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Abstract

Many machine learning data sets are embedded in high-dimensional
spaces, and require some type of dimensionality reduction to visualize or
analyze the data. In this paper, we propose a novel framework for multi-
scale dimensionality reduction based on diffusion wavelets. Our approach
is completely data driven, computationally efficient, and able to directly
process non-symmetric neighborhood relationships without ad-hoc sym-
metrization. The superior performance of our approach is illustrated using
several synthetic and real-world data sets.

1 Introduction

In this paper, we propose a novel framework for multiscale dimensionality re-
duction, which has the added benefit of being able to handle non-symmetric
neighborhood relationships. Similar to Laplacian eigenmaps [1] and LPP [5],
our approach also represents the set of instances by vertices of a graph, where
an edge is used to connect instances x and y using a distance measure, such as
if y is among the k-nearest neighbors of x. The weight of the edge is specified
typically using either a symmetric measure, such as the heat kernel or a non-
symmetric measure, such as a transition reward in a state space graph. Such
pairwise similarities can be used to derive a transition probability matrix for
a random walk P (P = D−1W ), where W is the weight matrix, and D is a
diagonal “valency” matrix of the row-sums of W . In contrast to many previous
graph-based methods, we do not require W to be symmetric. Our approach
thus addresses the problem of learning multiscale low dimensional embeddings
from directed graphs (undirected graphs are a special case of directed graphs)
without symmetrizing them, as many previous approaches require.
Most existing dimensionality reduction approaches follow a similar idea:

First, basis functions are computed that span some subspace of the original
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problem space that contains the functions of interest; Then, the data is re-
represented using a “selected” set of basis functions, which preserve a desired
relationship (like neighborhood or covariance). Classically, in Euclidean spaces,
two types of “fixed” bases are widely used: wavelet bases used in wavelet analy-
sis, and Fourier bases used in Fourier analysis. For problems on non-Euclidean
spaces, which include discrete spaces such as graphs and continuous spaces such
as manifolds, these fixed bases may not be effective. In particular, as the geom-
etry of the space may be unknown and needs to be reconstructed from the data,
the bases themselves need to be learned from the data. Laplacian eigenmaps
constructs basis functions using the eigenvectors of the graph Laplacian [2],
which extends Fourier analysis to graphs and manifolds. Recently, diffusion
wavelets [4] provides a similar extension of classical wavelet analysis to graphs
and manifolds.
Laplacian eigenmaps and its linear approximation LPP are well studied

graph Laplacian based dimensionality reduction approaches. One limitation
of these approaches is that they only yield a “flat” embedding but not a mul-
tiscale embedding. Another problem is that such eigenvector methods cannot
handle the relationships characterized by directed graphs without some ad-hoc
symmetrization. Some typical examples where non-symmetric matrices arise
are when k-nearest neighbor relationships are used, web information retrieval
based on network topology, and state space transitions in a Markov decision
process. For a general weight matrix W representing the edge weights on a
directed graph, its eigenvalues and eigenvectors are not guaranteed to be real.
Many current approaches to this problem convert the directed graphs to undi-
rected graphs. A simple solution is setting W to be W +W T or WWT . A more
sophisticated symmetrization method uses the directed Laplacian [3], where the
symmetrization uses the Perron-Frobenius theorem. It is more desirable to find
an approach that handles directed graphs without the need for symmetrization.
We present a framework for multiscale dimensionality reduction (defined in

Section 3) based on diffusion wavelets. Our method (called Diffusion Projec-
tions (DP)) automatically reveals the geometric structure of the data at dif-
ferent scales, and provides multiscale embedding for both symmetric and non-
symmetric relationship matrices. For the symmetric case, our approach can
automatically identify the most appropriate dimensions for embedding, and the
resulting pj-dimensional embedding at level j is the same as that from eigen-
vector based approaches (using top pj eigenvectors) up to a rotation. For the
non-symmetric case, DP is directly applied to the matrix and no symmetriza-
tion step is needed. In this paper, we apply the cost functions used in Laplacian
eigenmaps and LPP to explain diffusion projections. Our algorithm also gener-
alizes to other dimensionality reduction approaches based on eigenvectors, like
PCA.
The rest of this paper is as follows. In Section 2 we motivate multiscale

analysis using diffusion wavelets. In Section 3 we describe our algorithm. Sec-
tion 4 contains a theoretical analysis of the algorithm. We present experimental
results in Section 5. Section 6 provides some concluding remarks.
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2 A Geometric Interpretation of DiffusionWavelets

Construction

Many kinds of relationship between data instances can be represented as graphs.
Given a graph, the structure of the space of functions on the graph can be
revealed by spectral analysis of random walks on the graph. Let Px,y represent
the probability of transition in one time step from node x to node y which is
proportional to the weight Wx,y. For t > 0, the probability of transition from
x to y in t time steps is given by P t

x,y. Running the chain forward in time
will allow us to integrate the local geometry and therefore will reveal relevant
geometric structures of data at different scales. An illustrative example is shown
in Figure 1. We generated a set of 240 points in R2. The set is comprised of
4 clusters, each of which has 60 points. From this set, we built a graph with
the heat kernel e−‖x−y‖

2/2, and formed the related Markov random walk matrix
P . In this figure, we plot P (1-D), P 8 (1-E) and P 32 (1-F), where the block
structure of these powers clearly shows the multiscale structure of the data.
At scale P , the data set appears to have 4 clusters (1-A). At scale P 8, the
neighborhood clusters have merged, and the data set has 2 clusters (1-B). Then
at scale P 32, all clusters have merged together (1-C). This example shows that
running the chain forward in time will reveal the intrinsic geometric structures
of the data at different scales. Moreover, the effective rank of P t decreases as t
increases in a way that can be quantified: in this example the effective rank of
P is 4, that of P 8 is 2 and that of P 32 is 1, and therefore the correspondence
between effective rank and number of clusters at different scales is apparent.
Figure 2 shows the diffusion wavelets routine. It constructs a compressed

representation of the given matrix by representing powers of the matrix not in
terms of the original (unit vector) basis, but rather a set of newly generated
bases. The matrix T represents one step transition probability between data
points. The t step transition probability is given by T t. At scale j, the QR (a

modified QR decomposition) subroutine decomposes T 2
j−1

into an orthogonal
matrix Q and a triangular matrix R up to a precision ε by filtering out some
high frequency information, where T 2

j−1

=ε QR. Columns inQ are orthonormal
basis functions spanning the column space of T 2

j−1

at scale j. RQ is the new
representation of T 2

j−1

regarding the space spanned by the columns of Q (based

on matrix invariant subspace theory). Compared to dimensionality of T 2
j−1

’s
column space, we usually get fewer basis functions, since some high frequency
information has already been filtered out. DWT then computes the 2j time
step transition using the low frequency representation of T 2

j−1

resulting in a
new representation of T 2

j

and the procedure repeats.
Running DWT is equivalent to running a Markov chain on the input data

forward in time. At scale j, the representation of T 2
j−1

is compressed based
on the amount of remaining information and the desired precision. Two sets
of basis functions are constructed: “scaling” functions span the column space
of the input matrix at a given level; “wavelet” functions span the orthogonal
complement space. The notations of “Scaling” and “Wavelet” functions are the

3



−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

(A)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

(B)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

(C)

(D) (E) (F)

Figure 1: Diffusion at times t = 1, 8, 32 over a set of 4 clusters. The first 3
figures represent the set, and the colors show the cluster labels. The next 3
figures include plots of the transition matrices P (D), P 8 (E) and P 32 (F).
Points are ordered so that the first 60 are in the first cluster, the next 60 are
in the second cluster and so on. The colors at position (i, j) of the matrix P t

represents the value of P t
i,j .

{[φj ]φ0
, [ψj ]φ0

} = DWT (T, φ0, J, ε)
{

For j = 0 to J − 1
{

([φj+1]φj
, [T 2

j

]
φj+1

φj
)← QR([T 2

j

]
φj

φj
, ε);

[T 2
j+1

]
φj+1

φj+1
= ([T 2

j

]
φj+1

φj
[φj+1]φj

)2;

[φj+1]φ0
= [φj+1]φj

[φj ]φ0
;

[ψj ]φj
← QR(I < φj > −[φj+1]φj

[φj+1]
T
φj
, ε);

}
}

Figure 2: Using diffusion wavelets to learn basis functions spanning T ’s column
space at different scales. [φj ]φ0

: “Scaling” basis functions at scale j; φ0 = [φ0]φ0

is an identity matrix; [ψj ]φ0
: “Wavelet” basis functions at scale j. J : the

maximum number of levels to compute. ε: desired precision. QR: A modified
QR decomposition. The notation [T ]φb

φa
denotes matrix T whose column space

is represented using basis φb at scale b, and row space is represented using basis
φa at scale a. The notation [φb]φa

denotes basis φb represented on the basis φa.
At an arbitrary scale j, we have pj basis functions, and length of each function

is lj . [T ]
φb

φa
is a pb × la matrix, [φb]φa

is an la × pb matrix.
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same as that used in regular wavelet transform. Scaling functions at each level
are orthonormal to each other. The space spanned by the scaling functions at
level j is orthogonal to the space spanned by the wavelet functions at the same
level. Scaling functions at the top level and the wavelet functions over all levels
together span the column space of the original matrix. Columns of [φj ]φ0

are
basis functions spanning T ’s column space at scale j, and are used in this paper
to compute multiscale embedding results.

3 The Main Algorithm

Notations used in Section 3 and 4 are as follows: X = [x1, · · · , xn] is a p× n
matrix representing n instances defined in a p dimensional space. W is an
n × n matrix, where Wi,j = e−‖xi−xj‖

2/δ2 . D is a diagonal matrix, where
Di,i =

∑
jWi,j . W = D−0.5WD−0.5. L = I−W, where I is an identity matrix.

XXT = FFT , where F is a p× r matrix of rank r. A trivial way to compute F
from X is singular value decomposition. (·)+ represents matrix pseudo inverse.

The problem: Assuming the data instances are collected from a data mani-
fold, graph Laplacian type dimensionality reduction approaches map the data
to lower dimensional spaces preserving the local geometry (of the manifold).
When we write down the cost function as

∑
i,j(yi − yj)

2Wi,j , which guaran-
tees the neighbors in the original space are still neighbors in the new space.
The solution leads to Laplacian eigenmaps, where the c dimensional embed-
ding is provided by eigenvectors of Lx = λx corresponding to the c smallest
non-zero eigenvalues. When we require the mapping function to be a linear
mapping, the cost function becomes

∑
i,j(f

Txi − f
Txj)

2Wi,j , and the solution
leads to LPP, where c dimensional embedding is achieved by eigenvectors of
XLXTx = λXXTx corresponding to the c smallest non-zero eigenvalues. As
suggested by Figure 1, many data sets have non-trivial regularities at multiple
levels, which correspond to their underlying intrinsic structures. A key problem
that has not been addressed so far is how to compute embedding results lever-
aging the underlying manifold structure, resulting in multilevel results. Recall
that Laplacian eigenmaps and LPP only compute embedding at one level. The
first problem we solve in this paper is: given X, compute Yk = [y

1
k, · · · , y

n
k ] at

level k (Yk is a pk×n matrix) to minimize
∑

i,j(y
i
k−y

j
k)

2Wi,j . Here k = 1, · · · , L
represents each level of the underlying manifold hierarchy. The second problem
is similar but with a linear mapping constraint (like LPP): compute multiscale
linear mapping f to minimize

∑
i,j(f

Txi−f
Txj)

2Wi,j . The algorithm to learn
multiscale lower dimensional embedding is described in Figure 3.

Some advantages of the proposed multiscale approach are described below:

(1) Multiscale Dimensionality Reduction: our algorithm can automatically iden-
tify the hierarchy of the data set and the best dimensionality for embedding
(leveraging the underlying structure of the data). As the procedure in Figure 2
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1. Construct relationship matrix T characterizing the given data set:

• T = I − L.

• Linear mapping only: T = (F+XLXT (FT )+)+.

2. Apply diffusion wavelets to explore the intrinsic structure of the data:

{[φj ]φ0
, [ψj ]ψ0

} = DWT (T, I, J, ε), where the function DWT is described in Section 2,

• The resulting [φj ]φ0
is an n× pj matrix.

• Linear mapping only: the resulting [φj ]φ0
is a p× pj matrix.

3. Compute lower dimensional embedding (at level j):

• The embedding xi → yi = row i of [φj ]φ0
.

• Linear mapping only: A = (F T )+[φj ]φ0
is a p × pj matrix. The embedding

xi → yi = ATxi.

Figure 3: The main algorithm (diffusion projections).

suggests, the data set is spanned by varying numbers of basis functions at dif-
ferent levels. These numbers reveal the dimensions of the relevant geometric
structures of the data at different scales. Such a multiscale representation is
the main target of both hierarchical clustering and hierarchical topic modeling
in information retrieval. Laplacian eigenmaps and LPP cannot do multiscale
dimensionality reduction (note: eigenvectors of T j and T are the same).

(2) Directional Dimensionality Reduction: In contrast to all eigenvector-based
approaches, diffusion projections does not require the input relationship matrix
to be symmetric. For the non-symmetric case, [φj ]φ0

spans the same space, up

to a precision ε, spanned by the columns of T 2
j

, which is the space of probability
distributions of the random walk at time 2j . Compared to using the directed
Laplacian, which also provides low-dimensional embeddings for directed graphs,
diffusion projections offer two advantages: (1) Diffusion projections is faster,
since for using the directed Laplacian we need to add the cost of calculating the
Perron vector of the random walk matrix P . Usually an iterative technique will
be applied. When the random walk matrix is large, this step is time consuming.
(2) We have one fewer parameter to tune. In the directed Laplacian, we need
to carefully select the value of a “teleportation” probability parameter η used
to define a strongly connected reversible transition matrix. This parameter is
necessary for both correctness of the algorithm and stability.

(3) Diffusion Scaling Functions are Sparse: From [4], we know that for an

input matrix T , columns of [φj ]φ0
and {ξi : |λi|

2
j

> ε} span the same space,
where ξi and λi are the eigenvector and corresponding eigenvalue of T . However,
these diffusion scaling functions and eigenvectors are quite different. Eigenvec-
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tors have a potential drawback in that they capture global “smoothness” well,
but poorly model functions which are not globally smooth but only piecewise-
smooth, or have different smoothness in different regions. Unlike the “global”
nature of eigenvectors, the columns of [φj ]φ0

are usually sparse. This property
makes diffusion scaling functions “interpretable” in some applications like topic
modeling and object recognition. In those applications, we are interested in
both the lower dimensional embedding and the “meaning” of the embedding.

4 Theoretical Results

There is an interesting connection between our algorithm, Laplacian eigenmaps
and LPP. Theorem 1 shows our embedding result at level j is the same as that
from Laplacian eigenmaps with top pj eigenvectors. A similar connection be-
tween our algorithm and LPP is shown in Theorem 3. This means diffusion
projections is also optimal regarding the cost functions used in previous ap-
proaches. Note that our algorithm does not use eigenvalue decomposition at
all. It computes multiscale embedding with diffusion wavelets by exploring the
intrinsic structure of the given data set.

Theorem 1. In the main algorithm, Laplacian eigenmaps (with eigen-
vectors corresponding to pj smallest non-zero eigenvalues) and diffu-
sion projections (at level j) return the same pj dimensional embedding
up to a rotation Q.
Proof:
In Laplacian eigenmaps, we use row i of V1:pj

to represent pj dimensional em-
bedding of xi, where V1:pj

is an n × pj matrix representing the pj smallest
eigenvectors of L. When T = I − L, the largest eigenvectors of T are exactly
the smallest eigenvectors of L.

Let [φj ]φ0
represent the scaling functions of T at level j, then V1:pj

and [φj ]φ0

span the same space, i.e. V1:pj
V T

1:pj
= [φj ]φ0

[φj ]
T
φ0
[4]. Since the columns of

both V1:pj
and [φj ]φ0

are orthonormal, it is easy to verify that V T
1:pj

V1:pj
=

[φj ]
T
φ0
[φj ]φ0

= I (I is a pj × pj identity matrix).

So V1:pj
= V1:pj

I = V1:pj
V T

1:pj
V1:pj

= [φj ]φ0
[φj ]

T
φ0
V1:pj

= [φj ]φ0
([φj ]

T
φ0
V1:pj

).

Next, we showQ = [φj ]
T
φ0
V1:pj

is a rotation matrix. QTQ = V T
1:pj
[φj ]φ0

[φj ]
T
φ0
V1:pj

=

V T
1:pj

V1:pj
V T

1:pj
V1:pj

= I. QQT = [φj ]
T
φ0
V1:pj

V T
1:pj
[φj ]φ0

= [φj ]
T
φ0
[φj ]φ0

[φj ]
T
φ0
[φj ]φ0

=

I. Since det(QTQ) = (det(Q))2 = 1, det(Q) = 1, Q is a rotation matrix.

Theorem 2. Solution to generalized eigenvalue decomposition XLXT v =
λXXT v is given by ((F T )+x, λ), where x and λ are eigenvector and
eigenvalue of F+XLXT (FT )+x = λx.
Proof:
We know XXT = FFT , where F is a p× r matrix of rank r.
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Case 1: When XXT is positive definite:
It is trivial to see that r = p. This implies that F is an p× p full rank matrix:
F−1 = F+.
XLXT v = λXXT v
=⇒ XLXT v = λFFT v =⇒ XLXT v = λFFT (FT )−1FT v
=⇒ XLXT v = λF (FT v) =⇒ XLXT (FT )−1(FT v) = λF (F T v)
=⇒ F−1XLXT (FT )−1(FT v) = λ(F T v)
=⇒ Solution to XLXT v = λXXT v is given by ((F T )+x, λ), where x and λ are
eigenvector and eigenvalue of F+XLXT (FT )+x = λx.

Case 2: When XXT is positive semi-definite, but not positive definite:
In this case, r < p and F is a p× r matrix of rank r.
Since X is a p×n matrix, F is a p× r matrix, there exits a matrix G such that
X = FG. This implies G = F+X.
XLXT v = λXXT v
=⇒ FGLGTFT v = λFFT v =⇒ FGLGT (FT v) = λF (F T v)
=⇒ (F+F )GLGT (FT v) = λ(F T v) =⇒ GLGT (FT v) = λ(F T v)
=⇒ F+XLXT (FT )+(FT v) = λ(F T v)
=⇒ One solution to XLXT v = λXXT v is ((FT )+x, λ), where x and λ are
eigenvector and eigenvalue of F+XLXT (FT )+x = λx. Note that eigenvector
solution to Case 2 is not unique.

Theorem 3. For any instance u, its embedding result with LPP (using
top pj eigenvectors) is the same as its embedding result with diffusion
projections (at level j) up to a rotation.
Proof:
It is well known that the normalized graph Laplacian L is positive semi-definite
(PSD), so F+XLXT (FT )+ is also PSD, and all its eigenvalues are ≥ 0. This
implies that eigenvectors corresponding to F+XLXT (FT )+’s smallest non-zero
eigenvalues are the same as eigenvectors corresponding to (F+XLXT (FT )+)+’s
largest eigenvalues.

Let T = (F+XLXT (FT )+)+, [φj ]φ0
(a p × pj matrix) represent the diffu-

sion scaling functions of T at level j. From Theorem 1, we have V1:pj
=

[φj ]φ0
Q, where V1:pj

is a p × pj matrix, represents the pj smallest eigenvec-
tors of F+XLXT (FT )+ and Q is a rotation.

Given an instance u (p× 1 vector):
its embedding result with LPP is
((FT )+V1:pj

)Tu = V T
1:pj

F+u;
its embedding result with diffusion projections is
((FT )+[φj ]φ0

)Tu = [φj ]
T
φ0
F+u = QV T

1:pj
F+u.

So these two embeddings are the same up to a rotation Q.
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5 Experimental Results

In this section, we first use a toy example from computer vision to illustrate what
multiscale scaling function [φj ]φ0

look like. This helps us better understand how
multiscale embedding is achieved. Our theorems show that for the undirected
case, the low-dimensional embedding results from Laplacian eigenmaps, LPP
(with top pj eigenvectors) and diffusion projections (at level j) are the same up
to a rotation. A “toroidal helix” example in Section 5.2 verifies this result. We
claimed that our approach offers many advantages over the other approaches for
the directed case. A “punctured sphere” example in Section 5.3 and a “citation
analysis” example in Section 5.4 give credence to this argument. In all our
experiments, diffusion projections computes c dimensional embedding by using
top c basis functions of [φj ]φ0

, where level j has ≥ c basis functions but level
j + 1 does not. δ used in heat kernel is always 1.

5.1 A Toy Example: DiffusionFaces

In this experiment, we use a toy example to illustrate what multiscale scaling
functions look like. The counterpart of our approach (diffusionfaces) in the
eigenvector system is the eigenfaces [6]. Given m face images I1, · · · Im, each of
which is represented by an n × n matrix, the “eigenfaces” algorithm works as
follows: (1) Convert each image Ii to a n

2×1 vector Γi; (2) Compute the average
face vector: Γ =

∑m
i=1
Γi/m; (3) Normalize each image vector: Φi = Γi − Γ;

(4) Compute the covariance matrix C = [Φ1, · · · ,Φm][Φ1, · · · ,Φm]
T ; (5) Each

eigenvector of C is an “eigenface”. Using this approach, each image can be
written as a linear combination of eigenfaces. In our approach, we start with
the same covariance matrix C, but we use diffusion wavelets instead of applying
eigenvectors. Each column of [φj ]φ0

is used as a diffusionface.
We used the “Olivetti Faces” data in our test. This data set includes 400

face images, each of which is represented by 8-bit grayscale color and stored in a
64×64 matrix. Diffusion wavelets identifies a 4 level hierarchy of diffusionfaces,
and dimensionality of each level is: 200, 53, 9, 2. We plot all 9 diffusionfaces
at level 3 in Figure 4, the top 24 diffusionfaces at level 2 in Figure 5. We also
plot the top 24 eigenfaces in Figure 6. It is clear that these two types of basis
are quite different: eigenvectors are global, and almost all such bases model the
whole face. Diffusion faces are defined at multiple scales, where the fine scale
(e.g. Figure 5) characterizes the details about each image, while the coarser
scales (e.g. Figure 4) skip some of the details and only keep the lower frequency
information. Diffusion scaling functions are usually sparse (especially those at
low levels), and most of them focus on just one particular feature on the face,
like eyes, noses. So they are easier to interpret. Given an image written as
a summation of diffusionfaces, we can estimate what the image looks like by
checking the coefficients (contributions) of each type of eyes, noses, etc.
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Figure 4: Diffusionfaces (level 3).

Figure 5: Diffusionfaces (level 2).

Figure 6: Eigenfaces.
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5.2 Toroidal Helix example

The “Toroidal Helix example” in Figure 7(A) uses 500 samples. We use the heat
kernel to generate a weight matrix, and for each point, we compute the weights
for its 20 nearest neighbors (in each row). This results in a non-symmetric
matrix W . We symmetrize the weight matrix W : W = (W +W ′)/2, and then
apply Laplacian eigenmaps (Figure 7(B)) and LPP (Figure 7(E)) on W . For
the purpose of comparison, we also apply diffusion projections (DP ) directly
on W (Figure 7(C)) and W (Figure 7(D)). To verify Theorem 3, we also apply
diffusion projections to learn LPP type mappings from W (Figure 7(F)). For
all diffusion projection tests, we use the top level of the data hierarchy (in
2D spaces). The results show that for symmetrized graphs, the low dimensional
embeddings achieved by Laplacian eigenmaps (or LPP) and diffusion projections
are the same up to a rotation. It might be argued that embedding of directed
graphs can be done by simply symmetrizing the matrix and doing eigenvalue
decomposition. However, we will show in the next example this is not true for
the general case.

5.3 Punctured Sphere Example

Consider the punctured sphere in Figure 7(G) based on 800 samples. We use the
heat kernel to generate its weight matrix, and for each point, we compute the
weights for 20 nearest neighbors (in each row). This results in a non-symmetric
matrix W . We symmetrize W as usual, and then apply Laplacian eigenmaps
and diffusion projections (DP ) onW (Figure 7(H)(I)). Directed Laplacian (Fig-
ure 7(J)) and diffusion projections (Figure 7(K)) are also applied directly onW .
To numerically compare the low dimensional embeddings, given any point x, we
compute the probability that x’s K nearest neighbors in the original sphere
are still among its K nearest neighbors in the low dimensional embeddings
(Figure 8). The figures show that diffusion projections on the original weight
matrix W can successfully reconstruct the original structure, while both ap-
proaches based on symmetrized W fail. We know many graphs used in real
world domains are directed. If we simply symmetrize such graphs, this example
illustrates that the results may not be as good as using diffusion projections.
The reason that symmetrization does not work is that for the points (red) on
the rim of the sphere, their 20 neighbors are mostly red points. For the points
(yellow) in the middle, some of their 20 neighbors are red, since the yellow
points are sparse. Symmetrizing the relationship matrix will add links from the
red to the yellow. This is equal to reinforcing the relationship between the red
and yellow, which further forces the red to be close to the yellow in the low
dimensional space. The above process weakens the relationship between the
red points. So in the 3D embedding, we see some red points are far away from
each other, while the red-yellow relationship is well preserved. Directed Lapla-
cian also fails to generate good embeddings in this task. Figure 7(L) shows the
spectrums of T = W and its higher powers. The high powers have a spectrum
that decays much more rapidly than the low powers. We usually call a matrix
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Figure 7: Toroidal Helix and Punctured Sphere Examples.

like this “diffusion like” matrix. In fact, most relationship matrices generated
by k nearest neighbor method are “diffusion like”. Number of basis functions
spanning W ’s column space at each of level is: 800, 741, 347, 63, 38, 23, 12, 6,
3, 1.

5.4 Citation Graph Mining

We now study a problem from citation graph mining. The citation data set
in KDD Cup 2003 consists of scientific papers (about 29, 000 documents) from
arXiv.org. These papers are from high-energy physics. They cover the period
from 1992 through 2003. We sampled 3,369 documents from the data set and
created a citation graph, i.e. a set of pairs of documents, showing that one paper
references another. To evaluate the methods, we need to assign each document
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Figure 8: Comparison of punctured sphere embeddings.

a class type. To compute this, we first represent each paper using a TF-IDF
vector based on the text of its abstract and the title, then we use the dot product
to compute the similarity between any two papers. Hierarchy clustering is used
to assign each document with a class. As a result, we get 8 classes.
We compare our approach to Laplacian eigenmaps using this data set. Our

approach results in a 9 level hierarchy. Dimensionality of each level is: 3369,
1442, 586, 251, 125, 105, 94, 7, 1. Obviously, the citation graph is non-
symmetric, and to apply Laplacian eigenmaps, we symmetrize the graph as
before. A leave-one-out test is used to compare the low dimensional embed-
dings. We first map the data to a c dimensional space (we run 10 tests:
c = 10, 20, 30 · · · 100) using both diffusion projections and Laplacian eigenmaps.
For each document in the new space, we check whether at least one document
from the same class is among its K nearest neighbors (we use this as correct-
ness). Diffusion projections performs better than Laplacian eigenmaps in all 10
tests. We also plot the average performance of these tests in Figure 9. The
reason why Laplacian eigenmaps does a poor job is that the citation relation-
ship is directed, and a paper that is cited by many other papers should be more
important compared to a paper that cites many others but is not cited by others.

6 Conclusions

This paper presents a multiscale dimensionality reduction framework based on
diffusion wavelets. In contrast to eigenvalue decomposition based approaches,
which can only deal with symmetric relationships, our approach is also able
to handle non-symmetric relationship matrices without ad-hoc symmetrization.
The superior performance of our approach and some of its advantages are illus-
trated using several synthetic and real-world data sets.
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