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Abstract—Malicious and misconfigured nodes can inject incor-
rect state into a distributed system, which can then be propagated
system-wide as a result of normal network operation. Such false
state can degrade the performance of a distributed system or
render it unusable. In the case of network routing algorithms,
for example, false state corresponding to a node incorrectly
declaring a cost of 0 to all destinations (maliciously or due
to misconfiguration) can quickly spread through the network,
causing other nodes to (incorrectly) route via the misconfigured
node, resulting in suboptimal routing and network congestion. We
propose three algorithms for efficient recovery in such scenarios
and prove the correctness of each of these algorithms. Through
simulation, we evaluate our algorithms when applied to removing
false state in distance vector routing, in terms of message and
time overhead. Our analysis shows that over topologies where
link costs remain fixed, a recovery algorithm based on system-
wide checkpoints and a rollback mechanism yields superior
performance. We find that a different algorithm – one that
selectively purges false routing state network-wide – yields the
best performance in scenarios where link costs change.

I. INTRODUCTION

Malicious and misconfigured nodes can degrade the per-
formance of a distributed system by injecting incorrect state
information. Such false state can then be further propagated
through the system either directly in its original form or
indirectly, e.g., as a result of diffusing computations initially
using this false state. In this paper, we consider the problem
of removing such false state from a distributed system.

In order to make the false-state-removal problem concrete,
we investigate distance vector routing as an instance of this
problem. Distance vector forms the basis for many routing
algorithms widely used in the Internet (e.g., BGP, a path-vector
algorithm) and in multi-hop wireless networks (e.g., AODV,
diffusion routing). However, distance vector is vulnerable
to compromised nodes that can potentially flood a network
with false routing information, resulting in erroneous least
cost paths, packet loss, and congestion. Such scenarios have
occurred in practice. For example, in 1997 a significant portion
of Internet traffic was routed through a single misconfigured
router, rendering a large part of the Internet inoperable for
several hours [19]. More recently [1], a routing error forced
Google to redirect its traffic through Asia, causing congestion
that left many Google services unreachable. Distance vector
currently has no mechanism to recover from such scenarios.
Instead, human operators are left to manually reconfigure
routers. It is in this context that we propose and evaluate

automated solutions for recovery.
In this paper, we design, develop, and evaluate three dif-

ferent approaches for correctly recovering from the injection
of false routing state (e.g., a compromised node incorrectly
claiming a distance of 0 to all destinations). Such false state,
in turn, may propagate to other routers through the normal
execution of distance vector routing, making this a network-
wide problem. Recovery is correct if the routing tables in all
nodes have converged to a global state in which all nodes
have removed each compromised node as a destination, and
no node bears a least cost path to any destination that routes
through a compromised node.

Specifically, we develop three novel distributed recovery
algorithms: 2nd best, purge, and cpr. 2nd best per-
forms localized state invalidation, followed by network-wide
recovery. Nodes directly adjacent to a compromised node
locally select alternate paths that avoid the compromised
node; the traditional distributed distance vector algorithm is
then executed to remove remaining false state using these
new distance vectors. The purge algorithm performs global
false state invalidation by using diffusing computations to
invalidate distance vector entries (network-wide) that routed
through a compromised node. As in 2nd best, traditional
distance vector routing is then used to recompute distance
vectors. cpr uses local snapshots and a rollback mechanism
to implement recovery. Although our solutions are tailored to
distance vector routing, we believe they represent approaches
that are applicable to other instances of this problem.

We prove the correctness of each algorithm and evaluate its
efficiency in terms of message overhead and convergence time
via simulation. Our simulations show that when considering
topologies in which link costs remain fixed, cpr outperforms
both purge and 2nd best (at the cost of checkpoint mem-
ory). This is because cpr can efficiently remove all false state
by simply rolling back to a checkpoint immediately preceding
the injection of false routing state. In scenarios where link
costs can change, purge outperforms cpr and 2nd best.
cpr performs poorly because, following rollback, it must
process the valid link cost changes that occurred since the false
routing state was injected; 2nd best and purge, however,
can make use of computations subsequent to the injection of
false routing state that did not depend on the false routing
state. We will see, however, that 2nd best performance suffers
because of the so-called count-to-∞ problem.



Recovery from false routing state is closely related to the
problem of recovering from malicious transactions [15] [4]
in distributed databases. Our problem is also similar to that
of rollback in optimistic parallel simulation [13]. However,
we are unaware of any existing solutions to the problem of
recovering from false routing state. A closely related problem
to the one considered in this paper is that of discovering mis-
configured nodes. In Section II, we discuss existing solutions
to this problem. In fact, the output of these algorithms serve
as input to the recovery algorithms proposed in this paper.

This paper has six sections. In Section II we define the
problem and state our assumptions. We present our three
recovery algorithms in Section III. Then, in Section IV, we
present a qualitative evaluation of our recovery algorithms.
Section V describes our simulation study. We detail related
work in Section VI and finally we conclude and comment on
directions for future work in Section VII.

II. PROBLEM FORMULATION

We consider distance vector routing [5] over arbitrary
network topologies. We model a network as an undirected
graph, G = (V,E), with a link weight function w : E → N.
Each node, v, maintains the following state as part of distance
vector: a vector of all adjacent nodes (adj(v)), a vector of
least cost distances to all nodes in G (−−→minv), and a distance
matrix that contains distances to every node in the network
via each adjacent node (dmatrixv).

We assume that the identity of the compromise node is
provided by a different algorithm, and thus do not consider this
problem in this paper. Examples of such algorithms include
[7], [8], [9] in the context of wired networks and [21] in the
wireless setting. Specifically, we assume that at time t, this
algorithm is used to notify all neighbors of the compromised
node(s) that a node was compromised. Let t′ be the time the
node was compromised.

For each of our algorithms, the goal is for all nodes to
recover “correctly”: all nodes should remove the compromised
node as a destination and find new least cost distances that
do not use the compromised node. If the network becomes
disconnected as a result of removing the compromised node,
all nodes need only compute new least cost distances to all
other nodes within their connected component.

For simplicity, let v denote the compromised node, let −→old
refer to −−→minv before v was compromised, and let −→bad denote−−→
minv after v has been compromised. Table I summarizes the
notation used in this document.

III. RECOVERY ALGORITHMS

In this section we propose three new recovery algorithms:
2nd best, purge, and cpr. With one exception, the input
and output of each algorithm is the same. 1

Input: Undirected graph, G = (V,E), with weight function
w : E → N. ∀v ∈ V , −−→minv and dmatrixv are computed

1Additionally, as input cpr requires that each v ∈ adj(v) is
notified of the time, t′, in which v was compromised.

Abbreviation Meaning
−−→
mini node i’s the least cost vector
dmatrixi node i’ distance matrix
∆lc link cost change event
t time the oracle detects the compromised node
t′ time the compromised node was compromised
−→
bad compromised node’s least cost vector at and after t
−→
old compromised node’s least cost vector at and before t′

v compromised node
adj(v) nodes adjacent to v

TABLE I
TABLE OF ABBREVIATIONS.

(using distance vector). Also, each v ∈ adj(v) is notified that
v was compromised.

Output: Undirected graph, G′ = (V ′, E′), where V ′ =
V − {v}, E′ = E − {(v̄, vi) | vi ∈ adj(v̄)}, and link weight
function w : E → N. −−→minv and dmatrixv are computed via
the algorithms discussed below ∀v ∈ V ′.

First we describe a preprocessing procedure common to all
three recovery algorithms. Then we describe each recovery
algorithm.

A. Preprocessing

All three recovery algorithms share a common preprocess-
ing procedure. The procedure removes v as a destination
and finds the node IDs in each connected component. This
could be implemented (as we have done here) using diffusing
computations [6] initiated at each v ∈ adj(v). A diffusing
computation is a distributed algorithm started at a source
node which grows by sending queries along a spanning tree,
constructed simultaneously as the queries propagate through
the network. When the computation reaches the leaves of the
spanning tree, replies travel back along the tree towards the
source causing the tree to shrink. The computation eventually
terminates when the source receives replies from each of its
children in the tree.

In our case, each diffusing computation message contains a
vector of node IDs. When a node receives a diffusing compu-
tation message, the node adds its ID to the vector and removes
v as a destination. At the end of the diffusing computation,
each v ∈ adj(v) has a vector that includes all nodes in v’s
connected component. Finally, each v ∈ adj(v) broadcasts the
vector of node IDs to all nodes in their connected component.
In the case where removing v partitions the network, each
node will only compute shortest paths to nodes in the vector.

Consider the example in Figure 1 where v is the compro-
mised node. When i receives the notification that v has been
compromised, i removes v as a destination and then initiates
a diffusing computation. i creates a vector and adds its node
ID to the vector. i sends a message containing this vector to
j and k. Upon receiving i’s message, j and k both remove v
as a destination and add their own ID to the message’s vector.
Finally, l and d receive a message from j and k, respectively.
l and d add their node own ID to the message’s vector and
remove v as a destination. Then, l and d send an ACK message



back to j and k, respectively, with the complete list of node
IDs. Eventually when i receives the ACKs from j and k, i has
a complete list of nodes in its connected component. Finally, i
broadcasts the vector of node IDs in its connected component.

B. The 2nd best Algorithm

2nd best invalidates state locally and then uses distance
vector to implement network-wide recovery. Following the
preprocessing described in Section III-A, each neighbor of
the compromised node locally invalidates state by selecting
the least cost pre-existing alternate path that does not use
the compromised node as the first hop. The resulting distance
vectors trigger the execution of traditional distance vector to
remove the remaining false state. Algorithm 1 in the Appendix
gives a complete specification of 2nd best.

We trace the execution of 2nd best using the example in
Figure 1. At time t′ +∆ (Figure 1(b)), i uses v to reach nodes
l and d. j uses i to reach all nodes except l. Notice that when
j uses i to reach d, it transitively uses −→bad (e.g., uses path
j− i−v−d to d). After the preprocessing completes, i selects
a new neighbor to route through to reach l and d by finding
its new smallest distance in dmatrixi to these destinations:
i selects the routes via j to l with a cost of 100 and i picks
the route via k to reach d with cost of 100. (No changes are
required to route to j and k because i uses its direct link
to these two nodes). Then, using traditional distance vector i
sends −−→mini to j and k. When j receives −−→mini, j must modify
its distance to d because −−→mini indicates that i’s least cost to
d is now 100. j’s new distance value to d becomes 150, using
the path j−i−k−l. j then sends a message sharing −−→minj with
its neighbors. From this point, recovery proceeds according by
using traditional distance vector.
2nd best is simple and makes no synchronization assump-

tions. However, 2nd best is vulnerable to the count-to-∞
problem. Because each node only has local information, the
new shortest paths may continue to use v. For example, if
w(k, d) = 400 in Figure 1, a count-to-∞ scenario would arise.
After notification of v’s compromise, i would select the route
via j to reach d with cost 151 (by consulting dmatrixi), using
a path that does not actually exist in G (i− j− i−v−d), since
j has removed v as a neighbor. When i sends −−→mini to j, j
selects the route via i to d with cost 201. Again, the path
j− i− j− i−v−d does not exist. In the next iteration, i picks
the route via j having a cost of 251. This process continues
until each node finds their correct least cost to d. We will see
in our simulation study that the count-to-∞ problem can incur
significant message and time costs.

C. The purge Algorithm

purge globally invalidates all false state using a diffusing
computation and then uses distance vector to compute new
distance values that avoid all invalidated paths. The diffusing
computation is initiated at the neighbors of v because only
these nodes are aware if v is used an intermediary node.
The diffusing computations spread from v’s neighbors to the
network edge, invalidating false state at each node along the

way. Then ACKs travel back from the network edge to the
neighbors of v, indicating that the diffusing computation is
complete. See Algorithm 2 and 3 in the Appendix for a
complete specification of this diffusing computation. Next,
purge uses distance vector to recompute least cost paths
invalidated by the diffusing computations.

In Figure 1, the diffusing computation executes as follows.
First, i sets its distance to l and d to ∞ (thereby invalidating
i’s path to l and d) because i uses v to route these nodes.
Then, i sends a message to j and k containing l and d as
invalidated destinations. When j receives i’s message, j checks
if it routes via i to reach l or d. Because j uses i to reach
d, j sets its distance estimate to d to ∞. j does not modify
its least cost to l because j does not route via i to reach
l. Next, j sends a message that includes d as an invalidated
destination. l performs the same steps as j. After this point,
the diffusing computation ACKs travel back towards i. When
i receives an ACK, the diffusing computation is complete. At
this point, i needs to compute new least costs to node l and
d because i’s distance estimates to these destinations are ∞.
i uses dmatrixi to select its new route to l (which is via j)
and uses dmatrixi to find i’s new route to d (which is via
k). Both new paths have cost 100. Finally, i sends −−→mini to
its neighbors, triggering the execution of distance vector to
recompute the remaining distance vectors.

Note that a consequence of the diffusing computation is
that not only is all −→bad state deleted, but all −→old state as well.
Consider the case when v is detected before node i receives−→
bad. It is possible that i uses −→old to reach a destination, d. In
this case, the diffusing computation will set i’s distance to d
to ∞.

An advantage of purge is that it makes no synchronization
assumptions. Also, the diffusing computations ensure that
the count-to-∞ problem does not occur by removing false
state from the entire network. However, globally invalidating
false state can be wasteful if valid alternate paths are locally
available.

D. The cpr Algorithm

cpr2 is our third and final recovery algorithm. Unlike 2nd

best and purge, cpr only requires that clocks across dif-
ferent nodes be loosely synchronized i.e. the maximum clock
offset between any two nodes is assumed to be δ. For ease
of explanation, we describe cpr as if the clocks at different
nodes are perfectly synchronized. Extensions to handle loosely
synchronized clocks should be clear. Accordingly, we assume
that all neighbors of v, are notified of the time, t′, at which v
was compromised.

For each node, i ∈ G, cpr adds a time dimension to−−→
mini and dmatrixi, which cpr then uses to locally archive
a complete history of values. Once the compromised node
is discovered, the archive allows the system to rollback to a
system snapshot from a time before v was compromised. From
this point, cpr needs to remove v and −→old and update stale

2The name is an abbreviation for CheckPoint and Rollback.



d

v

l

k

i

j

50

50

50

50

50

200 100d 150

150100l 200

vjDi k

via

to

k 100 200

150 250d

150l 50

iDj l

to

via

(a) Before t′

d

v

l

k

i

j

50

50

50

50

50

151 100d 51

51100l 151

vjDi k

via

to

k 100 200

101 201d

101l 50

iDj l

to

via

1

1 1

1

1

(b) t′ + ∆

d

v

l

k

i

j

50

50

50

50

l

j

200 100

200

k

100

d

Di

via

to

x 100 200

150 250d

150l 50

iDj l

to

via∞

(c) After recovery

Fig. 1. Three snapshots of a graph, G, where v is the compromised node: (a) G before v goes bad, (b) G after −→bad has finished propagating but before
recovery has started, and (c) G after recovery. The dashed lines in (b) indicate paths using −→bad. dmatrixi and dmatrixj , at the time of the snapshot, are
displayed to the right of each sub-figure. The least cost values are underlined.

distance values resulting from link cost changes. We describe
each algorithm step in detail.

Step 1: Create a −−→min and dmatrix archive. We define a
snapshot of a data structure to be a copy of all current distance
values along with a timestamp. 3 The timestamp marks the
time at which that set of distance values start being used.−−→
min and dmatrix are the only data structures that need to be
archived. This approach is similar to ones used in temporal
databases [16], [14].

Our distributed archive algorithm is quite simple. Each
node has a choice of archiving at a given frequency (e.g.,
every m timesteps) or after some number of distance value
changes (e.g., each time a distance value changes). Each node
must choose the same option, which is specified as an input
parameter to cpr. A node archives independently of all other
nodes. A side effect of independent archiving, is that even with
perfectly synchronized clocks, the union of all snapshots may
not constitute a globally consistent snapshot. For example, a
link cost change event may only have propagated through part
of the network, in which case the snapshot for some nodes
will reflect this link cost change (i.e., among nodes that have
learned of the event) while for other nodes no local snapshot
will reflect the occurrence of this event. We will see that a
globally consistent snapshot is not required for correctness.

Step 2: Rolling back to a valid snapshot. Rollback is
implemented using diffusing computations. Neighbors of the
compromised node independently select a snapshot to roll back
to, such that the snapshot is the most recent one taken before
t′. Each such node, i, rolls back to this snapshot by restoring
the −−→mini and dmatrixi values from the snapshot. Then, i
initiates a diffusing computation to inform all other nodes to
do the same. If a node has already rolled back and receives
an additional rollback message, it is ignored. (Note that this
rollback algorithm ensures that no reinstated distance value
uses −→bad because every node rolls back to a snapshot with a
timestamp less that t′. ) Algorithm 4 in the Appendix gives

3In practice, we only archive distance values that have changed.
Thus each distance value is associated with its own timestamp.

the pseudo-code for the rollback algorithm.
Step 3: Steps after rollback. After Step 2 completes, the

algorithm in Section III-A is executed. There are two issues
to address. First, some nodes may be using −→old. Second, some
nodes may have stale state as a result of link cost changes that
occurred during [t′, t] and consequently are not reflected in the
snapshot. To resolve these issues, each neighbor, i, of v, sets
its distance to v to ∞ and then selects new least cost values
that avoid the compromised node, triggering the execution
of distance vector to update the remaining distance vectors.
That is, for any destination, d, where i routes via v to reach
d, i uses dmatrixi to find a new least cost to d. If a new
least costs value is used, i sends a distance vector message to
its neighbors. Otherwise, i sends no message. Messages sent
trigger the execution of distance vector.

During the execution of distance vector, each node uses the
most recent link weights of its adjacent links. Thus, if the same
link changes cost multiple times during [t′, t], we ignore all
changes but the most recent one. Algorithm 5 specifies Step
3 of cpr.

In the example from Figure 1, the global state after rolling
back is nearly the same as the snapshot depicted in Figure
1(c): the only difference between the actual system state and
that depicted in Figure 1(c) is that in the former (i,v) = 50
rather than ∞. Step 3 in cpr makes this change. Because no
nodes use −→old, no other changes take place.

Rather than using an iterative process to remove false state
(like in 2nd best and purge), cpr does so in one diffusing
computation. However, cpr incurs storage overhead resulting
from periodic snapshots of −−→min and dmatrix. Also, after
rolling back, stale state may exist if link cost changes occur
during [t′, t]. This can be expensive to update. Finally, unlike
purge and 2nd best, cpr requires loosely synchronized
clocks because without a bound on the clock offset, nodes
may rollback to highly inconsistent local snapshots. Although
correct, this would severely degrade cpr performance.



IV. ANALYSIS OF ALGORITHMS

In Section IV-A, we prove the correctness of our three
recovery algorithms. Then, we prove specific properties of
these recovery algorithms in Section IV-B, which help better
understand our simulation results.

A. Correctness of Recovery Algorithms

We make the following assumptions in our proofs. All the
initial dmatrix values are nonnegative. Furthermore, all −−→min
values periodically exchanged between neighboring nodes are
nonnegative. All v ∈ V know their adjacent link costs. All
link weights in G (and therefore G′ as well) are nonnegative
and do not change. 4 G is finite and connected.

Finally, we assume reliable communication.
Definition 1. An algorithm is correct if the following two

conditions are satisfied. One, ∀v ∈ V , v has the least cost and
knows next-hop to all destinations v′ ∈ V . Two, the least cost
is computed in finite time.

Theorem 1. Distance vector is correct.
Proof . Bertsekas and Gallager [5] prove correctness

for distributed Bellman-Ford for arbitrary nonnegative
dmatrix values. Their distributed Bellman-Ford algorithm is
the same as the distance vector algorithm used in this paper. �

Corollary 1. 2nd best is correct.
Proof . As per the preprocessing step, each node receiving

a diffusing computation message removes v as a destination.
Each node is guaranteed to receive a diffusing computation
message (by our reliable communication and finite graph
assumptions). Further, the diffusing computation terminates in
finite time. Thus, we conclude that each v ∈ V ′ removes v in
finite time.

Following the diffusing computation, each v ∈ adj(v) uses
distance vector to determine new least cost paths. Because all
dmatrixv are nonnegative for all v ∈ V ′, by Theorem 1 we
conclude 2nd best is correct. �

Corollary 2. purge is correct.
Proof . The diffusing computation starts with each v ∈

adj(v) finding every destination, d, to which v’s least cost
path uses v as the first-hop node. v sets its least cost to each
such d to∞, thereby invalidating its path to d. v then initiates
a diffusing computation. When an arbitrary node, i, receives a
diffusing computation message from j, i iterates through each
d specified in the message. If i routes via j to reach d, i sets
its least cost to d to ∞, therefore invalidating any path to d
with j and v an intermediate nodes.

By our assumptions, each node receives a diffusing
computation message and the diffusing computation
terminates in finite time. Thus, we conclude that all
paths using v as an intermediary node are invalidated in finite
time. Following the preprocessing, each v ∈ adj(v) uses
distance vector to determine new least cost paths. Because all
dmatrixv are nonnegative for all v ∈ V ′, by Theorem 1 we

4We use the definition of G and G′ described in Section III.

conclude that purge is correct. �

Corollary 3. cpr is correct.
Proof . cpr rolls back using a diffusing computation. Each

node that receives a diffusing computation message, rolls back
to a snapshot with timestep less than t′. By our assumptions,
all nodes receive a message and the diffusing computation
terminates in finite time. Thus, we conclude that each node
v ∈ V ′ rolls back to a snapshot with timestamp less than t′

in finite time.
cpr then runs the preprocessing algorithm described in

Section III-A, which removes v as a destination in finite time
(as shown in Corollary 1). Because each node rolls back to
a snapshot in which all least costs are nonnegative and cpr
then uses distance vector to compute new least costs, by
Theorem 1 we conclude that cpr is correct. �

B. Properties of Recovery Algorithms

In this section we formally characterize how −−→min values
change during recovery. The properties established in this sec-
tion will aid in understanding the simulation results presented
in Section V. Our proofs assume that link costs remain fixed
during recovery (i.e., during [t′, t]). We prove properties about−−→
min in order provide a precise characterization of recovery
trends. In particular, our proofs establish that:

• The least cost between two nodes at the start of recovery
is less than or equal to the least cost when recovery has
completed. (Theorem 2)

• Before recovery begins, if the least cost between two
nodes is less than its cost when recovery is complete,
the path must be using −→bad or −→old either directly or
transitively. (Corollary 4)

• During 2nd best and cpr recovery, if the least cost
between two nodes is less than its distance when recovery
is complete, the path must be using −→bad or −→old either
directly or transitively. (Corollary 5)

The first two statements apply to any recovery algorithm
because they make no claims about −−→min values during recov-
ery.

Notation. We use the definition of G and G′ described in
Section III. Let n, d ∈ V ′. Let ps(n, d) be the least cost path
from node n to d at the start of recovery and δs(n, d) the cost
of this path; pi(n, d) is a path from n to d used during the
recovery and δi(n, d) the cost of this path 5; and pf (n, d) the
least cost path from n to d when recovery is finished and has
cost δf (n, d).

Theorem 2. ∀n, d ∈ V ′, δs(n, d) ≤ δf (n, d).
Proof : Assume ∃ni, di ∈ V ′ such that

δs(ni, di) > δf (ni, di). The paths available at the start
of recovery are a superset of those available when recovery
is complete. This means pf (ni, di) is available before
recovery begins. Distance vector would use this path rather
than ps(ni, di), implying that δs(ni, di) = δf (ni, di), a

5pi(n, d) and δi(n, d) can change over time during recovery.



contradiction. �

Corollary 4. ∀n, d ∈ V ′, if δs(n, d) < δf (n, d), then
ps(n, d) is using −→bad or −→old either directly or transitively.

Proof : Assume ∃ni, di ∈ V such that a path ps(ni, di)
with cost δs(ni, di) is used before recovery begins where
δs(ni, di) < δf (ni, di) and ps(ni, di) does not use −→bad or−→
old. The only paths available before recovery begins, which
do not exist when recovery completes, are ones using −→bad
or −→old. Therefore, ps(ni, di) must be available after recovery
completes since we have assumed that ps(ni, di) does not
use −→bad or −→old . Distance vector would use ps(ni, di) instead
of pf (ni, di) because δs(ni, di) < δf (ni, di). However this
would imply that δs(ni, di) = δf (ni, di), a contradiction. �

Corollary 5. For 2nd best and cpr. ∀n, d ∈ V ′, if
δi(n, d) < δf (n, d) then pi(n, d) must be using −→bad or −→old
either directly or transitively 6

Proof : We can use the same proof for Corollary 4 if
we substitute δi(n, d) for δs(n, d) and pi(n, d) for ps(n, d). �

V. EVALUATION

In this section, we use simulations to characterize the
performance of each of our three recovery algorithms in
terms of message and time overhead. Our goal is to illustrate
the relative performance of our recovery algorithms over
different topology types (e.g., Erdös-Rényi graphs, Internet-
like graphs) and different network conditions (e.g., fixed link
costs, changing link costs). We evaluate recovery after a single
compromised node has distributed false routing state.

We build a custom simulator with a synchronous commu-
nication model: nodes send and receive messages at fixed
epochs. In each epoch, a node receives a message from
all its neighbors and performs its local computation. In the
next epoch, the node sends a message (if needed). All al-
gorithms are deterministic under this communication model.
The synchronous communication model, although simple,
yields interesting insights into the performance of each of
the recovery algorithms. Evaluation of our algorithms using a
more general asynchronous communication model is currently
under investigation. However, we believe an asynchronous
implementation will demonstrate similar trends.

We simulate the following scenario:
1) Before t′, ∀v ∈ V

−−→
minv and dmatrixv are correctly

computed.
2) At time t′, v is compromised and advertises a −→bad (a

vector with a cost of 1 to every node in the network) to
its neighboring nodes.

3) −→bad spreads for a specified number of hops (this varies
by experiment). Variable k refers to the number of hops
that −→bad has spread.

6Corollary 5 does not apply to purge recovery because the
δi(n, d) < δf (n, d) condition is not always satisfied.

4) At time t, some node v ∈ V notifies all v ∈ adj(v) that
v was compromised. 7

The message and time overhead are measured in step (4)
above. The pre-computation common to all three recovery
algorithms, described in Section III-A, is not counted towards
message and time overhead.

A. Fixed Link Weight Experiments

In the next three experiments, we evaluate our recovery
algorithms over different topology types in the case of fixed
link costs.

1) Experiment 1 - Erdös-Rényi Graphs with Fixed Unit Link
Weights: We start with a simplified setting and consider Erdös-
Rényi graphs with parameters n and p. n is the number of
graph nodes and p is the probability that link (i, j) exists where
i, j ∈ V . The link weight of each edge in the graph is set to 50.
We iterate over different values of k. For each k, we generate
an Erdös-Rényi graph, G = (V,E), with parameters n and p.
Then we select a v ∈ V uniformly at random and simulate the
scenario described above, using v as the compromised node.
In total we sample 20 unique nodes for each G. We set n =
100, p = {0.05, 0.15, 0.25, 0.50}, and let k = {1, 2, ...10}.
Each data point is an average over 600 runs (20 runs over 30
topologies). We then plot the 90% confidence interval.

For each of our recovery algorithms, Figure 2 shows the
message overhead for different values of k. We conclude that
cpr outperforms purge and 2nd best across all topologies.
cpr performs well because −→bad is removed using a single
diffusing computation, while the other algorithms remove −→bad
state through distance vector’s the iterative process of the
distance vector algorithm. cpr’s global state after rolling back
is almost the same as the final recovered state.
2nd best recovery can be understood as follows. By

Corollary 4 and 5 in Section IV-B, distance values increase
from their initial value until they reach their final (correct)
value. Any intermediate, non-final, distance value uses −→bad
or −→old. Because −→bad and −→old no longer exist during recovery,
these intermediate values must correspond to routing loops.
Table II shows that there are few pairwise routing loops during
2nd best recovery in the network scenarios generated in Ex-
periment 1, indicating that 2nd best distance values quickly
count up to their final value. 8 Although no pairwise routing
loops exist during purge recovery, purge incurs overhead
in its purge phase. Roughly, 50% of purge’s messages come
from the purge phase. For these reasons, purge has higher
message overhead than 2nd best.

Figure 3 shows the time overhead for the same p values.
The trends for time overhead match the trends we observe for
message overhead. 9

7For cpr this node also indicates the time, t′, v was compromised.
8We compute this metric as follows. After each simulation timestep,

we count all pairwise routings loops over all source-destination pairs
and then sum all of these values.

9For the remaining experiments, we omit time overhead plots
because time overhead follows the same trends as message overhead.
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(c) p = 0.25, diameter=2.99
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Fig. 2. Experiment 1: message overhead for Erdös-Rényi Graphs with Fixed Unit Link Weights generated over different p values. Note the y-axis have
different scales.

k = 1 k = 2 k = 3 k = 4− 10
p = 0.05 0 14 87 92
p = 0.15 0 7 8 9
p = 0.25 0 0 0 0
p = 0.50 0 0 0 0

TABLE II
AVERAGE NUMBER PAIRWISE ROUTING LOOPS FOR 2nd best IN

EXPERIMENT 1.

k = 1 k = 2 k = 3 k = 4− 10
p = 0.05 554 1303 9239 12641
p = 0.15 319 698 5514 7935
p = 0.25 280 446 3510 5440
p = 0.50 114 234 2063 2892

TABLE III
AVERAGE NUMBER PAIRWISE ROUTING LOOPS FOR 2nd best IN

EXPERIMENT 2.

purge and 2nd best message overhead increases with
larger k. Larger k implies that false state has propagated
further in the network, implying more paths to repair, and
therefore increased messaging. For values of k greater than a
graph’s diameter, the message overhead remains constant, as
expected.

2) Experiment 2 - Erdös-Rényi Graphs with Fixed but
Randomly Chosen Link Weights: The experimental setup is
identical to Experiment 1 with one exception: link weights
are selected uniformly at random between [1, n] (rather than
using fixed link weight of 50).

Figure 4 show the message overhead for different k where

p = {0.05, 0.15, 0.25, 0.50}. In striking contrast to Experiment
1, purge outperforms 2nd best for most values of k. 2nd

best performs poorly because the count-to-∞ problem: Table
III shows the large average number of pairwise routing loops
in this experiment, an indicator of the occurrence of count-
to-∞ problem. In the few cases (e.g., k = 1 for p = 0.15,
p = 0.25 and p = 0.50) that 2nd best performs better than
purge, 2nd best has few routing loops.

No routing loops are found with purge. cpr performs well
for the same reasons described in Section V-A1.

In addition, we counted the number of epochs in which at
least one pairwise routing loop existed. For 2nd best (across
all topologies), on average, all but the last three timesteps had
at least one routing loop. This suggests that the count-to-∞
problem dominates the cost for 2nd best.

3) Experiment 3 - Internet-like Topologies: Thus far, we
studied the performance of our recovery algorithms over
Erdös-Rényi graphs, which have provided us with useful
intuition about the performance of each algorithm. In this
experiment, we simulate our algorithms over Internet-like
topologies downloaded from the Rocketfuel website [3] and
generated using GT-ITM [2]. The Rocketfuel topologies have
inferred edge weights. For each Rocketfuel topology, we let
each node be the compromised node and average over all of
these cases for each value of k. For GT-ITM, we used the
parameters specified in Heckmann et al [11] for the 154-
node AT&T topology described in Section 4 of [11]. For
the GT-ITM topologies, we use the same criteria specified in
Experiment 1 to generate each data point.

The results, shown in Figure 5, follow the same pattern as in
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(c) p = 0.25, diameter=2.99
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Fig. 3. Experiment 1: time overhead for Erdös-Rényi Graphs with Fixed Unit Link Weights generated over different p values.

Experiment 2. In the cases where 2nd best performs poorly,
the count-to-∞ problem dominates the cost, as evidenced by
the number of pairwise routing loops. In the few cases that
2nd best performs better than purge, there are few pairwise
routing loops.

B. Link Weight Change Experiments

So far, we have evaluated our algorithms over different
topologies with fixed link costs. We found that cpr out-
performs the other algorithms because cpr removes false
routing state with a single diffusing computation, rather than
using an iterative distance vector process as in 2nd best
and purge. In the next two experiments we evaluate our
algorithms over graphs with changing link costs. We introduce
link cost changes between the time v is compromised and
when v is discovered (e.g. during [t′, t]). In particular, let there
be λ link cost changes per timestep, where λ is deterministic.
To create a link cost change event, we choose a link (except for
all (v, v̄) links) whose link will change equiprobably among
all links. The new link cost is selected uniformly at random
from [1, n].

1) Experiment 4: Except for λ, our experimental setup is
identical to the one in Experiment 2. We let λ = {1, 4, 8}. In
order to isolate the effects of link costs changes, we assume
that cpr checkpoints at each timestep.

Figure 6 shows purge yields the lowest message overhead
for p = .05, but only slightly lower than cpr. cpr’s message
overhead increases with larger k because there are more link
cost change events to process. After cpr rolls back, it must
process all link cost changes that occurred in [t′, t]. In contrast,
2nd best and purge process some of the link cost change

events during the interval [t′, t] as part of normal distance
vector execution. In our experimental setup, these messages
are not counted because they do not occur in Step 4 (i.e.,
as part of the recovery process) of our simulation scenario
described in Section V.

Our analysis further indicates that 2nd best performance
suffers because of the count-to-∞ problem. The gap between
2nd best and the other algorithms shrinks as λ increases
because as λ increases, link cost changes have a larger effect
on message overhead.

With larger p values, λ has a smaller effect on message
complexity because more alternate paths are available. Thus
when p = 0.15 and λ = 1, most of purge’s recovery
effort is towards removing −→bad state, rather than processing
link cost changes. Because cpr removes −→bad using a single
diffusing computation and there are few link cost changes,
cpr has lower message overhead than purge in this case. As
λ increases, cpr has higher message overhead than purge:
there are more link cost changes to process and cpr must
process all such link cost changes, while purge processes
some link cost changes during the interval [t′, t] as part of
normal distance vector execution.

2) Experiment 5: In this experiment we study the trade-off
between message overhead and storage overhead for cpr. To
this end, we vary the frequency at which cpr checkpoints and
fix the interval [t′, t]. Otherwise, our experimental setup is the
same as Experiment 4.

Figure 7 shows the results for an Erdös-Rényi graph with
link weights selected uniformly at random between [1, n],
n = 100, p = .05, λ = {1, 4, 8} and k = 2. We plot
message overhead against the number of timesteps cpr must
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(a) p = 0.05, diameter=6.14
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(b) p = 0.15, diameter=3.01
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(c) p = 0.25, diameter=2.99
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Fig. 4. Experiment 2: message overhead for Erdös-Rényi graph with link weights selected uniformly random from [1, 100]. Note the y-axis have different
scales.
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(a) GT-ITM, n = 156, diameter=14.133
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(b) Rocketfuel 6461, n = 141, diameter=8
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Fig. 5. Experiment 3: Internet-like graph message overhead

rollback, z. cpr’s message overhead increases with larger z
because as z increases there are more link cost change events
to process. 2nd best and purge have constant message
overhead because they operate independent of z.

We conclude that as the frequency of cpr snapshots de-
creases, cpr incurs higher message overhead. Therefore, when
choosing the frequency of checkpoints, the trade-off between
storage and message overhead must be carefully considered.

C. Summary

Our results show that for graphs with fixed link costs,
cpr yields the lowest message and time overhead. cpr
benefits from removing false state with a single diffusing
computation. However, cpr has storage overhead, requires
loosely synchronized clocks, and requires the time v was
compromised be identified.

2nd best’s performance is determined by the count-to-
∞ problem. In this case of Erdös-Rényi graphs with fixed
unit link weights, the count-to-∞ problem was minimal,
helping 2nd best perform better than purge. purge avoids
the count-to-∞ problem by first globally invalidating false
state. Therefore in cases where the count-to-∞ problem is
significant, purge outperforms 2nd best.

When considering graphs with changing link costs, cpr’s
performance suffers because it must process all valid link cost
changes that occurred since v was compromised. Meanwhile,
2nd best and purge make use of computations that followed
the injection of false state, that do not depend on false routing
state. However, 2nd best’s performance degrades because
of the count-to-∞ problem. purge eliminates the count-to-
∞ problem and therefore yields the best performance over
topologies with changing link costs.
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(a) p = 0.05, diameter=6.14, λ = 1
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(b) p = 0.05, diameter=6.14, λ = 4
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(c) p = 0.05, diameter=6.14, λ = 8
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(d) p = 0.15, diameter=3.01, λ = 1
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(e) p = 0.15, diameter=3.01, λ = 4
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(f) p = 0.15, diameter=3.01, λ = 8

Fig. 6. Experiment 4: Message overhead for p = {0.05, 0.15} Erdös-Rényi with link weights selected uniformly random with different λ values.
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(a) p = 0.05, k = 2, λ = 1
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(b) p = 0.05, k = 2, λ = 4
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Fig. 7. Experiment 5: message overhead for p = 0.05 Erdös-Rényi with link weights selected uniformly random with different λ values. z refers to the
number of timesteps cpr must rollback. Note the y-axis have different scales.

Finally, we found that an additional challenge with cpr
is setting the parameter which determines the checkpoint
frequency. More frequent checkpointing yields lower message
and time overhead at the cost of more storage overhead.
Ultimately, application-specific factors must be considered
when setting this parameter.

VI. RELATED WORK

There is a rich body of research in securing routing
protocols [12], [20], [23]. However, preventative measures
sometimes fail, requiring automated techniques (like ours) to
provide recovery.

Previous approaches to recovery from router faults [18], [22]
focus on allowing a router to continue forwarding packets
while new routes are computed. We focus on a different
problem - recomputing new paths following the detection of a

malicious node that may have injected false routing state into
the network.

Our problem is similar to that of recovering from malicious
but committed database transactions. Liu [4] and Ammann
[15] develop algorithms to restore a database to a valid state
after a malicious transaction has been identified. purge’s
algorithm to globally invalidate false state can be interpreted
as a distributed implementation of the dependency graph
approach in [15].

Database crash recovery [17] and message passing systems
[7] both use snapshots to restore the system in the event of
a failure. In both problem domains, the snapshot algorithms
are careful to ensure snapshots are globally consistent. In
our setting, consistent global snapshots are not required for
cpr, since distance vector routing only requires that all initial
distance estimates be nonnegative.



Garcia-Lunes-Aceves’s DUAL algorithm [10] uses diffusing
computations to coordinate least cost updates in order to
prevent routing loops. In our case, cpr and the preprocess-
ing procedure (Section III-A) use diffusing computations for
purposes other than updating least costs (e.g., rollback to a
checkpoint in the case of cpr and remove v as a destination
during preprocessing). Like DUAL, the purpose of purge’s
diffusing computations is to prevent routing loops. However,
purge’s diffusing computations do not verify that new least
costs preserve loop free routing (as with DUAL) but instead
globally invalidate false routing state.

Jefferson [13] proposes a solution to synchronize distributed
systems called Time Warp. Time Warp is a form of optimistic
concurrency control and, as such, occasionally requires rolling
back to a checkpoint. Time Warp does so by “unsending” each
message sent after the time the checkpoint was taken. With our
cpr algorithm, a node does not need to explicitly “unsend”
messages after rolling back. Instead, each node sends its −−→min
taken at the time of the snapshot, which implicitly undoes the
effects of any messages sent after the snapshot timestamp.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we develop methods for recovery in scenarios
where a malicious node injects false state into a distributed
system. We study an instance of this problem in distance vector
routing. We present and evaluate three new algorithms for
recovery in such scenarios. Among our three algorithms, our
results show that cpr – a checkpoint-rollback based algorithm
– yields the lowest message and time overhead over topologies
with fixed link costs. However, cpr has storage overhead and
requires loosely synchronized clocks. In the case of topologies
with changing link costs, purge performs best by avoiding
the problems that plague cpr and 2nd best. Unlike cpr,
purge has no stale state to update because purge does
not rollback in time. The count-to-∞ problem results in high
message overhead for 2nd best, while purge eliminates the
count-to-∞ problem by globally purging false state before
finding new least cost paths.

As future work, we are interested in finding the worst
possible false state a compromised node can inject. Some
options include the minimum distance to all nodes (e.g., our
choice for false state used in this paper), state that maximizes
the effect of the count-to-∞ problem, and false state that
contaminates a bottleneck link. We also would like to evaluate
the effects of multiple compromised nodes on our recovery
algorithms.
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IX. APPENDIX

Notation. Let msg refer to a message sent during purge’s
diffusing computation (to globally remove false routing state).
msg includes:

1) a field, src, which contains the node ID of the sending
node

2) a vector, −−−→dests, of all destinations that include v as an
intermediary node.



Let ∆ refer to the maximum clock skew for cpr. All other
notation is specified in Table I.

Algorithm 1 2nd best run at each i ∈ adj(v)
1: flag ← FALSE
2: set all path costs to v to ∞
3: for each destination d do
4: if v is first-hop router in least cost path to d then
5: c← least cost to d using a path which does not use

v as first-hop router
6: update −−→mini and dmatrixi with c
7: flag ← TRUE
8: end if
9: end for

10: if flag = TRUE then
11: send −−→mini to each j ∈ adj(i) where j 6= v
12: end if

Algorithm 2 purge’s diffusing computation run at each i ∈
adj(v)

1: set all path costs to v to ∞
2: S ← ∅
3: for each destination d do
4: if v is first-hop router in least cost path to d then
5: S ← S ∪ {d}
6: end if
7: end for
8: if S 6= ∅ then
9: send S to each j ∈ adj(i) where j 6= v

10: end if

Algorithm 3 purge’s diffusing computation run at each i /∈
adj(v)

Input: msg containing src, −−−→dests fields.
1: S ← ∅
2: for each d ∈ msg.

−−−→
dests do

3: if msg.src is next-hop router in least cost path to d
then

4: S ← S ∪ {d}
5: end if
6: end for
7: if S 6= ∅ then
8: send S to spanning tree child
9: else

10: send ACK to msg.src
11: end if

Algorithm 4 cpr rollback
1: if already rolled back then
2: exit
3: end if
4: t̂← −∞
5: for each snapshot, S, do
6: t′′ ← S.timestamp
7: if t′′ < (t′ −∆) and t′′ > t̂ then
8: t̂← t′′

9: end if
10: end for
11: rollback to snapshot taken at t̂
12: if not spanning tree leaf node then
13: send rollback request to spanning tree child
14: else
15: send ACK to spanning tree parent node
16: end if

Algorithm 5 cpr “steps after rollback” run at each i ∈ adj(v)
1: flag ← FALSE
2: for each destination d do
3: if −−→mini[d] =∞ then
4: find least cost to d in dmatrixi and set in −−→mini

5: flag ← TRUE
6: end if
7: end for
8: if flag = TRUE or adjacent link weight changed during

[t′, t] then
9: send −−→mini to each j ∈ adj(i) where j 6= v

10: end if


