly from the Xen hypervisor or by monitor-
ing events within domain-0 of Xen. Domain-0 is a dis-
tinguished VM in Xen that is responsible for I/O pro-
cessing; domain-0 can host device drivers and act as a
“driver” domain that processes I/O requests from other
domains [3, 9]. As a result, it is possible to track net-
work and disk I/O activity of various VMs by observ-
ing the driver activity in domain-0 [9]. Similarly, since
CPU scheduling is implemented in the Xen hypervisor,
the CPU usage of various VMs can be determined by
tracking scheduling events in the hypervisor [10]. Thus,
black-box monitoring can be implemented in the nucleus
by tracking various domain-0 events and without modi-
fying any virtual server. Next, we discuss CPU, network
and memory monitoring using this approach.

CPU Monitoring: By instrumenting the Xen hy-
pervisor, it is possible to provide domain-0 with access
to CPU scheduling events which indicate when a VM
is scheduled and when it relinquishes the CPU. These
events are tracked to determine the duration for which
each virtual machine is scheduled within each measure-
ment interval I. The Xen 3 distribution includes a mon-
itoring application called XenMon [10] that tracks the
CPU usages of the resident virtual machines using this
approach; for simplicity, the monitoring engine employs
a modified version of XenMon to gather CPU usages of
resident VMs over a configurable measurement interval
I. On a multi-cpu system, a VM may only be granted ac-
cess to a subset of the total CPUs. However, the number
of CPUs allocated to a virtual machine can be adjusted
dynamically.

It is important to realize that these statistics do not
capture the CPU overhead incurred for processing disk
and network I/O requests; since Xen uses domain-0 to
process disk and network I/O requests on behalf of other
virtual machines, this processing overhead gets charged
to the CPU utilization of domain 0. To properly ac-
count for this request processing ovehead, analogous to
proper accounting of interrupt processing overhead in
OS kernels, we must apportion the CPU utilization of
domain-0 to other virtual machines. We assume that
the monitoring engine and the nucleus impose negligible
overhead and that all of the CPU usage of domain-0 is
primarily due to requests processed on behalf of other
VMs. Since domain-0 can also track I/O request events
based on the number of memory page exchanges between
domains, we determine the number of disk and network
I/O requests that are processed for each VM. Each VM is
then charged a fraction of domain-0’s usage based on the
proportion of the total I/O requests made by that VM.
A more precise approach requiring a modified scheduler
was proposed in [9].

Network Monitoring: Domain-0 in Xen imple-
ments the network interface driver and all other domains
access the driver via clean device abstractions. Xen uses
a virtual firewall-router (VFR) interface; each domain
attaches one or more virtual interfaces to the VFR [3].
Doing so enables Xen to multiplex all its virtual inter-
faces onto the underlying physical network interfaces.

Consequently, the monitoring engine can conveniently
monitor each VM’s network usage in Domain-0. Since
each virtual interface looks like a modern NIC and Xen
uses Linux drivers, the monitoring engines can use the
Linux /proc interface (in particular /proc/net/dev) to
monitor the number of bytes sent and received on each
interface. These statistics are gathered over interval I
and returned to the control plane.

Memory Monitoring: Black-box monitoring of
memory is challenging since Xen allocates a user-
specified amount of memory to each VM and requires
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the OS within the VM to manage that memory; as a
result, the memory utilization is only known to the OS
within each VM. It is possible to instrument Xen to ob-
serve memory accesses within each VM through the use
of shadow page tables, which is used by Xen’s migra-
tion mechanism to determine which pages are dirtied
during migration. However, trapping each memory ac-
cess results in a significant application slowdown and is
only enabled during migrations[6]. Thus, memory usage
statistics are not directly available and must be inferred.

The only behavior that is visible externally is swap
activity. Since swap partitions reside on a network disk,
I/O requests to swap partitions need to be processed by
domain-0 and can be tracked. By tracking the reads
and writes to each swap partition from domain-0, it is
possible to detect memory pressure within each VM.

Our monitoring engine tracks the number of read and
write requests to swap partitions within each measure-
ment interval I and reports it to the control plane. Since
substantial swapping activity is indicative of memory
pressure, our current black-box approach is limited to
reactive decision making and can not be proactive.

3.2 Gray-box Monitoring

Black-box monitoring is useful in scenarios where it is
not feasible to “peek inside” a VM to gather usage statis-
tics. Hosting environments, for instance, run third-party
applications, and in some cases, third-party installed
OS distributions. Amazon’s Elastic Computing Cloud
(EC2) service, for instance, provides a “barebone” vir-
tual server where customers can load their own OS im-
ages. While OS instrumentation is not feasible in such
environments, there are environments such as corporate
data centers where both the hardware infrastructure and
the applications are owned by the same entity. In such
scenarios, it is feasible to gather OS-level statistics as
well as application logs, which can potentially enhance
the quality of decision making in Sandpiper.

Sandpiper supports gray-box monitoring, when feasi-
ble, using a light-weight monitoring daemon that is in-
stalled inside each virtual server. In Linux, the mon-
itoring daemon uses the /proc interface to gather OS-
level statistics of CPU, network, and memory usage. The
memory usage monitoring, in particular, enables proac-
tive detection and mitigation of memory hotspots. The
monitoring daemon also can process logs of applications
such as web and database servers to derive statistics
such as request rate, request drops and service times.
Direct monitoring of such application-level statistics en-
ables explicit detection of SLA violations, in contrast to
the black-box approach that uses resource utilizations as
a proxy metric for SLA monitoring.

I
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Figure 2: Profile generation in Sandpiper

3.3 Profile Generation

The profiling engine receives periodic reports of resource
usage from each nucleus. It maintains a usage history
for each server, which is then used to compute a pro-
file for each virtual and physical server. A profile is a
compact description of that server’s resouce usage over
a sliding time window W . Three black-box profiles are
maintained per virtual server: CPU utilization, network
bandwidth utilization, and swap rate (i.e., page fault
rate). If gray-box monitoring is permitted, four addi-
tional profiles are maintained: memory utilization, ser-
vice time, request drop rate and incoming request rate.
Similar profiles are also maintained for each physical
server, which indicate the aggregate usage of resident
VMs.

Each profile contains a distribution and a time se-
ries. The distribution, also referred to as the distribu-
tion profile, represents the probability distribution of the
resource usage over the window W . To compute a CPU
distribution profile, for instance, a histogram of observed
usages over all intervals I contained within the window
W is computed; normalizing this histogram yields the
desired probability distribution (see Figure 2).

While a distribution profile captures the variations in
the resource usage, it does not capture temporal corre-
lations. For instance, a distribution does not indicate
whether the resource utilization increased or decreased
within the window W . A time-series profile captures
these temporal fluctuations and is simply a list of all re-
ported observations within the window W . For instance,
the CPU time-series profile is a list (C1, C2, ..., Ck) of the
k reported utilizations within the window W . Whereas
time-series profiles are used by the hotspot detector to
spot increasing utilization trends, distribution profiles
are used by the migration manager to estimate peak re-
source requirements and provision accordingly.

4 Hotspot Detection

The hotspot detection algorithm is responsible for sig-
naling a need for VM resizing whenever SLA violations
are detected implicitly by the black-box approach or
explicitly by the gray-box approach. Hotspot detec-
tion is performed on a per-physical server basis in the
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black-box approach—a hotspot is flagged if the aggre-
gate CPU or network utilizations on the physical server
exceed a threshold or if the total swap activity exceeds
a threshold. In contrast, explicit SLA violations must
be detected on a per-virtual server basis in the gray-box
approach—a hotspot is flagged if the memory utilization
of the VM exceeds a threshold or if the response time or
the request drop rate exceed the SLA-specified values.

To ensure that a small transient spike does not trigger
needless migrations, a hotspot is flagged only if thresh-
olds or SLAs are exceeded for a sustained time. Given a
time-series profile, a hotspot is flagged if at least k out
the n most recent observations as well as the next pre-
dicted value exceed a threshold. With this constraint,
we can filter out transient spikes and avoid needless mi-
grations. The values of k and n can be chosen to make
hotspot detection aggressive or conservative. For a given
n, small values of k cause aggressive hotspot detection,
while large values of k imply a need for more sustained
threshold violations and thus a more conservative ap-
proach. Similarly, larger values of n incorporate a longer
history, resulting in a more conservative approach. In
the extreme, n = k = 1 is the most aggressive approach
that flags a hostpot as soon as the threshold is exceeded.
Finally, the threshold itself also determines how aggres-
sively hotspots are flagged; lower thresholds imply more
aggressive migrations at the expense of lower server uti-
lizations, while higher thresholds imply higher utiliza-
tions with the risk of potentially higher SLA violations.

Sandpiper employs time-series prediction techniques
to predict future values [4]. Specifically, Sandpiper relies
on the auto-regressive family of predictors, where the n-
th order predictor AR(n) uses n prior observations in
conjunction with other statistics of the time series to
make a prediction. To illustrate the first-order AR(1)
predictor, consider a sequence of observations: u1, u2,
..., uk. Given this time series, we wish to predict the
demand in the (k + 1)th interval. Then the first-order
AR(1) predictor makes a prediction using the previous
value uk, the mean of the the time series values µ, and
the parameter φ which captures the variations in the
time series [4]. The prediction ûk+1 is given by:

ûk+1 = µ + φ(uk − µ) (1)

As new observations arrive from the nuclei, the hot
spot detector updates its predictions and performs the
above checks to flag new hotspots in the system.

5 Resource Provisioning

A hotspot indicates a resource deficit on the underly-
ing physical server to service the collective workloads of
resident VMs. Before the hotspot can be resolved, Sand-
piper must first estimate how much additional resources
are needed by the overloaded VMs to fulfill their SLAs;

these estimates are then used to determine if local re-
source allocation adjustments or migrations are required
to resolve the hotspot.

5.1 Black-box Provisioning

The provisioning component needs to estimate the peak
CPU, network and memory requirement of each over-
loaded VM; doing so ensures that the SLAs are not vio-
lated even in the presence of peak workloads.

Estimating peak CPU and network bandwidth needs:
Distribution profiles are used to estimate the peak CPU
and network bandwidth needs of each VM. The tail of
the usage distribution represents the peak usage over
the recent past and is used as an estimate of future
peak needs. This is achieved by computing a high per-
centile (e.g., the 95th percentile) of the CPU and network
bandwidth distribution as an initial estimate of the peak
needs.

Since both the CPU scheduler and the network packet
scheduler in Xen are work-conserving, a VM can use
more than its fair share, provided that other VMs are
not using their full allocations. In case of the CPU, for
instance, a VM can use a share that exceeds the share
determined by its weight, so long as other VMs are us-
ing less than their weighted share. In such instances, the
tail of the distribution will exceed the guaranteed share
and provide insights into the actual peak needs of the
application. Hence, a high percentile of the distribution
is a good first approximation of the peak needs.

However, if all VMs are using their fair shares, then
an overloaded VM will not be allocated a share that
exceeds its guaranteed allocation, even though its peak
needs are higher than the fair share. In such cases, the
observed peak usage (i.e., the tail of the distribution)
will equal its fair-share. In this case, the tail of the dis-
tribution will under-estimate the actual peak need. To
correct for this under-estimate, the provisioning compo-
nent must scale the observed peak to better estimate the
actual peak. Thus, whenever the CPU or the network in-
terface on the physical server are close to saturation, the
provisioning component first computes a high-percentile
of the observed distribution and then adds a constant ∆
to scale up this estimate.

Example Consider two virtual machines that are as-
signed CPU weights of 1:1 resulting in a fair share of
50% each. Assume that VM1 is overloaded and requires
70% of the CPU to meet its peak needs. If VM2 is under-
loaded and only using 20% of the CPU, then the work-
conserving Xen scheduler will allocate 70% to VM1. In
this case, the tail of the observed distribution is a good
inddicator of VM1’s peak need. In contrast, if VM2 is
using its entire fair share of 50%, then VM1 will be al-
located exactly its fair share. In this case, the peak ob-
served usage will be 50%, an underestimate of the actual
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peak need. Since Sandpiper can detect that the CPU is
fully utilized, it will estimate the peak to be 50 + ∆.

The above example illustrates a fundamental limita-
tion of the black-box approach—it is not possible to es-
timate the true peak need when the underlying resource
is fully utilized. The scale-up factor ∆ is simply a guess
and might end up over- or under-estimating the true
peak.

Estimating peak memory needs: Xen allows an ad-
justable amount of physical memory to be assigned
to each resident VM; this allocation represents a hard
upper-bound that can not be exceeded regardless of
memory demand and regardless of the memory usage in
other VMs. Consequently, our techniques for estimating
the peak CPU and network usage do not apply to mem-
ory. The provisioning component uses observed swap
activity to determine if the current memory allocation
of the VM should be increased. If swap activity exceeds
the threshold indicating memory pressure, then the the
current allocation is deemed insufficient and is increased
by a constant amount ∆m. Observe that techniques such
as Geiger and hypervisor level caches that attempt to in-
fer working set sizes by observing swap activity [11, 14]
can be employed to obtain a better estimate of memory
needs; however, our current prototype uses the simpler
approach of increasing the allocation by a fixed amount
∆m whenever memory pressure is observed.

5.2 Gray-box Provisioning

Since the gray-box approach has access to application-
level logs, information contained in the logs can be uti-
lized to estimate the peak resource needs of the applica-
tion. Unlike the black-box approach, the peak needs can
be estimated even when the resource is fully utilized.

To estimate peak needs, the peak request arrival rate
is first estimated. Since the number of serviced requests
as well as the the number of dropped requests are typi-
cally logged, the incoming request rate is the summation
of these two quantities. Given the distribution profile of
the arrival rate, the peak rate is simply a high percentile
of the distribution. Let λpeak denote the estimated peak
arrival rate for the application.

Estimating peak CPU needs: An application model
is necessary to estimate the peak CPU needs. Applica-
tions such as web and database servers can be modeled
as G/G/1 queuing systems [24]. The behavior of such
a G/G/1 queuing system can be captured using the fol-
lowing queuing theory result [13]:

λcap ≥
[
s +

σ2
a + σ2

b

2 · (d − s)

]−1

(2)

where d is the mean response time of requests, s is the
mean service time, and λcap is the request arrival rate.
σ2

a and σ2
b are the variance of inter-arrival time and the

variance of service time, respectively. Note that response
time includes the full queueing delay, while service time
only reflects the time spent actively processing a request.

While the desired response time d is specified by the
SLA, the service time s of requests as well as the variance
of inter-arrival and service times σ2

a and σ2
b can be deter-

mined from the server logs. By substituting these values
into Equation 2, a lower bound on request rate λcap that
can be serviced by the virtual server is obtained. Thus,
λcap represents the current capacity of the VM.

To service the estimated peak workload λpeak, the
current CPU capacity needs to be scaled by the factor
λpeak

λcap
. Observe that this factor will be greater than 1 if

the peak arrival rate exceeds the currently provisioned
capacity. Thus, if the VM is currently assigned a CPU
weight w, its allocated share needs to be scaled up by
the factor λpeak

λcap
to service the peak workload.

Estimating peak network needs: The peak network
bandwidth usage is simply estimated as the product of
the estimated peak arrival rate λpeak and the mean re-
quested file size b; this is the amount of data transferred
over the network to service the peak workload. The
mean request size can be computed from the server logs.

Estimating memory needs: Using OS level informa-
tion about a virtual machine’s memory utilization al-
lows the gray box approach to more accurately estimate
the amount of memory required by a virtual machine.
The gray box approach can proactively adjust mem-
ory allocations when the OS reports that it is low on
memory (but before swapping occurs). This data is also
used to safely reduce the amount of memory allocated to
VMs which are not using their full allotment, something
which is impossible to do with only black box informa-
tion about swapping.

6 Hotspot Mitigation

Once a hotspot has been detected, Sandpiper must deter-
mine if the hotspots can be resolved with local resource
adjustments, or if migrations are required to balance load
between hosts.

6.1 VM Resizing

While large changes in resource needs may require mi-
gration between servers, some hot spots can be handled
by adjusting the resource allocation of the overloaded
VM. Sandpiper first attempts to increase the resource
allocation for an overloaded VM by either adding ad-
ditional CPUs, network interfaces, or memory depend-
ing on which resource utilizations exceeded the warning
thresholds.

If the profiling engine detects that a VM is experi-
encing an increasing usage of CPU, Sandpiper will at-
tempt to allocate an additional virtual CPU to the VM.
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Xen and other virtualization platforms support dynamic
changes in the number of CPUs a VM has access to by
exploiting hot-swapping code that already exists in many
operating system kernels. A similar approach can be
used to add network interfaces to a VM, although this
is not currently supported by Sandpiper.

In many cases, memory hotspots can also be resolved
through local provisioning adjustments. When a VM
has insufficient memory as detected by either swapping
(black box) or OS statistics (gray box), Sandpiper will
first attempt to increase the VM’s memory allocation
on its current host. Only if there is insufficient spare
memory will the VM be migrated to a different host.

6.2 Load Balancing with Migration

If there are insufficient spare resources on a host, the
migration manager invokes its hotspot mitigation algo-
rithm to determine which virtual servers to migrate and
where in order to dissipate the hotspot. Determining
a new mapping of VMs to physical servers that avoids
threshold violations is NP-hard—the multi-dimensional
bin packing problem can be reduced to this problem,
where each physical server is a bin with dimensions cor-
responding to its resource constraints and each VM is
an object that needs to be packed with size equal to its
resource requirements. Even the problem of determining
if a valid packing exists is NP-hard.

Consequently, our hotspot mitigation algorithm re-
sorts to a heuristic to determine which overloaded VMs
to migrate and where such that migration overhead is
minimized. Reducing the migration overhead (i.e., the
amount of data transferred) is important, since Xen’s
live migration mechanism works by iteratively copying
the memory image of the VM to the destination while
keeping track of which pages are being dirtied and need
to be resent. This requires Xen to intercept all memory
accesses for the migrating domain, which significantly
impacts the performance of the application inside the
VM. By reducing the amount of data copied over the
network, Sandpiper can minimize the total migration
time, and thus, the performance impact on applications.
Note that network bandwidth available for application
use is also reduced due to the background copying dur-
ing migrations; however, on a gigabit LAN, this impact
is small.

Capturing Multi-dimensional Loads: Once the
desired resource allocations have been determined by ei-
ther our black-box or gray-box approach, the problem
of finding servers with sufficient idle resource to house
overloaded VMs is identical for both. The migration
manager employs a greedy heuristic to determine which
VMs need to be migrated. The basic idea is to move load
from the most overloaded servers to the least-overloaded
servers, while attempting to minimize data copying in-
curred during migration. Since a VM or a server can

be overloaded along one or more of three dimensions–
CPU, network and memory–we define a new metric that
captures the combined CPU-network-memory load of a
virtual and physical server. The volume of a physical
or virtual server is defined as the product of its CPU,
network and memory loads:

Vol =
1

1 − cpu
∗ 1

1 − net
∗ 1

1 −mem
(3)

where cpu, net and mem are the corresponding utiliza-
tions of that resource normalized by the number of CPUs
and network interfaces allocated to the virtual or phys-
ical server.2 The higher the utilization of a resource,
the greater the volume; if multiple resources are heav-
ily utilized, the above product results in a correspond-
ingly higher volume. The volume captures the degree of
(over)load along multiple dimensions in a unified fashion
and can be used by the mitigation algorithms to handle
all resource hotspots in an identical manner.

Migration Phase: To determine which VMs to mi-
grate, the algorithm orders physical servers in decreas-
ing order of their volumes. Within each server, VMs are
considered in decreasing order of their volume-to-size ra-
tio (VSR); where V SR is defined as Volume/Size; size is
the memory footprint of the VM. By considering VMs in
VSR order, the algorithm attempts to migrate the max-
imum volume (i.e., load) per unit byte moved, which has
been shown to minimize migration overhead [21].

The algorithm proceeds by considering the highest
VSR virtual machine from the highest volume server and
determines if it can be housed on the least volume (least
loaded) physical server. The move is feasible only if that
server has sufficient idle CPU, network and memory re-
sources to meet the desired resource allocation of the
candidate VM as determined by the provisioning com-
ponent (Section 5). Since we use VSR to represent three
resource quantities, the least loaded server may not nec-
essarily “fit” best with a particular VM’s needs. If suf-
ficient resources are not available, then the algorithm
examines the next least loaded server and so on, until
a match is found for the candidate VM. If no physical
server can house the highest VSR VM, then the algo-
rithm moves on to the next highest VSR VM and at-
tempts to move it in a similar fashion. The process re-
peats until the utilizations of all resources on the physical
server fall below their thresholds.

The algorithm then considers the next most loaded
physical server that is experiencing a hotspot and re-
peats the process until there are no physcial servers left
with a hotspot. The output of this algorithm is a list of

2If a resource is fully utilized, its utilization is set to 1 − ε,
rather than one, to avoid infinite volume servers. Also, since the
black-box approach is oblivious of the precise memory utilization,
the value of mem is set to 0.5 in the absence of swapping and to
1− ε if memory pressure is observed; the precise value of mem is
used in the gray-box approach.
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overloaded VMs and a new destination server for each;
the actual migrations are triggered only after all moves
have been determined.

Swap Phase: In cases where there aren’t suffi-
cient idle resources on less loaded servers to dissipate a
hotspot, the migration algorithm considers VM swaps as
an alternative. A swap involves exchanging a high VSR
virtual machine from a loaded server with one or more
low VSR VMs from an underloaded server. Such a swap
reduces the overall utilization of the overloaded server,
albeit to a lesser extent than a one-way move of the VM.
Our algorithm considers the highest VSR VM on the
highest volume server with a hotspot; it then considers
the lowest volume server and considers the k lowest VSR
VMs such that these VMs collectively free up sufficient
resources to house the overloaded VM. The swap is con-
sidered feasible if the two physical servers have sufficient
resources to house the other server’s candidate VM(s)
without violating utilization thresholds. If a swap can-
not be found, the next least loaded server is considered
for a possible swap and so on. The process repeats until
sufficient high VSR VMs have been swapped with less
loaded VMs so that the hotspot is dissipated. Although
multi-way swaps involving more than two servers can
also be considered, our algorithm presently does not im-
plement such complex swaps. The actual migrations to
perform the swaps are triggered only after a list of all
swaps is constructed. Note that a swap may require a
third server with “scratch” RAM to temporarily house
a VM before it moves to its final destination. An alter-
native is to (i) suspend one of the VMs on disk, (ii) use
the freed up RAM to accommodate the other VM, and
(iii) resume the first VM on the other server; doing so is
not transparent to the temporarily suspended VM.

7 Implementation and Evalua-
tion

The implementation of Sandpiper is based on Xen. The
Sandpiper control plane is implemented as a daemon
that runs on the control node. It listens for periodic
usage reports from the various nuclei, which are used to
generate profiles. The profiling engine currently uses a
history of the past 200 measurements to generate virtual
and physical server profiles. The hotspot detector uses
these profiles to detect hotspots; currently a hotspot is
triggered when 3 out of 5 past readings and the next
predicted value exceed a threshold. The default thresh-
old is set to 75%. The migration manager implements
our provisioning and hotspot mitigation algorithms; it
notifies the nuclei of any desired migrations, which then
trigger them. In all, the control plane consists of less
than 750 lines of Python code.

The Sandpiper nucleus is a Python application that

extends the XenMon CPU monitor to also acquire net-
work and memory statistics for each VM. The monitor-
ing engine in the nucleus collects and reports measure-
ments once every 10 seconds—the default measurement
interval. The nucleus uses Xen’s Python management
API to trigger migrations and adjust resource allocations
as directed by the control plane. While black-box moni-
toring only requires access to domain-0 events, gray-box
monitoring employs two additional components: a Linux
OS daemon and an Apache module.

The gray-box linux daemon runs on each VM that
permits gray-box monitoring. It currently gathers mem-
ory statistics via the /proc interface—the memory uti-
lization, the number of free pages and swap usage are
reported to the monitoring engine in each interval. The
gray-box apache module comprises of a real-time log an-
alyzer and a dispatcher. The log-analyzer processes log-
entries as they are written to compute statistics such as
the service time, request rate, request drop rate, inter-
arrival times, and request/file sizes. The dispatcher is
implemented as a kernel module based on Linux IP Vir-
tual server (IPVS) ver 1.2.1; the goal of the kernel mod-
ule is to accurately estimate the request arrival rate dur-
ing overload periods, when a high fraction of requests
may be dropped. Since requests can be dropped at the
TCP layer as well as at the HTTP layer during overloads,
the use of a transport-level dispatcher such as IPVS is
necessary for accurately estimating the drop (and hence
arrival) rates. Ordinarily, the kernel dispatcher simply
forwards incoming requests to Apache for processing. In
all, the nucleus comprises 650 lines of Python code.

Our evaluation of Sandpiper is based on a proto-
type data center consisting of twenty 2.4Ghz Pentium-4
servers connected over gigabit ethernet. These servers
run Linux 2.6 and Xen 3.0.2-3 and are equipped with
at least 1GB of RAM. Experiments involving multi-core
systems run on Intel Quad-Core servers with 4GB of
RAM and Xen 3.1. A cluster of Pentium-3 Linux servers
is used to generate workloads for our experiments. One
node in the cluster is designated to run the Sandpiper
control plane, while the rest host one or more VMs, all
of which run the Sandpiper nucleus in domain- 0. In
the following experiments, our VMs run Apache 2.0.54,
PHP 4.3.10, and MySQL 4.0.24.

7.1 VM Resizing

While migrations are necessary for large changes in re-
source allocations, it is less expensive if resources can be
adjusted locally without the overhead of migration. This
experiment demonstrates Sandpiper’s ability to detect
increasing CPU requirements and respond by allocating
additional CPU cores to the virtual machine.

Initially, a VM running a CPU intensive web appli-
cation is allocated a single CPU core. During the ex-
periment, the number of clients accessing the web server
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VM Peak 1 Peak 2 Peak 3 RAM (MB) Start PM
1 200 130 130 256 1
2 90 90 90 256 1
3 60 200 60 256 2
4 60 90 90 256 2
5 10 10 130 128 3

Table 1: Workload in requests/second, memory allocations,
and initial placement.

increases. Sandpiper responds by increasing the number
of virtual CPUs allocated to the VM. The VM starts
on a dual core host; as the load continues to rise, a mi-
gration is required to move the VM to a host with four
available CPUs as shown in Figure 3.

Result: Resizing a VM’s resource allocation incurs lit-
tle overhead. When additional resources are not available
locally, migrations are required.

7.2 Migration Effectiveness

Our next experiment exercises Sandpiper’s hotspot de-
tection and migration algorithms; we subject a set of
black-box servers to a series of workloads that repeat-
edly place the system in overload. Our experiment uses
three physical servers and five VMs with memory alloca-
tions as shown in Table 1. All VMs run Apache serving
dynamic PHP web pages. The PHP scripts are designed
to be CPU intensive so that a low client request rate
places a large CPU load on a server without significant
network or memory utilization. We use httperf to inject
a workload that goes through three phases, each of which
causes a hotspot on a different physical machine. The
peak request rates for each phase are shown in Table 1.

Figure 4 presents a time series of the load placed on
each VM along with the triggered migrations. In the
first phase, a large load is placed on VM1, causing the
CPU utilization on PM1 to exceed the CPU threshold.
The system detects a hotspot at t=166 seconds. The
migration manager examines candidates for migration in
VSR order. VM1 has the highest VSR, so it is selected
as a candidate. Since PM3 has sufficient spare capacity
to house VM1, it is migrated there, thereby eliminating
the hotspot less than 20 seconds after detection. This
represents the ideal case for our algorithm: if possible, we
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Figure 4: A series of migrations resolve hotspots. Different
shades are used for each migrating VM.

try to migrate the most loaded VM from an overloaded
PM to one with sufficient spare capacity.

In the second phase, PM2 becomes overloaded due to
increasing load on VM3. However, the migration man-
ager is unable to migrate this VM because there is insuf-
ficient capacity on the other PMs. As a result, at t=362
seconds, the VM on PM2 with the second highest VSR
VM4, is migrated to PM1 that now has spare capacity.
This demonstrates a more typical case where none of
the underloaded PMs have sufficient spare capacity to
run the overloaded PM’s highest VSR VM, so instead
we migrate less overloaded VMs that can fit elsewhere.

In the final phase, PM3 becomes overloaded when
both its VMs receive identical large loads. Unlike the
previous two cases where candidate VMs had equal mem-
ory footprints, VM5 has half as much RAM as VM1, so
it is chosen for migration.

Result: To eliminate hotspots while minimzing the
overhead of migration, our placement algorithm tries to
move the highest VSR VM to the least loaded PM. This
maximizes the amount of load displaced from the hotspot
per megabyte of data transferred.

7.3 Mixed Resource Workloads

Sandpiper can consolidate applications that stress dif-
ferent resources to improve the overall multiplexing of
server resources. Our setup comprises two servers with
two VMs each. Both VMs on the first server are network-
intensive, involving large file transfers, while those on the
second server are CPU-intensive running Apache with
dynamic PHP scripts. All VMs are initially allocated 256
MB of memory. VM2 additionally runs a main-memory
database that stores its tables in memory, causing its
memory usage to grow over time.

Figures 5(a) and (b) show the resource utilization
of each PM over time. Since PM1 has a network
hotspot and PM2 has a CPU hotspot, Sandpiper swaps a
network-intensive VM for a CPU-intensive VM at t=130.
This results in a lower CPU and network utilization on
both servers. Figure 5(d) shows the initial utilizations
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Figure 5: Swaps and migrations to handle network- and
memory-intensive loads. Initially, VM1 and VM2 are on PM1,
the rest on PM2. After two swaps, PM1 hosts VM1 and VM4.

of each VM; after the swap, the aggregate CPU and net-
work utilizations on both servers falls below 50%.

In the latter half, memory pressure increases on VM2

due to its main-memory database application. As shown
in 5(c), Sandpiper responds by increasing the RAM allo-
cation in steps of 32MB every time swapping is observed;
when no additional RAM is available, the VM is swapped
to the second physical server at t=430. This is feasi-
ble because two cpu-intensive jobs are swapped, leaving
CPU and network utilization balanced, and the second
physical server has more RAM than the first. Mem-
ory allocations are reactive since only black-box stats
are available. Next we demonstrate how a gray-box ap-
proach can proactively respond to memory pressure.

Result: Sandpiper can respond to network, CPU, or
memory hotspots and can collocate VMs that stress dif-
ferent resources to improve overall system utilization.

7.4 Gray v. Black: Memory Allocation

We compare the effectiveness of the black- and gray-
box approaches in mitigating memory hotspots using the
SPECjbb 2005 benchmark. SPECjbb emulates a three-
tier web application based on J2EE servers. We use
SPECjbb to apply an increasingly intense workload to
a single VM. The workload increases every two minutes,
causing a significant increase in memory usage. After
twenty minutes, the application reaches its peak inten-
sity, after which the workload decreases at a similar rate.

The VM is initially assigned 256MB of RAM, and
resides on a physical machine with 384 MB total RAM.
We also run a second, idle physical server which has 1GB
RAM. We run the experiment with two separate pairs of
servers, Black and Gray, that correspond to the black-
and gray-box approaches, respectively. The Gray system
is configured to signal a hotspot whenever the amount
of free RAM in the virtual machine falls below 32MB.
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Figure 6: The black-box system lags behind the gray-box
system in allocating memory. The gray-box approach proac-
tively increases memory and safely reduces the VM’s memory
allocation when demand falls.

Fig. 6(a) plots the memory allocation of the VM over
time. Both systems gradually increase the VM’s memory
until all unused RAM is exhausted. Since Black can
only respond to swapping, it lags in responsiveness. At
t=380 seconds, Gray determines that there is insufficient
RAM for the VM and migrates it to the second PM with
1GB RAM; Black initiates the same migration shortly
afterward. Both continue to increase the VM’s memory
as the load rises. Throughout the experiment, Black
writes a total of 32MB to swap, while Gray only writes
2MB. Note that a lower memory hotspot threshold in
Gray can prevent swapping altogether, while Black can
not eliminate swapping due to its reactive nature.

During the second phase of the trial, Gray is able to
detect the decreasing memory requirements and is able
to safely reduce the VM’s memory allocation. Since the
black-box system can only detect swapping, it cannot
reduce the memory allocation without fear of causing
swapping and worse performance.

Result: A key weakness of the black-box approach is its
inability to infer memory usage. Using this information,
the gray-box system can reduce or eliminate swapping
and can safely decrease a VM’s memory allocation.

7.5 Gray v. Black: Apache Performance

Recall from Section 5 that when resources are fully uti-
lized, they hamper the black-box approach from accu-
rately determining the needs of overloaded VMs. This
experiment demonstrates how a black-box approach may
incur extra migrations to mitigate a hotspot, whereas a



University of Massachusetts, Technical Report 2009-25 11

100

50

0
PM1 PM2 PM3

100

50

0
PM1 PM2 PM3

100

50

0
PM1 PM2 PM3

100

50

0
PM1 PM2 PM3

(a) (b)

(d)(c)

VM1 VM2 VM3 VM4
CP

U 
Ut

iliz
at

io
n

CP
U 

Ut
iliz

at
io

n
Key:

Figure 7: The black-box system incorrectly guesses resource
requirements since CPU usage is saturated, resulting in an
increased resolution time. The gray-box system infers usage
requirements and transitions directly from a) to d).

 0

 50

 100

 150

 200

 250

 300

 350

 0  100  200  300

A
vg

 R
es

p.
 T

im
e 

(m
s)

Time (sec)

Black
Gray

 0

 10

 20

 30

 0  100  200  300

M
ig

ra
tio

n 
IO

 (
M

B
/s

ec
)

Time (sec)

Black
Gray

(a) (b)

Figure 8: The gray-box system balances the system more
quickly due to more informed decision making. The black-
box system must perform migrations sequentially and incurs
an additional migration.

gray-box approach can use application-level knowledge
for faster hotspot mitigation.

Our experiment employs three physical servers and
four VMs. Initially, VM1 through VM3 reside on PM1,
VM4 resides on PM2, and PM3 is idle. We use httperf
to generate requests for CPU intensive PHP scripts on
all VMs. At t=80s, we rapidly increase the request rates
on VM1 and VM2 so that actual CPU requirement for
each virtual machine reaches 70%, creating an extreme
hotspot on PM1. The request rates for VM3 and VM4 re-
main constant, requiring 33% and 7% CPU respectively.
We use an aggressive 6 second measurement interval so
that Sandpiper can respond quickly to the increase in
workload.

Without accurate estimates of each virtual machine’s
resource requirements, the black-box system falters in its
decision making as indicated in Figure 7. Since the CPU
on PM1 is saturated, each virtual machine receives an
equal portion of processing time and appears equivalent
to Sandpiper. Sandpiper must select a VM at random,
and in the worst case, tries to eliminate the hotspot by
migrating VM3 to PM3. Since VM1 and VM2 continue
to reside on PM1, the hotspot persists even after the
first migration. Next, the black-box approach assumes
that VM2 requires only 50% of the CPU and migrates
it to PM2. Unfortunately, this results in PM2 becoming
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Figure 9: Sandpiper eliminates all hotspots and reduces the
number of intervals experiencing sustained overload by 61%
.

overloaded, so a final migration must be performed to
move VM4 to PM3.

We repeat this scenario with the Apache gray-box
module running inside of each virtual machine. Since
the gray-box monitor can precisely measure the incom-
ing request rates, Sandpiper can accurately estimate the
CPU needs of VM1 and VM2. By using this information,
Sandpiper is able to efficiently respond to the hotspot by
immediately migrating VM3 to PM2 and VM2 to PM3.
Figure 8 depicts the improved performance of the gray-
box approach. Note that since Sandpiper requires the
hotspot to persist for k out of n intervals before it acts,
it is not until t = 98s that either system considers it-
self overloaded. Once a hotspot is flagged, the gray-box
approach can mitigate it within 40 seconds with just
two migrations, while the black-box approach requires
110 seconds and three migrations to do so. Although
response time increases equally under both systems, the
gray-box approach is able to reduce response times to an
acceptable level 61% faster than the black-box system,
producing a corresponding reduction in SLA violations.

Result: Application-level statistics enable the gray-
box approach to better infer resource needs and improves
the quality of migration decisions, especially in scenarios
where resource demands exceed server capacity.

7.6 Prototype Data Center Evaluation

Next we conduct an experiment to demonstrate how
Sandpiper performs under realistic data center condi-
tions. We deployed a prototype data center on a cluster
of 16 servers that run a total of 35 VMs. An additional
node runs the control plane and one node is reserved
as a scratch node for swaps. The virtual machines run
a mix of data center applications ranging from Apache
and streaming servers to LAMP servers running Apache,
PHP, and MySQL within a single VM. We run RUBiS on
our LAMP servers—RUBiS is an open-source multi-tier
web application that implements an eBay-like auction
web site and includes a workload generator that emu-
lates users browsing and bidding on items.

Of the 35 deployed VMs, 5 run the RUBiS applica-
tion, 5 run streaming servers, 5 run Apache serving CPU-
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Log Type Bytes
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Figure 10: Sandpiper overhead and scalability

intensive PHP scripts, 2 run main memory database ap-
plications, and the remaining 15 serve a mix of PHP
scripts and large HTML files. We use the provided
workload generators for the RUBiS applications and use
httperf to generate requests for the other servers.

To demonstrate Sandpiper’s ability to handle complex
hotspot scenarios, we orchestrate a workload that causes
multiple network and CPU hotspots on several servers.
Our workloads causes six physical servers running a to-
tal of 14 VMs to be overloaded—four servers see a CPU
hotspot and two see a network hotspot. Of the remaining
PMs, 4 are moderately loaded (greater than 45% utiliza-
tion for at least one resource) and 6 have lighter loads of
between 25 and 40% utilization. We compare Sandpiper
to a statically allocated system with no migrations.

Figure 9 demonstrates that Sandpiper eliminates
hotspots on all six servers by interval 60. These hotspots
persist in the static system until the workload changes
or a system administrator triggers manual migrations.
Due to Xen’s migration overhead, there are brief periods
where Sandpiper causes more physical servers to be over-
loaded than in the static case. Despite this artifact, even
during periods where migrations are in progress, Sand-
piper reduces the number of intervals spent in sustained
overload by 61%. In all, Sandpiper performs seven mi-
grations and two swaps to eliminate all hotspots over a
period of 237 seconds after hotspot detection.

Result: Sandpiper is capable of detecting and eliminat-
ing simultaneous hotspots along multiple resource dimen-
sions. Despite Xen’s migration overhead, the number of
servers experiencing overload is decreased even while mi-
grations are in progress.

7.7 System Overhead and Scalability

Sandpiper’s CPU and network overhead is dependent on
the number of PMs and VMs in the data center. With
only black-box VMs, the type of application running in
the VM has no effect on Sandpiper’s overhead. If gray-
box modules are in use, the overhead may vary depend-
ing on the size of application-level statistics gathered.

Nucleus Overheads: Sandpiper’s nucleus sends re-
ports to the Control Plane every measurement interval
(10 seconds by default). The table in Figure 10(a) gives
a breakdown of overhead for each report type. Since
each report uses only 288 bytes per VM, the resulting
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Figure 11: (a) Using time series predictions (the dotted
lines) allows Sandpiper to better select migration destina-
tions, improving stability. (b) Higher levels of overload re-
quires more migrations until there is no feasible solution.

overhead on a gigabit LAN is negligible. To evaluate the
CPU overhead, we compare the performance of a CPU
benchmark with and without our resource monitors run-
ning. Even on a single physical server running 24 con-
current VMs, our monitoring overheads only reduce the
CPU benchmark performance by approximately one per-
cent. This is comparable to the overheads reported by
XenMon, which much of our code is based on [10].

Control Plane Scalability: The main source of
computational complexity in the control plane is the
computation of a new mapping of virtual machines to
physical servers after detecting a hotspot. Although the
problem is NP-hard, we only require an approximate so-
lution, and our heuristics make the problem tractable for
reasonable system sizes. For data centers with up to 500
virtual servers, the algorithm completes in less than five
seconds as shown in Figure 10(b). For very large data
centers with thousands of virtual machines, the compu-
tation could be split up accross multiple nodes, or the
center’s servers can be broken up into pools, each con-
trolled independently by its own control plane.

7.8 Stability During Overloads

This section demonstrates how Sandpiper ensures sta-
ble system behavior by avoiding “thrashing” migrations.
First, Sandpiper avoids migrations to physical machines
with rising loads, since this can trigger additional migra-
tions if the load rises beyond the threshold; time-series
predictions are used to determine future load trends
when selecting a physical server. Thus, Figure 11(a)
shows that when a migration decision is required at
t=140 sec, Sandpiper will prefer PM2 over PM1 as a
target. Even though PM2 has a higher current load, the
120 second prediction window indicates a rising load on
PM1.

Next, we demonstrate Sandpiper’s behavior in the
presence of increasing number of hotspots. We simu-
late a data center with fifty physical servers, each with
three virtual servers. We increase the number of simul-
taneous hotspots from 20 to 45; the mean utilizations
are set to 85% and 45% for servers with and without
hotspots. Figure 11(b) depicts the mean number of mi-
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grations performed to resolve these hotspots over mul-
tiple runs. If fewer than half of the servers are over-
loaded, then all hotspots can typically be resolved with
one migration per overloaded server. After this thresh-
old, swaps are required and it is increasingly difficult to
fully resolve overload until it becomes infeasible. With
35 overloaded servers, Sandpiper was able to eliminate
all hotspots 73% of the time (over multiple runs); with 40
overloaded servers, a complete solution was found only
3% of the time. In the extreme case, Sandpiper is still
able to resolve 22 of the 45 hotspots before giving up. In
all cases, Sandpiper first finds a solution before initiat-
ing migrations or swaps; when no feasible solutions are
found, Sandpiper either implements a partial solution or
gives up entirely rather than attempting wasteful migra-
tions. This bounds the number of migrations which will
ever be performed and explains the decrease in migra-
tions beyond 40 overloaded servers, where there is no
feasible solution.

7.9 Tuning Sandpiper

Sandpiper has several parameters which the system ad-
ministrator can tune to make hotspot detection and mit-
igation more or less aggressive. Our experiments suggest
the following rules of thumb:

Setting Thresholds: If overload thresholds are set
too high, then the additional overhead during migration
can cause additional SLA violations. Our experiments
show that the average throughput of a CPU-intensive
Apache server can drop by more than 50% during a mi-
gration. We suggest a CPU threshold of 75% to absorb
the CPU overhead of migration while maximizing server
utilization. We also suggest a 75% threshold for network
utilization based on experiments in [6] which indicate
that the network throughput of a highly loaded server
can drop by about 20% during portions of a migration
(due to network copying overheads).

Sustained Overload Requirement: Our experi-
ments (not reported here) reveal that Sandpiper is not
sensitive to a particular choice of the measurement in-
terval I so long as it is between a few seconds and a few
tens of seconds. For a measurement interval of 10s, we
suggest k = 3 and n = 5 for the “k out of n” check;
this corresponds to requiring the time period of about
3 migrations to exceed the resource threshold before we
initiate a migration. The ∆ paramter is used in the
black-box system to increase resource allocations when
utilization is saturated. This should be set equal to the
maximum increase in resource requirements that a ser-
vice is likely to see during a measurement interval and
may vary based on workload; we use 10% in our ex-
periments. Using more advanced time series forecasting
techniques would allow Sandpiper to dynamically deter-
mine ∆.

8 Related Work

Our work draws upon recent advances in virtual ma-
chines and dynamic provisioning in data centers to ad-
dress a question of increasing research and commercial
interest: can virtual machine migration enable robust
and highly responsive provisioning in data centers? The
Xen migration work [6] alludes to this motivation. What
is missing is a convincing validation and algorithms to
effect migration, which is the focus of this paper.

The idea of process migration was first investigated
in the 80’s [23]. Support for migrating groups of pro-
cesses across OSes was presented in [17], but applica-
tions had to be suspended and it did not address the
problem of maintaining open network connections. Vir-
tualization support for commodity operating systems in
[7] led towards techniques for virtual machine migration
over long time spans, suitable for WAN migration [20].
More recently, Xen [6] and VMWare [16] have imple-
mented “live” migration of VMs that involve extremely
short downtimes ranging from tens of milliseconds to a
second. VM migration has been used for dynamic re-
source allocation in Grid environments [19, 22, 8]. A
system employing automated VM migrations for scien-
tific nano-technology workloads on federated grid en-
vironments was investigated in [19]. The Shirako sys-
tem provides infrastructure for leasing resources within
a federated cluster environment and was extended to
use virtual machines for more flexible resource alloca-
tion in [8]. Shirako uses migrations to enable dynamic
placement decisions in response to resource broker and
cluster provider policies. In contrast, we focus on data
center environments with stringent SLA requirements
that necessitate highly responsive migration algorithms
for online load balancing. VMware’s Distributed Re-
source Scheduler [25] uses migration to perform auto-
mated load balancing in response to CPU and memory
pressure. DRS uses a userspace application to monitor
memory usage similar to Sandpiper’s gray box monitor,
but unlike Sandpiper, it cannot utilize application logs
to respond directly to potential SLA violations or to im-
prove placement decisions.

Dedicated hosting is a category of dynamic provision-
ing in which each physical machine runs at most one ap-
plication and workload increases are handled by spawn-
ing a new replica of the application on idle servers. Phys-
ical server granularity provisioning has been investigated
in [1, 18]. Techniques for modeling and provisioning
multi-tier Web services by allocating physical machines
to each tier are presented in [24]. Although dedicated
hosting provides complete isolation, the cost is reduced
responsiveness - without virtualization, moving from one
physical machine to another takes on the order of sev-
eral minutes [24] making it unsuitable for handling flash
crowds. Our current implementation does not replicate
virtual machines, implicitly assuming that PMs are suf-
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ficiently provisioned.
Shared hosting is the second variety of dynamic pro-

visioning, and allows a single physical machine to be
shared across multiple services. Various economic and
resource models to allocate shared resources have been
presented in [5]. Mechanisms to partition and share re-
sources across services include [2, 5]. A dynamic pro-
visioning algorithm to allocate CPU shares to VMs on
a single physical machine (as opposed to a cluster) was
presented and evaluated through simulations in [15]. In
comparison to the above systems, our work assumes a
shared hosting platform and uses VMs to partition CPU,
memory, and network resources, but additionally lever-
ages VM migration to meet SLA objectives.

Estimating the resources needed to meet an applic-
tion’s SLA requires a model that inspects the request
arrival rates for the application and infers its CPU, mem-
ory, and network bandwidth needs. Developing such
models is not the focus of this work and has been ad-
dressed by several previous efforts such as [12, 1].

9 Conclusions

This paper argued that virtualization provides signifi-
cant benefits in data centers by enabling virtual machine
migration to eliminate hotspots. We presented Sand-
piper, a system that automates the task of monitoring
and detecting hotspots, determining a new mapping of
physical to virtual resources, and resizing or migrating
VM’s to eliminate the hotspots. We discussed a black-
box strategy that is fully OS- and application-agnostic
as well as a gray-box approach that can exploit OS- and
application-level statistics. An evaluation of our Xen-
based prototype showed that VM migration is a viable
technique for rapid hotspot elimination in data center en-
vironments. Using solely black-box methods, Sandpiper
is capable of eliminating simultaneous hotspots involv-
ing multiple resources. We found that utilizing gray-
box information can improve the responsiveness of our
system, particularly by allowing for proactive memory
allocations and better inferences about resource require-
ments.

Acknowledgements: We would like to thank our
anonymous reviewers for their helpful comments. This
research was supported by NSF grants EEC-0313747,
CNS-0720271, CNS-0720616, CNS-0325868 and a gift
from Intel.

References

[1] Appleby, K., Fakhouri, S., Fong, L., Goldszmidt, M.,
Krishnakumar, S., Pazel, D., Pershing, J., and Rochw-
erger, B. Oceano - sla-based management of a computing
utility. In Proceedings of the IFIP/IEEE Symposium on In-
tegrated Network Management (May 2001).

[2] Aron, M., Druschel, P., and Zwaenepoel, W. Cluster
reserves: A mechanism for resource management in cluster-
based network servers. In Proceedings of the ACM SIGMET-
RICS Conference, Santa Clara, CA (June 2000).

[3] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris,
T., Ho, A., Neugebauer, R., Pratt, I., and Warfield,
A. Xen and the art of virtualization. In Proceedings of
the 19th ACM Symposium on Operating Systems Principles
(SOSP’03), Bolton Landing, NY (October 2003), pp. 164–
177.

[4] Box, G. P., Jenkins, G. M., and Reinsel, G. C. Time Se-
ries Analysis Forecasting and Control Third Edition. Prentice
Hall, 1994.

[5] Chase, J., Anderson, D., Thakar, P., Vahdat, A., and
Doyle, R. Managing energy and server resources in host-
ing centers. In Proceedings of the Eighteenth ACM Sym-
posium on Operating Systems Principles (SOSP) (October
2001), pp. 103–116.

[6] Clark, C., Fraser, K., Hand, S., Hansen, J., Jul, E.,
Limpach, C., Pratt, I., and Warfiel, A. Live migration
of virtual machines. In Proceedings of Usenix Symposium on
Network Systems Design and Implementation (NSDI) (May
2005).

[7] Govil, K., Teodosiu, D., Huang, Y., and Rosenblum,
M. Cellular disco: Resource management using virtual
clusters on shared-memory multiprocessors. In Proceedings
of the ACM Symposium on Operating Systems Principles
(SOSP’99), Kiawah Island Resort, SC (December 1999),
pp. 154–169.

[8] Grit, L., Irwin, D., , Yumerefendi, A., and Chase, J.
Virtual machine hosting for networked clusters: Building the
foundations for autonomic orchestration. In In the First In-
ternational Workshop on Virtualization Technology in Dis-
tributed Computing (VTDC) (November 2006).

[9] Gupta, D., Cherkasova, L., Gardner, R., and Vahdat,
A. Enforcing performance isolation across virtual machines
in xen. In Proceedings of the ACM/IFIP/USENIX 7th In-
ternational Middleware Conference (Middleware’2006), Mel-
bourne, Australia (November 2006).

[10] Gupta, D., Gardner, R., and Cherkasova, L. Xenmon:
Qos monitoring and performance profiling tool. Tech. Rep.
HPL-2005-187, HP Labs, 2005.

[11] Jones, S., Arpaci-Dusseau, A., and Arpaci-Dusseau, R.
Geiger: Monitoring the buffer cache in a virtual machine envi-
ronment. In Proceedings of the 12th ACM International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’00), Cambridge, MA (Oc-
tober 2006), pp. 13–23.

[12] Kamra, A., Misra, V., and Nahum, E. Yaksha: A self-
tuning controller for managing the performance of 3-tiered
web sites. In International Workshop on Quality of Service
(IWQoS) (June 2004).

[13] Kleinrock, L. Queueing Systems, Volume 2: Computer Ap-
plications. John Wiley and Sons, Inc., 1976.

[14] Lu, P., and Shen, K. Virtual machine memory access tracing
with hypervisor exclusive cache. In Usenix Annual Technical
Conference (June 2007).

[15] Menasce, D. A., and Bennani, M. N. Autonomic Virtu-
alized Environments. In IEEE International Conference on
Autonomic and Autonomous Systems (July 2006).

[16] Nelson, M., Lim, B.-H., and Hutchins, G. Fast Trans-
parent Migration for Virtual Machines. In USENIX Annual
Technical Conference (2005).



University of Massachusetts, Technical Report 2009-25 15

[17] Osman, S., Subhraveti, D., Su, G., and Nieh, J. The design
and implementation of zap: A system for migrating comput-
ing environments. In In Proceedings of the Fifth Symposium
on Operating Systems Design and Implementation (OSDI)
(2002).

[18] Ranjan, S., Rolia, J., Fu, H., and Knightly, E. Qos-driven
server migration for internet data centers. In Proceedings of
IWQoS 2002, Miami Beach, FL (May 2002).

[19] Ruth, P., Rhee, J., Xu, D., Kennell, R., and Goasguen,
S. Autonomic Live Adaptation of Virtual Computational En-
vironments in a Multi-Domain Infrastructure. In IEEE Inter-
national Conference on Autonomic Computing (ICAC) (June
2006).

[20] Sapuntzakis, C. P., Chandra, R., Pfaff, B., Chow, J.,
Lam, M. S., and Rosenblum, M. Optimizing the migration
of virtual computers. In Proceedings of the 5th Symposium on
Operating Systems Design and Implementation (December
2002).

[21] Sundaram, V., Wood, T., and Shenoy, P. Efficient data
migration in self-managing storage systems. In Proceedings of
the 3rd IEEE International Conference on Autonomic Com-
puting (ICAC-06), Dublin, Ireland (June 2006).

[22] Sundararaj, A., Gupta, A., and Dinda, P. Increasing
Application Performance in Virtual Environments through
Run-time Inference and Adaptation. In Fourteenth Interna-
tional Symposium on High Performance Distributed Comput-
ing (HPDC) (July 2005).

[23] Theimer, M., Lantz, K., and Cheriton, D. Preemptable
remote execution facilities for the v-system. Proceedings of
the 10th SOSP, Operating Systems Review (1985).

[24] Urgaonkar, B., Shenoy, P., Chandra, A., and Goyal,
P. Dynamic provisioning for multi-tier internet applications.
In Proceedings of the 2nd IEEE International Conference on
Autonomic Computing (ICAC-05), Seattle, WA (June 2005).

[25] Resource management with vmware drs. VMware Whitepa-
per.


