
Approximate Models for General Cache Networks
Elisha J. Rosensweig

Department of Computer Science
University of Massachusetts

Amherst, Massachusetts 01003–9264
Email: elisha@cs.umass.edu

Jim Kurose
Department of Computer Science

University of Massachusetts
Amherst, Massachusetts 01003–9264

Email: kurose@cs.umass.edu

Don Towsley
Department of Computer Science

University of Massachusetts
Amherst, Massachusetts 01003–9264

Email: towsley@cs.umass.edu

Abstract—Many systems employ caches to improve perfor-
mance. While isolated caches have been studied in-depth, multi-
cache systems are not well understood, especially in networks
with arbitrary topologies. In order to gain insight into and
manage these systems, a low-complexity algorithm for approxi-
mating their behavior is required. We propose a new algorithm,
termed a-NET, that approximates the behavior of multi-cache
networks by leveraging existing approximation algorithms for
isolated caches. We demonstrate the utility of a-NET using both
per-cache and network-wide performance measures. We also
perform factor analysis of the approximation error to identify
system parameters that control the precision of a-NET.

I. INTRODUCTION

Many systems employ caching as a means to reduce the load
on access links and shorten access time to selected content.
While the basic caching unit is a single cache, equipped
with management policies, some systems make use of several
caches linked together, allowing each cache to also forward
requests to its neighbors when needed. Common examples
of such systems are hierarchical web and file system caches.
Recently [1][2], there have been proposals for multi-cache
designs over networks of Internet-like scale and structure.

Determining the performance of a specific multi-cache sys-
tem is extremely difficult. Even for the single, isolated cache
using the popular LRU replacement policy, the complexity
of exact models of cache contents and performance grow
exponentially as a function of cache size and the number
of files in the system [3], making them ineffective as exact
modeling tools. For this reason, a more useful approach is
to approximate the behavior of the caching system, allowing
some measure of inaccuracy in return for simpler modeling
techniques. This has been done for isolated caches and for
some cache networks, namely cache hierarchies [4].

The main drawback of existing models for networked caches
is their limited scope. They address hierarchical topologies
(i.e., trees), in which the source of content is connected to
a node at the top of the hierarchy (i.e., the root of the
tree), and rely heavily on this structure when constructing
the approximation. Furthermore, due to the complexity of
these systems, the models are developed for small topologies
(e.g., 2-level trees), and do not easily scale up for use in

This work was supported in part by the National Science Foundation under
CNS-0626874. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect those of the National Science Foundation.

larger topologies. These limitations make existing solutions
unapplicable when dealing with arbitrary topologies or large-
scale cache networks. Instead, what is needed is an approach
that can be applied to any topology.

In this paper, we present a novel multi-cache approximation
(MCA) algorithm, denoted a-NET , for a cache network with
caches using the LRU replacement policy. The approach taken
by a-NET is to decompose the problem and compute a single-
cache approximation (SCA) for each individual cache in the
network, where the request misses for each file at each cache
are forwarded along the shortest path to the content source.
The incoming request stream at each cache is thus reevaluated
as a combination of both exogenous requests as well as
portions of the miss stream of each cache’s neighbors. a-
NET is an iterative process, updating the incoming request
stream at each cache and recomputing its miss stream (which
then becomes part of the input stream to neighboring caches)
using an SCA algorithm, until the entire network converges to
a steady state. Unlike existing models, that develop topology-
specific MCAs, a-NET can compute an MCA for any topology,
regardless of structure or scale.

The contributions of this paper are:
• We develop a-NET , a novel MCA for general-topology

cache networks, that utilizes the SCA algorithm described
in [3].

• We demonstrate the behavior of a-NET for multiple
topologies, and identify some key parameters that affect
its performance. Specifically, we show that dependen-
cies within the reference stream are the main cause of
inaccuracy for a-NET , and that an increase in network
connectivity can greatly reduce this problem.

• We construct a Markov model that expresses the inter-
request distances in a cache miss stream for a range of
arrival distributions. Considering that the miss stream of
one cache becomes part of the incoming stream of one of
its neighbors, we use this model to demonstrate the effects
of non-IRM miss streams on the hit-ratio at neighboring
caches.

• We evaluate the accuracy of a-NET , in terms of both
per-cache and system-wide metrics. Individual caches are
evaluated using the miss probability of each cache, while
the performance of the entire system is measured in terms
of the average number of hops a request traverses till
content is located.

The structure of this paper is as follows. In Section II
we present a-NET , and motivate our topics of focus in this
paper with an example of the performance of a-NET . In
Section III we develop a general approach for factor analysis
of the prediction errors of a-NET . We apply this approach
to tree topologies, and show how this analysis can assist in
determining how a-NET will perform in specific settings. Next
(Section IV), we analyze one of the most likely causes for
approximation error in a-NET , namely the IRM-violation in
the cache miss stream, using a Markov chain model to explain
certain properties of the prediction error in a-NET . Section
V presents the performance of a-NET over a wide range
of topologies, for both cache-specific performance metrics as
well as network-wide metrics. Section VI presents a survey
of related work on cache approximations and cache networks,
and we conclude with a summary of our findings, and future
work, in Section VII.

II. APPROXIMATING CACHE NETWORKS USING a-LRU

A. Model Description and Problem Statement

We begin by describing the system of interest in this paper,
namely cache networks. Let G = (V,E) be a network of
caches, V = {v1, ...vn}, E ⊆ V × V . Additionally, let F =
{f1, ..., fN} be the set of files in the system. Each file is stored
permanently at one or more public servers S = {s1, ..., sm}
that are attached to the network, each to one or more v ∈ V .
For all s ∈ S define files(s) ⊆ {1, ..., F} to be the file indices
stored at the server, s.t.

∣∣⋃
s∈S files(s)

∣∣ = N . Also, for all
s ∈ S and v ∈ V let χ(s, v) = 1 iff source s is attached
directly to v, and otherwise χ(s, v) = 0. For simplicity of
presentation, we assume for the rest of the paper that each
file source is attached only to a single cache in the network,
denoted vs.

Let a path P be an ordered set of nodes P = (vP1 , ..., vPj
)

such that ∀1 ≤ i < j (vPi
, vPi+1) ∈ E. Given a node v and

a file fi s.t. i ∈ files(s), let P v
i = (v = vP1 , ..., vPj

= vs)
be the shortest path from v to the source of fi, vs, where
distance is measured in the number of hops. In case of a tie,
one path is selected at random when the system is initialized
and is maintained hereafter.

At each node in this system, a Poisson stream of file access
requests arrives exogenously. A request for fi is denoted reqi.
For all 1 ≤ i ≤ N, v ∈ V, λi,v is the rate of exogenous
requests for file fi at node v. When a request for file fi arrives
at a cache v, it generates a hit if the file is located at the
cache and a miss if not. In the event of a miss, the request is
forwarded to the next-hop cache along P v

i , or to s if χ(s, v) =
1 ∧ i ∈ files(s). In the event of a hit, the file is forwarded
along the reverse path taken by the request, and cached at each
node along the way. If the cache is full, one of the files in the
cache is evicted to make room for the new file. Following
common practice (e.g., [3], [4], [5]), we assume that all files
have the same size, and so the cache size |v| can be expressed
in terms of the number of files it can hold at any given moment.

For a given path P v
i , let P v

i [j] be the j-th node in the path,
s.t. P v

i [1] = v and P v
i [2] is the next hop from the originating

node v. Given two nodes v, v′ ∈ V , define

R(v, v′) = {i : v′ = P v
i [2]}.

This is the set of all request ids i for which v′ is on the next
hop from v along the shortest path to source s s.t. i ∈ files(s).
Let ri,v be the combined incoming rate of requests for fi at
node v, and let mi,v be the miss rate of fi at node v. Then
the rate of requests at each node can be expressed as

ri,v = λi,v +
∑

v′:i∈R(v′,v)

mi,v′ (1)

Note that while λi,v is a Poisson stream of exogenous requests,
the miss stream of a cache is not, and so when we refer to
ri,v as the incoming rate at the node we are referring to the
average rate of requests.

The miss rates at each node depend on several factors,
in addition to the cache management policies. One of these
is the time it takes to retrieve content to the cache after
a cache miss. In this paper, we follow common practice
[3][4], and assume that the file download time after a cache
miss is significantly smaller than the inter-request timescale.
Thus, once a cache miss occurs, the file is assumed to be
instantaneously downloaded into the cache.

Our goal in this paper is to develop an algorithm that can
predict, with high accuracy, the incoming and miss streams
at each of the caches, given the exogenous incoming rates.
With such an algorithm available, cache network developers
can evaluate the performance of the cache network itself
efficiently. To determine the incoming and miss streams, we
must solve the system of equations (1), for all i and v, and this
in turn requires determining the miss rate for each file at each
node. To this end we developed a-NET , our MCA algorithm,
that tackles this problem.

B. From a-LRU to a-NET

In [3], Towsley and Dan developed an SCA algorithm for
LRU and FIFO caches. As explained shortly, a-NET uses
this LRU SCA algorithm, denoted a-LRU, to compute an
MCA for the entire network. We begin, therefore, with a short
description of a-LRU.

Let ~pv = (p1,v, . . . , pN,v) be the steady-state incoming
request distribution for files in F at a certain cache v. a-LRU
can be thought of as a function contents(~pv, |v|) = ~qv , where
~qv = (q1,v, . . . , qN,v) is the vector consisting of the probability
for each file to be present in the cache at a random point in
time.

a-LRU was developed for request streams that conform
to the Independent Reference Model, or IRM for short,
which means that the probability that the i-th request will
be reqi, given past requests, is still pi,v . For a request stream
conforming to IRM, we prove in the technical report [6] that

mi,v = ri,v · (1− qi,v). (2)

Given our discussion thus far, we can now define out MCA
algorithm, a-NET , an algorithm for solving the following set

of equations, for each v ∈ V :

ri,v = λi,v +
∑

v′:i∈R(v′,v)

mi,v′ (3)

pi,v =
ri,v∑N

j=1 rj,v
(4)

~qv = contents(~pv, |v|) (5)
mi,v = ri,v · (1− qi,v) (6)

Eq. (3) is identical to Eq. (1), which combines the exoge-
nous request stream with the miss streams of the neighbors of
v to get the incoming request stream at each cache. Eq. (4)
defines pi,v as the relative portion of requests for fi at v. Eq.
(5) repeats the definition of the contents(·, ·) function, and Eq.
(6) is identical to Eq. (2). Regarding this last equation, note
that it was proven only for IRM streams. When the request
streams consist also of the miss streams of neighbors, that do
not conform to IRM, the equation may not accurately predict
the miss rate. This issue is studied in detail in sections III &
IV.

a-NET solves these equations iteratively. Initially, we set
mi,v = 0 for all i and v. Note that in the order these
equations are presented, each equation relies only the values
of the exogenous rates λi,v , which we assume are given,
and information available from previous equations. In each
iteration, a-NET solves equations (3) through (6) in order, for
all caches, using the output of the previous iteration as input to
the next. a-NET halts when a predefined precision threshold
ε is met, that indicates that little has changed over the last
iteration. In our implementation, we used the mean-square
distance between the rates of all the nodes and files. While
in theory it is possible that this procedure will not converge
to a system-wide solution, such a scenario has never occurred
during the course of our use of the algorithm.

C. a-NET performance - an example

To motivate the issues we discuss in the coming sections,
we present here an example of the performance of a-NET .
When using an isolated cache, a commonly used performance
metric is the miss probability of the cache, with lower values
indicating a more useful cache. Approximations for these
caches are then evaluated by observing the Miss Probability
Ratio (MPR) between the predicted and actual behavior [3].

We simulated the behavior of a 10-by-10 torus cache net-
work. The exogenous request distribution and rate is the same
for all caches, and requests are distributed according to Zipf
distribution with parameter 1 (i.e., the i-th most popular file
has pi = 1/i∑N

j=1 1/j
), as has been observed in real web access

traces [7]. There are |F | = 500 files in the system, cache sizes
are |v| = 50, and there are 4 sources of content s1 − s4 with
each file is stored at exactly one of them. We compared the
behavior of the system to that of the approximation generated
by a-NET , and the MPR per node is plotted in Figure 1.

Two main features stand out in Fig. 1. First, a-NET consis-
tently under-estimates the number of misses that occur at each
cache. Second, in the MCA produced by a-NET does not err

0 20 40 60 80 100
Node ID

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

M
P
R

 (
S
im

/A
p
p
ro

x
)

nodes (sorted)

Fig. 1. MPR for 10-by-10 torus, with file requests distributed using Zipf
distribution, |F | = 500, |v| = 50.

0 20 40 60 80 100
Node

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

In
c.

 D
is

t.
 S

T
D

STD of incoming req. distribution

sim inc
approx inc

Fig. 2. Standard deviation of incoming request distribution at each node
(sorted according to simulation values). The similarity of STD suggests that
a-NET provides a good estimate of the distribution of requests at each node,
despite under-estimating the MPR.

by more than 16% . These results indicate that, even though
the IRM assumptions are invalid for cache networks, a-NET
predicted performance do maintain some relationship to the
simulated system performance. Support for this direction can
be derived by plotting the standard deviation of the incoming
file request distribution at each cache node, approximation
vs. simulation, as in Fig. 2. The similarity of STD in each
node indicates that the approximation is using as input at
each node a steady-state distribution that is close to the actual
distribution observed at that node. This would suggest that the
cause for increased MPR lies elsewhere. Thus, in the sections
to come we will more closely investigate what factors cause
the errors we see here, and under what conditions are these
errors minimized, turning a-NET into a useful MCA algorithm.

III. a-NET ERROR DECOMPOSITION

In this section we analyze the sources of errors in a-NET .
Our goals here are (a) to determine the possible causes of

error; (b) to show how these errors can be distinguished; and
(c) to use this information to determine in which scenarios
a-NET will provide accurate predictions.

We investigate three potential causes for prediction error by
a-NET:

1) Inherent Prediction Error in the underlying SCA
algorithm. Since a-LRU only approximates the cache
behavior, even with the correct request distribution the
results may be skewed compared to the actual system
behavior.

2) Violation of IRM assumption. The violation of IRM
may adversely affect the performance of a-NET in two
ways. First, a-LRU was designed only for IRM streams.
Second, the miss rate of each file is calculated using Eq.
(2), which is proven only for IRM streams. The usage of
both of these outside of their natural context may cause
a-NET to err.

3) Input Error (or: propagating error). The input given
to a-LRU for cache v during a-NET execution includes
outputs predicted by a-LRU for all of v’s neighbors.
Since the prediction of a-LRU is inaccurate, the request
distribution given as input to a-LRU at each cache may
not be the actual distribution at that cache. This can
produce inaccurate predictions.

We would therefore like to determine the contributions of
each of the errors in a given scenario, for which we have
a simulation (denoted SIM) and the a-NET approximation
(denoted APP). We disentangle the different errors from each
other by extracting, from the simulation results, the actual
steady-state distribution of the request stream at each node, and
then evaluating the per-cache performance in two additional
scenarios:

1) Per-cache simulation with IRM traffic, denoted SIM-
IRM. Here, we simulate the behavior at each cache using
the file request distribution extracted from SIM, but
with file requests being generated from this distribution
according to IRM.

2) Per-cache approximation with simulation-driven
traffic, denoted APP-DRIVEN. Here we evaluate the
cache performance using a-LRU at each cache, using
the file request distribution extracted from SIM. Recall
that the a-LRU algorithm assumes IRM arrivals.

We shall refer to these as the pseudo-simulation and pseudo-
approximation respectively. In [3] the authors demonstrate that
a-LRU gives close to optimal results for common scenarios,
and so our goal here is to determine what part of the approx-
imation error is due to IRM violation, and what part is due
to input error, as defined above. We do so by comparing the
predictions of a-NET in these different scenarios. Specifically,
• Comparing SIM to APP provides the MPR performance

of a-NET , as in Fig. 1.
• Comparing SIM to APP-DRIVEN isolates the influence

of IRM violation on the performance of a-NET , since the
input at each cache is the same for both simulation and
pseudo-approximation.

• Comparing SIM-IRM to APP-DRIVEN removes both the
effects of IRM violation and input error, since the input at
each cache is the same and the arrival streams at caches
in SIM-IRM conform to IRM.

Factoring the error of a-NET in a specific scenario into its
components can help develop improved prediction algorithms,
that address these errors, as well as determine which cases
will be more prone to prediction errors. We demonstrate this
second point next for the case of cache trees.

A. Cache Trees

When using shortest path routing, cache trees form in every
cache network that has a single source of content. Each node
forwards its entire miss stream along a single link, the one
on the shortest path to the source. Leaves are therefore nodes
whose input stream does not include the miss stream of any
neighboring cache. For the purpose of this case study, we
consider only complete k-ary trees. As in the example case
from Section II, we assume that (a) all caches are of the same
size, and (b) the exogenous request stream at each cache is
the same. These assumptions are maintained throughout this
paper.

We initially consider the case of a linked list of h caches
v0, . . . , vh−1, with cache vh−1 linked to the single source (Fig.
3). We simulated the behavior of the system with parameters
h = 10, |v| = 50, N = 500, where the exogenous
request distribution is zipf with parameter 1.0. We generated,
additionally, the pseudo-simulation and pseudo-approximation
as described above, and plotted the pair-wise MPR between
each of the simulations (standard (SIM) and pseudo (SIM-
IRM)) , and each of the approximations. The results of these
comparisons are presented in Figure 4.

v0 h−4 h−3 h−2 S

Exo. Req.

h−1v v v v

Fig. 3. k-ary tree for k=1, with request streams arriving exogenously at each
node.

Several conclusions may be drawn from Figure 4. First, we
note that when both the input error and IRM-violation errors
are removed, the performance of the algorithms is close to
optimal (a ratio of 1.0), which is strong indication that there
are no additional hidden causes for error. Second, as in the
example from Section II, the error leads a-NET to consistently
under-estimate the probability of misses. Finally, it is clear
that the input error is negligible in the case portrayed in Fig.
3, and that IRM-violation is the main source of error, which
increases at caches closer to the source. This supports the
observation made at the end of Section II, that a-NET provides
a good estimate of the incoming request distribution at each
node. Thus, one would expect that in scenarios where IRM is
violated to a lesser degree, the performance of a-NET would
improve.

0 1 2 3 4 5 6 7 8 9
level (0 is leaves)

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14
S
im

/A
p
p
ro

x
 r

a
ti

o
MPR for tree with k=1

standard
driven
IRM-Sim
driven+IRM

Fig. 4. Miss probability ratio for standard (SIM / APP), driven (SIM /
APP-DRIVEN), IRM-Sim (SIM-IRM / APP) and driven + IRM-Sim (SIM-
IRM / APP-DRIVEN). Performance is better when closer to 1.0. When IRM-
violation is removed, the performance of a-NET at all caches is close to
optimal

Support for this last hypothesis can be obtained from
the performance of a-NET for larger trees, as we increase
the branch factor k of the tree. As k grows, the incoming
request stream at upper-level caches become more IRM-like.
To understand why, consider a node A with two child nodes B
and C, each of which is the root of its own sub-tree. Requests
coming in to B are independent of those coming in to C since
their respective sub-trees do not have any node in common.
Therefore, the miss streams of B and C are independent of
each other. However, the miss stream of B at each epoch
depends on the state of cache B in that epoch. It is expected,
therefore, that the aggregate of these two streams is in some
sense closer to IRM than each of them would be on its own.
As k goes to infinity, we get closer to a purely IRM request
stream at A.

Based on this insight, we expect the performance of a-
NET to improve as k grows. The results of testing this
hypothesis for k = 2, 3, 4, 5 are shown in Figure 5. For each
level in the tree, we calculated the MPR for each cache in
that level, then plotted the mean MPR at that level with a
95% confidence interval using the student t-distribution. Our
results show clearly that as the branch factor increases, so too
does the accuracy of a-NET . We tested the error composition
for additional distributions over tree topologies - uniform,
truncated arithmetic and geometric - and consistently observed
this behavior.

When we turn our attention to general topologies, similar
behavior occurs as the average node degree grows. This is
demonstrated and discussed in detail in Section V.

IV. UNDERSTANDING IRM VIOLATION IN CACHE
NETWORKS

As we’ve just seen, IRM-violation can cause a-NET pre-
diction errors. In this section we present insight derived from

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
level (0 is leaves)

0.98

1.00

1.02

1.04

1.06

S
im

/A
p
p
ro

x
 r

a
ti

o

MPR for different branch factors

2
3
4
5

Fig. 5. Miss probability ratio for trees with branch factor k = 2, 3, 4, 5.

an analytical model supporting the observation that a-NET
generally underestimates the miss probability.

Let us begin with some intuition. It has been shown (for
example, see [8]) that a chain of LRU caches performs poorly.
One of the reasons for this is the lack of locality of reference
in the miss streams of caches. When a cache miss occurs at
v for file f , the file is downloaded into the cache, and so in
order for another cache miss to occur it first must be evicted
from the cache. Until this eviction occurs, the miss stream will
not see another request for this file. This causes requests for
file f to be, on average, farther apart in the miss stream than
they are in the incoming stream, reducing the effectiveness of
next-hop caches. This behavior can also help explain why a-
NET consistently tends to underestimate the miss probability
of caches. The inter-arrival distance between requests for fi

are likely to be greater in non-IRM miss-streams than in IRM
streams. Since a-NET predicts misses assuming IRM, the miss
probability it predicts will be lower than actually exhibited.

While the behavior just described is intuitive, and has been
demonstrated empirically for many scenarios, to the best of our
knowledge there is little analytical support for it. In this section
we present a Markov model for the simple (and tractable)
case of an IRM request stream with a distribution close to
uniform, as defined shortly. We use this Markov model to
demonstrate the effects of IRM-violation on the miss stream,
and extrapolate from our results here to the effects of LRU
caches on arbitrary distributions.

A. Description of Markov chain

We use a discrete Markov chain, to model the behavior of
a tagged file f∗ at cache v. We assume the arrival stream is
IRM, that p∗,v = α, and for all other files pi,v = β, s.t.

β =
1− α
N − 1

We are interested here in the non-IRM traffic characteristics
of the miss stream. Following the general approach laid out in
[8], we do so by measuring the distribution of the number

of requests between two req∗, termed here the inter-miss
distances.

Our Markov chain consists of states (i, j), where
• 0 ≤ i <∞. This variable represents the number of cache

misses that have occurred for files other than f∗, since
f∗ entered the cache.

• j ∈ {1, . . . , |v|, E(vict), M(iss), A(bsorb)}. This repre-
sents the state of f∗. For i ≤ |v|, f∗ is said to be in the
i-th location of the cache. Otherwise, the file might be
evicted (state E) or requested after eviction, generating a
cache miss (state M). Finally, once a cache miss occurs,
we go into the absorbing state (state A).

The transition matrix T can be derived from the transition
diagrams, shown in Figures 6 - 7, which can easily be verified
to correctly model the state of f∗. We assume that the system
starts in state (0, 1), which reflects the state of the system
after a cache miss for f∗, with f∗ at the top of the cache.
Each arrival of a new request at the cache causes a transition
in the Markov chain. For each state s, the probability that the
system is in state s after k arrivals is expressed by T k[(0, 1), s].
Therefore, the probability of an inter-miss distance being h for
some h ∈ N is

P (distance = h) =
∞∑

k=1

T k[(0, 1), (h,M)]. (7)

For all practical purposes, we need to set a cap for the
distances h we are interested in computing, as otherwise the
transition matrix is of infinite size. We denote that cap Mmax.

β

i, 1

i+1, j+1

i, j+1i, ji, 2

(|v|−j)

(N−|v|)

(j−1)

α

β

β

Fig. 6. Transition diagram for 1 ≤ j ≤ |v|. For the case of i = Mmax +1,
because state (i+1, j+1) does not exist we give the transition to (i, j+1)
a total weight of (N − j)β.

B. Markov model results

Using the model described in Section IV-A, we analyzed
several scenarios. For example, for the case of uniform dis-
tribution with N = 30, |v| = 5,Mmax = 80, we compared
the inter-request distance distribution of the tagged file, as
computed by the Markov model, to the matching distribution
for an IRM stream with the same request distribution for file
request IDs. The cdf of these distributions is shown in Figure
8.

Let GM (x) be the inter-request distance distribution cdf
for the non-IRM miss stream, as computed by the Markov

β

α 1

(N−|v|−1)|v|

i, E i, M i, A

i+1, E

i−1, |v|

(N−|v|)β

β

Fig. 7. Transition diagram for j = E,M,A. The probability of being in
state (i,M) is the probability that the inter-miss distance is i. Because state
(i+1, E) does not exist, for the case of i = Mmax+1 we give the transition
to (i, E) a weight of (N − 1)β.

chain. Furthermore, let GI(x) be the cdf for an IRM request
stream with the same distribution of files requested as the miss
stream. As can be seen from Fig. 8, GM (x) < GI(x) for all
x < N−1. More generally, we make the following conjecture:

Conjecture 1: When the incoming request stream at a cache
conforms to IRM, GM (x) ≤ GI(x) for all x ≤ |v|.
This conjecture is motivated by the aforementioned fact that
the tagged file f∗ needs to be evicted from the cache before it
can appear again in the miss stream, and so we expect the first
|v| misses following a miss for f∗ to have a smaller probability
of being requests for f∗, compared to an IRM model.

0 10 20 30 40 50 60 70 80
Inter-request distance

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

CDF for number of requests between two requests for F

Miss stream
Arrival (IRM)
dist = N-1

Fig. 8. CDF of inter-arrival distance, for both incoming (IRM) and miss
(non-IRM) streams. The distance N − 1 marks the point after which the
negative effects of the cache on the cumulative distribution are no longer felt.

We now proceed to use this Markov model to understand
the effects IRM-violation in the miss stream will have on the
performance of the next-hop cache. We present the following
Theorem, proven in the technical report [6]:

Theorem 1: Let f∗, GM (k) and GI(k) be defined as above,
and assume that each of the remaining files arrives with
probability β. Additionally, let Zm(k) be the the inter-arrival
distance distribution (IADD) cdf for all other files1, and ZI(k)

1We assume that these files have the same inter-arrival distribution. If not,
Zm(k) takes the maximal value for each k over all the files.

be the IADD cdf for an IRM request stream with request
probability β. Finally, let hM

∗ and hI
∗ be the hit probability

of f∗ at cache v for each model. Then, if Zm(k) ≤ ZI(k) for
all k ≤ |v|, then

hM
∗ −→N→∞ GM (|v| − 1)
hI
∗ −→N→∞ GI(|v| − 1).

Based on Theorem 1 and Conjecture 1, we can leverage the
inter-arrival distance distribution generated by the Markov
model to estimate the effects of non-IRM request streams on
hit probability.

We present here our results from testing the case of N = 50,
|v| = 3, for varying values of α, ranging from 0.05 to 0.8,
and compare the resulting inter-miss distribution to the IRM
equivalent in two ways. First, as mentioned above, we estimate
the hit probability for each stream and plot the difference
GI(|v|−1)−GM (|v|−1) . Second, we took the mean-square
error of the two PDFs, to see how the hit probability was
linked to overall distributional difference. The results of this
experiment appear in Fig. 9.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.02
0.04
0.06
0.08
0.10
0.12
0.14

miss-stream p(i)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.05
0.10
0.15
0.20
0.25
0.30
0.35

G(|v|-1]) diff

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Incoming probability of tagged file

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Mean Sq. E.

Fig. 9. Evaluating the effects of IRM violation on the inter-request distance
distribution, as a function of the incoming probability of the tagged file (p∗ =
α). Top graph: the fraction of requests for f∗ in the miss stream. Middle
graph: GI(|v| − 1)−GM (|v| − 1). Bottom graph: the mean-square errors
between the two PDFs, indicating how different the distributions are.

As can be seen here, there is a clear correlation between,
the popularity of req∗ in the miss stream, the hit probability
difference and the mean-square error of the inter-arrival PDFs.
As the popularity of the file in the miss stream grows (y axis in
the top graph in Fig. 9), so does the difference between IRM
and non-IRM distributions grow in terms of hit probability.
Also, the changes in the distribution reflect this effect.

It is important to note that the error of a-NET in predicting
the miss probability is proportionate to the popularity of the
file. Specifically, in the case presented here, we get that
0.0224 ≤ GM (|v|−1)

GI(|v|−1)
≤ 0.0272. Though popular files on

the high end of this range, the ratios are very similar. This
proportionality leads us to conjecture that the prediction error
of a-NET , in terms of MPR, is mainly one of scale, but

files retain their relative weight in the request streams at each
cache. This conjecture is supported by the results in Fig. 2. We
saw there that though the MPR can reach 1.16, the standard
deviation in the incoming request streams is approximated
with high accuracy by a-NET .

Another important conclusion to be derived from these
results is that the performance of a-NET might differ for
different files. Files on the two extremes of the popularity
scale in the arrival stream will tend to suffer less from
the imprecisions of a-NET , compared to files in the middle
range. It is therefore reasonable to assume that metrics that
break down performance based on content attributes, such
as popularity, might be more suitable for analyzing MCA
algorithms than cache-centric metrics, such as MPR. We
present one such additional metric next, in the results section
(Section V).

V. NUMERICAL RESULTS

In this section we present numerical evaluations of the
accuracy of a-NET . There are many parameters that affect
the accuracy of a-NET , and so here we focus on several
key parameters that greatly affect the performance of a-
NET: network connectivity, cache size, request distribution and
source clustering.

Connectivity. In accordance with our conclusions reached
regarding cache trees, we tested the effects of increasing the
node degree in a cache network on the MPR performance of a-
NET . We generated random, 400-node graphs with each edge
existing in the graph with probability 0.01 ≤ p ≤ 0.9, with 500
files distributed according to Zipf distribution with parameter
1.0. Files were distributed between 10 sources randomly, and
sources were randomly placed in each graph. The results
are presented in Fig. 10. As expected, the MPR of a-NET
gets closer to 1.0 as the connectivity of the graph increases.
Note however that this improvement might be a result of the
shorter distances between nodes, which limits the aggregation
of errors in the prediction of a-NET . Further experimentation
is required to determine the relative effect of these two factors.
Whatever the exact cause is, however, increasing connectivity
clearly improves the accuracy of a-NET .

Source Clustering. Another parameter that might affect
performance is the clustering of the sources. When all sources
are tightly clustered, the shortest path to each of the sources
is the same for the most part from other nodes in the network.
This creates a similar behavior to cache trees for the majority
of nodes in the network; specifically, the network contains
few cross streams - situations where a link or an entire path
contains request streams flowing in opposite directions. In our
work, we have observed that such occurrences tend to cause
a-NET to have increased prediction error, and we are currently
examining possible explanations for this phenomenon. We
demonstrate it here over a 10-by-10 torus with 4 sources,
and observed the mean MPR as the distance between sources
grew. |F | = 1000, |v| = 50, files were assigned randomly to
sources, and their arrival process was distributed using Zipf
with parameter 1.0. The effects of clustering on the MPR

metric are shown in Fig. 11. As can be seen here, their is
a slight but gradual increase in MPR as the average distance
between sources grows.

Realistic topologies, request distributions, cache size. In
order to evaluate the performance of a-NET over realistic
topologies, we used the GT-ITM tool for topology generation,
and generated transit-stub topologies modeled after the AT&T
network, as suggested by Heckmann et al in [9]. Here, we
compared the prediction of a-NET to the actual system using
per-file average number of hops per request. This measure can
be considered a system-wide metric, as it takes into account
the interactions between caches. It is expected that a-NET will
predict the number of hops with high accuracy for files on
both extremes of the popularity scale, and less so for those
in the middle. First of all, in Section IV we noted that the
difference in hit probability is low on both of these extremes.
Secondly, popular requests will mostly require a single hop,
while unpopular requests will traverse the shortest path all the
way to the source. Such performance can be clearly seen in
Figure 12.

We considered the following scenarios, observing the effects
of cache size and request distribution:
• |F | = 500, |v| = 50, distrib. = Zipf with parameter 1.0.
• |F | = 500, |v| = 50, distrib. = Zipf with parameter 0.6.
• |F | = 500, |v| = 20, distrib. = Zipf with parameter 1.0.
• |F | = 250, |v| = 50, distrib. = Zipf with parameter 1.0.
The results are presented in Figure 13. As can be seen here,

a-NET performs better when the distribution is skewed to a
larger degree, as when the zipf parameter is larger. However,
in the examples shown here, the number of files in the system
and the cache size seem to have little effect on performance.

For the topologies we experimented with here, the mean
error is within range 10− 15%. The diameter of the networks
used here was ≤ 10, and so the errors seen here for hop count
indicate predicting 1-2 hops less than actually occurs. Further
experiments are required to determine how sensitive a-NET
will be to an increase in network size.

We also observed the arrival distribution at all nodes for the
simulations presented here, and calculated the mean square
difference of the predicted vs. actual values. As expected,
our results show that the mean-square error, averaged over
all nodes, is ≤ 10−6, regardless of request distribution. This
gives strong support to our conjecture that a-NET can provide
reliable predictions for the incoming request distribution at
each node.

VI. RELATED WORK

In this paper we assumed exogenous request streams con-
formed to IRM. However, there are alternative models for
request patterns at single caches. Panagakis et. al. [10] present
approximate analysis for streams that have short term corre-
lations for requests. In this model, the arrival process is IRM,
with the exception that the k most recent requests have a higher
probability of arriving next at the cache than other requests.
The justification for this model is that such correlations have
been found in web-traces. However, as we have seen, cache

0.0 0.2 0.4 0.6 0.8 1.0
Connectivity Parameter

1.000

1.005

1.010

1.015

1.020

1.025

M
P
R

MPR for random graphs as a function of connectivity

Fig. 10. Mean MPR for random graphs over 400 nodes, as a function of p,
the probability that each edge is in the network. The mean is taken over 10
simulations for each p, with 95% confidence intervals showing.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
clustering index (larger means less clustered)

1.035

1.040

1.045

1.050

1.055
M

e
a
n
 M

P
R

MPR as function of source clustering

Fig. 11. Mean MPR for 10-by-10 torus networks, as a function of the source
clustering. There were 4 sources positioned at the corners of a square, and
the x-axis specifies the length of the square side in terms of no. of h ops. The
mean is taken over 6 simulations for each clustering, with 95% confidence
intervals showing.

networks experiences the opposite effect, with recent requests
less likely to arrive next, making this model inappropriate for
such a system.

Another alternative is Stack Depth Distribution (SDD) (for
example, see [11]). With this model, the stream of requests
is characterized as a distribution ~h = (hi)∞i=1 over the cache
slots in a cache of infinite capacity, where hi is the probability
that the next cache hit will be at slot i. In this model, all
information regarding the individual files being requested is
ignored or unavailable.

For IRM traffic, there are additional algorithms of equal
complexity to a-LRU that compute the hit probability at a
single cache, but these are not as easily used or as informative.
For example, Flajolet et. al. [12] presented a integral solution
for the cache approximation problem, which can be solved

0 10 20 30 40 50 60 70 80 90
File (ordered by popularity)

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

hops ratio

Fig. 12. Ratio of no. of hops for files stored at a given source. Files are
ordered by popularity. As can be seen, highly-popular and highly unpopular
files are approximated with greater accuracy.

Fig. 13. Mean ratio of no. of hops per request. |F | = 500 unless
specified otherwise. Results were obtained by random placement of 4 sources
and random association of files with sources, over 6 simulation. Error bars
represent 95% confidence intervals.

numerically to produce the hit ratio. However, there is no
straight-forward manner by which to observe the behavior of
each file with this approach.

Moving on to Multi-cache models, Che et. al. developed
a model for a two-level LRU-based cache hierarchy [4], by
using a ”mean field” approximation of each cache. This ap-
proximation associates each file in each cache with a constant
time, representing ”the maximum inter-arrival time between
two adjacent requests for [the] document without a cache
miss”. They justify this model by claiming that as the number
of files in the system goes to infinity, this assumption becomes
more reliable. Later on, this technique was leveraged in [5]
to analyze cache coordination policies for cache hierarchies.
Neither paper provide much simulation support for this model.
Also, their approach is limited to 2-level cache hierarchies, and
cannot be easily extended to larger tree sizes.

VII. CONCLUSIONS AND FUTURE RESEARCH

In this paper we presented a-NET , our MCA algorithm,
which can be used to evaluate such performance measures as
miss probability per cache and system-wide hops per request.
In general, a-NET under-estimates the miss probability of
caches, for which we have presented analytical support. The
accuracy of our approximation is greatly affected by IRM-
violations in the cache miss streams. It is thus most useful in
situations where these affects are mitigated, as in cache trees
with large branch factors and, in general, highly connected
topologies. We have also seen that a-NET is highly accurate
in predicting the incoming distribution at all nodes, even in
cases where the MPR is large.

a-NET is designed to approximate the behavior of a cache
network with static routing tables, while a more realistic model
would consider dynamic routing as well. Adapting a-NET to
such a model is a challenging task we plan to address next.

a-NET was presented here for LRU caches, but can be
used with any SCA algorithm that receives the steady state
distribution of request arrivals, and returns the probability of
each file to be in the cache. The Markov model presented
in section IV can also be adapted, with a small amount of
changes, to other replacement policies, such as FIFO. We
are currently working on several ways in which to leverage
these properties model to expand our understanding of cache
networks.

REFERENCES

[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A
scalable content-addressable network,” SIGCOMM Comput. Commun.
Rev., vol. 31, no. 4, pp. 161–172, 2001.

[2] E. Rosensweig and J. Kurose, “Breadcrumbs: efficient, best-effort con-
tent location in cache networks,” in IEEE INFOCOM Mini-Conference,
2009.

[3] A. Dan and D. F. Towsley, “An approximate analysis of the lru and fifo
buffer replacement schemes,” in SIGMETRICS, 1990, pp. 143–152.

[4] H. Che, Z. Wang, and Y. Tung, “Analysis and design of hierarchical
web caching systems,” in IEEE INFOCOM, 2001, pp. 1416–1424.

[5] N. Laoutaris, H. Che, and I. Stavrakakis, “The lcd interconnection of lru
caches and its analysis,” Performance Evaluation, vol. 63, pp. 609–634,
2006.

[6] E. J. Rosensweig, J. Kurose, and D. Towsley, “Approximate models for
general cache networks,” UMass Amherst, MA, Tech. Rep. UM-CS-
2009-037, 2009.

[7] L. Breslau, P. Cue, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
caching and zipf-like distributions: Evidence and implications,” in In
INFOCOM, 1999, pp. 126–134.

[8] R. Fonseca, V. Almeida, M. Crovella, and B. Abrahao, “On the intrinsic
locality properties of web reference streams,” in In Proceedings of the
IEEE INFOCOM, 2003.

[9] O. Heckmann, M. Piringer, J. Schmitt, and R. Steinmetz, “On realistic
network topologies for simulation,” in MoMeTools ’03: Proceedings
of the ACM SIGCOMM workshop on Models, methods and tools for
reproducible network research, 2003, pp. 28–32.

[10] A. Panagakis, A. Vaios, and I. Stavrakakis, “Approximate analysis of lru
in the case of short term correlations,” Comput. Netw., vol. 52, no. 6,
pp. 1142–1152, 2008.

[11] H. Levy and R. J. T. Morris, “Exact analysis of bernoulli superposition
of streams into a least recently used cache,” IEEE Trans. Softw. Eng.,
vol. 21, no. 8, pp. 682–688, 1995.

[12] P. Flajolet, D. Gardy, and L. Thimonier, “Birthday paradox, coupon
collectors, caching algorithms and self-organizing search,” Discrete
Appl. Math., vol. 39, no. 3, pp. 207–229, 1992.

VIII. APPENDIX

Lemma 1: With IRM traffic,

mi = ri · (1− qi). (8)

Proof: Let eT be the identity of the T -th request in the
incoming stream, and mp,i the miss probability of file i. By
definition, for some random T ,

mp,i = P (eT = reqi, fi /∈ C)
= P (eT = reqi|fi /∈ C) · P (fi /∈ C)
= P (eT = reqi|fi /∈ C) · (1− qi)

and when IRM holds, the arrival probability does not depend
on the state of the cache and so we get

P (eT = reqi|fi /∈ C) = P (eT = reqi) = pi

Combining these results we conclude

mi = rinc ·mp,i = rinc · pi · (1− qi)
= ri · (1− qi)

A. Theorem 1 - statement and proof

Let ~pv be the steady state distribution of requests arriving
at cache v, where p1 = α and for all other files i 6= 1 pi = β.
Let g(k) be the pdf of the inter-arrival distribution of f1, and
G(k) the cdf. Similarly, for each of the other files, let z(k)
be the pdf of the inter-arrival distribution, and Z(k) the cdf2

Finally, let zI(k) be the inter-arrival distance distribution for
files fi, i > 1, for the same ~pv but when the stream conforms
to IRM.

Lemma 2: Let η(n)
j (k) be the probability that the last k re-

quests at the cache for stream n contained less than j requests
for distinct files. Consider two uniform request streams, S(1)

and S(2), such that in each stream, the inter-arrival distribution
of each file is the same to all other files. Then, if for all
k = 0, ...,K we have

Z1(k) ≥ Z2(k)

then for all k = 0, ...,K we also have η(1)
k (k) ≥ η(2)

k (k).
Proof: Define (to simplify presentation) Z1(−1) =

Z2(−1) = 0. Note that by definition, η(i)
k (k) is the probability

of having exactly k distinct requests in k requests, which for
a uniform file request distribution is

1− η(1)
k (k) =

k−1∏
i=0

(1− Z1(i− 1))

≤
k−1∏
i=0

(1− Z2(i− 1)) = 1− η(2)
k (k)

and so we get η(1)
k (k) ≥ η(2)

k (k)

2We assume that these files have the same inter-arrival distribution. If not,
let Z(k) take the maximal value for each k over all the files.

Proof: Note that ZI(k) ≤ ZI(k), so we prove the
theorem here for hM

∗ and hI
∗ is a special case where the

request stream is IRM. Let µi(k) be the probability that the
previous k requests at the cache contained less than i requests
for distinct files, given that a request for f1 did not arrive in
the previous k requests. Note that due to the condition the f1
did not arrive, µi(k) ≡ ηi(k) where ηi(k) is defined as in
Lemma (2). Also, for all k < |v|, µ|v|(k) = 1, and that for all
k µi(k) > µi(k + 1). By definition,

h =
∞∑

k=0

g(k) · µ|v|(k)

=
|v|−1∑
k=0

g(k) · µ|v|(k) +
∞∑

k=|v|

g(k) · µ|v|(k)

= G(|v| − 1) +
∞∑

k=|v|

g(k) · µ|v|(k)

≤ G(|v| − 1) + µ|v|(|v|)
∞∑

k=|v|

g(k)

= G(|v| − 1) + µ|v|(|v|) · (1−G(|v| − 1))

≤ G(|v| − 1) + µI
|v|(|v|) · (1−G(|v| − 1))

The last transition is based on the fact that Z(k) ≤ ZI(k)
for all k ≤ |v|, and Lemma 2. We focus now on the second
term. Note that the right hand side of it is ≤ 1. For an IRM
request stream, we know

1− µI
k(k) =

|v|∏
j=1

N − j
N − 1

and so we get

1 ≥ 1− µI
|v|(|v|) =

|v|∏
j=1

N − j
N − 1

−→N→∞ 1

which implies that

µI
|v|(|v|) −→N→∞ 0

and so we conclude that

h =N→∞ G(|v| − 1) + 0 · (1−G(|v|)) = G(|v| − 1).

