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ABSTRACT
Neighbor discovery is one of the first steps in the initializa-
tion of a wireless ad hoc network. In this paper, we design
and analyze practical algorithms for neighbor discovery in
wireless networks. We first consider an ALOHA-like neigh-
bor discovery algorithm in a synchronous system, proposed
in an earlier work. When nodes do not have a collision de-
tection mechanism, we show that this algorithm reduces to
the classical Coupon Collector’s Problem. Consequently, we
show that each node discovers all its n neighbors in an ex-
pected time equal to ne(ln n+c), for some constant c. When
nodes have a collision detection mechanism, we propose an
algorithm based on receiver status feedback which yields a
ln n improvement over the ALOHA-like algorithm.

Our algorithms do not require nodes to have any estimate
of the number of neighbors. In particular, we show that
not knowing n results in no more than a factor of two slow-
down in the algorithm performance. In the absence of node
synchronization, we develop asynchronous neighbor discov-
ery algorithms that are only a factor of two slower than their
synchronous counterparts. We show that our algorithms can
achieve neighbor discovery despite allowing nodes to begin
execution at different time instants. Furthermore, our al-
gorithms allow each node to detect when to terminate the
neighbor discovery phase.
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1. INTRODUCTION
Wireless ad hoc networks and sensor networks have gen-
erated considerable attention recently due to many appli-
cations such as habitat monitoring [13], environmental ob-
servation [3], surveillance and tracking [23], and commu-
nity networking [16]. These networks are typically deployed
without any communication infrastructure and are required
to “configure” themselves upon deployment, in order to es-
tablish an efficient communication infrastructure. For in-
stance, immediately after deployment, a node has no knowl-
edge of other nodes in its transmission range and needs to
discover its neighboring nodes in order to efficiently com-
municate with other nodes in the network. Knowledge of
one-hop neighbors is required by medium access control pro-
tocols [2], routing algorithms [9], and topology control algo-
rithms [11]. Thus, neighbor discovery is one of the first steps
in the configuration of a large wireless network.

Neighbor discovery algorithms can be classified into two cat-
egories, viz. randomized or deterministic. In a randomized
neighbor discovery algorithm, each node transmits at ran-
domly chosen times and yet discovers all its neighbors by a
given time with high probability. In a deterministic neigh-
bor discovery algorithm, each node transmits according to a
pre-determined transmission schedule that allows it to dis-
cover all its neighbors by a given time with probability one.
Guaranteed neighbor discovery typically comes at the cost
of increased running time and often requires unrealistic as-
sumptions such as synchronization between nodes and apri-
ori knowledge of the number of neighbors [10]. We, there-
fore, choose to investigate randomized neighbor discovery
algorithms in this paper.

The neighbor discovery problem is non-trivial due to several
reasons:

1. A neighbor discovery algorithm, either randomized or
deterministic, needs to cope with collisions. A ran-
domized neighbor discovery algorithm needs to mini-
mize the probability of collisions, while a deterministic
algorithm requires determining a collision-free trans-
mission schedule among nodes.

2. In many practical settings, nodes have no knowledge



of the number of neighbors, which makes coping with
collisions even harder.

3. When nodes do not have access to a global clock, they
need to operate asynchronously and still be able to
discover their neighbors efficiently.

4. In asynchronous systems, nodes can potentially start
the neighbor discovery process at different time in-
stants and consequently, may miss each other’s trans-
missions.

5. Furthermore, when the number of neighbors is un-
known, nodes do not know apriori when/how to ter-
minate the neighbor discovery process.

In this paper, we study the neighbor discovery problem
when nodes have omni-directional antennas and propose al-
gorithms that comprehensively handle each of these chal-
lenges. Unlike existing approaches that require apriori esti-
mates of the number of neighbors or synchronization among
nodes, we propose neighbor discovery algorithms that:

P1 do not require nodes to have any apriori knowledge of
the number of neighbors,

P2 do not require synchronization among nodes,

P3 allow nodes to begin execution at different time instants,
and

P4 enable each node to detect when to terminate the neigh-
bor discovery process.

To the best of our knowledge, this is the first solution to
the neighbor discovery problem that satisfies the properties
P1-P4. We start out making a number of unrealistic as-
sumptions violating each of P1-P4. As we will see, the
analysis in such a simplistic setting provides us with valu-
able insight about the problem. Armed with this insight, we
progressively relax each of the assumptions, each time taking
a significant step towards a comprehensive and a practical
solution to the neighbor discovery problem.

Existing approaches to the neighbor discovery problem when
nodes have omni-directional antennas can be classified into
3 categories, viz. randomized [15, 4], deterministic [10], and
multi-user detection-based [1, 12]. However, these solutions
require either apriori knowledge of the number of neigh-
bors [15, 4, 10], or node synchronization [15, 10]. The solu-
tions proposed in [1, 12] are based on correlating the received
signal with node signatures. However, each node is assumed
to know apriori the correspondence between nodes and their
signatures. In [5], the authors consider the problem of ren-
dezvous between two duty cycling nodes in the absence of
prior synchronization information. In comparison to [5], we
are interested in the problem of efficient discovery of all one
hop neighbors.

Neighbor discovery algorithms when nodes have directional
antennas have been proposed in [22, 8, 20]. Again, the pro-
posed solutions assume knowledge of the number of neigh-
bors [22], or node synchronization [8]. In [20], the authors

propose antenna scanning mechanisms for directional neigh-
bor discovery. However, the focus in [20] is on a complete
systems solution for building ad hoc networks with direc-
tional antennas and no significant analysis of the neighbor
discovery algorithms is provided.

1.1 Main Results
The main results of this paper can be summarized as follows:

1. We consider the ALOHA-like neighbor discovery al-
gorithm proposed in [15] and show that its analysis
reduces to that of the Coupon Collector’s Problem.
Consequently, we show that each node discovers all
its n neighbors in an expected amount of time equal
to ne(ln n + c), for some constant c.

2. We then propose a neighbor discovery algorithm that
assumes nodes can detect collisions i.e., nodes can dis-
tinguish between collisions and idle slots. We show
that collision detection results in a ln n improvement
over the ALOHA-like algorithm.

3. We next show that absence of an estimate of the num-
ber of neighbors results in a slowdown of no more than
a factor of two, compared to when nodes know n.

4. We further show that lack of synchronization among
nodes results in at most a factor of two slowdown in
the algorithm performance from the case when nodes
are synchronized.

5. Finally, we show that despite starting execution at
different time instants, each node can discover all its
neighbors. Furthermore, when nodes do not know n,
we show that with high probability (w.h.p), each node
can determine that it has discovered all its neighbors.

We thus have an O(ne ln n) ALOHA-like discovery algorithm
when nodes do not have a collision detection mechanism
and an O(ne) Collision Detection-based algorithm for the
case when nodes can detect collisions, both of which satisfy
properties P1-P4.

1.2 Organization of the paper
The rest of the paper is structured as follows. In Section 2,
we describe our model and its assumptions. Section 3 de-
scribes the ALOHA-like neighbor discovery algorithm and
its analysis. We next present the collision detection-based
algorithm for the case when nodes have collision detection
in Section 4. In Section 5, we consider the case when nodes
have no estimate of the number of neighbors. In Section 6,
we describe asynchronous versions of the neighbor discovery
algorithms. In Section 7, we handle initiation and termina-
tion of the neighbor discovery phase. Finally, we conclude
in Section 8, and present future directions.

2. NETWORK MODEL AND ASSUMPTIONS
In this section, we introduce our network model which will
be used throughout the rest of this paper. We make the
following assumptions about the multi-hop wireless ad hoc
network:



• Unique Node IDs: We assume that the nodes have
unique identifiers. Unlike the stronger requirement
that the identifiers be globally unique, we only require
nodes to have locally unique identifiers i.e. no two
neighbors of a given node have the same identifier. The
identifier could be the MAC address of the node, the
location of the node, or a random bit string of length
chosen to be locally unique w.h.p.

• Radio Model: Each node is equipped with a radio
transceiver that allows a node to either transmit or re-
ceive messages, but not simultaneously. Furthermore,
we assume that enough frequency or time diversity ex-
ists in the transmission of a message that the short-
scale variation due to multipath fading is averaged out.
Thus, two nodes are neighbors if the received signal
strength (after path-loss and shadowing) at one node
given a transmission from the other exceeds a decoding
threshold, and, under the assumption of a static net-
work, this neighbor designation does not change during
the neighbor discovery period.

• Collision Model: When two or more nodes transmit
concurrently, a collision occurs at the recipient node.
When a collision occurs, we assume that no partial
recovery of packets is possible at the receiving node.

• Collision Detection: A collision detection mecha-
nism allows a node to distinguish between the case
where two or more nodes are transmitting and one
where no node is transmitting. Indeed, practical solu-
tions for collision detection have been proposed in [6,
7]. In this paper, we study two neighbor discovery al-
gorithms, first when nodes do not have a collision de-
tection mechanism and next when nodes do and study
the impact of collision detection on algorithm perfor-
mance.

We observe that the radio and collision model considered in
the paper, although idealized, help in analyzing the perfor-
mance of neighbor discovery algorithms. As we will see, the
insights provided by our analysis in turn are used to design
practical algorithms for the neighbor discovery problem.

3. ALOHA-LIKE NEIGHBOR DISCOVERY
ALGORITHM

In this section, we consider the ALOHA-like neighbor dis-
covery algorithm first proposed in [15], which assumes that
nodes do not have a collision detection mechanism. We start
out making several simplifying assumptions:

1. We consider a single clique of size n.

2. n is known to all nodes in the clique.

3. Time is divided into slots and nodes are synchronized
on slot boundaries.

Each of these assumptions will be relaxed as we proceed. Im-
portantly, these assumptions allow us to view the ALOHA-
like neighbor discovery as a Coupon Collector’s Problem.
Consequently, the time to discover the n neighbors is the
same as the minimum time to collect at least one of each of
n coupon types.

3.1 Algorithm Description
The ALOHA-like neighbor discovery algorithm is a random-
ized algorithm that operates as follows. In each time slot, a
node independently transmits with probability pt, a param-
eter to be determined, and listens with probability 1 − pt.
A discovery is made if exactly one node transmits in a slot;
otherwise no discovery is made in that time slot.

The goal then is to choose pt so as to maximize the expected
fraction of neighbors discovered in a given time slot (as con-
sidered in [15]), or the probability of discovering a neighbor
within a given time (as considered in [22]). Not surprisingly,
the optimal choice of pt can be shown to be 1/n, where n
is the clique size. Intuitively, this choice of pt maximizes
the per-slot throughput of a given node, as has been widely
studied and well-understood in the context of the ALOHA
protocol, leading to maximization of the discovery rate.

However, the crucial question of the time required to dis-
cover all the neighbors when nodes transmit with pt = 1/n
were unanswered in [15, 22]. In the remainder of this section,
we assume that nodes transmit with probability pt = 1/n
and proceed to analyze the time to discover all n neigh-
bors. Before doing so, we first describe the Coupon Collec-
tor’s Problem and subsequently describe how it relates to
the ALOHA-like discovery algorithm.

3.2 Classical Coupon Collector’s Problem
The classical Coupon Collector’s Problem 1 is defined as fol-
lows. There are n distinct objects that are repeatedly drawn
(with replacement) from an urn with a probability of 1/n of
picking an object at each trial. The question then is: what
is the minimum number of trials needed to pick each of the n
objects at least once? If the random variable W denotes the
number of trials, it can be shown that E[W ] = n(ln n + c),
for some constant c. Furthermore, it can be shown that the
random variable W is sharply concentrated around its mean.

More formally, P [W > n ln n+ cn] = 1−e−e−c

, which tends
to zero for large positive c and tends to one for large negative
c.

3.3 Neighbor Discovery As Coupon Collection
In this section, we describe how the neighbor discovery prob-
lem maps into the Coupon Collector’s Problem. Consider a
clique of n nodes numbered 1, . . . , n. The probability that
node i successfully transmits in a given time slot is given by:

ps = pt(1− pt)
n−1 =

1

n

„

1−
1

n

«n−1

≈
1

ne
(1)

Note that ps is the same for each node i, 1 ≤ i ≤ n.

The process of neighbor discovery can be then be treated as a
coupon collection problem in the following manner: consider
a fictitious node C which can be regarded as the coupon
collector. In each slot, C draws one of the n coupons (i.e.
discovers a given node) with probability ps, and draws no
coupon (corresponding to an idle slot or a collision) with
probability 1 − nps. It is easy to see that when C collects
n distinct coupons, in our case, it means that each node in
the clique has discovered all of its n− 1 neighbors. Most of

1See [17] for an elegant derivation of the main results for the
Coupon Collector’s Problem.



the following analysis proceeds in a similar manner to that
of the Coupon Collector’s Problem.

Let the random variable W denote the number of slots needed
for the fictitious node C to discover all n nodes. We can
think of the neighbor discovery process as divided into epochs,
each epoch consisting of one or more time slots. Let Wi de-
note the length of epoch i, 0 ≤ i ≤ n − 1, that starts when
the i-th node is discovered and ends when the i+1-st node is
discovered. Thus, in the i-th epoch there are n− i nodes yet
to be discovered, each of which has a probability ps of being
discovered in a given time slot. It is easy to see that the
epoch length,Wi, is a Geometric random variable with pa-
rameter (n− i)ps. Thus, noting that W = W0 + . . .+Wn−1,
we get

E[W ] =

n−1
X

i=0

E[Wi] =
1

(n− i)ps
=

1

ps

n
X

i=1

1

i
=

1

ps
Hn ≈ neHn

where Hn denotes the n-th Harmonic number and is given
by ln n + θ(1). Therefore,

E[W ] = ne(ln n + θ(1)) = ne ln n + O(n) (2)

In Appendix A.1, we obtain an upper bound on the error
introduced in ps due to the approximation in (1) and show
that the error goes to 0, for large n. In other words, E[W ]→
ne, for large n.

3.4 Sharp Concentration Around The Mean
We next show that W is sharply concentrated around its
mean. As described in [17], we use the Poisson approxima-
tion to the binomial distribution to provide an approximate
argument. In Appendix B, we derive the sharp threshold
result using a more rigorous analysis that employs Boole-
Bonferroni Inequalities, similar to that described in [17].

Let Ni(t) be a random variable that denotes the number of
successful transmissions by node i in the first t time slots. It
is easy to see that Ni(t) is a binomial random variable with
probability mass function:

P (Ni(t) = k) =

 

t

k

!

pk
s (1− ps)

t−k

Using the Poisson approximation (assuming large t and small
ps),

P (Ni(t) = k) =
e−λλk

k!

where λ = tps. Let Et
i denote the event that node i is not

discovered in t slots. Therefore,

P (Et
i ) = P (Ni(t) = 0) = e−tps

Substituting ps = 1
ne

as given by (1) into the expression for

P (Et
i ) yields

P (Et
i ) = e−

t
ne

Therefore,

P (¬Et
i ) = 1− e−

t
ne

We are interested in the probability that all n nodes are
discovered by time t i.e. P [¬(∪n

i=1E
t
i )].

P [¬(∪n
i=1E

t
i )] = P [∩n

i=1(¬Et
i )] (3)

We next show that Et
i s can be treated as independent events.

Claim: For 1 ≤ i ≤ n, and for any set of indices {j1, . . . jk}
not containing i, P [Et

i | ∩
k
l=1 Et

jl
] ≈ P [Et

i ]

Proof.

P [Et
i | ∩

k
l=1 Et

jl
] =

P [Et
i ∩ (∩k

l=1E
t
jl

)]

P [∩(∩k
l=1E

t
jl

]
=

(1− (k + 1)ps)
t

(1− kps)
t

Using the approximation 1+x ≈ ex for small x, in the above
equation yields:

P [Et
i | ∩

k
l=1 Et

jl
] ≈

e−t(k+1)ps

e−tkps
= e−tps = e−

t
ne = P [Et

i ]

Substituting into (3), we get

P [¬(∪n
i=1E

t
i )] = (1− e−

t
ne )n ≈ e−ne

−t
ne

Therefore,

P [W > t] = 1− P [¬(∪n
i=1E

t
i )]

Let t = ne(ln n + c) for some constant c ∈ ℜ. Thus,

P [W > t = ne(ln n + c)] = 1− e−ne−(ln n+c)

= 1− e−e−c

Observe that e−e−c

is close to 1 for large positive c and is
negligibly small for large negative c, thus implying a sharp
concentration around the mean.

3.5 Validation of Clique Assumption
Our analysis of the ALOHA-like neighbor discovery algo-
rithm was restricted to a single clique. In this section, we
show that the analytical results compare remarkably well
against results obtained from simulation of a multi-hop net-
work, even for small clique sizes. The metric used for the
comparison is the expected time required by a node to dis-
cover all its neighbors.

Our simulation setting consists of a uniform distribution of
nodes over a 2D plane of area 3km × 3km. Each node has
a fixed transmission range of 150m and is assumed to know
the average number of neighbors apriori. For instance, with
a total of 2000 nodes, the average number of neighbors per
node is 16. Hence, the transmission probability of each node
in our simulations is set to pt = 1/17. After each run, we
compute the average time required by a node to discover all
its neighbors. For each node density, we run the simulation
20 times, each corresponding to a different node placement.
Each data point shown in Figure 1 is an average over 20 runs.
We plot the 95% confidence intervals around each data point
(too small to be visible in the graph).

Note that the x-axis in the graph denotes the expected num-
ber of neighbors per node. To obtain the results from our
analytical model for this deployment, we set the clique size,
n, to be one more than the average number of neighbors per
node i.e. substitute n = 17 in equation (2). In Figure 1, we
show a comparison of the simulation and analytical results
for different node densities. We immediately observe a close
match between the analytical and simulation results. In fact,
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Figure 1: Validation of the Clique assumption

the analytical results are within 15% of the simulation re-
sults, even for small values of n, e.g. 4 ≤ n ≤ 8. For larger
values of n, the analytical results are always within 10% of
the simulation results. When n = 2, we observe a 34% error
between the analytical and simulation results. However, the
large percentage error for small values of n is mainly due to
the approximation in (1). Using an exact calculation, our
analytical results are within 1% of the simulation results for
n = 2 and within 3% for n = 3.

One reason for the close match between the analytical and
simulation results is that nodes in the center of the plane
have approximately the same number of neighbors, each
of which transmits with the same probability pt, which is
well approximated by the clique assumption. The bound-
ary nodes belong to smaller sized cliques compared to the
central nodes, but they are far fewer in number and as a
result, the average discovery time is dominated by the dis-
covery times of the central nodes. In order to eliminate the
boundary effects, we also simulate the algorithm by placing
the nodes on a torus, producing more homogeneous deploy-
ments. As expected, absence of boundary effects results in a
closer match between the simulation and analytical results
for every value of n, as compared to the simulations on a 2D
plane. For n = 2, we observe a 26% error, and less than 10%
error for n ≥ 5. Again, the large percentage error for smaller
values of n is dominated by the approximation in (1).

4. COLLISION DETECTION-BASED NEIGH-
BOR DISCOVERY ALGORITHM

We next consider the scenario when nodes have a reliable
collision detection mechanism. As will soon become clear,
collision detection allows each node to know when it has
been discovered by its neighbors. Thus, nodes can stop
transmitting once they have been discovered, producing a
significant improvement in performance over the ALOHA-
like algorithm.

We start out with the same simplifying assumptions as de-
scribed in Section 3, viz. we consider a single clique of size
n, where n is known to all nodes and nodes are synchronized
with each other.

4.1 Algorithm Description
Let the local variable i (maintained by each node) denote
the number of neighbors discovered so far. Initially, i = 0.

Each time slot is further sub-divided into two sub-slots, the
significance of which will become clear as we describe the
algorithm. The algorithm operates as follows.

At each time slot, each node does the following:

1. In the first sub-slot, transmit with probability pi =
1/(n− i) and receive with probability 1− pi.

2. In the second sub-slot:

(a) a node in receive mode in the first sub-slot, checks
if the transmission was successful. If yes, it sets
i ← i + 1. Else, it deterministically transmits in
the second sub-slot.

(b) if a node in the transmit mode in the first sub-
slot, detects energy in the second sub-slot, it as-
sumes its transmission was unsuccessful. Else, it
will switch to the receive mode for the rest of the
discovery process.

Thus, we see that collision-detection allows each node to
keep track of the number of nodes yet to be discovered and
adapt its transmission probability at each time slot. We also
observe that, if a collision occurs in the first sub-slot, each
node needs to transmit only one bit of information in the
second sub-slot. As a result, the second sub-slot is much
smaller in comparison to the first sub-slot and introduces
only a small overhead.

There is, however, one problem with the algorithm described
above. Consider the case when i = 0. Now, if all n nodes
transmit in the first sub-slot, there is no receiver at all to
provide feedback in the second sub-slot. Consequently, all
n nodes erroneously assume that their transmissions were
successful and therefore, switch to the receive mode for the
rest of the discovery process. We next propose a solution to
handle this problem.

4.2 The Case of All Nodes Transmitting
When i = 0, the probability, pa, of all n nodes transmit-
ting in the first sub-slot equals 1/nn. When n is large, this
probability is negligibly small. For instance, when n = 5,
pa = 1/55 = 0.0003. But for smaller values of n, this prob-
ability is non-negligible. In order to provide feedback to
the transmitters, we divide the second sub-slot of each time
slot into r mini-slots, where r is fixed. Each transmitter
in the first sub-slot then transmits in a randomly chosen k
of the r mini-slots. Now, if a transmitter detects energy in
any of the remaining r − k mini-slots, it knows that there
was at least one other transmitter in the first sub-slot and
its transmission must, therefore, have been unsuccessful. A
node in receive mode transmits in each of the r mini-slots
on unsuccessful transmission and remains silent otherwise.

We now derive the probability Pe that each of the n nodes
transmits in the first sub-slot and none of the nodes get
feedback about their unsuccessful transmission. This hap-
pens when each of the n nodes transmit in the same k of the
r mini-slots following the first sub-slot. Therefore,

Pe =
1

nn

1
`

r
k

´n



For example, when r = 8,k = 4, and n = 2, we see that
Pe = 0.00005, which is very small. For larger values of n, Pe

is even smaller. Thus, we see that even a small r is sufficient
to keep Pe very small.

Note that the duration of each of the mini-slots can be as
small as that of a single bit. Hence, the overhead introduced
by the r mini-slots is very small. Furthermore, the r mini-
slots are needed only until the discovery of the first node.
As per our algorithm description, after the first node has
been discovered, it will remain in receive mode for the rest
of the discovery process and can reliably provide feedback
to the transmitters. Based on the solution for handling si-
multaneous transmissions, we henceforth assume that Pe is
negligibly small and ignore it in our analysis hereafter.

4.3 Expected Time To Discover All Neighbors
Again, we are interested in the time, W , required to discover
all n nodes in the clique. As before, let us assume that
discovery is divided into “epochs”, each epoch consisting of
one or more slots. Each “epoch” i, 0 ≤ i ≤ n − 1, starts
when the i-th node is discovered and ends upon discovery
of the i + 1-st node. Let Wi denote the duration of epoch i.
Then,

W =

n−1
X

i=0

Wi

Note that as per the description of the algorithm, there are
n− i undiscovered nodes in epoch i, each of which transmits
with probability pi = 1/n− i at the beginning of each time
slot throughout the duration of the epoch. The probability
of a successful transmission in a time slot of epoch i is given
by:

ps(i) = pi(1− pi)
n−i−1 =

1

n− i

„

1−
1

n− i

«n−i−1

It is easy to see that each Wi is a geometrically distributed
random variable with parameter (n− i)ps(i). Thus,

E[W ] =

n−1
X

i=0

E[Wi] =

n
X

i=1

1
`

1− 1
i

´i−1
≤ ne (4)

where the last inequality follows from Lemma 1 in Appendix A.
Compared to the expression for E[W ] for the ALOHA-like
discovery algorithm, we observe an improvement by a factor
of at least ln n. In Appendix A.2, we show that ne− eHn ≤
E[W ] ≤ ne, where Hn denotes the n-th Harmonic number.
In other words, E[W ] = Θ(ne).

4.4 Bounds on Deviation From Expectation
We next bound the probability that random variable W is
significantly greater than its mean. Let W ′ be another ran-
dom variable, which is a sum of n iid Geometric random
variables with parameter 1/e. It follows that W ′ is a nega-
tive binomial random variable with parameters n and p and
has a probability mass function:

P (W ′ = t) =

 

t− 1

n− 1

!

pn(1− p)t−n, t = n, n + 1, . . .

Also, we know that P (W ′ > t) = P (X < n), where X ∼
Binomial(t, p).

We now use Chernoff bounds for a binomial random variable
to bound the probability that P (X < n). In particular, for
a binomial random variable X with mean µ = tp, it can be
shown [17, pp.70] that:

P (X < (1− δ)µ) < e−µδ2/2, 0 < δ ≤ 1 (5)

Let δ = 1−ne/t. Note that 0 < δ < 1, ∀t > ne. Substituting
into (5) yields:

P (W ′ > t) = P (X < n) < e
−t
2e

[1− ne
t

]2 , ∀t ≥ ne

Therefore,

P (W ′ > t = 2ne) < e
−n
4

Noting that W =
Pn

i=1 Wi, where each Wi is geometrically
distributed with parameter at least 1/e, it is easy to see that

P (W > t) ≤ P (W ′ > t) < e
−n
4

It is easy to see that the bound on the right hand side goes
to 0 for large values of n. In other words, W ≤ 2ne w.h.p.

5. UNKNOWN NUMBER OF NEIGHBORS
Thus far, we assumed that each node has apriori knowl-
edge of the number of neighbors n. Knowledge of number of
neighbors allowed each node to set its transmission proba-
bility to the optimal value of 1/n. Furthermore, knowledge
of n makes the problem of termination of neighbor discov-
ery trivial. In particular, we can configure each node to
execute the algorithm for a duration of t slots, where t is
chosen large enough that the probability of not discovering
all n neighbors by time t (as determined by our analyses in
earlier sections) is negligibly small.

We are now ready to relax the assumption that each node
knows n. In fact, we consider the most stringent condition
in which each node has no estimate of n. As we will see,
rather surprisingly, the lack of an estimate of n, results in
at most a factor of two slowdown. We postpone the prob-
lem of detecting termination when nodes do not know n to
Section 7.

5.1 ALOHA-like Neighbor Discovery Algorithm
We first show how the ALOHA-like algorithm can be ex-
tended to operate when n is unknown to the nodes.

The execution of the algorithm proceeds in phases, each
phase consisting of one or more time time slots. The al-
gorithm operation is very simple. In phase i, each node
transmits with probability 1/2i, where each phase i lasts a
duration of 2ie(ln 2i +c) slots, where c is a positive constant.

The overall idea is that nodes geometrically reduce their
transmission probabilities until they enter the desired phase
of execution. In our case, this occurs when nodes enter the
⌈log2 n⌉-th phase. In this phase, each node transmits with
probability close to 1/n for a duration of ne(ln n + c) slots.
Based on our analysis in Section 3, we know that the proba-
bility that there is an undiscovered node after the ⌈log2 n⌉-th

phase is 1−e−e−c

. In other words, all n nodes are discovered
within ⌈log2 n⌉ phases w.h.p.

The total time W spent (in terms of number of slots) before
all nodes are discovered w.h.p is then the sum of the total



number of slots in the first ⌈log2 n⌉ phases of the algorithm
execution and is given by:

W =

⌈log2 n⌉
X

m=1

2me(ln 2m + c)

W = e ln 2

⌈log2 n⌉
X

m=1

m2m + ce

⌈log2 n⌉
X

m=1

2m (6)

The first term in the above summation can be evaluated as
follows. Let

f(x) =

k−1
X

m=0

xm =
xk − 1

x− 1

Differentiating f(x) with respect to x, we get:

f ′(x) =

k−1
X

m=0

mxm−1 =
(x− 1)kxk−1 − (xk − 1)

(x− 1)2

It is easy to see that the first summand in (6) is equal to
2f ′(2).

2f ′(2) =

k−1
X

m=1

m2m = (k − 2)2k + 2

Substituting k = ⌈log2 n⌉+ 1 yields:

⌈log2 n⌉
X

m=1

m2m = (log2 n− 1)2n + 2

The second summand in (6) is simply a geometric series and
simplifies to:

⌈log2 n⌉
X

m=1

2m = 2n− 2

Simplification of the above equation yields:

W = 2ne(ln n + c)− 2e(ln 2n−1 + c) ≤ 2ne(ln n + c) (7)

Thus, comparing (7) with the expression for E[W ] obtained
in (2), we conclude that the lack of knowledge of the num-
ber of neighbors n results in no more than a factor of two
slowdown.

5.2 Collision Detection-based Neighbor Discov-
ery Algorithm

As described in Section 5.1, we next extend the collision
detection-based algorithm to the case when nodes do not
have an estimate of n.

Again, we divide the execution of the algorithm into phases.
Each node maintains a local variable i, initialized to 0, that
denotes the number of nodes discovered so far. Each phase
m lasts a duration of 2m+1e slots. The algorithm operates
as follows:

In each of the 2m+1e slots of phase m, a node does the
following:

1. In the first sub-slot, it transmits with probability pi =
1/(2m − i) and receives with probability 1− pi.

2. In the second sub-slot:

(a) a node in receive mode in the first sub-slot deter-
ministically transmits in the second sub-slot, if a
collision occurs in the first sub-slot; else it sets
i← i + 1 and goes to step 1.

(b) if a node in transmit mode in the first sub-slot de-
tects no energy in the second sub-slot, it switches
to receive mode for the rest of the process. Else,
it assumes its transmission was unsuccessful and
goes back to step 1.

It is easy to see that when m = ⌈log2 n⌉, the phase lasts
a total of 2ne time slots. For each slot in the ⌈log2 n⌉-th
phase, the probability of a successful transmission in that
slot is given by:

ps(i) =
1

n− i

„

1−
1

n− i

«n−i−1

≥
1

(n− i)e

where the inequality follows from Lemma 1. Assuming there
are k nodes yet to be discovered at the beginning of phase
m, we can use the analysis in Section 4.4 to conclude that

P (Wk > 2ne) < e−n(1− k
2n

)2 ≤ e−
n
4 , k = 0, 1, . . . , n

where the random variable Wk denotes the time required to
discover the remaining k nodes, when the probability of dis-
covering a node in a time slot is at least 1/e. In other words,
all n nodes are discovered within ⌈log2 n⌉ phases w.h.p.

Hence, the total time W required to discover all the neigh-
bors w.h.p is given by:

W =

⌈log2 n⌉
X

m=1

2m+1e = 4(n− 1)e (8)

If we assume that the our desired probability of not discover-
ing all n neighbors within a given time is upper bounded by
e−

n
4 , we know based on the analysis in Section 4.4 that when

n is known, the collision detection-based algorithm takes
2ne time slots to achieve this desired probability bound.
From (8), we conclude that lack of knowledge of n results in
no more than a factor of two slowdown.

6. ASYNCHRONOUS NEIGHBOR DISCOV-
ERY ALGORITHMS

We next relax the assumption that time is divided into slots
and that nodes are synchronized on slot boundaries. In par-
ticular, we now consider an unslotted system in which nodes
operate asynchronously. We propose asynchronous versions
of the discovery algorithms described earlier and show that
the asynchronous algorithms are only two times slower than
their synchronous counterparts. Our results are, therefore,
consistent with other results [21] which observe a factor of
two reduction in throughput in going from slotted to unslot-
ted ALOHA.

For the moment, we assume that all nodes start executing
neighbor discovery at the same time instant, an assumption
which is relaxed in Section 7.1.



6.1 ALOHA-like Neighbor Discovery
The asynchronous ALOHA-like algorithm is based on a sim-
ilar algorithm described in [22]. The algorithm operates as
follows. In between successive transmissions, each node re-
mains in receive mode for an exponentially distributed time
interval with mean 1/λ. Each transmission lasts a duration
of τ , which is assumed to be small relative to 1/λ.

By trivially extending the analysis in [22] to the case of
omni-directional antennas, we can derive the optimal λ that
maximizes the rate of discovery of neighbors:

λ =
1

2τn

where n denotes the clique size.

6.1.1 Analysis For Known n
We first analyze the asynchronous ALOHA-like neighbor
discovery algorithm when each node is assumed to know
n. We derive the expected time, E[W ], required for all n
nodes to be discovered.

Due to inter-transmission times being exponentially distributed,
the total traffic from all the nodes constitutes a Poisson pro-
cess with rate nλ. Now, a transmission from a node at time
instant t is successful only if there is no other transmission
for the time interval [t − τ, t + τ ]. The probability ps of a
successful transmission is therefore given by:

ps = e−2nτλ = 1/e

As in the synchronous case, we assume that neighbor dis-
covery is divided into epochs, where epoch i, of duration
Wi, starts with the discovery of i-th node and ends with the
discovery of the i + 1-st node. Thus, W =

Pn−1
i=0 Wi, as

before.

Let us restrict our attention to epoch i, in which there are
n − i nodes yet to be discovered. The transmissions from
these n − i nodes constitute a Poisson process with rate
(n − i)λ, each having a probability ps of being successful.
In other words, Wi is exponential with mean 1/((n− i)λps).
Therefore, E[Wi] = 2τne/(n− i), and

E[W ] =

n−1
X

i=0

E[Wi] = 2τneHn = 2τne(ln n + θ(1))

In other words, the loss of synchronization results only in a
factor of two slowdown, as expected.

6.1.2 Sharp Concentration Around the Mean
As described in Section 3.4, we next show that W is sharply
concentrated around its mean. Let Ni(t) denote the number
of successful transmissions from node i by time t. Let Qi(t)
denote the total number of transmissions from node i by
time t. The conditional pmf P (Ni(t) = k|Qi(t) = t) is then
given as:

P (Ni(t) = k|Qi(t) = m) =

 

m

k

!

pk
s (1− ps)

m−k

Now, Qi(t) is a Poisson random variable with rate λ. Re-
moving the conditioning, we get

P (Ni(t) = k) =
∞
X

m=0

 

m

k

!

pk
s (1− ps)

m−ke−λt (λt)m

m!

Let Et
i denote the event {Ni(t) = 0}. Therefore,

P (Et
i ) =

∞
X

m=0

(1− ps)
me−λt (λt)m

m!
= e−λtps = e−

t
2τne

Proceeding exactly as described in Section 3.4, we get,

P [W > t] = 1− P [¬(∪n
i=1E

t
i )]

Therefore,

P [W > t = 2τne(ln n + c)] = 1− e−ne−(ln n+c)

= 1− e−e−c

6.1.3 Analysis For Unknown n
We now extend the asynchronous ALOHA-like algorithm to
the case where n is not known to the nodes. As before, the
algorithm execution is divided into phases. We assume that
nodes are synchronized on phase boundaries, an assumption
which will be relaxed in Section 7.1.

The algorithm operates as follows. In phase i, each node
remains in the receive mode for an exponential amount of
time with mean 1/λi = 2i+1τ between successive transmis-
sions. Each phase i lasts for a duration of 2i+1τe(ln 2i + c)
time units.

It is easy to see that the ⌈log2 n⌉-th phase lasts a duration of
2τne(ln n+c) time units. In this phase, each node transmits
with rate λ = 1/2τn. Based on our analysis in Section 6.1.1,
we know that the probability that a node remains undiscov-

ered at the end of this phase is 1−e−e−c

, which is very small
for large positive constant c.

Thus, the total time W required to discover all neighbors
w.h.p equals the total time until and including the ⌈log2 n⌉-
th phase and is given by:

W =

⌈log2 n⌉
X

i=1

2i+1τe(ln 2i + c)

A calculation similar to that in Section 5.1 yields:

W = 4τne(ln n + c)− 4τe(ln 2n−1 + c) (9)

Again, we observe no more than a factor of two slowdown
from the case when n is known. Furthermore, comparing W
in (9) with that in (7), we conclude that the asynchronous
algorithm is only twice as slow as its synchronous version.

6.2 Collision Detection-based Neighbor Discov-
ery

We next present an asynchronous version of the collision
detection-based neighbor discovery algorithm. Before de-
scribing the algorithm, we illustrate the feedback mecha-
nism in an unslotted system. As before, each message is
assumed to be of duration τ and is followed by a feedback
period of duration ∆ to obtain receiver status feedback. Let
κ = τ + ∆. Consider the timeline of an asynchronous colli-
sion detection-based algorithm, as shown in Figure 2, which



consists of (i) Unsuccessful Busy Periods, during which two
or more nodes transmit concurrently; (ii) Feedback Periods
immediately following a message transmission; (iii) Idle Pe-
riods during which no transmissions occur; and (iv) Suc-
cessful Busy Periods during which exactly one transmission
occurs. We assume that at any time instant each node in
the receive mode can detect if the wireless channel is busy or
idle. As in the synchronous version, the key idea here is that

M3

M1
M2

M4 M5

Timeline

Period
Feedback

Unsuccessful Busy Period Idle Period
Successful Busy

Period

Figure 2: Asynchronous Collision Detection-based

Neighbor Discovery

each node that has been successfully discovered stops trans-
mitting, thus allowing other nodes to be discovered faster.
Conversely, nodes yet to be discovered increase their trans-
mission rate as other nodes get discovered. We start by
describing our algorithm for the case when the clique size,
n, is known to all nodes.

6.2.1 Known n
Let the local variable i, initialized to 0, denote the number
of neighbors discovered thus far. The algorithm operates as
follows.

1. Each node remains in the receive mode for an expo-
nential duration with mean 1/λi = 2κ(n − i). While
in the receive mode, a node does the following:

(a) If a collision occurs, it deterministically transmits
at the end of the busy period, after which it con-
tinues to remain in the receive mode.

(b) If a message is successfully received and the node
detects no energy until the end of the feedback
period, it sets i← i + 1.

2. A node in the transmit mode does the following:

(a) If its transmission begins in a busy period, it as-
sumes that its transmission is unsuccessful.

(b) If its transmission starts in an idle period and it
detects no energy during the feedback period, its
transmission was successful. The node switches
to the receive mode for the remainder of the dis-
covery process.

Based on the algorithm description, we make three impor-
tant observations:

1. A message transmission at time t is successful only if
no other transmission occurs within the time window
[t− κ, t + κ].

2. A node can begin a transmission during the transmis-
sion of another node, despite detecting a busy period.

The algorithm performance can be improved by sup-
pressing such transmissions. However, as we will see,
despite transmitting in a busy period, we obtain an
algorithm which is only two times slower than its syn-
chronous version. Thus, transmission suppression can
only improve this constant and not the asymptotic or-
der.

3. Unlike its synchronous version, the asynchronous colli-
sion detection-based algorithm does not require mini-
slots. In an unslotted system, the probability of two
or more nodes transmitting simultaneously is 0. This
fact and the ability of each node to distinguish between
busy and idle periods allows each transmitting node to
reliably detect the status of its transmission.

We are now ready to analyze the performance of the al-
gorithm. Let W denote the time to discover all n nodes.
As before, divide the discovery process into epochs, where
the i-th epoch is of duration Wi. In epoch i, there are
n − i nodes yet to be discovered, each transmitting with
rate λi = 1/(2κ(n− i)). Since the transmission events of an
individual node constitute a Poisson process with rate λi,
the transmission events from the n− i yet to be discovered
nodes also follow a Poisson process with rate (n− i)λi.

Now, the probability that a transmission by one of the n− i
yet to be discovered nodes is successful is given by:

ps(i) = e−2(n−i)κλi = 1/e

Now, the successful transmission events from the n − i yet
to be discovered nodes follow a Poisson process with a rate
given by (n−i)λips(i) = 1/2κe. In other words, the random
variables Wi are iid and exponentially distributed with mean
2κe.

Noting that W =
Pn−1

i=0 Wi, it follows that the random vari-
able W is the sum of n iid exponential random variables.
Therefore, W is an n-stage Erlang random variable with
mean:

E[W ] =
n
X

i=1

E[Wi] = 2κne

We immediately conclude that the the asynchronous version
of the collision detection-based neighbor discovery is only
twice as slow as its synchronous version.

6.2.2 Bounds on Deviation From Expectation
We now bound the probability that W deviates significantly
from its expectation. In particular, for any random variable
W and any t > 0, we have the following Chernoff bound [18]:

P (W ≥ a) ≤ inf
t>0

e−taMW (t) (10)

where MW (t) = E[etW ] denotes the moment generating
function of the random variable W . For an n-stage Erlang
random variable W with rate λ:

MW (t) =

„

λ

λ− t

«n

Using elementary calculus, the value of t that minimizes the
right hand side of (10) can be obtained as:

t∗ = λ−
n

a



Therefore,

P (W ≥ a) ≤ e−(aλ−n)

„

aλ

n

«n

Setting a = αE[W ] = αn/λ yields:

P (W > αE[W ]) ≤
“ α

eα−1

”n

When α = 2, we get

P (W > 4κne) = (2/e)n

which goes to 0 for large values of n.

6.2.3 Unknown n
We now consider the case when nodes have no knowledge
of n. Again, we divide the algorithm execution into phases.
Nodes are assumed to be synchronized on phase boundaries.

The m-th phase has a duration 2m+2κe. Each node main-
tains a variable i that denotes the number of nodes discov-
ered so far. In phase m, a node remains in the receive mode
for an exponential duration with mean 1/λi = 2κ(2m − i)
between successive transmissions.

We see that the ⌈log2 n⌉-th phase lasts a duration of 4κne
time units. Let k denote the number of neighbors yet to be
discovered at the beginning of the ⌈log2 n⌉-th phase. From
our analysis in Section 6.2.1, we know that the probability
that it takes longer than 4κne to discover the remaining k
nodes is:

P (Wk > 4κne) ≤
“ α

eα−1

”k

where Wk denotes the time to discover the remaining k
nodes. Wk is a k-stage Erlang random variable with mean
E[W ] = 2κke and α is given by:

α =
4κne

E[Wk]
=

2n

k
> 1

It is easy to see that P (Wk > 4κne) → 0 for large n. In
other words, all n nodes are discovered by the ⌈log2 n⌉-th
phase w.h.p. Hence the total time W before all nodes are
discovered w.h.p is given by:

W =

⌈log2 n⌉
X

m=1

2m+2κe = 8(n− 1)κe (11)

Thus, we observe no more than a factor two slowdown from
the case when n is known. Comparing the expression for
W in (11) with that in (8), we again conclude that the
asynchronous algorithm is only two times slower than its
synchronous version.

7. HANDLING START AND STOP TIMES
So far, we have treated neighbor discovery as if all nodes be-
gin at the same time. We also assumed that the nodes are
synchronized on the phase boundaries in the case of asyn-
chronous algorithms. Furthermore, when nodes do not know
n, we avoided the question of how nodes determine when
to terminate neighbor discovery. We address each of these
questions in this section.

7.1 Initiating Neighbor Discovery
It is realistic to assume that not all nodes in a wireless net-
work are deployed at the same time instant. In fact, the
deployment of the network may occur over a period of days.
Since wireless nodes are battery powered, minimizing energy
consumption is of utmost importance. Thus, it is appropri-
ate to deploy the nodes in a sleep mode, in which nodes
cannot send or receive messages. Suppose that the deploy-
ment of a wireless network takes place during the time inter-
val [t, t + η], where η is an upper bound on the deployment
period and is known in advance. When nodes have access
to a global clock, as in the case of a slotted, synchronous
system, initiating neighbor discovery is trivial, as each node
can begin execution at a globally agreed upon time instant
t′ ≥ t + η.

In an asynchronous system, however, nodes do not have ac-
cess to a global clock and furthermore, the clocks at different
nodes may proceed at different rates resulting in clock offset
between nodes. We assume that the maximum clock off-
set between any two nodes in the network is bounded by δ.
In reality, clock offset between nodes can potentially grow
unboundedly as clocks tick at different rates. However, the
neighbor discovery occurs over much shorter time scales and
therefore, it is reasonable to assume a fixed δ for the duration
of the discovery phase. Each node wakes up from the sleep
mode when its local clock reaches t′ and starts executing the
neighbor discovery algorithm. To account for clock offsets,
we simply add δ time units to each phase i.e. phase i lasts for
2i+1e(ln 2i +c)+δ time units for the ALOHA-like algorithm
and 2i+1e + δ time units for the Collision Detection-based
algorithm. Thus, all nodes are simultaneously in phase i for
at least 2i+1e(ln 2i + c) time units in the case of ALOHA-
like algorithm and 2ie time units in the case of Collision
Detection-based algorithm, thus guaranteeing all nodes are
discovered w.h.p when i = ⌈log2 n⌉, as desired.

To get a sense of how large δ is, we consider Mica2 motes
equipped with a 32.768 kHz quartz crystal oscillator and
with a real-time clock accuracy of ±10 ppm [19]. This cor-
responds to an accuracy of ±864 milliseconds per day or a
maximum clock offset of 1.7 seconds per day between any
two nodes. Thus, if the deployment spans a period of 3 days,
δ is set to 5.1 seconds. With actively compensated oscilla-
tors [14] that provide an accuracy of ± 160 milliseconds/day,
δ reduces to 1 second for the same deployment period.

7.2 Terminating Neighbor Discovery
We now discuss how nodes can terminate the neighbor dis-
covery process, when n is unknown to nodes. We start with
the ALOHA-like discovery algorithm.

7.2.1 ALOHA-like Neighbor Discovery Algorithm
We propose a probabilistic solution that allows nodes to de-
cide at the end of each phase of algorithm execution, whether
to proceed to the next phase, based on the number of distinct
neighbors that successfully transmit in that phase. For ease
of explanation, we consider the slotted, synchronous version
of the discovery algorithm. The termination detection holds
without change for the asynchronous version as well.



Termination in a Clique. We first consider the problem of
termination in a clique. To simplify discussion, we initially
assume nodes are synchronized on phase boundaries and re-
lax this assumption later. Let Xj be the number of distinct
nodes discovered by each node in phase j, including itself.
Then the termination condition used by each node is:

TC Stop at the end of phase j+1 if Xj > 2j−1∧Xj+1 ≤ 2j .

Let m be the largest integer such that the clique size, n =
2m + k, 0 < k ≤ 2m. We first argue that the algorithm ter-
minates by the end of m+2-th phase w.h.p. The probability
of successful transmission by a given node in a time slot of
phase m + 1 is given by:

pm+1
s =

1

2m+1

„

1−
1

2m+1

«2m+k−1

Therefore,

pm+1
s ≥

1

2m+1

„

1−
1

2m+1

«2m+1−1

≥
1

2m+1e

where the second inequality follows from Lemma 1 in Ap-
pendix A. Using an analysis exactly as that in Section 3,
we immediately conclude that the event {Xm+1 = n} occurs

with probability at least e−e−c

. Similarly,

pm+2
s =

1

2m+2

„

1−
1

2m+2

«2m+k−1

≥
1

2m+2e

Again, proceeding exactly as described in Section 3, we can
conclude that the event {Xm+2 = n} occurs with probabil-

ity at least e−e−c

. Since the events in successive phases are
independent of each other and n > 2m ∧ n ≤ 2m+1, it fol-
lows that the event {Xm+1 > 2m ∧ Xm+2 ≤ 2m+1} occurs

with probability at least e−2e−c

, which goes to one for large
positive c. In other words, the algorithm is terminated by
the end of the m + 2-th phase w.h.p.

However, it is possible that the algorithm may terminate too
early i.e. in a phase j ≤ m, before all nodes are discovered.
We next derive the probability, Pe, of the algorithm termi-
nating in a phase j ≤ m. From Section 3.4, we know that
the time between successful transmissions by each node i
is exponentially distributed. Let Y j

i be the time of first

successful transmission by node i in phase j. Thus, Y j
i is

exponentially distributed with the following distribution:

P (Y j
i ≤ t) = 1− e−tpj

where pj is the probability of a successful transmission by

node i in phase j and equals 1
2j

`

1− 1
2j

´n−1
. It is easy to

see that the Y j
i s are iid random variables. Let the random

variables Y j
(1) ≤ · · · ≤ Y j

(n) be obtained by permuting the

random variables Y j
i s in increasing order. Thus, Y j

(k) denotes

the k-th order statistic.

Let Aj denote the event {Xj > 2j−1 ∧ Xj+1 ≤ 2j}. Since
events in successive phases are independent of each other,
we get:

P (Aj) = P [Y j

(2j−1)
≤ tj ]P [Y j+1

(2j)
> tj+1] (12)

where the distribution of the k-th order statistic is given by:

P [Y j
(k) ≤ t] =

n
X

a=k

 

n

a

!

[P (Y j
i ≤ t)]a[1− P (Y j

i ≤ t)]n−a

Therefore,

Pe = P (

m−1
[

j=1

Aj) ≤

m−1
X

j=1

P (Aj) (13)

where P (Aj) is obtained from equation (12). We numeri-
cally evaluate the upper bound for Pe in (13) by varying n
and setting the constant c = 8. For each n in the range
[2, 100], we find that Pe ≤ 10−5, which is clearly very small.
We simulate cliques of sizes ranging from 2 to 100, repeating
the simulation 100 times for each clique size. The simula-
tion results confirm that each node always terminates in the
m + 2-th phase, as desired.

We finally relax the assumption that nodes are synchronized
on phase boundaries. We propose that each node include
in its messages the phase number it is currently in. Each
node i which is currently in phase j discards any message it
receives from a neighbor which is in a phase k 6= j. Thus,
Xj is computed only from the messages transmitted during
phase j, as desired.

Termination in a Multi-Hop Network. In a multi-hop
network, neighboring nodes can potentially terminate at dif-
ferent time instants. Consider the case where a node A be-
longs to a smaller clique in comparison to another node B,
but that they are connected to each other via an edge A−B.
Thus, A has fewer interfering nodes compared to B and is
likely to discover B before B discovers A. This might cause
A to terminate (as per TC), before B discovers A. In order
to avoid this situation, we propose the following change to
the termination criterion in a multi-hop environment. We
double the duration of each phase i.e. phase i lasts a du-
ration of 2i+1e(ln 2i + c). Each phase i is divided into two
halves of duration 2ie(ln 2i + c) each. In the first half, each
node transmits with a probability 1/2i in each time slot, as
before. In the second half, however, each node transmits
in the same slots as in the first half and announces to its
neighbors, whether it will proceed to the next phase (as de-
termined by TC). In our example, node A remains in the
discovery process until it has been discovered by B and stops
only after B decides to terminate the discovery process.

We simulate the ALOHA-like discovery algorithm in a multi-
hop setting with the termination condition described in this
section. As before, nodes are uniformly distributed in a 2D
plane of size 3km × 3km. The number of nodes is varied
from 200 to 4000. For each node density, the simulation is
repeated 20 times, each corresponding to a different node
placement. We observe that in every simulation each node
terminates only after it has been discovered by all its neigh-
bors, as desired.

7.2.2 Collision Detection-based Neighbor Discovery
Algorithm

The issue of termination of neighbor discovery is trivial for
the collision detection-based algorithm. When nodes are



synchronized on phase boundaries, we dedicate a single time
slot at the end of each phase of algorithm execution. Each
node which has not been discovered by other nodes (as de-
termined by negative acknowledgments), deterministically
broadcasts in this time slot, thereby signaling to the already
discovered nodes to proceed to the next phase. Absence of
a transmission in this time slot signals the end of the neigh-
bor discovery process. In the absence of synchronization on
phase boundaries, each node that has already been discov-
ered, simply waits an additional phase duration and termi-
nates the algorithm, if it detects no energy on the channel
during the entire phase duration.

8. CONCLUSIONS
In this paper, we studied the problem of neighbor discovery
in wireless networks. We proposed an O(ne ln n) ALOHA-
like algorithm when nodes do not have collision detection
and an O(ne) algorithm when nodes can detect collisions.
Unlike existing approaches, our neighbor discovery algorithms
do not require nodes to have knowledge of the number of
neighbors and also do not require synchronization among
nodes. Furthermore, our algorithms allow nodes to begin
execution at different times and also allow nodes to detect
the termination of the neighbor discovery phase.

In the future, we would like to extend the analysis to a multi-
hop network setting. Modeling physical layer phenomena
such as fading and multipath is another interesting future
direction.
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APPENDIX
A. APPROXIMATION ERROR
In this section, we calculate bounds on the approximation
error for the results derived in Section 3.3 and Section 4.3.
We first prove the following lemma.

Lemma 1.
„

1−
1

k

«k−1

≥
1

e
, ∀k = 1, 2, . . .

Proof. It is easy to check that the lemma holds true
when k = 1. For k > 1,

„
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1

k

«k−1

=
1

“

1 + 1
k−1

”k−1
≥

1

e

The last inequality follows from a well-known mathematical
fact that (1 + 1/x)x ≤ e, x ≥ 1.

A.1 ALOHA-like Neighbor Discovery
Recall from (1), we have the following approximation:

ps = pt(1− pt)
n−1 =

1

n

„

1−
1

n

«n−1

≈
1

ne
(14)

From Lemma 1, we have:

ps =
1

ne
+ δe(n)

where δe(n) > 0 denotes the approximation error in (14).
Using Taylor’s Theorem, we can write

(n− 1) ln(1−
1

n
) = −1 + R(n)

where R(n) represents the error term and is given by:

R(n) =
1

n
−

n− 1

2n2(1− c)2
, 0 ≤ c ≤ 1/n

R(n) is maximized when c = 0 and therefore,

R(n) ≤
n + 1

2n2
<

1

n

Therefore,

0 < δe(n) <
1

ne
(e

1
n − 1) (15)

It is easy to see that δe(n)→ 0, as n→∞.

Recall from (2) that E[W ] = 1
ps

Hn. Hence, we obtain:

E[W ] =
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1
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+ δe(n)

«

Hn

It is easy to see that E[W ]→ neHn, as n→∞.

A.2 Collision Detection-based Neighbor Dis-
covery

Recall from (4) that

E[W ] =

n−1
X

i=0

E[Wi] =
n
X

i=1

1
`

1− 1
i

´i−1
≤ ne

We now obtain a lower bound for E[W ]. From (15), we
conclude that:
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i
+ 1
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It is easy to see that 1
2!i2
≥ 1

3!i3
≥ 1

4!i4
≥ . . .. Hence,

n
X

i=1

e−
1
i ≥ n−Hn + c ≥ n−Hn

where c ≥ 0 denotes the sum of remaining terms. Hence, we
obtain

ne− eHn ≤ E[W ] ≤ ne

B. SHARP CONCENTRATION OF ALOHA-
LIKE NEIGHBOR DISCOVERY

In this section, we provide a more rigorous proof of the sharp
concentration result for the ALOHA-like neighbor discovery
algorithm based on Boole-Bonferroni inequalities. The proof
is very similar to the proofs available in [17] for the sharp
concentration for the Coupon Collector’s Problem.

Lemma 2. Let c be a real constant and m = ne(ln n + c)
for positive integer n. Then, for any fixed positive integer k,
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Proof. We make use of the following inequality in our
proof: For all t, a ∈ ℜ, such that a ≥ 1 and |t| ≤ a,

et

„

1−
t2

a

«

≤

„

1 +
t

a

«a

≤ et

Let t = − km
ne

and a = m. Substituting in the above inequal-
ity, we get
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Note e−
km
ne = n−ke−ck. Also,
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For large n, we know that
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Putting all this together yields the desired result.

Theorem 1. Let W denote the time required to discover
all the n neighbors. Then, for any constant c ∈ ℜ and m =
ne(ln n + c),

lim
n→∞

P [W > m] = 1− e−e−c



Proof. The proof is exactly the same as described in [17]
and has been reproduced here for completeness. The event
{W > m} =

Sn
i=1 Em

i , where Em
i denotes the event that a

node i is not discovered within m time slots. By the Princi-
ple of Inclusion-Exclusion, we have
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Let Sn
k = P n

1 − P n
2 + . . . + (−1)k+1P n

k denote the partial
sum formed by the first k terms in this series. By the Boole-
Bonferroni inequalities, for odd k ≥ 1,
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and for even k ≥ 2,
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Putting the two Boole-Bonferroni inequalities together, we
can write
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Since all k-wise intersections of Em
i are equally likely,
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Now, the probability of intersection of the k events Em
1 , . . . , Em

k

is the probability of not discovering any of the first k nodes
in m time slots and is equal to
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. Therefore,
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Let Sk =
Pk
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. Note that

the right hand side of the expression for Sk consists of the
first k terms of the power series expansion of f(c) = 1 −

e−e−c

. We conclude that

lim
k→∞

Sk = f(c)

That is for all ǫ > 0, there exists a k∗ > 0, such that for any
k > k∗,

|Sk − f(c)| < ǫ

Since limn→∞ P n
k = Pk, it follows that limn→∞ Sn

k = Sk.
Equivalently, for all ǫ > 0 and k, when n is sufficiently large,
|Sn

k − Sk| < ǫ. Thus, for all ǫ > 0, any fixed k > k∗,
and n sufficiently large, |Sn

k − Sk| < ǫ and |Sk − f(c)| < ǫ.
Therefore,
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and
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This implies the desired result that

lim
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