
1

CLARO: Modeling and Processing of High-Volume Uncertain Data Streams

Thanh Tran, Liping Peng, Boduo Li, Yanlei Diao, Anna Liu

University of Massachusetts Amherst

Abstract— Uncertain data streams, where data is incom-
plete, imprecise, and even misleading, have been observed in
many environments. Feeding such data streams to existing
stream systems produces results of unknown quality, which
is of paramount concern to monitoring applications. In this
paper, we present the Claro system that supports stream
processing for uncertain data naturally captured using contin-
uous random variables. Claro employs a unique data model
that is flexible and allows efficient computation. Built on
this model, we develop evaluation techniques for complex
relational operators, i.e., aggregates and joins, by exploring
advanced statistical theory and approximation. Evaluation re-
sults show that our techniques can achieve high performance
while satisfying accuracy requirements, and outperform a
state-of-the-art sampling-based method significantly. A case
study further shows that our techniques can enable a tornado
detection system (for the first time) to produce detection
results at stream speed and with much improved quality.

I. Introduction

Uncertain data streams, where data is incomplete, impre-
cise, and even misleading, have been observed in a variety
of environments, such as sensor networks measuring
temperature and light [10], [17], radio frequency identifi-
cation (RFID) networks [19], [31], GPS systems [20], and
weather radar networks [23]. As these data streams are
collected by monitoring applications, they often undergo
sophisticated query processing to derive useful high-level
information. However, feeding uncertain data streams
directly to existing stream systems can produce results
of unknown quality. This issue is of paramount concern
to monitoring applications that trigger actions based on
the derived information.

Our work is particularly motivated by two emerging
applications. The first is object tracking and monitoring
using RFID readers [31]. RFID data streams are highly
noisy due to the sensitivity of sensing to the orientation of
reading and environmental factors such as metal objects
and interference. When such streams are used to support
tracking and monitoring, for instance, to detect safety
violations regarding flammable objects, the quality of the
alerts raised is a critical issue to the end application.

The second application is tornado detection [23], where
meteorological data streams are collected from a radar
network and processed in a real-time stream system. Data
uncertainty can arise from environmental noise, device
noise, and inaccuracies of various radar components. Such
uncertainty can propagate all the way through the stream
system, making tornado detection results error-prone.
Given the potential social impact, it is absolutely vital
that such systems capture the quality of detection results.

In this paper, we address uncertain data stream process-
ing for data that is naturally modeled using continuous
random variables, such as many types of sensor data

and financial data. Given such data, our work supports
relational query processing under uncertainty. For each
relational operator, we aim to fully characterize the
distribution of each tuple produced from uncertain data.
Such distributions, called result tuple distributions, can be
used to return any statistics needed, e.g., mean, variance,
and confidence regions. They also allow the stream
system to feed these tuples as input to other operators
and characterize the results of further processing—it is
evident that merely having statistics such as mean and
variance for those tuples is not enough to do so.

Challenges. Uncertain data stream processing as de-
scribed above raises two challenges: First, it is compu-
tationally difficult to obtain result distributions when
input tuples are modeled using continuous random
variables. Such computation often involves multivariate
integrals or requires new algorithms if an integral-based
solution does not exist. Second, such computation must
be performed efficiently for high-volume data streams.
While approximation is a common approach to improving
efficiency, the technique must be able to achieve a small
bounded error while meeting performance requirements.

Despite a large body of recent work on uncertain
data management, the above challenges have not been
adequately addressed. Most probabilistic databases [1],
[2], [5], [26], [28], [32] and stream systems [6], [18],
[21] model tuples using discrete random variables and
evaluate queries using the possible worlds semantics. The
continuous nature of our data, however, precludes the use
of these techniques as the possible values of a continuous
random variable are infinite and cannot be enumerated.

Recent work that considers continuous random vari-
ables has taken two approaches to handling aggregates:
The integral-based approach [5] performs exact derivation
of result distributions. While it is accurate, its computa-
tion is too slow for stream processing, as we shall show
later in this paper. The sampling-based approach [14], [29]
employs approximation by discretizing continuous dis-
tributions and sampling from the resulting distributions.
However, for real-world data it is difficult, sometimes
impossible, to find the right number of samples that
guarantees both accuracy and efficiency, as we shall also
show in our performance study. Joins of continuous
random attributes have only been addressed at the
modeling level [29], lacking both evaluation techniques
and demonstrated performance for data streams.

Scope and contributions. In this paper, we present a
probabilistic data stream system, which we call Claro,
that supports relational processing of uncertain data
streams modeled by continuous random attributes. The
architectural design of Claro, as described in [12], is to
extend the box-arrow paradigm for stream processing [3]

2

such that tuples carry distributions to describe uncertainty
and relational operators transform these distributions
while processing tuples. This paper, in particular, focuses
on the data model and processing algorithms for two
complex operators, aggregates and joins. These operators
are crucial to our target applications but have not been
sufficiently addressed as described above. Further in the
streaming context, our goal is to perform such complex
operations at high speed, e.g., thousands of tuples per
second. More specifically, our contributions include:

Data model. The foundation of Claro is a unique data
model based on Gaussian Mixture distributions. This
model is highly flexible in that it subsumes common
Gaussian distributions and can model arbitrary real-
world distributions. It further allows efficient computa-
tion by using powerful statistical methods for continuous
variables and Gaussian properties. Our data model
stands in contrast to those based on histograms [14] and
weighted particles [20] which indicate the use of samples
in computation. Moreover, our model has the potential
to support a variety of relational operators. While our
work focuses on aggregates and joins, an extension to
other operators is discussed at the end of the paper.

Aggregates. Our data model empowers us to explore
advanced statistical theory, such as characteristic func-
tions, to obtain exact result distributions of aggregation
while completely eliminating the use of integrals (in
contrast to using multiple integrals in [5]). However, the
formulas for result distributions that the exact algorithm
produces grow exponentially in the number of aggregated
tuples. Hence, we provide two approximation methods
to simplify the formulas for result distributions. These
techniques, when combined into a hybrid solution, can
satisfy arbitrary application-specified accuracy require-
ments while achieving high speed in stream processing.

Joins. Our data model also enables efficient and accurate
techniques for joins. To produce proper results for differ-
ent application semantics, we propose two types of joins.
The first type models an equi-join between a continuous
random attribute and a deterministic attribute using
an outer join over a probabilistic view. Our techniques
include efficient regression to construct the view and a
closed-form solution to representing result distributions
in the form of Gaussian Mixture models (GMMs). The
second type of join is modeled by a cross-product
followed by a selection. Claro supports such joins with
result distributions also in GMMs and an efficient method
to remove the results with low existence probabilities.

Evaluation. We perform a thorough evaluation of our
techniques for joins and aggregates, and compare them
with sampling-based methods ([14] for aggregates and
a home-grown method for joins). Results of this study
demonstrate our advantages in both accuracy and speed
over the sampling-based methods, due to the use of
our data model and techniques for continuous random
variables. We further perform a case study in the tornado
detection application, in which a real trace collected from
a tornadic event is fed to the Claro system. Our results
show that fitting data to the Claro model and using

its processing techniques allows the tornado detection
algorithm (for the first time) to produce detection results
at stream speed and with much improved quality.

The remainder of the paper is organized as follows. We
detail our motivating applications in §II. We present our
data model in §III, and main techniques for aggregates
and joins in §IV and §V. Evaluation results are described
in §VI. §VII covers related work. Finally, §VIII concludes
the paper with remarks on future work.

II. Motivating Applications

In this section, we present two motivating applications.

A. Object Tracking and Monitoring
In the first application, radio frequency identification

(RFID) readers are used to monitor a large area such
as a warehouse, a retail store, or a library. RFID data is
known to be highly noisy [19], [31] due to environment
factors such as occluding metal objects and interference.
Moreover, mobile RFID readers may read objects from
arbitrary angles, hence particularly susceptible to variable
read rates. Our prior work [31] provides techniques to
transform raw RFID readings into a stream of location
tuples. Each location tuple contains (time, tag id, xp, yp),
where xp and yp denote the inferred location of the object
and are probabilistic in nature.

Despite the data uncertainty, monitoring applications
want to run queries on the location stream to derive high-
level information. The first query illustrates an example
in fire monitoring: “trigger an alert when a flammable
object is exposed to a high temperature.” This query
takes two inputs: a location stream as described above
for flammable objects, and a temperature stream from
sensors in the same area with attributes (time, sensor id,
x, y, tempp), where the temperature can be uncertain
due to sensing noise. The query joins the location stream
with the temperature stream based on the location. The
query is written as if the location of an object and the
temperature at a location were precise.

Q1: Select Rstream(R.tag id, R.x, R.y, T.temp)
From FlammableObject [Now] As R,

Temp [Partition By sensor id Rows 1] As T
Where T.temp > 60 °C and

R.x = T.x and R.y = T.y

The second query detects violations of a shipping policy
by the Food and Drug Administration (FDA): “food with
and without peanuts cannot be located closely in the
supply chain.” This query takes two location streams and
checks for the proximity of two types of food.

Q2: Select Rstream(R.tag id, R.x, R.y, S.tag id)
From PeanutFreeFood [Range 3 minutes] As R,

PeanutFood [Range 3 minutes] As S
Where |R.x - S.x| < 3 ft and |R.y - S.y| < 3 ft

B. Hazardous Weather Monitoring
The CASA Research Center is developing weather

radar networks to detect hazardous weather events such
as tornados and storms [23]. A four-radar testbed has
been deployed in southwestern Oklahoma, a region that

3

receives an average of four tornado warnings and 53
thunderstorm warnings each year [23].

A CASA radar node rotates to scan. It sends around
2000 pulses per second, alternating between 54 high
frequency pulses and 40 low frequency ones. The raw
data obtained is partitioned into high and low frequency
segments accordingly, and further partitioned based
on the distance to the radar. Overall, the raw data is
generated at a rate of 175Mb per second. Such data is
highly noisy due to electronic device noise, instability
of transmit frequency, quality issues of the system clock
and the antenna, and finally environmental noise.

Such high-volume noisy raw streams are fed into a
stream system for real-time weather event detection. The
current CASA system addresses both data volume and
noise issues by means of taking average. Fig. 1 shows a
simplified diagram of the system. The top box depicts
the generation of wind velocity from raw data. This
module applies Fast Fourier Transform (FFT) to each
stream segment and performs signal processing. It then
outputs a single velocity value for each segment and
averages the values for adjacent high and low frequency
segments. The reflectivity analysis, shown in the lower
part of Fig. 1, uses similar average operations. While such
average operations can reduce data volume and gain a
smoothing effect, the resulting data is still highly noisy,
causing low quality detection results and long running time.

In our case study (detailed in §VI-C), we explore the
use of distributions, rather than simple average values,
to separate useful data from noise while controlling the
data volume. The output of our data analysis contains
tuple streams with distributions, i.e., (time, azimuth,
distance, velocityp or re f lectivityp). We also study the
transformation of these distributions through CASA
operations, specially, the frequently used aggregation
operations. By doing so, we expect to gain better tornado
detection results yet with shorter execution time.

III. The CLARO Data Model

The foundation of the Claro system is a data model
based on Gaussian mixture distributions that can capture
a variety of uncertainties for continuous attributes and
further allow fast relational processing. In this section, we
introduce Gaussian mixture distributions and describe
the complete Claro data model for relational processing.
A. Gaussian Mixture Models (GMMs)

Gaussian Mixture Models (or distributions), abbrevi-
ated as GMMs, are traditionally used for data clustering
and density estimation. As an instance of probability mix-
ture models, a GMM describes a probability distribution
using a convex combination of Gaussian distributions.
Definition 1 A Gaussian Mixture Model for a continuous
random variable X is a mixture of m Gaussian variables X1,
X2, · · · , Xm. The probability density function (pdf) of X is:

fX(x) =
m

∑
i=1

pi fXi (x),

fXi (x) =
1

σi
√

2π
e
− (x−ui)

2

2σ2
i (Xi ∼ N(ui, σ2

i)),

Initial
Computation

Average

Average

Tornado
Detection

Storm
Detection

Radar 1

H.F.S.

L.F.S.

H&L.F.S.

H(L).F.S. : High (Low) Frequency Segment
 Raw Data Series A Velocity Tuple A Reflectivity Tuple

Unfolding

Average

FFT

FFT

Velocity Analysis

Reflectivity Analysis

...

... ...

Fig. 1. Simplified stream processing in the CASA radar system

where 0 ≤ pi ≤ 1, ∑m
i=1 pi = 1, and each mixture component

is a Gaussian distribution with mean ui and variance σ2
i .

Definition 2 A multivariate Gaussian Mixture Model for
a random vector X naturally follows from the definition of
multivariate Gaussian distributions:

fX(x) =
m

∑
i=1

pi fXi (x),

fXi (x) =
1

(2π)k/2|Σi|1/2 e−
1
2 (x−ui)T Σ−1

i (x−ui) (Xi ∼ N(ui, Σi)),

where k is the size of random vector, and each mixture
component is a k-variate Gaussian distribution with mean
ui and covariance matrix Σi.

The Claro system adopts Gaussian Mixture Models
due to several key benefits of these models. First, GMMs
are a natural extension to Gaussian distributions which
are widely used in scientific sensing and financial appli-
cations. Hence, they can be easily accepted by end users
such as the CASA scientists we are working with.

Second, GMMs are highly flexible in modeling arbitrary
real-world distributions. For instance, Fig. 2(a) shows a
detected bimodal distribution of velocity at the boundary
between a positive velocity area and a negative velocity
area in a tornadic event. In contrast, Fig. 2(b) shows a
velocity distribution in a positive velocity area, where
one Gaussian component captures the peak and the other
captures the noise spread across the entire spectrum. In
the RFID application, Fig. 2(c) shows the inferred location
distribution of a recently moved object [31]. Here, the
bivariate, bimodal GMM represents the possibilities of
the old and new locations using two mixture components;
each component is a bivariate Gaussian modeling the
joint distribution of x and y locations.

The third benefit of GMMs is efficient computation
based on Gaussian properties and advanced statistical
theory. First, the mean and variance of GMMs can be
computed directly from those of the mixture components:

E[X] =
m

∑
i=1

piE[Xi] (1)

Var[X] =
m

∑
i=1

pi(Var[Xi] + (E[Xi])2)− (E[X])2 (2)

Furthermore, the cumulative distribution function (cdf)
of a GMM with a single variable has an analytic (closed
form) expression based on a known error function. Values
of the error function are precomputed in any numerical

4

(a) CASA: Velocity distribution after FFT in
Area(430, 281.9°) in a tornadic event

(b) CASA: Velocity distribution after FFT in
Area(430, 282.3°) in a tornadic event

(c) RFID: Location distribution of a recently
moved object detected using RFID readers

Fig. 2. Gaussian Mixture Models for real-world data collected from our target applications

library. Hence, computing
∫ b

a fX(x)dx = FX(a)-FX(b)
using the cdf incurs little cost. Other computation benefits
of GMMs, such as the characteristic functions, product
distributions, and linear transformation, are described
later in relevant sections.

B. Generating GMMs from Real-World Data

Gaussian Mixture Models can be generated from real-
world data in a variety of ways.

Samples. Recent studies [20], [31] have developed infer-
ence techniques that transform raw data to distributions
represented using weighted samples. Given these sam-
ples, GMMs can be generated using existing tools for
density estimation or function fitting. If an application
models data using other distributions, e.g., the Gamma
distribution, it is easy to generate samples from this
distribution and then fit a GMM as described above.

Correlated time series. Time series data is prevalent in
many applications. Values in a time series are temporally
correlated so cannot be viewed as samples to fit GMMs.
Two techniques can be applied in this case:

Fast Fourier Transform (FFT) translates a correlated
data sequence in the time domain to an uncorrelated
sequence in the frequency domain. The latter is essentially
a discrete distribution that can be used to fit a GMM.
Although FFT has the O(n log n) complexity, where n is
the sequence length, doing so for short subsequences of
data does not incur high overhead. In fact, the CASA
system has already applied FFT to the streams arriving
at 175 Mb/sec. We will show the use of this technique
in our case study in Section VI-C.

Another method is to use the autoregressive moving
average (ARMA) model which restricts data correlations
to the past n time steps. Our previous study applied
ARMA fitting to the radar data streams with and without
a tornado [12]. We discovered that in either case, the
ARMA model with n=5 satisfies the statistical condition
for fitting. Given such models, we can perform sampling
at the frequency of once every n+1 values and feed the
samples to fit GMMs.

The Claro system offers all above methods for data
providers to transform raw data to tuples modeled using
GMMs. Below, we assume that the input to Claro already
has uncertain data modeled using GMMs.

C. CLARO Data Model

We now present the complete Claro data model for
relational processing. An uncertain data stream is an
infinite sequence of tuples that conform to the schema
Ad ∪Ap. The attributes in Ad are deterministic attributes,
such as the tuple id and the fixed x-y location of a sensor.
The attributes in Ap are real-valued probabilistic attributes,
such as the temperature of a location and wind velocity in
an area. The probabilistic attributes are further partitioned
into independent attributes Ap

i ∈ A
p and groups of cor-

related attributes Ap
j ⊆ A

p. An independent probabilistic
attribute is modeled using a continuous random variable
following a Gaussian Mixture distribution, denoted by
f (Ap

i). A set of correlated attributes Ap
j is modeled using

a multivariate Gaussian Mixture distribution, denoted by
f (Ap

j). Then the tuple distribution is defined as:

f (Ap) = ∏
i

f (Ap
i) ∏

j
f (Ap

j),

which is a multivariate Gaussian Mixture distribution.
In some scenarios, tuples in a stream can be correlated.

Inter-tuple correlations can be modeled using joint tuple
distributions or lineage [2]. Our current model does not
include such correlations for two reasons: First, while
raw data is often temporally correlated, our methods for
transforming raw data to tuples, such as FFT and ARMA-
based sampling, have already taken such correlations into
account. Second, given stringent performance require-
ments stream systems may sometimes have to sacrifice
inter-tuple correlations. For instance, the CASA system
ignores spatial correlations in any processing before final
tornado detection, and probabilistic stream systems [20],
[25] ignore inter-tuple correlations, all for performance
reasons. A thorough treatment of tuple correlations in
stream processing is a focus of our future work.

In the rest of the paper, we present evaluation tech-
niques for aggregates and joins under the Claro model.

IV. Aggregation of Uncertain Tuples

We first address aggregation of uncertain tuples. In
this work, we focus on sum and avg because they are
crucial to our target applications but have not been

5

sufficiently addressed in the literature.1 Recent work
on aggregation in probabilistic databases [1], [8] mostly
focuses on discrete attributes and employs possible
worlds semantics for query processing. For continuous
attributes, however, the computation for aggregation is
by nature a multivariate integral. For instance, with
n tuples modeled using continuous random variables
X1, · · · , Xn,

∫
· · ·
∫

x1+···+xn<x fX1 (x1) · · · fXn (xn) dx1 · · ·dxn
computes the cumulative distribution function for the
sum of these tuples. Since multivariate integration is a
prohibitively expensive operation, there have been two
main approaches to addressing this issue:

The integral-based approach derives exact result distri-
butions by manipulating continuous random variables.
To sum n such variables, the state-of-the-art solution
[5] integrates two variables at a time, hence using n-1
integrals for the aggregation. As we shall show in § IV-A,
this technique is infeasible for stream processing.

The sampling-based approach [14], [29] generates a fixed
number of samples from the distribution of each input
tuple, computes aggregate values from these samples,
and constructs the result distribution using the aggregate
values. Despite its generality, its approach has two main
drawbacks: First, it is unknown how many samples
are needed a priori. Using a small number of samples
trades off accuracy for performance; using a large number
has the opposite problem. Second, the sampling-based
approach does not acquire knowledge of the true result
distribution and hence cannot adapt to varying data
characteristics and accuracy requirements.

Our work departs from existing approaches by ex-
ploring advanced statistical theory to obtain exact result
distributions while completely eliminating the use of
integrals. However, the formulas for result distributions
that the exact algorithm produces grow exponentially
in the number of aggregated tuples. Hence, we provide
two approximation techniques to simplify the formulas
for result distributions while satisfying accuracy require-
ments and achieving high speed in stream processing.
It is important to note that such accuracy cannot be
guaranteed without the knowledge of the true result
distribution.

A. A Basic Algorithm using Characteristic Functions
We first introduce characteristic functions and describe a

basic algorithm to derive the result distribution for sum of
a set of tuples. The modification to avg is straightforward
and hence omitted in the following discussion.

In probability theory, characteristic functions (CFs) are
used to “characterize” distributions. Specifically, the CF
of a random variable U is defined as (chapter 2, [4]):

ΦU(t) = E[eiUt],

where E denotes the expected value and i is the complex
number

√
−1. The pdf of U then can be obtained by the

inverse transformation of the CF:
1Our system also supports min and max. Our techniques are

similar to those in [5] and hence omitted in this paper.

fU(x) =
1

2π

∫ +∞

−∞
e−itxΦU(t)dt.

Now let us consider sum(A), with the attribute A in n
tuples modeled using random variables X1, ..., Xn . Let
U = X1 + X2 + ... + Xn. The CF of U is:

ΦU(t) = EeiUt = Eei(X1+X2+...+Xn)t (3)
= ΦX1(t)ΦX2(t)...ΦXn(t) (4)

That is, the CF of U can be written as the product of
the CFs of the input tuples based on the independence
assumption. This suggests a simple algorithm for sum:
(1) get the CF of each input tuple, (2) take the product
of these functions, (3) for a given value x, apply the
inverse transformation at x to yield fU(x), which we call
a parameterized integral.

In the context of Gaussian Mixture Models (GMMs),
the CFs can be expressed in closed form. For example,
for a Gaussian mixture of two components:

f (x) = p1
1

σ1
√

2π
e
− (x−µ1)2

2σ2
1 + p2

1
σ2
√

2π
e
− (x−µ2)2

2σ2
2 ,

its CF can be written directly as:

ΦX(t) = p1eiµ1t− 1
2 σ2

1 t2
+ p2eiµ2t− 1

2 σ2
2 t2

Thus, step 1 above does not involve any integration. The
main computation is the parameterized integral for the
inverse transformation. This gives a boost in performance
compared to the two-variable convolution method, which
requires n-1 parameterized integrals [5].

The main limitation of this approach is that the
formula of the result distribution involves an unresolved
parameterized integral. To get sufficient knowledge of
the result distribution (e.g., calculating its mean and
variance), one needs to repeat the inverse transformation
for a large number of points. To understand the cost of
such repeated integration, we used a numerical solution
called adaptive quadrature [27] to compute integrals.
The task is to average over 10 tuples and compute the
pdf values for 20 points. We applied optimizations such
as restricting the range of integration and limiting the
maximum number of iterations. The throughput obtained
is less than 200 tuples/second. This indicates that this
technique is inefficient for our data stream applications.
Moreover, it is unknown if the result distribution is a
GMM.

B. Exact Derivation of Result Distributions
The discussion in the previous section motivated us to

seek a solution without using numerical integration. For
GMMs, it turns out that we can obtain the closed-form
solution to the inverse transformation. In addition, when
input tuples are Gaussian mixtures and independent, the
result of sum over those tuples is also a Gaussian mixture
that can be directly obtained from the input tuples.

Theorem IV.1 Let each Xi, (i = 1..n) be a mixture of im
components identified by the parameters (pij, µij, σij), (j =
1..im). The result distribution for U = ∑n

i=1 Xi is a Gaussian

6

mixture of ∏n
i=1 im components, each of which corresponds

to a unique combination that takes one component from each
input Gaussian mixture {ij}, (i = 1..n, j ∈ {1..im}) and is
identified by (pk, µk, σk):

pk =
n

∏
i=1

pij ; µk =
n

∑
i=1

µij ; σk =

√
n

∑
i=1

σ2
ij

. (5)

Proof: See Appendix.
To the best of our knowledge, we are not aware of

any state-of-the-art book on mixture models [24], [13]
showing this result.

This technique gives an exact solution so the accuracy
is guaranteed. The computation involved is to enumerate
and compute all components of the result Gaussian
mixture. Let N be the number of input tuples and M
be the average number of mixture components in each
input tuple. The result formula size is then O(MN).
Computing one component of the result formula requires
multiplication and addition of N input tuple parameters
as shown in Eq. 5; thus, the time complexity is O(NMN).

As the above analysis shows, the result formula grows
exponentially in the number of aggregated tuples, raising
a scalability issue with this technique. We next describe
two approximation techniques to address this issue.

C. Approximation using the Closed-Form Solution
Our first approximation technique simplifies the result

distribution formula while satisfying the accuracy re-
quirement. (This task is similar in nature to approximate
lineage [26] by replacing a complex lineage formula with
a simpler one.) The idea is to group adjacent Gaussian
peaks in the exact result formula and approximate each
group using a single Gaussian component. The resulting
approximate distribution is more user-friendly and incurs
lower cost in subsequent processing. Our algorithm,
referred to as sort-group, has the following main steps:

Algorithm 1 Approximation using sort-group
1: Compute all T components of the result distribution

based on Theorem IV.1. Each component is a Gaussian
N(µi, σi) with a coefficient pi.

2: Sort the components in increasing order of µi.
3: Start with K = 1. Group all T components into K

new Gaussian components: each of them replaces
b T

K c original components, except for the last replacing
the last (T − (K− 1)b T

K c) original components.
4: Calculate the approximate point-based variation dis-

tance (VD) to see if it satisfies the given accuracy
constraint. If so, return the mixture of K Gaussian
components; otherwise, increase K and go to step 3.

The above algorithm searches for an approximate result
GMM with K components that achieves the accuracy
requirement. It first generates the exact result GMM and
sorts the components by their means. Then it groups the
consecutive components first by normalizing them into a
new Gaussian mixture, so that mean and variance can
be computed, and then by approximating them using a

single Gaussian with the computed mean and variance.
The search starts with K set to a small number and
increases it until the accuracy is satisfied.

In step 4, the point-based VD is a metric for measuring
the distance between distributions. For two continuous
distributions D1(x) and D2(x), it is defined as:

VD =
1
2 ∑

x
|D1(x)− D2(x)|∆x

The values of x are evenly spaced in the range where
the two distributions have most of their density mass.
∆x is the distance between two consecutive x points.
The constant 1

2 ensures that VD is in [0,1]. The metric is
similar in idea to that used in [14]. When calculating the
approximate VD, we use a small number of points, as
opposed to a larger number (i.e., 1000) used in accuracy
measurement, to reduce the computation overhead. It is
experimentally shown that we can achieve a reasonable
approximation of the true VD using 30 points.

We next consider the time complexity of this algorithm.
Step 1 has the same complexity as in exact derivation,
O(NMN). In step 2, sorting has a complexity of O(TlogT),
with T = MN , which yields O(NMN). In step 3, grouping
involves enumerating MN components and is repeated K
times, hence a cost O(KMN). In step 4, point evaluations
take a time proportional to the number of points used
(e.g., 30) and the formula size. The exact result formula
size is MN while the approximate one varies from 1 to K
across iterations. So the cost of step 4 is O(fP(MN + K2)),
where fP denotes the cost of evaluations for P points. As
the analysis shows, our approximation technique results
in a simplified formula of size K, but still has a time
complexity exponential in the number of tuples (N). In
fact, it has a somewhat higher cost compared to exact
derivation due to the costs of steps 2-4 above.

D. Approximation using Characteristic Function Fitting

The previous approximation still enumerates all compo-
nents of the result formula and becomes very inefficient
when the number of input tuples is large. We next pro-
pose to approximate result distributions by performing
function fitting in the Characteristic Function (CF) space.
This is based on the property that the CF of sum can be
compactly represented as a product of n individual CFs
(Eq. 4), instead of an exponential number of components
(Eq. 5). The goal is to find some Gaussian mixture whose
CF best fits this product function.

We devise an approximation algorithm, named Charac-
teristic Function (CF) fitting. The sketch of the algorithm
is shown below. The algorithm searches for the right
number of components by starting with one component
Gaussian mixture, running the least squares fitting. If
the fitting residual is below a threshold, return the
fitted parameters; otherwise increase the number of
components and repeat fitting. Note that the objective
function for fitting contains both real and imaginary parts
since the CFs are complex functions and both parts
contribute to the pdf via inverse transformation.

7

Fig. 3. Example of Characteristic Function for avg of 10 tuples.

Algorithm 2 Approximation using CF fitting
1: Obtain the expression of the CF of the sum, Φsum(t) =

∏n
i=1 ΦXi (t). This is a complex function.

2: Take P points {ti}, (i = 1..P) from the domain, and
compute {Φsum(ti)}, (i = 1..P).

3: Start with K = 1. Consider a Gaussian mixture of K
components. The corresponding CF is Φ(t).

4: Run least squares fitting to minimize:
∑P

i=1
[
(Re(Φ(ti)−Φsum(ti)))2 + (Im(Φ(ti)−Φsum(ti)))2].

5: Get the fitting residual. If this is smaller than a thresh-
old ε, return the fitted Gaussian mixture. Otherwise,
increase K and go back to step 3.

We further propose several optimizations based on
statistical theory to improve performance and accuracy.

Range of CFs: Since the characteristic function Φ(t)
approaches 0 fast as the magnitude of t increases, the
range [C1, C2] needs to be small and centered around 0.
See Figure 3 for an example of CF for avg of 10 tuples.
Both real and imaginary parts of the function are shown.
Hence, we use [−1, 1] in our algorithm as the range can
capture the shape of the CFs in most cases.

Inital guesses: Due to the oscillating behavior of the
characteristic functions, the fitting results are quite sensi-
tive to the initial values and can get stuck in local optima.
Finding good initial guesses for fitting can be as hard as
fitting itself. Theorem IV.1 provides insights into choosing
these initial guesses. Specifically, we precompute a fixed
number of result components (e.g., 40) and use them to
derive the guesses. These components are chosen so that
their means are separated to capture different regions of
the result distribution. At each iteration, they are grouped
into K components that are used as initial guesses.

Choice of fitting residual: The fitting residual ε is chosen
to guarantee the given VD requirement. We have per-
formed an approximation analysis and derived an upper
bound for ε. The proof is based on the application of
Cauchy-Schwartz inequality to characteristic functions
and the property that these functions approach 0 quickly
for points far from the origin to restrict the integration
bounds. Given our choice of other paramaters, we can
show that ε ≤ 6 ∗ 10−5VD2 can meet the accuracy
requirement VD.

The complexity of the main steps of this algorithm is
as follows. In step 2, computing P points, each of which
is a product of N complex terms with M components,
has a cost linear in P, M, N. For step 4, the complexity of
the least squares fitting algorithm we use is O(p3), where
p is the number of parameters [33], and p = 3k in our
case. Since fitting is repeated for k = 1..K, its total cost
is proportional to I · K4, where the factor I accounts for

multiple steps required for one fitting on average. While
this analysis is only approximate (due to the difficulty of
bounding the fitting cost), it shows that this algorithm has
eliminated the exponential cost as in sort-group. However,
K4 is a nontrivial cost as when the result distribution has
a complex shape, we need many Gaussian components
(e.g., K=10) to approximate it. We observe empirically
that when the number of tuples N is large, K becomes
small as the result distribution becomes smoother. As a
result, this technique can be efficient when N is large.

Relation to the Central Limit Theorem. The Central
Limit Theorem (CLT) is a special case of our algorithm.
It states that the sum of a sufficiently large number of
independent random variables is normally distributed
[4]. This gives an asymptotic result but our algorithm
dynamically determines when this result can apply. Our
experiments show that the fitted result distributions are
smooth single Gaussians when the number of tuples is
large enough (e.g., greater than 20).

E. Hybrid Solution
The discussions above suggest a hybrid solution to

exploit the advantages of the three algorithms: When
the number of tuples is small, we use exact derivation
since it is fast and its formula is not complex. When this
number is larger but enumerating all the components is
still possible, we use sort-group to have an approximate
formula of reduced size. After that, we switch to CF
fitting. This way, we exploit the advantage of each
algorithm in the range where it performs the best. We
also observe that the switching points among the three
mainly depend on the number of tuples and less so on
other data characteristics, as shown in § VI. This implies
that once the hybrid solution is configured with those
switching points, it can be applied to different workloads.

The hybrid solution also supports the use of windows.
It can be directly applied to stream systems using
tumbling windows such as CASA [23] and XStream [16].
When sliding windows are used, we employ incremental
computation. First, generating the mixture formulas for
exact derivation and sort-group (Eq. 5) can be incremental
by factoring out the old tuples and adding the new ones.
The CLT can be implemented in a similar fashion. For CF
fitting and sort-group, while some parts (e.g., function
fitting and point evaluation) cannot be incremental, we
can use a heuristic of applying the result of the previous
batch as the initial guess of the GMM parameters.

V. Joins of Uncertain Tuples

In this section we consider efficient evaluation of joins
under the Claro data model. The evaluation strategies
of joins vary significantly with the nature of the join
attributes. Recent research on probabilistic databases
[1], [2], [21], [32] has mostly focused on join attributes
modeled by discrete random variables. Since it is possible
to enumerate the values of a discrete random variable,
existing work supports such joins based on the possible
worlds semantics (PWS): in every possible world, each

8

random variable takes a specific value so a join can
proceed just as in a traditional database. However, when
data uncertainty is captured using continuous random
variables, join methods based on PWS no longer work
because we cannot enumerate the possible values of a
continuous random variable.

Below, we propose two types of joins of continuous
random attributes to suit different application semantics.
One is based on the use of a probabilistic view, which has
not been considered in previous work. The other is based
on the cross-product semantics, for which we extend the
definition in [29] with join results and efficient evaluation
techniques under our model.

A. Joins using Probabilistic Views

Let us first consider query Q1 in § II-A. Given each
object location, it retrieves the corresponding temperature.
Most notably, the join attributes (x, y) are probabilistic in
the object location stream, but are fixed sensor locations
in the temperature stream. This type of join is inherently
difficult to support for two reasons. First, it is not possible
to enumerate the values of the continuous random
attributes (xp, yp). Second, since each value of (xp, yp) has
probability 0, any join result that pairs a specific value of
(xp, yp) and a temperature tuple also has probability 0.

As can be seen, such joins compare continuous random
attributes and deterministic attributes based on equality.
To attain proper result distributions for them, we intro-
duce the notion of a probabilistic view. In the above
example, a probabilistic view on the temperature stream
is defined to be the conditional distribution p(temp|x, y),
i.e., distribution of temp given a (x,y) value. Then, the
process of iterating all possible values of xp and yp

and retrieving the corresponding temperature can be
compactly represented by f (xp, yp)p(temp|x, y), yielding
a joint distribution f (xp, yp, tempp).

Formally, let the left input R be {Ap
1 , · · · , Ap

k , R̄}, where
Ap

1 , · · · , Ap
k are the join attributes and R̄ denotes the rest

of R. Let the right input S be {A1, · · · , Ak, B1, · · · , Bl , S̄},
where A1, · · · , Ak are the join attributes, also called the
condition attributes, B1, · · · , Bl are the attributes dependent
on the condition attributes which the view aims to return,
hence called the view attributes, and S̄ is the rest of S. In the
temperature stream for Q1, the condition attributes are x
and y and the view attribute is temp. Then a probabilistic
view can be defined for B1, · · · , Bl conditioned on A1,
· · · , Ak, denoted by VBp

1 ,··· ,Bp
l |A1,··· ,Ak

, and characterized
by p(B1, · · · , Bl |A1, · · · , Ak). Then the join is defined as:

Definition 3 Given R = {Ap
1 , · · · , Ap

k , R̄}, S = {A1, · · · ,
Ak, B1, · · · , Bl , S̄} with B1, · · · , Bl dependent on A1, · · · , Ak,
an equi-join of R and S using a probabilistic view (onV) is a left
outer join of R and the probabilistic view VBp

1 ,··· ,Bp
l |A1,··· ,Ak

(S):

(R onV

R.Ap
1 =S.A1,··· ,R.Ap

k =S.Ak

S) ≡ (R A./
R.Ap

1 ,··· ,R.Ap
k

VBp
1 ,··· ,Bp

l |A1,··· ,Ak
(S))

In this definition, the left outer join preserves each tuple
in R and extends it with the attributes Bp

1 , · · · , Bp
l from

S. Attributes in S̄ are not included in the output because
they are not captured by the probabilistic view.

Closed-form result distributions. Given the above
definition, we next seek a solution to the distribution
of each outer join result. Recall that the Claro data
model describes the join attributes in the left input using
(multivariate) Gaussian Mixture Models (GMMs). Next,
we propose a special model for the probabilistic view,
which we call order-1 linear regression, that allows us to
obtain join result distributions also in the form of GMMs.
While the assumption of order-1 linearity may sound
restrictive, it actually can be applied to the view at either
a global or local scale, hence allowing implementation
choices for both accuracy and efficiency.

The following two theorems offer closed-form join
result distributions. They differ based on the nature of
the attributes used to construct the probabilistic view.

Theorem V.1 Given R = {Ap
1 , · · · , Ap

k , R̄}, S = {A1, · · · ,
Ak, B1, · · · , Bl , S̄}, assume order-1 linear regression:

B̃ = Ãβ + E (6)

where B̃ = (B1, · · · , Bl), Ã = (A1, · · · , Ak), β is a parameter
matrix of k× l, and E is an error vector of length l, which is
normally distributed with mean 0 and covariance matrix ΣE.
If Ã follows a GMM, then the outer join result distribution
(Ã, B̃) follows a multivariate GMM.

Proof sketch: According to (6), we have

B̃|Ã ∼ N(Ãβ, ΣE). (7)

Given Ã ∼ GMM, there exists a random variable C that
captures the mixing distribution of Ã such that

C ∼ Multinomial(m, p1, · · · , pm) (8)
Ã|(C = c) ∼ N(µÃ,c, ΣÃ,c) (9)

Based on (7) and (9), matrix manipulation can show that

(Ã, B̃)|(C = c) ∼ N
(

(µÃ,c, µÃ,cβ),
(ΣÃ,c ΣÃ,cβ

βTΣÃ,c ΣE + βTΣÃ,cβ

))
.

Together with (8), we have that (Ã, B̃) follows a multi-
variate GMM.

The above proof sketch fully characterizes the join
result distribution, including all its parameters. In prac-
tice, β and ΣE are unknown. They can be estimated
using regression over the S (view input) tuples. The least
squares estimates of these parameters are:

β = (ÃTÃ)−1ÃTB̃ (10)

ΣE = B̃T(In − Ã(ÃTÃ)−1ÃT)B̃/(n− k), (11)

where Ã = (ÃT
1 , · · · , ÃT

n)T and B̃ = (B̃T
1 , · · · , B̃T

n)T .

Theorem V.2 Given R = {Ap
1 , · · · , Ap

k , R̄}, S = {A1, · · · ,
Ak, Bp

1 , · · · , Bp
l , S̄}, let B̃p = (Bp

1 , · · · , Bp
l) and assume it

follows a GMM with r components, each with mean µB̃,j and
covariance ΣB̃,j. Further assume the order-1 linear regression:

µB̃,j = Ãβ
p
j + Ep

j , j = 1, · · · , r (12)

where β
p
j and Ep

j are similarly defined as β and E, and we
denote the covariance matrix of Ep

j as Σp
E,j. Then if Ãp follows

9

a GMM, we conclude that (Ãp, B̃p) follows a multivariate
GMM as well.

Proof sketch: Given B̃p ∼ GMM, there exists a random
variable CB̃ that capures the mixing distribution of B̃p

such that

CB̃ ∼ Multinomial(r, q1, · · · , qr) (13)
B̃p|(CB̃ = j, µB̃,j) ∼ N(µB̃,j, ΣB̃,j) (14)

According to assumption (12), we have

µB̃,j|Ã ∼ N(Ãβ
p
j , Σp

E,j) (15)

Combining (14) and (15), we obtain

B̃p|(CB̃ = j, Ã) ∼ N(Ãβ
p
j , Σp

E,j + ΣB̃,j). (16)

Given Ãp ∼ GMM, there exists a random variable CÃ
that captures the mixing distribution of Ãp such that

CÃ ∼ Multinomial(m, p1, · · · , pm) (17)

Ãp|(CÃ = i) ∼ N(µÃ,i, ΣÃ,i) (18)

Combining (16) and (18), matrix manipulation can show
that
(Ãp, B̃p)|(CÃ = i, CB̃ = j)

∼ N

(
(µÃ,i, µÃ,iβ

p
j),

(
ΣÃ,i ΣÃ,iβ

p
j

β
pT
j ΣÃ,i Σp

E,j + ΣB̃,j + β
pT
j ΣÃ,iβ

p
j

))
.

Define C = (CÃ, CB̃), then based on (13) and (17), we
have

C ∼ Multinomial(mr, piqj, i = 1, · · · , m, j = 1, · · · , r).

The above two equations show that (Ãp, B̃p) follows a
GMM.

In practice, β
p
j and Σp

E,j are unknown. They can be
estimated using regression over the tuples in the S
input, denoted by Si={Ãi, B̃p

i }, i = 1, · · · , n. Also, the
distribution of B̃p

i is given, which is a GMM with mean
µB̃,j and covariance ΣB̃,j, j = 1, · · · , r. The least square
estimates of these parameters are:

β
p
j = (ÃTÃ)−1ÃT µ̃ (19)

Σp
E,j = µ̃T(In − Ã(ÃTÃ)−1ÃT)µ̃/(n− k), (20)

where Ã = (ÃT
1 , · · · , ÃT

n)T and µ̃ = (µT
B̃,1, · · · , µT

B̃n
)T .

Evaluation Techniques. The query plan for query Q1
with a left outer join and a probabilistic view is illustrated
in Fig. 4. It first applies the query-specified windows
to the two inputs: A Now window feeds each arriving
location tuple as the left input to the join; An update
window, [Partition By sensor id Rows k], selects the most
recent k temperature tuples from each sensor into the
window. The probabilistic view Vtempp |x,y is maintained
over the update window and is the right input to the join.
The join extends each location tuple with the attributes
presented by the view, and returns a joint distribution.

Given the closed-form result distribution, the main
implementation issue is the view construction using
regression. While recent research has applied regression
to build models and views over sensor data [17], [11],

Left Outer
Join

Update WindowNOW Window

SR

[Partition By sensor_id
 Rows k]

time sensor_id x y tempptime tag_id xp yp

Top k tuples from
each sensor

[NOW]

Current location
tuple

V tempp | x,y : p(temp|x,y)

Probabilistic View

time tag_id xp yp tempp

xp = x and yp = y

Fig. 4. Query plan for the join using a probabilistic view (Q1).

our work differs by exploring the tradeoffs of applying
order-1 linear regression at a global versus local scale.

Global regression applies regression equations (Eq. 10
and Eq. 11) to all S tuples in the current update window
to construct the view defined by Eq. 7. The view can
be maintained incrementally by updating intermediate
matrices for β [17], e.g., ÃTÃ and ÃTB̃ in Eq. 10. Then,
when an R tuple arrives, the view is refreshed by
completing the matrix operations for β and ΣE.

A fundamental limitation of global regression is that
the order-1 linear assumption may not hold over the
entire view. For query Q1, the temperature may not be a
linear function of the location but rather, say, a quadratic
function. Hence, global regression may result in severe
error when its assumption fails to hold.

Local regression is motivated by the statistical theory that
a smooth function can be approximated by a low degree
polynomial, e.g., a linear function, in the neighborhood of
any point. Hence, we design a local regression technique
as follows: Given each R tuple that follows a GMM, use
the means and the variances of the components of the
GMM to dynamically define a sufficient local regression
region (LRR). As a simple example, the LRR for an R
tuple that follows N(µ, σ) can be [µ−mσ, µ + mσ] with
m ≥ 2. Then, retrieve the subset of S tuples that reside
in the LRR and apply regression to these tuples.

A key advantage of this technique is that it does not
require the assumption of global linearity, hence allowing
more accurate view construction. However, when given
a very small set of tuples in the LRR, it may not have
enough data points to achieve the accuracy (which is a
data problem, not a model problem). When this problem
occurs, we can collect more data points by adjusting
the LRR appropriately. Computation-wise, regression is
applied to a small set of tuples, hence with a low cost.

B. Joins using the Cross-Product
Depending on the application, a join can also be

modeled using a cross-product followed by a selection
[29]. An example is query Q2 in § II-A: it compares every
pair of objects for proximity in location. Our second
technique supports such joins with result distributions
in GMMs. More specifically, when join attributes in both
streams are probabilistic, the result distribution of a cross-
product is the product of the two input distributions,
i.e., a multivariate GMM in our model. The subsequent
selection defines a region over the GMM, and integrating
the GMM over this region gives the existence probability

10

of the result tuple. Here we note that integrating a con-
tinuous distribution over the region defined by equality
predicates always yields 0. This will cause all join results
to be filtered. To retain tuples of potential interest, we
rewrite the equality predicates into inequality ones using
a small bound, i.e., rewrite R.x = S.x to |R.x− S.x| < δ.
With small modification, the above discussion also applies
to joins between probabilistic and deterministic attributes
based on the cross-product semantics.

A well-known problem with the cross-product is that it
can create a large number of intermediate tuples. Hence,
it is important to prune results with low existence prob-
abilities. However, computing the existence probability
requires an expensive integration operation. In our work,
we devise linear transformation for GMMs to expedite
processing when the predicates take a linear form, e.g.,
|R.x− S.x| < δ, which is a common case in practice.

Take the join of tuple r from R and s from S in query
Q2 as an example. For simplicity, assume (r.x, r.y) ∼
N(µr, Σr), (s.x, s.y) ∼ N(µs, Σs). Then the result of cross-
product follows N(µr, Σr)N(µs, Σs). Let fµ,Σ(x) denote
the pdf of a multivariate Gaussian N(µ, Σ), the existence
probability of the join result is∫∫∫∫
|r.x−s.x|<3,|r.y−s.y|<3

fµr ,Σr (r.x, r.y) fµs ,Σs (s.x, s.y) dr.x dr.y ds.x ds.y.

If we let z1 = r.x− s.x and z2 = r.y− s.y, then it equals:∫∫
−3<z1<3,−3<z2<3

fµ,Σ(z1, z2) dz1 dz2,

where µ = µr − µs and Σ = Σr + Σs. As is shown, this
technique reduces the dimensionality of integration by
half. It is straightforward to extend the above example
to the GMM, as it is a linear combination of Gaussians.

VI. Performance Evaluation

In this section, we evaluate our techniques for joins
and aggregates, and compare them with sampling-based
methods ([14] for aggregates and a home-grown method
for joins) to demonstrate our performance benefits. We
further perform a case study in the real-world application
of tornado detection, and show that our techniques can
improve the existing system with better detection results
and faster computation.

A. Evaluation of Aggregation
We first use synthetic streams with controlled proper-

ties to evaluate our techniques for aggregates. Our data
generator produces a tuple stream with one continuous
random attribute. Each tuple is modeled by a mixture
of two Gaussian components. The mean of the first
component is uniformly sampled from [0, 5] and the
mean of the second is from [5, 50]. This way, we can model
a variety of real-world distributions, including bimodal
when the two means are far apart, asymmetric when they
are somewhat close, and almost Gaussian when they are
very close (a much harder workload than using Gaussian
distributions only as in [29]). The standard deviation of

each Gaussian component is within [0.5, 1] by default.
The coefficient of each component is uniform from [0, 1].

We evaluated avg over the above tuple stream. The
window used is a tumbling (default) or sliding window,
and its size is measured by the number of tuples N.
in Section IV-C. The default accuracy requirement is
VD ≤ 0.1 for each algorithm. The performance metric is
throughput. All experiments were run on a 3Ghz dual-
core xeon processor with 1GB memory for use in Java.

Expt 1: Compare our algorithms. We first compare
the three algorithms that we proposed: exact derivation,
approximation using sort-group, and approximation
using characteristic function (CF) fitting. We varied the
number of tuples in each window, N, since it directly
affects the result distribution and the computation needed.
The throughput and accuracy results are shown in the
Fig. 5(a) and Fig. 5(b).

We observe that the throughout using exact derivation
is high due to being a closed-form solution. However, we
can only apply it to the small values of N because its
formulas grow exponentially in N, hence becoming less
and less useful. Sort-group is an approximation of the
exact derivation, yielding simplified formulas. It achieves
high throughput when N is small, e.g., up to 10, and
deteriorates quickly after that. This is again because the
size of the formula grows exponentially in N. In contrast,
CF-fitting works well for large numbers of N, e.g., after
10. This is due to the smoother result distributions in this
range, hence easier to fit, and the one-time fitting cost
being amortized over more tuples.

For accuracy, most algorithms satisfy the requirement
of VD ≤ 0.1. This is because both approximation al-
gorithms compare with the true distributions through
either direct VD comparison or function fitting with a
small residual. We observe that the hardest range for
approximation is 5 to 10 tuples. Result distributions in
this range are complex and require a mixture of many
components to fit. An example of the true and fitted
distributions for 5 tuples is shown in Fig. 5(c). From 15
tuples onwards, the result distribution becomes smoother
with fewer peaks. The only case of poor accuracy is CF
fitting for less than 10 tuples. This is because we limited
the maximum number of components it can search for
to gain some performance.

We further evaluated the performance of our algo-
rithms under different data characteristics. We ran the
above experiment with traces generated with different
ranges of means and variances. Specifically, the means
of the two components were chosen from the same
range or from two separate ranges. The variances were
sampled from different ranges, [0.3, 0.5] and [1, 3]. In
all cases, we observed the same trends for both accuracy
and throughput, and the crossing points among the
three algorithms stay the same. We also note that our
workload is already hard by involving an asymmetric or
bimodal distribution in each tuple. If most distributions
are Gaussians instead, sort-group and CF fitting both
improve performance but with a similar crossing point.

The above results suggest the configuration for the

11

 10

 100

 1000

 10000

 100000

 10 100

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
on

d)

Window Size

Exact derivation
Approx. w/ sort-group
Approx. w/ CF fitting

(a) Throughput of three algorithms

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 10 100

V
ar

ia
tio

n
D

is
ta

nc
e

Window Size

Exact derivation
Approx. w/ sort-group
Approx. w/ CF fitting

(b) Accuracy of three algorithms (c) A fitted distribution for 5 tuples

 10

 100

 1000

 10000

 100000

 10 100

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
on

d)

Window Size

CLARO Aggr.
H(30)

H(100)
H(150)

(d) Claro vs. Sampling (Through-
put)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 10 100
V

ar
ia

tio
n

D
is

ta
nc

e

Window Size

H(30)
H(100)
H(150)

CLARO Aggr.

(e) Claro vs. Sampling (Accuracy)

 0

 5000

 10000

 15000

 20000

 0.05 0.1 0.15 0.2

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
on

d)

Maximum VD allowed

CLARO Aggr.
H(10)
H(20)
H(30)
H(50)

H(100)
H(150)

(f) Throughput of varying VD (Tum-
bling windows)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.05 0.1 0.15 0.2

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
on

d)

Maximum VD allowed

CLARO Aggr.
H(10)
H(20)
H(50)

H(100)
H(150)

(g) Sliding windows - Slide=10
(Throughput)

 0

 2000

 4000

 6000

 8000

 10000

 0.05 0.1 0.15 0.2

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
on

d)

Maximum VD allowed

CLARO Aggr.
H(10)
H(20)
H(50)

H(100)
H(150)

(h) Sliding windows - Slide=5
(Throughput)

Fig. 5. Experimental results for aggregation using our algorithms and histogram-based sampling

hybrid solution. When the number of tuples N is smaller
than 5, we use exact derivation. For the range of [5, 10],
we use the sort-group algorithm. After that, we switch to
CF fitting. In addition, when N is large enough (e.g. > 20),
the result distributions are mostly a smooth Gaussian.
These distributions can be computed directly using the
Central Limit Theorem (CLT). Hence, we can use CLT as
an optimization when N ≥ 30 (e.g., in Expt 3 below).

Expt 2: Compare to histogram-based sampling. Next,
we compare our hybrid solution with the histogram based
sampling algorithm [14]. Given N tuples, this algorithm
(1) generates k ∗ µ samples for each tuple, (2) performs
aggregation over them to get k ∗ µ result samples, and
(3) sorts the result samples and builds a histogram with
k buckets and µ samples for each bucket. k and µ are
the parameters of this algorithm. Since we found the
accuracy of this algorithm to be more sensitive to k, we
used three settings in this experiment: k= 30, 100, or 150
while µ is fixed to 50.

Fig. 5(d) and Fig. 5(e) show the results. As observed,
our hybrid algorithm outperforms the three settings of
the histogram algorithm in both throughput and accuracy.
In terms of accuracy, only the histogram with k = 150
ensures VD ≤ 0.1. The other two violate this in the “hard”
range between 5 and 15 tuples (hence these throughput
numbers are removed from Fig. 5(d)). These results

show the advantages of our algorithm over the sampling
based approach. Our algorithm can adapt to the accuracy
requirement while maximizing the throughput. Using
sampling, one has to manually choose the parameters to
meet the requirement, and the optimal parameter setting
varies with workloads.

Expt 3: Vary the VD requirement. To further study
our adaptivity to accuracy requirements, we varied VD
from 0.05 to 0.2. In the first setting, we used tumbling
windows with N randomly chosen from [2, 50] for each
stream segment. Fig. 5(f) shows the throughput results
(when the VD requirement is satisfied). As observed, our
algorithm outperforms the histogram algorithm for all
values of VD used. It also shows that we can achieve
better throughput under a relaxed condition.

In the second setting, we repeated the experiment using
sliding windows. The window size N gradually increases
from 5 to 50 in the increment of 5. This way, we can
examine different ranges of the hybrid solution. The
window slides by 10 tuples or the window size, whichever
is smaller. We also made the histogram algorithm in-
cremental by maintaining necessary samples from the
previous window. Fig. 5(g) shows the throughput results
(when the VD requirement is met). The same observations
as for tumbling windows hold. We also note that our
algorithm uses less memory than the histogram algorithm

12

for incremental computation. We further examined the
behavior of sliding windows with a small slide size (i.e.
5). As shown in Fig. 5(h), the throughput of our algorithm
slightly decreases compared to the larger slide size. This
is because some non-incremental components in our
algorithm such as function fitting need to be repeated
more often. The performance of our algorithm is still
comparable with those of the histogram algorithm in this
setting.

B. Evaluation of Joins
We next evaluate our join techniques. We focus on

the join between R={ap} and S={a, b} where b’s value
depends on a. We first design a sampling-based method
for the join using a probabilistic view. We use it as a
baseline to compare to our regression-based methods.

Histogram-based sampling. For each R tuple, this
method takes samples from the distribution of R.ap. It
then extends each sample for a with a sample for b (as
the join). To do so, the method searches all S tuples
in the update window for the closest two points based
on the a value. It then applies linear interpolation with
added random noise (for later histogram construction) to
obtain a b sample. Finally it uses all the (a, b) samples to
construct an equi-depth 2-dimensional histogram as an
approximate result distribution f (ap, bp). The setting of
the histogram H(k, µ) depends on the number of buckets
per dimension, k, and number of samples per bucket, µ.

In our experiments, the R stream is an object location
stream from an RFID inference system [31] where each
tuple has a Gaussian distribution (using a mixture dis-
tribution will not incur more cost given our closed-form
solution). The S stream is produced by our temperature
simulator, which generates tuples by adding random
noise to the underlying function between temperature
and location. This function can be linear or quadratic in
this study. The query-specified update window size (UWS)
on S is 1, i.e., containing the most recent temperature
reading from each sensor. R and S tuples arrive at the
same rate. Throughput measures the number of R tuples
pipelined through the left outer join.

Expt 4: Sampling versus regression. We first compare
the sampling method with our regression methods (global
and local). We use a linear function to generate the
temperature stream. The local regression region (LRR) is
set to be 18. As seen in Fig. 6(a), the sampling method
produces results far from the true result distributions
(VD > 0.7) while regression methods are much more
accurate (VD < 0.1). The VD of sampling improves as
µ increases, e.g., from H(10,10) to H(10,50), because it
uses more samples to construct the histogram. However,
the VD worsens when k increases, e.g., from H(10,50) to
H(30,50). This is because when k is too large, the area of
each bucket is very small, and the samples in each bucket
mostly fit the noise added during interpolation. While it
is possible to keep increasing µ, Fig. 6(b) shows that the
sampling method is already very slow: the throughput
of H(10,10) is 37 tuples/sec and that of H(10,50) is 4. On
the other hand, our global regression gains a throughput

 100

 1000

 10000

 100000

 1e+06

 1e+07

5 10 20 50

N
u

m
b

er
 o

f
in

te
g

ra
ti

o
n

s
p

er
 s

ec
o

n
d

Number of tuples per window

Without linear transformation
With linear transformation

Fig. 8. Joins using cross-product with and without linear transformation

of 1547 and local regression gains 44843, outperforming
sampling by 2-4 orders of magnitude.

Expt 5: Global versus local regression. We next use a
quadratic function to generate the temperature stream
and compare global versus local regression. Since local
regression is sensitive to the number of data points
available, we vary its LRR (which has no effect on global
regression). As Fig. 6(c) shows, global regression has
poor accuracy since its assumption of global linearity
does not hold. The VD of local regression (UWS=1) first
decreases because the increased region has more points
for regression. Then it increases because the region is too
large to meet the local linearity assumption—the local
regression is becoming more like global regression. A
further optimization for local regression is to enlarge
UWS, e.g., using the most recent 5 readings from each
sensor. The rationale behind this is that the underlying
function usually changes slowly. Hence using old tuples
from the past few seconds will not add stale information.
Fig. 6(c) shows such improved VD with UWS=5 and 10.

Fig. 6(d) shows that increasing the LRR reduces the
throughput as the regression uses more points. Despite
that, local regression outperforms global regression by
a wide margin. In practice, if we choose a reasonable
setting, e.g., LRR=6 and UWS=5, local regression can gain
both high accuracy and efficiency.

To further understand the effect of UWS on local
regressiong, we then fix the LRR as 6 and use the method
of enlarging the UWS, from 1 to 20, to feed more data
points to local regression (while global regression still
uses UWS=1). Fig. 6(e) and Fig. 6(f) show that local
regression outperforms global regression in both accuracy
and speed. The increase of the UWS improves the VD of
local regression significantly due to the use of more points.
Its throughput decreases for the same reason. However,
even when local regression uses a window 20 times larger,
its throughput is still much better than global regression
due to the benefit of local computation.

Expt 6: Joins using cross-product Next we evaluate
joins between R={ap} and S={ap} using cross-product
semantics with the computation of tuple existence proba-
bility. We compare such computation for join results with
and without linear transformation. Both R and S are
object location streams used above. Each location tuple
has a Gaussian distribution. The R and S tuples arrive at
the same rate. For each input stream, there is a tumbling

13

 0

 0.2

 0.4

 0.6

 0.8

 1

H(10,10) H(10,50) H(30,50) Global R. Local R.

V
ar

ia
tio

n
D

is
ta

nc
e

0.775
0.692

0.811

0.003

0.099

(a) Sampling vs regression in VD
(linear function).

 0.1

 1

 10

 100

 1000

 10000

 100000

H(10,10) H(10,50) H(30,50) Global R. Local R.

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
on

d)

37.28

4.43

0.49

1546.8

44842.5

(b) Sampling vs regression in
Throughput (linear function).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

3 6 12 24 48

V
ar

ia
tio

n
D

is
ta

nc
e

Local Regression Region

Global R. UWS = 1
Local R. UWS = 1
Local R. UWS = 5

Local R. UWS = 10

(c) Global vs local regression in VD
(quadratic function)

 1000

 10000

 100000

 1e+06

3 6 12 24 48

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
on

d)

Local Regression Region

Local R. UWS = 1
Local R. UWS = 5

Local R. UWS = 10
Global R. UWS = 1

(d) Global vs local regression in
Throughput (quadratic function)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 5 10 15 20

V
ar

ia
tio

n
D

is
ta

nc
e

Update Window Size

Global Regression
Local Regression

(e) Global vs local regression in
VD, with varying update window
(quadratic function)

 100

 1000

 10000

 100000

1 5 10 15 20

T
hr

ou
gh

pu
t (

pe
r

se
co

nd
)

Update Window Size

Local Regression
Global Regression

(f) Global vs local regression in
Throughput, with varying update
window (quadratic function)

Fig. 6. Results of joins using sampling H(k, µ), global and local regression (Global/Local R.).

(a) Current CASA system (m/s).

(b) Distribution-based processing w/o
Smoothing Step (m/s).

(c) Distribution-based processing (m/s).

Fig. 7. Radial velocity of a true tornadic region.

window and we vary the number of tuples per window.
Fig. 8 shows that by applying linear transformation to
reduce the dimensionality of integrations, we get a 3-
order-of-magnitude improvement.

C. Case Study: Tornado Detection
We now demonstrate the effectiveness of capturing

uncertainty using distributions in a real-world tornado
detection system [23]. We first modified the velocity
analysis module in Fig. 1 to generate velocity distributions
in GMM. In the FFT module, the current system takes a
weighted average from the discrete FFT distribution fF.
Instead, we apply a model-based analysis: (1) Strength
Filter: If the radar signal strength is below a threshold,
we output zero and skip the following steps. (2) Gaussian
Estimation: Create a Gaussian distribution from the mean
and variance of fF. Return it for output if it passes the
goodness test based on the domain knowledge. (3) GMM
Fitting: Otherwise, fit a mixture of two Gaussians from fF
and remove any component with a large variance as noise.
After the FFT module, we apply Smoothing by averaging
distributions of high and low frequency segments and
across neighboring regions. For avg over GMMs, we
apply the techniques in Section IV-B to compute the

TABLE I
Processing result of a real tonadic dataset of 947s, 84 scans.

Analysis Time Detection Time False Positives
CASA 197.76 s 4486 s 2137
Distribution 578.7 s 392 s 9

result distribution. Since the current tornado detection
algorithm does not take distributions as input, we feed
the mean of each result distribution to the algorithm.

Our case study used a real tornadic dataset collected in
Oklahoma on May 8, 2007, containing raw data of 84 radar
scans in 947 seconds. As true velocity changes gradually
in space and the tornado detection algorithm expects
smooth input, we first examine the spatial smoothness
of velocity. Fig. 7(a) shows the velocity map of a sector
scan of a real tornadic region generated by current CASA
system. For comparison, we show the mean of velocity
distributions of the same sector scan after processed by
Strength Filter, Gaussian Estimation and GMM Fitting in
Fig. 7(b). We also give the final output velocity map in
Fig. 7(c). As shown, our techniques yield much smoother
velocity maps. Specifically, the Strength Filter removes
many colorful dots (i.e., noise); the GMM Fitting smoothes
by further removing noise (Fig. 2(b) shows a detailed

14

example of the noise removal effect of GMM Fitting from
Section III. The velocity calculated in CASA is 5.6m/s.
After dropping the Gaussian component of noise, the
mean becomes 6.4m/s, which is closer to the true value
visually observed); the Smoothing step smoothes the
remaining sharp velocity changes.

We further measure the analysis speed, detection speed
and result quality. As shown in Table I, our distribution-
based method reduces the detection time from 4486s to
392s, and produces much fewer false positives (which
mainly come from noise). Although our method costs
three times the data analysis time, it is still faster than
the radar sensing speed. As such, our distribution-based
method improves the detection algorithm to be stream-
speed, and significantly improves the detection quality.

VII. Related Work

Previous sections have discussed closely related work.
Below, we survey several broader areas.

Probabilistic stream processing has gained research
attention very recently. Existing work [6], [18], [21] adopts
the finite and discrete tuple model as in probabilistic
databases. As stated previously, many techniques for
discrete variables cannot be applied for problems with
continuous variables. Furthermore, existing work such
as [6] produces mean, variance, and higher moments to
describe result distributions, which cannot be easily used
to compute the distributions of subsequent operators.

Models and views of sensor data. Recent work on
sensor networks [10], [9] builds statistical models to
capture correlations among attributes. Given a query,
such models enable reduced costs of data acquisition and
communication. FunctionDB [30] transforms discrete sen-
sor observations into continuous functions and supports
querying over these functions. More relevant to us is
supporting views over uncertain data [11], [20]. However,
the throughput of stream queries on the views can be
limited, e.g., 50 tuples/sec, due to high inference cost.

Wavelets-based methods [7], [15], [22] build a single
summary (distribution) over a relational table or a data
stream, and compute aggregates over the summary. In
contrast, each tuple includes a distribution in our work
and hence aggregation of tuples requires the use of inte-
grals (or their approximations) of the tuple distributions.

VIII. Conclusions

In this paper, we presented the Claro system for
uncertain data stream processing, in particular, its unique
data model and advanced techniques for aggregates and
joins under the model. Our results show that Claro out-
performs sampling-based methods in accuracy and speed
in stream processing. A case study further reveals that
Claro can improve a real tornado detection system with
better quality of results and stream-speed processing.

The work presented in this paper provides a foundation
for us to explore more advanced issues.

Relational algebra. Our first task is to support a larger
set of relational operators. Projections in our system

are marginalization of multivariate Gaussian mixtures,
which is very fast. Selections add conditions to tuple
distributions and can cause tuple existence probabilities
to be less than 1, which may complicate the evaluation
of some other operators. This leads to interesting op-
timizations such as using commutativity of operators
and approximation of distributions, so that we can apply
current fast techniques early while delaying computation
such as Monte Carlo simulation later in a query plan.

Tuple correlations. We will also address inter-tuple cor-
relations and investigate the strengths and limitations of
advanced techniques such as lineage in stream processing.

A hybrid system. A third direction is to explore the
combination of histograms and Gaussian mixture models
to support both discrete and continuous random variables
and to improve overall performance.

References

[1] L. Antova, T. Jansen et al. Fast and simple relational processing
of uncertain data. In ICDE, 983–992, 2008.

[2] O. Benjelloun, A. D. Sarma et al. Uldbs: Databases with uncertainty
and lineage. In VLDB, 953–964, 2006.

[3] D. Carney, U. Çetintemel et al. Monitoring streams: a new class
of data management applications. In VLDB, 215–226, 2002.

[4] G. Casella and R. L. Berger. Statistical Inference. Duxbury, 2001.
[5] R. Cheng, D. V. Kalashnikov et al. Evaluating probabilistic queries

over imprecise data. In SIGMOD, 551–562, 2003.
[6] G. Cormode and M. Garofalakis. Sketching probabilistic data

streams. In SIGMOD, 281–292, 2007.
[7] G. Cormode, M. Garofalakis. Histograms and Wavelets on

Probabilistic Data. In ICDE, 2009.
[8] N. N. Dalvi and D. Suciu. Efficient query evaluation on proba-

bilistic databases. VLDB J., 16(4):523–544, 2007.
[9] A. Deshpande, C. Guestrin et al. Exploiting correlated attributes

in acquisitional query processing. In ICDE, 2005.
[10] A. Deshpande, C. Guestrin et al. Model-driven data acquisition

in sensor networks. In VLDB, 588–599, 2004.
[11] A. Deshpande et al. MauveDB: supporting model-based user

views in database systems. In SIGMOD, 2006.
[12] Y. Diao, B. Li et al. Capturing data uncertainty in high-volume

stream processing. In CIDR, 2009.
[13] S. Frühwirth-Schnatter. Finite Mixture and Markov Switching Models.

Springer, 2006.
[14] T. Ge and S. B. Zdonik. Handling uncertain data in array database

systems. In ICDE, 1140–1149, 2008.
[15] A. Gilbert, Y. Kotidis et al. Surfing wavelets on streams: one-pass

summaries for approximate aggregate queries. In VLDB, 2001.
[16] L. Girod, Y. Mei et al. Xstream: a signal-oriented data stream

management system. In ICDE, 1180–1189, 2008.
[17] C. Guestrin, P. Bodi et al. Distributed regression: an efficient

framework for modeling sensor network data. In IPSN, 2004.
[18] T. S. Jayram, A. McGregor et al. Estimating statistical aggregates

on probabilistic data streams. In PODS, 2007.
[19] S. Jeffery, M. J. Franklin et al. An adaptive RFID middleware for

supporting metaphysical data independence. VLDB J., 17(2), 2008.
[20] B. Kanagal and A. Deshpande. Online filtering, smoothing and

probabilistic modeling of streaming data. In ICDE, 2008.
[21] B. Kanagal and A. Deshpande. Efficient query evaluation over

temporally correlated probabilistic streams. In ICDE, 2009.
[22] P. Karras, N. Mamoulis. One-pass wavelet synopses for maximum-

error metrics. In VLDB, 2004.
[23] J. F. Kurose, E. Lyons et al. An end-user-responsive sensor

network architecture for hazardous weather detection, prediction
and response. In AINTEC, 1–15, 2006.

[24] G. McLachlan et al. Finite Mixture Models. Wiley-Interscience, 2000.
[25] C. Ré, J. Letchner et al. Event queries on correlated probabilistic

streams. In SIGMOD, 715–728, 2008.
[26] C. Ré and D. Suciu. Approximate lineage for probabilistic

databases. In VLDB, 2008.
[27] T. Sauer. Numerical Analysis. Addison Wesley, 2005.
[28] P. Sen, A. Deshpande et al. Exploiting shared correlations in

probabilistic databases. In VLDB, 2008.

15

[29] S. Singh, C. Mayfield et al. Database support for probabilistic
attributes and tuples. In ICDE, 1053–1061, 2008.

[30] A. Thiagarajan and S. Madden. Querying continuous functions in
a database system. In SIGMOD, 791–804, 2008.

[31] T. Tran, C. Sutton et al. Probabilistic inference over rfid streams
in mobile environments. In ICDE, 2009.

[32] D. Wang, E. Michelakis et al. Bayesstore: Managing large, uncertain
data repositories with probabilistic graphical models. VLDB, 2008.

[33] N. Ye. The Handbook of Data Mining. Lawrence Earlbaum Associates,
2003.

16

Appendix

Proof of Theorem IV.1.

We first consider the sum of two variables, S = X1 + X2, X1 and X2 be mixtures of m1 and m2 components. That is:

f1(x) = p11 N(µ11, σ11) + ... + p1m1 N(µ1m1 , σ1m1)
f2(x) = p21 N(µ21, σ21) + ... + p2m2 N(µ2m2 , σ2m2)

The pdf of the sum S can be written as:

fS(s) =
∫

x1

∫
x2 :(x1+x2=s)

f1(x1) f2(x2)dx2dx1

=
∫ +∞

−∞
f1(x) f2(s− x)dx

f1(x) f2(s− x) =
[
p11 N(µ11, σ11) + ... + p1m1 N(µ1m1 , σ1m1)

][
p21 N(µ21, σ21) + ... + p2m2 N(µ2m2 , σ2m2)

]
=

m1 ,m2

∑
i=1,j=1

p1i p2j
1

2πσ1iσ2j
e
− 1

2 ((x−µ1i)
2

σ2
11

+
(x−µ2j)

2

σ2
2j

)

Now consider the integral of one term of the sum:

A =
∫ +∞

−∞
p1i p2j

1
2πσ1iσ2j

e
− 1

2 ((x−µ1i)
2

σ2
1i

+
(x−µ2j)

2

σ2
2j

)

Let B be the term in the exponent:

B =
(x− µ1i)2

σ2
1i

+
(x− µ2j)2

σ2
2j

=
1

σ2
11σ2

21

[
(σ2

1i + σ2
2j)x2 − 2σ2

2jxµ1i + 2σ2
1ix(µ2j − s) + σ2

2jµ
2
1i + σ2

1i(µ2j − s)2
]

=
σ2

1i + σ2
2j

σ2
11σ2

21

(x−
σ2

2jµ1i + σ2
1i(s− µ2j)

σ2
1i + σ2

2j

)2

−
(

σ2
2jµ1i + σ2

1i(s− µ2j)

σ2
1i + σ2

2j

)2

+
σ2

2jµ
2
1i + σ2

1i(s− µ2j)2

σ2
1i + σ2

2j

=

σ2
1i + σ2

2j

σ2
1iσ

2
2j

(x−
σ2

2jµ1i + σ2
1i(s− µ2j)

σ2
1i + σ2

2j

)2

+
σ2

1i + σ2
2j(s− µ1i − µ2j)2

(σ2
1iσ

2
2j)

2

Substitute into A, we have:

A =
∫ +∞

−∞
p1i p2j

1
2πσ1iσ2j

e
1
2

σ2
1i+σ2

2j
σ2

1i σ2
2j

(
x−

σ2
2jµ1i+σ2

1i (s−µ2 j)

σ2
1i+σ2

2j

)2

e

(s−µ1i−µ2j)
2

σ2
1i+σ2

2j dx

=
p1i p2j

√
2π
√

σ2
1i + σ2

2j

e

(s−µ1i−µ2j)
2

σ2
1i+σ2

2j
∫ +∞

−∞

1
√

2π
σ1iσ2j√
σ2

1i+σ2
2j

e
1
2

σ2
1i+σ2

2j
σ2

1i σ2
2j

(
x−

σ2
2jµ1i+σ2

1i (s−µ2j)

σ2
1i+σ2

2j

)2

dx

The integral is equal to 1 since it is the integral of the pdf of a Gaussian distribution. Hence:

A =
p1i p2j

√
2π
√

σ2
1i + σ2

2j

e

(s−µ1i−µ2j)
2

σ2
1i+σ2

2j

This is one component of a Gaussian mixture with mean (µ1i + µ2j), variance (σ2
1i + σ2

2j) and coefficient p1i p2j. Therefore, the theorem is
proved for the case of N = 2.

The theorem can also be proved by manipulating the inverse transformation formula of the characteristic function of the sum S.

The generalization to an arbitrary N is straightforward since we can do the sum for two distributions at a time by getting the result of
previous sum and summing it with the next distribution.

