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Abstract—Despite its promise, RFID technology presents nu-
merous challenges, including incomplete data, lack of location
and containment information, and very high volumes. In this
work, we present a novel data interpretation and compression
substrate over RFID streams to address these challenges. Our
substrate employs a time-varying graph model to efficiently
capture possible object locations and inter-object relationships
such as containment from raw RFID streams. It then employs
a probabilistic algorithm to estimate the most likely location
and containment for each object. By performing such online
interpretation, it enables online compression that recognizes and
removes redundant information from the output stream of this
substrate. We have implemented a prototype of our interpretation
and compression substrate and evaluated it using synthetic RFID
streams emulating a warehouse environment. Results of a detailed
performance study show that our data interpretation techniques
provide high accuracy while retaining efficiency over RFID
data streams, and our compression algorithm yields significant
reduction in output data volume.

Index Terms—RFID, data streams, data cleaning, compression,
supply-chain management

I. INTRODUCTION

RFID is a promising electronic identification technology
that enables a real-time information infrastructure to

provide timely, high-value content to monitoring and tracking
applications. An RFID-enabled information infrastructure is
likely to revolutionize areas such as supply chain management
[13], healthcare [13], pharmaceuticals [13], postal services
[16], and surveillance [17] in the coming decade.

Data stream management is central to the realization of such
a monitoring and tracking infrastructure. While data stream
management has been extensively studied for environments
such as sensor networks [34], [23], [6], [7], [26], [27], existing
research has mostly focused on sensor data that captures
continuous environmental phenomena. RFID data—a triplet
<tag id, reader id, timestamp> in its most basic form—raises
new challenges since it may be insufficient, incomplete, and
voluminous.

Insufficient information: Since RFID is inherently an iden-
tification technology designed to identify individual objects, a
stream of RFID readings does not capture inter-object rela-
tionships such as co-location and containment. For instance,
an RFID stream does not directly reveal whether flammable
objects are secured in a fire-proof container, or foods with and

A preliminary version of this work appeared as a 3-page poster paper at
ICDE 2008 [3].

without peanuts are not packaged in the same container, even
though all items and containers are affixed with RFID tags.

Incomplete data: Despite technological advances, RFID
readings are inherently noisy with observed read rates sig-
nificantly below 100% in actual deployments [9], [18]. This
is largely due to the intrinsic sensitivity of radio frequencies
(RFs) to environmental factors such as occluding metal objects
[10] and contention among tags [11]. Missed readings result
in lack of information about an object’s location, significantly
complicating the tasks of determining object location and
containment and detecting anomalies such as missing objects.

High volume streams: RFID readers are often configured
to read frequently when they are deployed in wired, powered
environments. Large deployments of such readers can create
excessively large volumes of data, e.g., over terabytes of
data in a single day [29]. The resulting data, however, may
encode significant amounts of redundant information such as
an unchanged object location. Hence, it is crucial that data be
filtered and compressed close to the hardware while preserving
all useful information.

Recent research on RFID data cleaning [12], [18], [19]
has employed smoothing techniques to clean individual tag
streams and estimate tag counts in a given location in the
presence of missed readings. These techniques, however, do
not capture inter-object relationships such as containment or
identify anomalies such as missing objects. Recent research
on probabilistic query processing [14], [24] has not focused
on the derivation of information mentioned above, such as
containment or missing objects, but its query processing
can be enriched once such information is made available as
input. Furthermore, none of the above work has addressed
the data compression problem. Compression techniques for
RFID warehouses use expensive disk-based operations such
as sorting and summarization [15] or employ application-
specific logic [30]. Hence, they are unsuitable for fast online
compression of RFID streams close to the hardware.

In this paper, we present SPIRE, a system that addresses
the above three challenges by building an interpretation and
compression substrate over RFID data streams. This substrate
enables accurate interpretation of observed data, even though
the raw data is incomplete. Further, it infers inter-object
relationships such as co-location and containment as well as
anomalies such as missing objects. Finally, by performing on-
line interpretation, it enables online compression that discards
redundant data such as an unchanged object location or an
unchanged containment between objects. Online compression
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significantly reduces data volume, thereby expediting process-
ing and reducing data transfer costs.

The SPIRE system employs three key techniques, which are
also the main contributions of this paper:
• We propose a time-varying graph model that captures

possible object locations and containment relationships
with its efficient construction from raw RFID streams.

• We further develop an online probabilistic algorithm
that estimates the most-likely locations of objects and
containment relationships among objects (which subsume
co-location relationships) from the information captured
in the graph model.

• We finally devise an online compression algorithm that
transforms an input raw RFID stream into a compressed
yet richer output event stream with both location and
containment information.

We have implemented our interpretation and compression
substrate in a prototype system and evaluated it using RFID
streams from a simulated warehouse environment. Our results
show that our data interpretation techniques achieve error rates
around or below 10% for location estimates for a wide range
of RFID read rates, and within 10% for containment estimates
when the read rate reaches 80%. In addition, these techniques
can be performed efficiently on high-volume RFID streams.
Furthermore, our compression techniques can encode rich
location and containment information using only 20% or less
of the raw input data size. Finally, we compare our system with
SMURF [19], a state of the art system for RFID data cleaning,
that can be used to produce object location information but
not containment information. For object location updates, our
system is shown to outperform SMURF in both the error rate
and the resulting compression ratio.

The rest of the paper is organized as follows. Section II
formulates the problem. Sections III, IV, and V describe the
three key techniques of our system. Section VI presents results
of a detailed performance study. Finally, Section VII presents
related work, and Section VIII concludes the paper.

II. PROBLEM STATEMENT

Before defining the problem, we present the notion of the
physical world. A physical world covers a specific geograph-
ical area comprising a set of objects O, a set of pre-defined,
fixed locations L, and an ordered discrete time domain T . The
set of locations can be either pre-defined logical areas such as
aisle 1 in warehouse A, or (x, y, z) coordinates generated by
a positioning system.

At time instant t, the state of the world includes:
1) the set of objects present in each location, encoded by

the boolean function resides(oi ∈ O, lk ∈ L, t), which
is true iff object oi is present at location lk; and

2) the containment relationship between objects, encoded
by the boolean function contained(oi ∈ O, oj ∈ O,
lk ∈ L, t), which is true iff objects oi and oj are both
in location lk and oi is contained in oj .

In this work, we refer to the functions resides and
contained as the ground truth. The state of the world

changes whenever an object enters the world, exits the world

through a designated channel (e.g., an exit door), or changes
its location or containment relationship with other objects.
The set of locations L also contains a special location called
“unknown”. In particular, an object can be in the unknown
location if it is not present in any pre-defined location (e.g.,
if it is in transit between two locations) or if it exited the
physical world improperly (e.g., was stolen).

RFID readers provide a means to observe the physical
world. The readings produced at time t are collectively called
an observation of the world. In this work, we focus on
readers mounted at fixed locations—a common configuration
in today’s RFID deployments. For such fixed readers, a reading
captures the location of the object, which is the same as the
location of the reader. Such readings, however, are inadequate
for capturing the containment between objects. Furthermore,
the observation of the world may be incomplete since some
objects may not respond to reader queries due to technological
limitations. As a result, both the location and containment of
an unobserved object becomes unclear.

The data interpretation problem is to construct an approx-
imate yet accurate estimate of the state of the world based on
the observations thus far. We define an approximation using
functions resides and contained that for given arguments,
return probabilistic values representing the likelihood of the
function being true. Then the data interpretation problem can
be formulated as: given the time now and an object oi, report

1) the most likely location of the object, denoted by
argmaxk resides(oi, lk, now), and

2) the most likely container of the object, denoted by
argmaxj,k contained(oi, oj , lk, now).

Note that in our definition, data interpretation over streams is
only concerned about the present state of the physical world
and not the past or the future.

The data compression problem is to transform the input
stream into an output stream with a reduced data volume but
with no loss of information. Such compression requires the
knowledge of what data is redundant and thus can be safely
discarded; in this work, we use interpretation to obtain such
knowledge. The combination of interpretation and compres-
sion yields an output stream that (i) augments the input stream
with additional, likely information about objects, and (ii) has
a significantly reduced volume of data.

A running example. A warehouse scenario is depicted in
Fig. 1, where RFID readers are installed above the loading
dock, the conveyor belt, and the packaging area. At time t=1,
the reader at the loading dock reports objects 1 to 6, denoted
by the shaded nodes. These nodes are arranged according to
the packaging levels that the reported tag ids indicate [8].
Object 7 is also present but was missed by the reader, denoted
by an unshaded node, i.e., a missed reading. Containment
between objects, depicted by the dashed edges, is not reported
by the readings and often uncertain. Examples of ambiguous
containment are the containers of items 4, 5, 6, which can be
either case 2 or case 3 based on the readings received.

At time t=2, case 2 is scanned individually on the conveyor
belt. It is now possible to confirm the containment between
the case and its item(s) if the domain knowledge of the
deployment reveals such special readers that scan containers
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Fig. 1. A sequence of observations of RFID-tagged objects in a warehouse setting. A shaded node represents an observed object and an unshaded node
denotes an unobserved one. A dashed edge represents a containment relationship between objects, which cannot be directly observed.
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Fig. 2. Architecture of the SPIRE system.

of a particular type only one at time. At t=3, case 3 is scanned
on the belt and a new case 9 is read in the packaging area.

At time t=4, item 6 is read at the belt again (it fell off its
case at t=3 and stayed here). A new pallet 8 is assembled from
the three cases in the packaging area. Of particular interest is
item 10 that was removed from its case and reveals no further
information, i.e., a missing object. A missing object should
be distinguished from a missed reading of an existing object
(e.g., case 2 at this time).

System architecture. The SPIRE system employs a data
interpretation and compression substrate to address the above
issues. The substrate, epicted in Fig. 2, consists of (i) a data
capture module that implements a stream-driven construction
of a time-varying graph model to encode possible object
locations and containments, (ii) an interpretation module that
employs a probabilistic algorithm to estimate the most likely
location and containment for an object, and (iii) a compression
module that outputs stream data in an compressed format. The
next three sections describe these techniques in detail.

Finally, note that this substrate runs on a low-level device
data cleaning module such as [18]. The only required func-
tionality of device data cleaning for this work is deduplication,
which corrects for duplicate readings caused by the close
proximity of the readers. At each time step, deduplication
detects the tags that are read by several nearby readers and
assigns each tag to the reader that read the tag most recently.

III. DATA CAPTURE

This section describes our data capture technique to con-
struct a time-varying graph model from the raw RFID stream.

A. A Time-Varying Colored Graph Model

Our graph model G = (V,E) encodes the current view
of the objects in the physical world, including their reported
locations and (unreported) possible containment relationships.
In addition, the model incorporates statistical history about
co-occurrences between objects. Example graphs for the ob-
servations in Fig. 1 are shown in Fig. 3.

The node set V denotes all RFID-tagged objects in the
physical world. In a supply-chain environment, the RFID
standard [8] requires that an object have a packaging level of
an item, case, or a pallet, and the packaging level information
be encoded in the tag ID of the object’s tag. Given such
information, our graph is arranged into layers, with one layer
for each packaging level. In addition, each node has a color
that denotes its location; a node may be assigned one of (L−1)
colors, one for each known location. A node is uncolored if
its location is currently unknown. The node colors are updated
using the stream of readings in each epoch (the color of a node
is the color of the location where it is observed by an RFID
reader). If an object is not read by any reader in a particular
epoch, its node becomes uncolored. However, uncolored nodes
retain memory of their most recent color and the observation
time denoted by (recent color, seen at).

The directed edge set E encodes possible containment
relationships between objects. A directed edge oi → oj
denotes that oi contains object oj (e.g., a case i contains
item j). We allow multiple outgoing and incoming edges
to and from each node, indicating an object such as a case
may contain multiple items, and conversely, an item may be
contained in multiple possible cases (our probabilistic analysis
will subsequently choose only one of these possibilities). More
generally, edges can exist between different combinations of
colored and uncolored nodes, with the exception that an edge
cannot connect two nodes of different colors; that is, contain-
ment is prohibited for two objects resident in two different
locations. We also allow edges to cross layers, for instance to
(temporarily) capture the containment between objects in non-
adjacent layers when the reader fails to read any of the objects
in the adjacent layer at some time. Such flexibility allows the
graph to capture a wide variety of containment relationships.

To enable probabilistic analysis, the graph also encodes
rich statistics. Each edge maintains a bit-vector recent

co-locations to record recent positive and negative evi-
dence for the co-location of the two objects. A bit is set every
time the two nodes connected by an edge are assigned the same
color, i.e., the two objects are both observed. Furthermore,
each node records the confirmed parent, that is, the last



4

(C,4)

1

2 3

4 5 6

Level 1

A: loading dockLocations

Time

B: belt C: packaging area

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

Level 2

Level 3

1

2 3

4 5 6

1

2 3

4 5 6 7

8

2 3

4 5 6 7 10 11

9

(A,1) (A,1)

(A,1)

(A,1)(A,1)(B,2)

(B,2)
(A,1)

(A,1)

(B, 3)

(B,3) (B,3)

(B,2)

(B,2)

(C,4)

(C,4)

(C,4)

(C,3)(C,4)(C,4)(C,4) (B,4)

(B,2)
(A,1)

(A,1)

(A,1)(A,1)(A,1)

1 (A,1)

B: beltB: belt

10 11

9

C: packaging area

(C,3)

(C,3)(C,3)

Fig. 3. Evolution of the time-varying colored graph model as RFID readings arrive in each epoch.

confirmed parent node (container) revealed by a special reader,
the time of confirmation, and the number of conflicting obser-
vations obtained thus far. Among all incoming edges from the
possible parents, at most one edge can be the confirmed edge,
denoted by an edge with double arrows in Fig. 3.

B. Stream-Driven Graph Construction

We assume that time is divided into epochs and the graph is
updated using stream data from each epoch. Our construction
algorithm, shown in Fig. 4, takes the graph G from the
previous epoch and a set of readings Rk from each reader k in
the current epoch, and produces a new graph G∗. An important
feature of the algorithm is that it proceeds incrementally as
readings arrive from each reader and guarantees a consistent
output G∗ after seeing the readings from all readers in an
epoch. This ensures that the algorithm works even when the
various readers are coarsely synchronized in time.

Given the set of readings Rk from each reader, the graph
update procedure proceeds in four steps, as shown in Fig. 4.

Step 1. Create and color nodes (lines 2-6): If a new
object is observed for the first time, a new node is created
in the graph. For each observed object, the corresponding
node is colored with the color of the location in which it
was observed. Fig. 5(a) shows the result of step 1 when the
graph update procedure is applied at time t=4 to the previous
graph (Fig. 3(c)), first with the readings from the conveyor
belt, which has the color B, and then with the readings from
the packaging area, which has the color C.

Step 2. Add edges (lines 9-13): Next, if two nodes in
adjacent layers have the same color, an edge is added between
them if it does not already exist. Doing so enumerates all
possible containment relationships (e.g., an item colored in
blue can be contained in any of the cases that are also colored
in blue). If an adjacent layer does not contain a node of the
same color, an edge may be drawn to a node of that color in
the next higher or lower layer (e.g., if an item is colored in
blue but no cases in blue are present in the graph, the item is
assigned to a pallet of the same color).

This step potentially requires each node in a layer to be com-
pared with all the nodes in the adjacent layers. An optimization
for this step is to restrict such comparisons with adjacent layers
only to the nodes that have just been assigned a new color. This
is because if neither node of an edge is assigned a new color,
then both objects are either in original locations or unobserved,
offering no information for establishing a new containment
relationship. Fig. 5(b) illustrates the result of this step when

procedure graph_update(G, Rk)
G: current graph, Rk: set of readings from reader k  
begin
1.      C = location of the reader k
          
2.      foreach reading r ∈ Rk  do                                // create and color nodes      
3.          v = node in G corresponding to the object of the reading r  
4.          if v  == null then                                            
5.            v =  a new node created in G for this object
6.          v.recent_color = C, v.seen_at = now             
          
7.      foreach packaging level L (starting from 1) present in Rk  do
8.        foreach each node v in color C at level L  do
9.          if C is a new color of v   then                         // create new edges
10.          above = closest level above L  containing nodes colored in  C 
11.          below = closest level below L  containing nodes colored in  C 
12.          create edges from the nodes in level above to v if not existent
13.          create edges from v to the nodes in level below if not existent
14.        foreach edge e incident to v  do               
15.          if e was created in a previous epoch then   // remove edges
16.              v' = the other node of e                            
17.              if v' has a different color from v  then        
18.                  drop the edge e from G
19.              if reader k confirms that the child node of e is a top level container 
                        or has a different confirmed parent edge than e  then 
20.                  drop the edge e from G
21.          if e.update_time < now  then                       // update statistics
22.              right shift e.recent_history to expire old information                 
23.              if v' has the same color as v  then              
24.                  e.recent_colocations[0] = True
25.                  if v' is a child of v and reader k confirm that v contains v'  then
26.                      v'.set_confirmed_parent(e, now)
27.              else                                                                                     
28.                   e.recent_colocations[0] = False
29.                   if e was set as the confirmed edge of v (or v' ) before  then
30.                      v(v').record_conflict(e);
31.              e.update_time = now 
end

(2)

(3)

(4)

(1)

Fig. 4. Algorithm for stream-driven graph update.
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Fig. 5. Intermediate steps of the graph update procedure.

the readings from the packaging area are applied to the graph
in Fig. 5(a). The bold circles represent the nodes that have
changed their colors at t=4. Hence, new edges are created
only for these nodes, e.g., between nodes 8 and 3, 8 and 9, 3
and 11, and so on.
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Step 3. Remove edges (lines 16-20): While the previous
step adds new edges to the graph, in this step we remove
outdated edges from the graph. An edge is removed if the
corresponding nodes have different colors—this happens when
two previously co-located objects are now reported in different
locations. For example, the edge between nodes 3 and 6 in
Fig. 5(b) is removed in this step as these nodes are assigned
different colors. The resulting graph is that shown in Fig. 3(d).

Similarly, edges can be dropped when special readers con-
firm a top-level container and its contained objects, which
allows us to eliminate other possibilities. For example, if a
case is confirmed to be a top-level container, any parent edge
of the case can be dropped. In addition, if the case is also
confirmed to be the container of any read item, then all other
edges between each read item and other possible cases can
be dropped. Special readers such as belt readers that read
cases one at a time allow us to prune unnecessary edges. Edge
pruning using a belt reader is depicted in Fig. 3(b), where we
remove the edge from node 1 to node 2 since node 2 is known
to be the top-level container, and the edge from node 3 to node
4 since node 4 now has node 2 as the confirmed container.

Step 4. Update edge statistics (lines 22-31): This step
updates statistics of the edges that have at least one node
colored in step 1. Given an edge e, if the two linked nodes
have the same color, recent co-locations of e is updated
by setting the most recent bit to True; further, if a reader
is able to confirm the containment denoted by e, it is used
to update the confirmed parent of the child node. If one
of the linked nodes is uncolored, the most recent bit of
recent co-locations is set to False. In this case, we also
check if e was set as the confirmed parent edge of the child
node, and if so count the current observation as a conflicting
observation of the confirmation. These statistics play a key
role in containment inference as we shall show shortly.

Complexity of graph update. We finally analyze the
complexity of the graph update procedure. The total cost of
updating a graph G(V,E) using reading sets R1, . . ., RK is
the sum of the individual costs cost(Rk), 1 ≤ k ≤ K. For
each reading set Rk, only the colored nodes and their incident
edges are processed, and its update cost can be analyzed by
considering the four steps of the update procedure in turn:

Step 1: Given the reading set Rk, the cost of coloring nodes
is simply |Rk|. Step 2: The cost of creating edges is bounded
by the largest size of the bipartite graph that the nodes in Rk
cover, that is, (|Rk|/2)2. Steps 3 and 4: As Fig. 4 shows, these
two steps share the process of examining every edge linked to
a colored node. Since these edges may connect to an uncolored
node or a node of a different color, they cannot be bounded
only using |Rk|. However, if we combine steps 3 and 4 across
all readers, the following observations hold:
• If an edge is assigned two different node colors or has

one node colored but the other uncolored, it must have
existed in the input graph G. Then in the current epoch, it
is visited at almost twice, once from each incident colored
node. To capture this cost, let us use πR1,...,RK (G) to
denote the projection of the input graph onto the subset
of edges that are linked to at least one node colored in the
current epoch. Then the cost of accessing each of these

edges at almost twice is 2 · πR1,...,RK (G).
• Next, consider edges that have the same color for the two

nodes. Given a reading set Rk, the maximum number of
edges that may have both nodes in Rk (hence assigned the
same color) is (|Rk|/2)2. Through careful programming,
we can access each of these edges only once, i.e., from
the node with a higher packaging level. So the cost of
accessing these edges is bounded by (|Rk|/2)2.

So, the total cost of graph update for all readers is:

=
∑
k cost1(Rk) +

∑
k cost2(Rk) +

∑
k cost3,4(Rk)

≤
∑
k |Rk|+ 2

∑
k
|Rk|2

4 + 2|πR1,...,RK (G)|

This yields a complexity O(
∑
k |Rk|

2 + |πR1,...,RK (G)|) for
the complete graph update in an epoch. This indicates that the
graph update procedure includes a cost that is no more than
the input graph size and some local costs quadratic in the size
of the subgraph colored by each reader.

IV. DATA INTERPRETATION

The graph constructed from the data capture step can
result in nodes that are uncolored or possess multiple parent
nodes. The data interpretation step estimates the most likely
location of an unreported (uncolored) object and the most
likely container (parent) of an (either reported or unreported)
object. We present a probabilistic technique that includes edge
inference to address ambiguous containment, node inference
to address unknown locations, and an iterative algorithm that
applies both to the entire graph in an alternating fashion.

A. Edge inference

Edge inference is applied to all incoming edges of a node v
(i.e., edges from the parent nodes of v) regardless of whether
the node is colored. It assigns a probability value pei to each
edge; the edge with the highest probability value is then chosen
as the most likely container of this object. Computing the prob-
ability values requires the use of history that includes (i) the
recent history of co-locations, as represented by the bit-vector
recent co-locations, and (ii) the last confirmed parent of
v by a special reader, captured in confirmed parent. Such
use of history makes edge inference less sensitive to missed
readings at present time.

Probabilistic Framework. Edge inference at a node con-
sists of two steps, as illustrated in Fig. 6(a).

Step 1. Assign weights: The first step computes a weight
wei for each incoming edge as follows:

wei =
∑S
i=0

recent co-locations[i]
iα∑S

i=0
1
iα

, (1)

where recent co-locations[i] indexes the ith bit of co-
location bit vector and S is the size of the bit-vector. This
history is weighted using the parameter α and then normalized.
α essentially implements a Zipf distribution, where α > 0
assigns a higher weight to recent history, while α = 0 weighs
all prior co-location information equally.

Step 2. Compute Probabilities: The next step builds a
probability distribution across all incoming edges of node v.
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It computes a probability pei for each edge by balancing the
relative weight on this edge against the last confirmation of
this edge as the parent of v. A parameter β is used to weigh
these two factors. The probability pei of the edge ei is:

pei =
(1− β)m(ei) + βwei

Z
(2)

The memory function mei takes the value ‘1’ if ei is the
last confirmed edge and ‘0’ otherwise. Since at most one
parent edge of a node can be a confirmed edge, such an edge
gains an extra weight and is favored over other possibilities
until other edges gain sufficient history to outweigh it. Z is a
normalization factor across all incoming edges that yields the
final distribution. Fig. 6(a) shows such distribution across the
two parent edges, e1 and e2, of node 4, with e1 assigned the
additional weight 1− β due to its past confirmation.

Edge inference involves three parameters: (1) S, the size of
the co-location history, (2) α, the zipf parameter for weighting
the history, and (3) β, the partition of beliefs between the
recent history and past confirmation. Section VI quantifies the
sensitivity of edge inference to these parameters. In particular,
we will show that the choices for S and α are quite constant
but that for β can be variable. Furthermore, the value of
β can be dynamically determined based on the number of
conflicting observations since the last confirmation of an
object’s container by a special reader. A simple heuristic
exploiting this idea is evaluated in Section VI.

B. Node inference
Node inference is applied to an uncolored node v—an object

with an unknown location—and attempts to infer the most
likely location of the object or confirm its absence from any
known location. The key challenge in node inference arises
from a three-way tradeoff among continued stay, movement to
a new location, and absence from any known location. These
situations are depicted in Fig. 6(b) for node 2 at time t=4.
This object was last seen in location B at time t=2 and has a
few possibilities for its current location: it is still in location B
but the reading in this location was missed (continued stay); it
moved to location C with its contained objects and its reading
was missed in C (movement to a new location); it disappeared
from B and its current location is unclear (absence from any
known location).

Probabilistic Framework. To account for all these possi-
bilities, the node inference builds a probabilistic distribution
over all possible colors of a node v, including (1) the most
recent color of the node, (2) the colors of its neighboring nodes
that can be propagated through the edges, and (3) a special
color “unknown”. Among all possible colors, the one with the
highest probability represents the most likely estimate of this
object’s location.

The probability of the node v having color c is given as

pc(v) = (1− γ) δ(v, c)
(now − seen at)θ

+ γ
∑
ei→c

pei
Z2

(3)

δ(v, c) =
{

1, c is the most recent color of v
0, otherwise

, Z2 =
∑
ei→cj

pei .

Here δ(v, c) is an indicator function that is 1 for the most
recent color of v and 0 otherwise, and the parameter θ controls
the rate of fading of the most recent color. ei → c means
that the edge ei propagates the color c to v, and Z2 is the
normalization factor across all edges of v that propagate colors
to v. Of particular interest is the parameter γ that weighs the
colors that originate from the node against the colors that
propagate through the edges. Finally, the probability of the
special color “unknown” is:

punknown(v) = (1− γ)(1− 1
(now − seen at)θ

) (4)

Fig. 6(b) shows the resulting probability distribution over three
colors, B, C, and “unknown”.

Node inference is influenced by two parameters: (1) γ
weighs the node colors assigned based on the assumption that
the object is independent of other objects, against the colors
that are propagated from edges based on the containment
relationships; and (2) for the former set of colors, θ, the ex-
ponent of the function (now−seen at)−θ, further adjusts the
distribution of the probability mass between the fading color
and the “unknown” color. We again quantify the sensitivity of
node inference to these parameters in Section VI.

C. Iterative Inference

Iterative inference combines node and edge inference to
iterate over the entire graph G(V,E) and derive the most
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Fig. 7. Illustration of iterative inference across the graph in increasing distance from the colored nodes.

likely location and containment for each object. Traditional
graph traversal algorithms such as breadth-first and depth-first
search can not be applied here due to the dependency between
edge and node inference. Specifically, node inference at an
uncolored node involves the colors of its neighboring nodes
and the probabilities of the edges of those nodes, and can not
begin until these dependencies are first resolved.

The key idea of our iterative algorithm is to start inference
from the colored nodes—the nodes with known locations—
and run it iteratively across the graph, through the edges
linked to the colored nodes, to the uncolored nodes incident
to these edges, to the edges linked to these nodes, and so on.
In this way, inference sweeps through regions of the graph
in increasing distance from the colored nodes; the colors and
edge probabilities determined at nodes in a shorter distance
can contribute to the inference at nodes in a larger distance.

For ease of composition, we classify nodes based on their
closest distance, d, from a colored node in the graph. The
iterative inference algorithm runs in increasing value of d. Fig.
7 illustrates this process for an example graph (the pseudo code
is omitted due to space constraints).

The algorithm first runs edge inference for the nodes with
d = 0. These nodes are the observed objects and are colored in
two colors, dark (blue) and light (green), in the example shown
in Fig. 7(a). Edge inference is performed for these nodes to
estimate their most likely parents. A gray bar represent the
edges considered in the edge inference at a node. Next, the
algorithm considers the nodes labeled with d = 1 (i.e., unob-
served) and runs edge inference, followed by node inference,
to infer both the likely parent and the likely location for each
node. In the example shown in Fig. 7(b), nodes 1 and 9 gain
the light (green) color and node 4 gains the dark (blue) color
from their node inference. Finally, the algorithm runs for the
nodes labeled with d = 2, shown in Fig. 7(c). At this point,
node 6 gains the light (green) color and node 8 is identified
as a missing object.

Complexity analysis. The complexity of the iterative infer-
ence algorithm is bounded by the number of edges examined.
Given that each edge can be visited at most twice, once from
each node, the overall complexity is O(|E|).

To improve time and space efficiency, we can further use
a graph pruning routine in the iterative inference procedure.
First, if an object exits the physical world through a proper
channel, e.g., through an exit door of a warehouse, and is
detected by the reader at that place, after inference at the node
representing this object, our system removes the node and any
associated edges from the graph. Second, after edge inference

at a node, we can also use the edge weights to prune edges
that are unlikely to be the true containment. To do so, we use
a threshold (with a default value 0.25) to remove edges whose
weights are below the threshold.

D. Partial and Complete Inference

An important issue that needs to be resolved in inference is
that RFID readers can read at different frequencies. In a typical
warehouse, for instance, belt readers may read once every
second while shelf readers may read once every 10 seconds.
Suppose that an object moved to a shelf at time 5 but is not
read by the shelf reader until time 10. Then the graph models
obtained for time units (also called epochs) 6, 7, 8, and 9 do
not present a complete view of the physical world. If we run
inference in these epochs, the inferred location for the object
is likely to the “unknown” location, which is different from
the object’s true location, and such inference work is wasted.

To address this issue, our system uses both partial inference
(over a subset of the graph) and complete inference (over the
entire graph) as follows: We first obtain the read frequencies
of all the readers from a system configuration file and calculate
the least common multiple, M , of those frequencies. Given the
epochs numbered sequentially from 1, we perform complete
inference in those epochs whose numbers are a multiple of
M , and partial inference otherwise.

Complete inference applies the iterative algorithm to the
entire graph as described above. Partial inference modifies the
complete inference algorithm in two aspects: (1) it restricts
inference to a subset of the graph that contains only those
nodes that are at most l hops away from the colored nodes (by
default, l = 1), and (2) if the inferred color of an uncolored
node is “unknown”, we withhold the inference result from
output since this result is based on the readings from only a
subset of the locations. In this case, it is quite likely that the
object is in a known location but the reader placed in that
location is not reading, and the inference algorithm cannot
find useful information elsewhere. Hence, withholding such
inference results avoids outputting misleading information,
but the inference work for this object is wasted. Restricting
partial inference to the l-hop subgraph helps limit the amount
of wasted work—the intuition is that the further we move
away from the colored nodes, the more likely we yield the
“unknown” result in location reference. Finally, in a later
epoch when all readers read, the complete inference algorithm
will make a better-informed decision for the object with a
previously unknown location.
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TABLE I
POSSIBLE CONFLICTS IN INFERENCE RESULTS AND THEIR RESOLUTIONS

Rule Parent and Method for Resolving the Conflict
# Child Locations Between the Differing Locations

Parent: Observed Give preference to the containment
I and override the child’s location

Child: Inferred to match the parent’s location.

Poll the children. If a majority agree
Parent: Inferred on location, change the parent’s location

II to the consensus vote. If no majority, do
Child: Observed not alter the parent’s location. End all

of the containments still in conflict.

Parent: Inferred Update parent’s location using the majority
III vote as above. Then give priority to the

Child: Inferred containment and override the child’s location.

E. Conflicts between Location and Containment Inference

A final issue with the iterative inference algorithm is that
it may result in different colors inferred for the two nodes of
an edge. This is because the colors of the two nodes were
inferred individually in steps d and d+1. If the edge between
the two nodes is also chosen to represent their containment
relationship, then the inference is yielding conflicting infor-
mation: the container and the contained object are reported in
different locations. Fig. 7(c) shows such a conflict between
containment and location inference results: node 4 is the only
parent of node 6 and hence is chosen to represent the container.
However, these nodes are inferred with different colors, i.e.,
reported to be in different locations. In SPIRE, we do not prune
the edge between the two nodes with conflicting colors if at
least one of the colors is inferred, because an inferred color
can be uncertain. Instead, we keep the edge in the graph for
future use and resolve conflicting results in a post-processing
step after inference for the sake of output.

The general guideline that we apply to resolve conflicts is
to give priority to a containment relationship over an inferred
location. This is mainly because the containment is often
confirmed by a special reader and hence carries valuable
information. Specifically, we consider the patterns of node
coloring of an edge chosen to represent the containment
between two nodes. If the two nodes have different colors,
at least one of them must be inferred (otherwise an edge with
both nodes observed but colored differently would have been
dropped in the graph update described in Section III-B.) Table
I details three patterns of node coloring for such edges:

Rule I states that if the parent node is observed by a reader
in the current epoch whereas the child node is not, override
the child’s estimated location with the parent’s location so as
to be consistent with the inferred containment.

Rules II and III jointly handle the cases where the parent
node is not observed. Even if some of the child nodes are
observed, it would be imprudent to immediately override the
parent’s location because the parent has a one-to-many rela-
tionship to the child nodes. Instead, to minimize the conflicting
information between the parent and all its children, we perform
a polling among the children. If a majority of the children
agree on the location, we override the parent’s location with

the majority vote, otherwise we leave the parent’s location
unchanged. Afterwards, we enumerate all children and resolve
remaining conflicts as follows: If a child is observed and has a
different location from the parent (Rule II), we terminate their
containment relationship, i.e., reporting that the child does not
have a container. If a child has only an inferred location and
differs from the parent’s location (Rule III), we override the
child’s location to give priority to the containment.

A final note is that due to the need of polling all the
children of a node, conflict resolution cannot be performed
as part of the iterative inference. This is because when we
process the node in the dth iteration, there is no guarantee
that all its children have been processed. Therefore, conflict
resolution has to be treated as post-processing. For efficiency,
our implementation merges this step into the output module
(detailed in the next section) in which all inference results are
read once, from parent to children, to generate the output.

V. STREAM OUTPUT WITH COMPRESSION

The output module takes the results of data interpretation
and transforms them into a compressed event stream for
output. The key idea behind our compression methods is that
only those readings that indicate a state change, such as the
change of an object’s location or containment relationships
with others, need to be included in the output stream. In
the absence of a state change, all readings merely confirm
the current state of the world and hence are redundant; these
readings can be safely discarded.

The SPIRE system employs two compression techniques
that take the results of location and containment inference and
output a compressed data stream. Compared to the raw RFID
stream, these compression techniques are lossless in that the
observed objects are always truthfully reflected in the output.
Since data interpretation can add location information for
unobserved objects and containment information not available
in the input stream, the compressed output stream may contain
richer information yet with a reduced data volume. In the rest
of this section, we describe the data format of a compressed
stream and then the two compression techniques in detail.

A. Data Format of a Compressed Event Stream

A compressed output stream contains location and contain-
ment events that occur in a time interval, called the event’s
validity interval [1]. The validity interval is represented by
two timestamps, Vs for the start time and Ve for the end time.
Our compressed output format represents these events using
the following five messages:
• StartLocation(object, location, Vs, Ve = ∞)
• EndLocation(object, location, Vs, Ve)
• StartContainment(object, container, Vs, Ve = ∞)
• EndContainment(object, container, Vs, Ve)
• Missing(object, locationMissingFrom, Vs, Ve = Vs)

Start and end location messages always occur in pairs and
encapsulate the time period when an object is inferred to
be present at a particular location. The difference is that the
start location message of an event sets only the Vs timestamp,
leaving Ve with the default value ∞, while the end location
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message sets Ve with an appropriate timestamp. Similarly, start
and end containment messages are also pairs to encapsulate the
time period of a containment relationship. Missing messages
are singletons that are always output after an endLocation
event for the object’s previous location.

In this work, we call a compressed stream well-formed if
for a given object, every start location (containment) message
has a matching end location (containment) message and a
missing message appears outside any start-end location pair.
Our system guarantees well-formed output, and at the same
time, allows location and containment update events to be
nested in the most flexible way. For an object, a start-end
containment pair can span multiple start-end location pairs,
representing an unchanged containment as the two objects
move together through various locations. In addition, when
an object is reported missing, the existing containment is not
ended. That is, a start-end containment pair can also enclose
the missing events. On the other hand, it is also possible that
a start-end location pair covers multiple start-end containment
pairs, capturing the containment changes in the same location.

B. Range Compression

Our first compression method, which we refer to as range
compression or level-1 compression in our system, leverages
the fact that if an object is stationary—resident at the same
location for a period of time—its entire stay at this location can
be represented by a single ranged location event. Likewise, if
an object has a stable containment—contained in the same case
or pallet for a period of time—this containment relationship
can also be represented by a single ranged containment event.

The range compression method is straightforward: We
compare an object’s newly inferred state (either location or
containment) to its previously reported state. If the state
changes (except when the object has become missing), we
output an end message to complete the event for the previous
state and then a start message for the event that signals the new
state. For an object that is inferred to be missing, we output an
EndLocation message to complete the previous location event
and then a singleton Missing message.

The output stream of range compression has the following
properties. (i) Independent location and containment output:
The location compression and containment compression are
performed separately. Hence, it is possible to split the output
into separate location update and containment update streams,
and to suppress the output of one stream if it is not needed.
(ii) Queriable streams: Complete location and containment
information for each object, presented in a well-formed and
ordered manner, makes the result stream of range compression
directly queriable using recently developed event processors
such as [1], [32].

C. Location Compression using Containment

Our second compression method, referred to as level-2
compression, uses the additional knowledge that a stable
containment relationship allows further suppression of loca-
tion readings of child objects. That is, if the containment
relationship does not change, the child’s location is identical

EndContainment(C2, P, T1, T3)
       EndLocation(P, L2, T2, T3)
       StartLocation(P, L3, T3, ∞)
       StartLocation(C2, L2, T3, ∞)

L1

T1

Time
Output of Level 2 

Compression
StartContainment(C1, P, T1, ∞)
StartContainment(C2, P, T1, ∞)
       StartLocation(P, L1, T1, ∞)
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C1 C2

T3

T4
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Fig. 8. An example of level-2 compression for a group of objects.

to that of the parent and thus can be omitted from output.
The benefit of dosing so is to minimize the location output to
only the location of top-level containers. This compression is
also lossless because the location of a contained object can be
recovered from its containment relationship and the location
of its top-level container.

An example sequence of events generated using level-2
compression is shown in Fig. 8. At time T1, a pallet P
and two cases C1 and C2 are observed at location L1 (for
simplicity of presentation, we omit items in this example). A
StartContainment is output for each of the contained cases.
Given the containment relationships, only a StartLocation is
output for P , the single top-level container. At time T2, the
three objects move as a group to L2. Only the location of P
is updated due to level 2 compression. At time T3, the three
object are split to two groups. P and C1 move to location L3

while C2 stays at L2. As a result, the containment between
C2 and P is broken, signaled by the EndContainment for C2.
Then location updates for C2 are output as soon as they are
detected since C2 is no longer contained. In comparison, C1

is still contained in P so only location updates are sent for P
due to level 2 compression for C1.

This compression method has different properties from the
range compression method. First, the location and containment
output streams are no longer independent. In particular, a
reported containment and the related location updates of the
container need to be correlated to recover the locations of the
contained objects. Second, the output stream is not directly
queriable by event processors due to the lack of location
information of some objects.

To facilitate query processing, our system offers a decom-
pression routine that transforms a level-2 compressed stream
to a level-1 compressed stream. This routine can be plugged
into the front end of a query processor to decompress the input
stream on demand, e.g., to retrieve locations of certain objects
in a certain period of time as requested by the queries.

The routine works as follows. For each time step, it first
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TABLE II
PARAMETERS USED FOR GENERATING RFID STREAMS.

Parameter Value(s) used
Duration of simulation 3 - 24 hours

Rate of pallet injection 1 / 4 - 600 seconds

Cases per pallet 5 - 8

Items per case 20

Read rate of readers 0.5 - 1

Non-shelf reader frequency (fixed) 2 (interrogations) per sec

Shelf reader frequency (variable) 1 / sec to 1 / min

processes all containment updates to reconstruct the current
object containment hierarchy. For each StartContainment event
received, the child object specified in the event is added to the
children list of the parent. For each EndContainment event, the
child object is removed from the parent’s list. After processing
all containment updates, the routine then processes the location
updates in this time step. For each location update, which can
be StartLocation, EndLocation, or Missing, the routine copies
the event to the new output stream. If the object specified in
the event has child objects in the containment hierarchy, this
location update is also copied to the output stream for each
child object and recursively for their contained objects.

A subtlety is that the routine also needs to remember each
object’s current location to suppress duplicate events in output.
Revisit the example in Fig. 8. At time T3, since object C2 was
no longer contained in P , we output a StartLocation to report
its location in L2. However, when we decompress the stream
from level-2 compression, we will output a StartLocation for
C2 at L2 at an earlier time T2 (this update was compressed be-
fore due to the containment with P ). Hence, the SartLocation
event at T3 that reports the same object at the same location
becomes a duplicate. Our decompression routine will remove
all such duplicates.

VI. PERFORMANCE EVALUATION

We have implemented a prototype of our interpretation and
compression substrate in Java. In this section, we evaluate
the accuracy and efficiency of our interpretation techniques
in a simulated supply-chain environment. We also explore the
benefits of compression based on the results of interpretation.

A. Experimental Setup

We first developed a simulator that emulates deployments
of RFID readers in a large warehouse. Pallets arrive at the
warehouse at a certain rate. They are first read at the entry
door (using reader group 1). They then become unpacked. The
contained cases are scanned on the receiving belt (using reader
group 2), placed onto shelves for a period of stay (scanned
by reader group 3), and then repackaged (scanned by reader
group 4). The newly assembled pallets are rescanned on the
belt (using reader group 5) and finally read at the exit of
the warehouse (using reader group 6). The parameters for the
simulation are shown in Table II. Note that two parameters are
used to control the read frequencies of shelf readers and non-
shelf readers separately. This design allows flexible settings of

the simulation where items may stay on shelves for hours and
shelf readers may read less frequently than other readers.

Synthetic RFID data streams generated by the simulator
are fed to our interpretation and compression substrate. Data
interpretation is performed in every epoch (whose length is 1
second). We use entry door readings to “warm up” the graph
model but do not run inference at this location.

B. Accuracy of Data Interpretation

We first evaluate the accuracy of our inference techniques
for data interpretation. We created data streams with 6 pallets
injected per hour, 5 cases per pallet, an average shelving period
of 1 hour, and a total simulation time of 3 hours. The default
read rate for all the readers is 0.85. The default read frequency
for shelf readers is once every minute. An inference result is
marked as an error if it is inconsistent with the ground truth.

Expt 1: Containment Inference. We first study the effects
of the edge inference parameters, β, S, and α, shown in
Equations 1 and 2, on containment inference. Our results show
that the two parameters, S and α, on the recent history of co-
locations can be tuned easily: The size of the history, S, limits
the inference accuracy when it is small, e.g., 4, 8, but offers no
additional benefit after the point of 32. The zipf parameter, α,
yields best accuracy when set to 0, indicating that recent co-
location instances are equally important to inference. Hence,
we use S=32 and α=0 in the rest of experiments.

The parameter β governs the beliefs between the recent
history, which can be noisy, and the past confirmation, which
may be obsolete. In our simulation, the major source of noise
in containment inference is the co-location of multiple cases
on the same shelf. To capture such noise, we generated traces
with different shelf reader frequencies, and for each trace ran
inference by varying β from 0 to 1, where β=1 gives all the
weight to recent history and β=0 does the opposite.

As shown in Fig. 9(a), when the noise is high (e.g., the shelf
reader frequency is once per sec), high β values (β > 0.85)
give worse accuracy due to its emphasis on recent history.
As the shelf reader frequency decreases, the noise from the
shelf readings reduces, the recent history becomes more useful,
and hence high β values improve their accuracy. The lower
β values, favoring the past confirmation, tend to work well
across different reader frequencies. Their accuracy degrades
somewhat as fewer shelf readings are generated because
the remaining readings mostly involve containment changes,
making it harder to infer containment. Finally, we consider a
simple adaptive algorithm that sets β to be the ratio between
the number of instances that only one of the object and its
confirmed container is read and the number of instances that
any of them or both of them are read. This algorithm is shown
to work as well as the low β values.

Expt 2: Location Inference. Location inference uses the
node inference method defined in Equations 3 and 4. We now
study the effects of two parameters on location inference.

The parameter γ weighs the belief of an object’s last
observed location (favored by low γ values) against the belief
of its location inferred via containment (favored by high γ
values). Fig. 9(b) shows the results for varied γ values. Very
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Fig. 9. Containment and location inference results.

low γ values place most emphasis on the last observation
(the fading color). As such, if an object has experienced
several missed readings, it is likely to be inferred to be in the
“unknown” location even if its container has been observed.
High γ values place too much weight on the containment
relationships of an object, which can be an unreliable source
of information when containment is changing or uncertain.
Overall, we observe γ values in the range of 0.15 to 0.45
to be favorable because they offer a balance between an
object’s last observation and containment relationships, with
some more weight on the former. Further, we observe that
the traces with frequent shelf readings (e.g., once per sec)
benefit more from containment information. This is because in
the shelf area containment relationships do not change so the
previously confirmed containers (by the belt reader) are helpful
in determining object locations. When shelf readings are less
frequent (e.g., once per minute), a larger fraction of the trace
contains the readings produced during containment changes,
so emphasizing containment penalizes the performance.

The parameter θ is the dampening factor on the belief of
the continued existence of an unobserved object in its last
reported location. High θ values cause more quickly reduced
belief, rendering it more likely to refer the object to be in
the “unknown” location (e.g., in transit or missing). Fig. 9(c)
shows the results with varied θ values. As θ increases, the error
rate quickly declines from over 90%, flattens in the mid-range,
and degrades again with higher values. The initial decline
occurs because, with very low θ values, the inference takes
too long to reduce its belief of the continued presence of an
object when if the object left some time ago. The deterioration
with high θ values occurs because the inference becomes too
eager to drop its belief of continued existence and identify
an object as being away after a few missed readings. Similar
trends are observed for different read frequencies, with the

effect more pronounced for high frequency readers.
The above results provide insights into tuning inference

parameters for common workloads in our target application.
In the rest of the study, we set β = 0.4, γ = 0.4, and θ = 1.25,
unless stated otherwise.

Expt 3: Sensitivity to Read Rate. The next experiment
studies the sensitivity of our inference methods to the read
rate. We varied the read rate uniformly for all readers. The
shelf reader frequency was set to 1 reading per minute. As Fig.
9(d) shows, the error rates of both containment and location
inference stay below 10% for read rates between 0.8 and
1. As the read rate decreases, the location inference stays
fairly accurate due to its appropriate parameter settings to
exploit the last reported location. The containment inference,
however, loses its accuracy due to both the loss of containment
confirmation provided by belt readers and lack of consistent
observations in the recent history.

Expt 4: Accuracy and Delay of Anomaly Detection. The
traces used so far have not captured any abnormal behaviors,
which are expected to be rare but of significant interest to
the application. In this experiment, we simulated unexpected
removals of objects from the warehouse, representing theft or
misplacement, at a rate of 1 removal every 100 seconds with
random selection from all objects. We report on the inference
error rate as well as the delay of anomaly detection in Fig.
9(e) and 9(f) as the most relevant parameter, θ, is varied.

Regarding the error rate, Fig. 9(e) exhibits similar trends as
Fig. 9(c) and confirms that the θ values between 1 and 2 also
work well for anomaly detection. Fig. 9(f) shows a somewhat
different trend regarding the delay of anomaly detection. For a
shorter delay, higher values of θ are preferred to more quickly
decay the belief of the continued presence of an object. This is
especially true for low reader frequencies; it otherwise takes
too long to wait for the next reading, adjust the belief, and
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TABLE III
COSTS OF UPDATE AND INFERENCE OPERATIONS (SEC)

Num. Objects Update Inference Total
25344 0.00256 0.07080 0.07336

54915 0.00684 0.15617 0.16301

75275 0.00967 0.22159 0.23126

95049 0.01203 0.29139 0.30342

135509 0.01557 0.43624 0.45181

154893 0.01656 0.50930 0.52586

174923 0.01689 0.58413 0.60102
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Fig. 10. Memory usage for graphs with different node counts.

finally recognize the missing object. For instance, to ensure a
detection delay of 120 seconds, we need to set θ=1.5 when the
shelf readers read once a minute as opposed to θ=0.35 when
they read once a second. Combining both the error rate and
detection delay, we observe that the 1 to 2 range of θ values
remains to be the optimal choice.

C. Efficiency of Data Interpretation

We next evaluate the efficiency of data interpretation in both
memory usage and processing speed. To do so, we used a
higher pallet injection rate of 1 every 4 seconds, and varied
the number of cases per pallet and the simulation time to
obtain graphs of different sizes (node counts). The tests were
performed on a linux server with Intel 2.33GHz Xeon CPU
and 8GB memory running JVM 1.6.0. The maximum Java
allocation pool size was set to 2GB.

Expt 5: Processing speed. Table III reports the processing
time for graphs of different sizes. With the increasing node
count, shown in the first column of the table, the cost of graph
update for all active readers and the cost of inference on the
graph in each epoch (which is a second) are reported in the
second and third columns. As can be seen, the costs of both
update and inference are much less than a second, with the
inference cost being a more significant cost. The total cost is
reported in the last column. As is shown, the total cost is 0.6
second for the largest graph size, which uses an already high
injection rate of one pallet every four seconds. These results
show that our data interpretation techniques can keep up with
high-volume RFID streams, which is a key requirement of data
processing in this setting.

Expt 6: Memory Usage. The memory usage in data
interpretation is dominated by the size of the graph. In this
experiment, we measured the memory usage with varied node
counts. Note that when an object leaves a warehouse, we

remove its node and all of the associated edges to keep the
graph small. We also observe that the graph size can be
reduced by pruning edges for which the containment inference
yields low confidence. The confidence value here is the value
in Eq. 2 but before normalization and thus is insensitive to the
presence of other edges. To explore this factor, we applied a
threshold for pruning edges and varied it from 0 to 0.75.

Fig. 10 shows that as the node count grows, the memory
usage increases fast without edge pruning but less so with
increased thresholds for pruning. With a threshold of 0.5,
pruning is able to keep the size of the graph under 500 MB,
even with 175,000 objects present in the system. In addition,
the memory growth of using the 0.5 and 0.75 thresholds is
shown to be linear, rather than the worse-case quadratic edge
expansion in the number of nodes. Finally, we note that the
pruned edges have little effect on the location inference error
rate (less than 1% difference with or without pruning), but
may cause up to 8.2% increase in error rate for containment
inference, which is a small cost to pay if memory is scarce.

D. Accuracy and Data Reduction of the Output Event Stream

After inference, our system translates inference results into a
stream of output events, first using conflict resolution (Section
IV-E) and then using level 1 compression (Section V-B) or
level 2 compression (Section V-C). In this set of experiments,
we evaluate the accuracy and data reduction of our output
event stream. We further compare our system with SMURF
[19], a state of the art RFID data cleaning system. SMURF
applies smoothing with an adaptive window size to mitigate
the missed reading problem. To enable a comparison to our
output, we extend SMURF by using the static reader locations
to infer the object locations as readings are smoothed in, and
then applying level 1 compression to produce a compressed
event stream. SMURF, however, does not support containment
inference and hence offers no containment information in
the output or level 2 compression—containment inference is
unique to our system. For this reason, we only consider object
location events in the output when compared to SMURF.

In our experiments we used a 16 hour trace with the steady-
state volume of 2860 objects (when the numbers of arriving
and departing pallets are equal). We varied the read rate for
all the readers from 0.5 to 1. The data sizes ranged from 56
MB for the 0.5 read rate to 111 MB for a perfect read rate.

Expt 7: Accuracy of Output Events. The accuracy of
the output event stream accounts for the effect of conflict
resolution, which may change some inference results to ensure
consistency in output. In addition, the accuracy metric used for
the output stream is event-based: For each event in the output,
we determine if it is present in a compressed event stream
of the ground truth. Borrowing concepts from the Information
Retrieval field, we use precision to capture the percentage of
returned events that exist in the ground truth stream, and recall
to capture the percentage of events in the ground truth stream
that are returned in our output. We combine them into the
F-measure = 2*precision*recall/(precision+recall).

Fig. 11(a) compares SMURF and our system in F-measure.
It shows that our system significantly outperforms SMURF
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Fig. 11. Accuracy and data reduction of the output event stream.

especially in the low read rate range. This is because SMURF
is simply a smoothing technique; it can smooth in readings in
certain cases when the object is still in the original location
but not detected by its reader. However, it does not work well
when an object has several consecutive missed readings, and
hence believes this object to be away from its location. In
contrast, our system exploits stable containment in addition
to the fading color of the previous location. As such, our
system would use the location information of the container or
contained objects to infer this object’s location, thereby over-
coming the problem of consecutive missed readings. Finally,
note that the two compression techniques have the same event
error rate as compression itself does not affect accuracy.

Expt 8: Compression Ratio. To examine the data reduction
effect of compression, we measure the size of a compressed
event output against the size of the initial input of raw RFID
readings (i.e., the compression ratio).

We first include only location events in the output, as shown
in Fig. 11(b), to see how SMURF’s smoothing algorithm and
our inference algorithm impact the compression ratios. From
Fig. 11(b), we see that SMURF is comparable to our system
with level 1 compression for high read rates but becomes
much worse when the read rate is low (e.g., below 0.7).
This is because given a few missed readings SMURF would
prematurely output an event reporting an object to be away
from its previous location, and then given new readings sends
another event reinstating the object’s existence. Such frequent
fluctuations in output render SMURF’s output size larger than
ours using of leve1 compression.

Since our system supports containment inference, it can
also apply level 2 compression that uses stable containment to
suppress location updates of contained objects. From the figure
we can see that level 2 compression offers a greater reduction
in output size than level 1 when the read rate exceeds 0.65,
resulting in a compression ratio as low as 2%. For read rates
below 0.65, however, the loss of containment accuracy results
in disruptive fluctuations of events in output, hence increasing
the overall the output volume.

Fig. 11(c) further includes containment information in the
output, where the solid lines shows the compression ratios us-
ing level 1 and level 2 compression, and the dashed lines offer
each method’s location only results as a reference. We observe
the same tradeoff between level 1 and level 2 compression as
in Fig. 11(b) when the read rate varies; the cross point is still
around 0.65. It is also interesting to see that when the read rate

exceeds 0.8, the containment output represents only a small
fraction of the total output volume, allowing this additional
information to be included in a compressed output that is only
2.5-4% of the initial input size for level 2 compression and
5-6% for level 1 compression.

In summary, our system outperforms SMURF for object
location updates in both event error rate and compression
ratio, while containment updates are unique to our system,
allowing both level 1 and level 2 compression. In addition,
there are tradeoffs in compression ratio between level 1 and
level 2 compression. Given the expected read rate in an RFID
deployment, it would be possible to select level 2 for readers
with high accuracy and level 1 for those with lower accuracy,
hence enabling a compressed output size ranging from 20%
to 2.5% of the input size.

VII. RELATED WORK

RFID stream processing. Several techniques have been
proposed recently to clean noisy RFID data streams [12],
[18], [19], [21]. The most relevant to our work is the HiFi
system [12], [18] that performs per-tag smoothing using the
SMURF algorithm [19] and multi-tag aggregation, but does
not capture containment relationships between objects or esti-
mate object locations via containment. We have experimentally
demonstrated the benefits of our techniques over SMURF. Our
prior research considered the use of a single mobile reader to
scan objects repeatedly from different angles and distances,
and developed inference techniques to derive precise object
locations [28]. Our work presented in this paper focuses on
a network of static readers and infers both object location
and containment relationships. Other research on probabilistic
RFID query processing has focused on the architectural design
[14] or event pattern detection [24], but has not addressed com-
bined location and containment inference. Since our system
produces an event stream with rich location and containment
information, we can feed our output stream to probabilistic
query processing to derive useful high-level information.

RFID databases. General RFID data management issues
including inference are discussed in [2]. Siemens RFID mid-
dleware [30] uses application rules to archive RFID data
streams into databases. The Cascadia system [31] offers an
infrastructure for specifying event patterns, extracting events
from raw RFID data, and storing them into a database. Insides
RFID databases, advanced techniques are available to integrate
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data cleansing with query processing [25], to recover high-
level information from incomplete, noisy data by exploiting
known constraints and prior statistical knowledge [33], and
to use effective path encoding schemes to answer tracking
queries and path oriented queries. Furthermore, effective com-
pression is available through the use of disk-based sorting and
summarization operations [15]. These techniques, however, are
not designed for fast low-level interpretation and compression
of raw RFID streams. Furthermore, none of them supports
containment inference or has demonstrated performance for
inference over high volume RFID streams.

Sensor data management has focused on traditional sensor
data types [34], [23], [6], [7], [26], [27], such as temperature
and light. The proposed techniques, such as data acquisition
[23], [6], [5], approximation [4], and sampling [35], are geared
towards queries natural to such data such as selection and
aggregation. In contrast, RFID data captures object identifica-
tion and its processing raises challenges related to locationing
and correlation of objects and data volume reduction. Recent
research on GPS readings supports use-defined views using
model-based probabilistic inference [20]. However, GPS data
differs from RFID data because it already reveals object loca-
tions and GPS applications do not concern object containment
relationships or anomaly detection like ours.

VIII. CONCLUSIONS

In this paper, we presented a novel data interpretation and
compression substrate over RFID streams to address the chal-
lenges of incomplete data, insufficient information and high
volumes. Our substrate employs a time-varying graph model
to capture inter-object relationships such as containment. It
then employs a probabilistic inference algorithm to determine
the most likely location and containment for each object and
an efficient stream compression algorithm to remove redundant
information from the output stream.

Our results show that our data interpretation techniques
achieve error rates around or below 10% for location estimates
for a wide range of RFID read rates and within 10% for
containment estimates when the read rate reaches 80%. These
techniques can also be performed efficiently on high-volume
RFID streams. Furthermore, our compression techniques yield
significant reduction in data volume; they can encode rich
location and containment information using only 20% or less
of the raw input data size. Finally, we compare our system with
SMURF, a state of the art system for RFID data cleaning,
that can be used to produce object location information but
not containment information. For object location updates, our
system is shown to outperform SMURF in both the error rate
and the resulting compression ratio.

For future work, we plan to extend our interpretation and
compression substrate to handle a mix of mobile and static
readers. We will also broaden our system to incorporate RFID
data interpretation at the low level and query processing at the
high level, and further to do so in distributed environments.
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