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Abstract

Proto-value functions and diffusion wavelets are graph-based hagifdns that capture
topological structure of the MDP state space. A subset of these basisohsmust be se-
lected when approximating value functions in order to maintain computationakefficand
prevent overfitting. We evaluated four basis selection algorithms foopwifig this task. This
is an enhancement over the previously used heuristic of always sel#ttimgost global, or
smoothest, subset of basis functions regardless of the policy being®alWe analyzed two
schemes, one direct and one indirect, for combining basis selection anokapate policy
evaluation. The indirect scheme requires more computation than the dinechecbut gains
flexibility in the manner in which basis functions are selected. The coefficagybed to the
basis functions were set using least-squares methods. We also deédwibdeast-squares
methods can be altered to include regularization. Laplacian-based liegtitar provides a
bias toward smoother approximate value functions which can preverfitbagrand can be
useful in stochastic domains. A thorough set of experiments was conldocta simple chain
MDP to understand how basis selection and the different least-squdi®s gvaluation algo-
rithms impact one another. Although the experiments used graph-bassduagions, the
algorithms described in this paper can be applied to any set of basis function

1 Introduction

Value function based reinforcement learning (RL) alganthestimate the long-term expected
value of each state or state-action pair. To scale RL algostto large and continuous domains,
the value function must be approximated witltc@mpactrepresentation. The precise form of
this representation is crucial in determining the succesailure of any learning algorithm. Con-
structing a useful representation has typically been aatite, domain-dependent process. Recent
work, however, has sought to automate this process in a dgnalmmain-independent fashion



[1, 2, 3, 4, 5]. Basis construction, feature generation, i@pdesentation discovery are all differ-
ent names referring to this same task of generating a reqiasan used to approximate a value
function.

To date, RL feature construction algorithms can be categdrinto two types one that itera-
tively generates basis functions based upon the currestitmapproximation error [1, 4, 5] and
the other that generates a dictionary of basis functionsdapon a state space analysis [2, 3].
Note the latter type requiresselectionstrategy to determine which elements from the dictionary
to utilize. We focus on the dictionary approach to basis traction, and the diffusion wavelet
construction [3, 6] in particular, for three reasons. Fiestictionary offers the flexibility of ap-
proximating value functions associated with many diffégolicies. The other basis construction
type iteratively generates basis functions for fitting jastingle policy and must start over when-
ever the policy is changed. Second, there is significantasten the machine learning community
on methods for generatirdpta-dependent dictionarig¢s, 8, 6, 9, 10]. By creating algorithms that
operate on such dictionaries, we can naturally leverageadudvances. Third, of the two basis
construction methods based upon a state space analyfisiahf wavelets appear to have been
overlooked in the literature despite their excellent repreational capabilities. We hope that our
evaluation of diffusion wavelets in this paper encouragethér investigation by other researchers.

Two techniques have been explored for generating basigifurscbased upon a state space
analysis of a Markov decision process (MDP): proto-valugctions (PVFs) [2] and, as just men-
tioned above, diffusion wavelets [3]. We refer collectived both PVFs and diffusion wavelets as
graph-based basis functiosgnce both are generated from a graph. The graph, which isttug-
ble output of the state space analysis, encodes state siyniRroto-value functions are generated
from a Fourier-style decomposition of the graph Laplaciah]] As such, PVFs arglobal basis
functions that span the space of all possible square-mitégfunctions on the graph. Diffusion
wavelets are a generalization of classical wavelets to folaisiand graphs. They are associated
with amultiscalediffusion process. At small scales, diffusion wavelet Isassgpture local features
over the graph, while the features are more global at largales. The entire set of diffusion
wavelet bases is anvercompleteepresentation for functions on the graph or manifold. Tlaus
basis selection mechanism is required for determining aefulif basis functions to use for func-
tion approximation. This promotes sparsity and computatiefficiency while also preventing
overfitting. All previous applications of graph-based Bdsinctions have used the same basis se-
lection heuristic of always using the most global, or smesthbasis functions. This heuristic is
independent of the policy being evaluated, meaning thatadlie functions are represented with
the same set of basis functions. Using just the smootheg hagtions has the advantages of
being computationally simple and robust to overfittingialigh too much regularization can be
just as problematic as too little regularization), but iedaot exploit the full power of the basis
function dictionary. One goal of this paper is to explordat&nt selection mechanisms that better
utilize the dictionary.

We evaluated four sparse basis selection algorithms: gath@ matching pursuit (OMP) [12],
order recursive matching pursuit (ORMP) [13], the LASSO|[&d least angle regression (LARS)
[15]. We tested the selection algorithms using the grageddasis functions as a dictionary, but
the algorithms can be used wiginyset of basis functions. Each algorithm returns a subsetsi$ba
functions from the dictionary and a scalar coefficient agged with each selected basis function.

IWe focus here on techniques fexplicitly constructing features.



The selected basis functions and coefficients are lineanhghined to produce an approximate
value function. We tested two different schemes for conmgjrapproximate policy evaluation and
basis selection. The factor distinguishing these two s@seisiwhether the basis selection algo-
rithm directly or indirectly considers the Bellman equation. This distinction will bed@manore
clear in Section 4 of this paper; however, to provide somevatbn now, we note that these two
schemes differ in terms of sparsity (how many basis funestiare used in the approximate value
function) and computational efficiency. To assess the coatinin of basis selection and approxi-
mate policy evaluation, experiments were conducted on plsiMDP using least-squares policy
evaluation method. An additional contribution this papeakes is to employ Laplacian-based
regularization to the least-squares methods.

2 MDPsand Policy Iteration

A discrete Markov decision process (MDR) = (S, A, P, R) is a four-tuple consisting of a set of
statesS, a set of actionsl, a state transition functioR(s, a, s’) yielding the probability of moving
from states € S to states’ € S given actiona € A, and a reward functio(s, a, s") specifying

a scalar reward upon the transition. We also consider MDRis @ontinuous state spaces, but
for ease of exposition the remainder of this section holdgHe discrete case. Given a poligy
mapping states to actions, |Bf be a matrix withP™ (i, j) = P(i,n (i), j) and letR™ be a vector
with R™(i) = >, P" (i, j)R(i, (), j). The value functio’™ is a vector that solves the Bellman
equationV’™ = R™ + yP*V™ .= T™(V~™) whereT~ : RISl — RI*l is the Bellman operator. An
optimal policy 7* induces a value functiolr* with the propertyl’*(s) > V™ (s) for all states

s € S and any policyr’. V* is the optimal value function, which is unique for the MDP.

Policy iteration [16] is one of the principal algorithms ds® determine the optimal value
function and an optimal policy. One round of policy iteratioonsists of two phases: policy
evaluation and policy improvement. Policy evaluation imes computing’™ for some policy
m. Policy improvement then computes a new poligythat is greedy with respect tg™ (i.e.
me(s) = argmax, T*(V™(s)) Vs). The new policyr, is then used at the beginning of the next
round of policy iteration. This process is guaranteed toveaye in a finite number of rounds.

When an exact representationlof is infeasible, the value function must be approximated. We
consider linear function approximation where a value fiorct’ is expressed as a linear combina-
tion of basis functions. This is writteli = ®w wherew € R¥ is an adjustable parameter vector
and® = [@]...|Px] € RISHK with each columnd(:, j) = ®; being a basis function and each
row ®(i,:) = ¢(s;)” being a state feature vector. It is typical for the numbereéfparameters to
be much smaller than the number of stat€s< |S|.

Approximate policy evaluation algorithms take as inputaodéasis function® and produce
a weight vectonw for the approximatiori’ = ®w. We consider least-squares algorithms due to
their sample efficiency. Two common least-squares algosthre the fixed-point (FP) algorithm
(also referred to as the least-squares temporal differérf8€D) algorithm [17]) and the Bellman
residual (BR) minimization algorithm. The BR algorithm cpuates a value function that approx-
imatesV'™ by minimizing the Bellman residudlZ"™ (V') — V||2. The notation| - || indicates the
squaredL, norm with distributionp and|| - ||? indicates a squarefl, norm that is unweighted.
The FP algorithm produces an approximate value function lymizing the projectedBellman



residual|TT,7™ (V) — V||§. I1, is a projection operator which, for linear subspa®ess defined as
I1, = ®(®"D,®) '@’ D, whereD, is a diagonal matrix with elements The solutions produced
by the two algorithms have the fori., = ®A; b, andVy,, = ®A;Lb,, where:

App = "D, (® — yP"®)

brp = ®"D,R”
Apr=(® —yP"®)"D,(® — yP"®)
bpr = (® —yP"®)"D,R". (1)

Johns et al. [18] showed that an entire spectrum of leasiregualgorithms exists with the FP
solution at one end and the BR solution at the othigbrid solutions can be found between the two
extremes by considering a convex combination of the FP andliéttives. Johns et al. described
two hybrid algorithms/7, and H, which also have the forir,;, = ®A; b, andV,, = @A, 1D,
where:

w = (P —yP"®)'D, (€1 + (1 - &I, (& — yP"D)
(® —vP™®)" D, (1 + (1 - &IL,) R
ay, = (® —&EYP™®) D, (® — v P D)
= (@~ &yP™®) ' D,RT 2

Ay, = (@ —
by, = (O —
A
bH2

given the constarg € [0, 1]. Algorithms H; and H, produce the FP solution whén= 0 and the
BR solution wherg = 1.

The square matriced ., Azx, Ay, andA,, have K rows and columns. WheR is large,
it may be infeasible to form sample-based estimates of theicea. This issue is one of the
motivating factors for sparse basis selection. If only alssubset of basis functions are necessary
for approximating a value function, then these matricesomamuch smaller and performing matrix
inversion can become feasible.

Although we describe the basis selection algorithms inlagger using value functions, they
are easily extended to approximating action-value fumstioThe action-value functio@™ &
RISI41 is defined as the expected value of being in stataking actiorz, and and then following
policy 7 thereafter. Note that approximate action-value functighs= ®w) have basis functions
that are defined over state-action space. Graph-basedfbast®ns, which are defined over the
state space, can be used to approximate action-value dasdty handling each discrete action
separately. As an example, consider an action-value fometith two discrete actions; andas.
The approximate action-value function can be represerged(aa,) = dw,, andQ(-,as) =
dw,, where the same basis functiofsare used for both actions. An alternative to this scheme is
to define the basis functions directly over state-actiorcega9]. Given a set of samples from a
MDP, the least-squares policy iteration (LSPI) [20] altjam is used to produce an approximation
of the optimal action-value function. LSPI alternates lestw approximate policy evaluation (i.e.
estimatingQ™ with Q) and policy improvement. We assume policy improvement sinsplects
the greedy policy implicit inQ (i.e. greedy policyr,(s) = argmax, Q(s, a)Vs). Farahmand et al.
[21] have analyzed eegularizedversion of the LSPI algorithm.



3 Previous Work

3.1 BasisConstruction from Graphs

Mahadevan and Maggioni [2, 3] proposed two techniques foregding a dictionary of basis
functions based upon a state space analysis. The analygsf@Gmed on a graph data structure
where vertices correspond to states and edges connectboeiigd states. Note the graph can
represent either discrete or continuous state MDPs. Givisngraph, a dictionary is created by
either computing diffusion wavelets [3, 6] or proto-valumétions [2].

We begin with a brief description of the PVF constructiondrefaddressing diffusion wavelets.
Let W be a symmetric, positive weight matrix representing theesggaph.V (i, j) = 0 indicates
there is no edge between statgands; while W (i, ) > 0 indicates the strength of the connection
betweens; ands;. The valency matrixD is a diagonal matrix whose values are the row sums of
the weight matrix D(i,4) = >_; W (i, j)). The combinatorial graph Laplacian is defined/as-
D—W and the normalized graph Laplaciang = I —D~%°W D=3 [11]. SincelV is symmetric,
the eigenvectors of both Laplacians form a complete orthoabbasis. The eigendecomposition
is L = ®APT where the columns ob are the eigenvectors andis a diagonal matrix containing
the eigenvalues. Note that in Section 2 the symbaieferred to a set of basis functions; we
purposefully reus@ here because the Laplacian eigenvectors are the prote-ftatations. Given
the complexity of the eigenvector computation, it is typiica large graphs to only compute the
eigenvectors associated with the smallest eigenvaludwas aire themootheseigenvectors over
the grapR. If a subset of eigenvectors is computed, then the dictioisancomplete.

Like Laplacian eigenvectors, diffusion wavelets are cartgded from a neighborhood graph
over the state space. Diffusion wavelets amwtiscale overcompletegepresentation. They ef-
ficiently represent powers of a diffusion operator on thepgraThe diffusion operator is defined
asT = (I — ) with powersT*, ¢t > 0. To make the diffusion aspect more obvious, this can be
rewritten” = D~ %°W D=%5 = DY PD-%5 whereP = D~V is a stochastic matrix represent-
ing a random walk (diffusion process) on the graph. Note thetconjugatealong with its powers
to T'; thus, studyindl” and P are equivalent in terms of spectral properties. It is corapomnally
easier to deal witl" since it is symmetric. Small powers @f correspond to short-term behavior
in the diffusion process and large powers correspond to-teng behavior. Diffusion wavelets are
naturally multiscale basis functions because they accimunincreasing powers df*. We give a
brief sketch of the diffusion wavelet algorithm; a more thegh description can be found in the
original paper [6]. Aside from matri¥’, the other inputs to the algorithm are the maximum
number of levels to compute, a precision parameter, aBpQR(A, ¢), a sparse QR algorithm that
outputs (sparse) matricésand R such thatd =, QR (i.e. the columns of) e-span the columns
of A). The outputs of the algorithm are a set of scaling functipng and wavelet function$y; }
at different levels/scales. As the levebets larger, the number of scaling and wavelet functions
gets smaller because the diffusion process spreads outenmiies more compressible. Algo-
rithm 1 shows the details of the construction and uses tHewolg notation: [T]jz IS @ matrix
representing’ with respect to the basig, in the domain anad, in the range«{; x n, matrix) and

2Smoothness of a functionf on the graph can be measured by the Dirichlet sunif,Lf) =
D s W, v) (f(u) — f(v))? whereu ~ v is an edge in the graph. For a Laplacian eigenvegtahe Dirichlet
sum is{¢, L¢) = A. Thus, smaller eigenvalues correspond to smoother eigange



Algorithm 1. Di f f usi onWavel et Tr ee
Input: [T]5°, ¢, J, SPQR €
Output: {¢;}7_, {v;}7=0

for j=0to(J—1)do
(Gj41ls,, [TZ]2 — SPQR(T?]Y €
[TQJ'H]iji - [T2j]£;+1([T2j]£j+l)*
[Wjle; — SPQR(Lig;y — [Bj+10; ([9511]6,)"  €)

end for

(6], IS @ set of functions), represented on the basjs (n, x n, matrix). Note that the scaling
functions|¢;],,_, provide a mapping from level — 1 to level j. In order to view the functions
in the original basig, (which is usually assumed to be the unit basis), the mapgingrolled to
give [¢;lo, = (D516, (D51l - - - [P1]s0[Dol gy -

There are at least two ways to form a dictionary of basis fienstgiven the diffusion wavelet
tree. One approach is to include all the scaling functipns}?/.; and the wavelet functions
{; j;im_l above a minimum levej,.;, > 0. Specifying a minimum level can be useful for
both computational reasons (to control the size of the ahetiy) and because some of the scal-
ing functions at lower tree levels can have a large gradibos providing challenges for robust
function approximation. The second approach is to selecrmonormal dictionary from the set

of possible orthonormal dictionaries. In this approachjaiahary consists of the scaling func-

tions at levelj* € [1,2,...,J], ¢;+, and all the wavelet functions from level,;, up to level
(7 = 1), {¢ i'*:;;m- There are techniques for finding the best such dictionargrga function to

be approximated. We evaluate both approaches to consiguectliffusion wavelet dictionary.

3.2 Basis Selection for Regression

We provide a brief introduction to the basis selection peabland a few of the major algorithms
since the literature is vast. The basic formulation is thaté is a signaj € R” to be represented
with elements from an overcomplete dictionabye RY*X. Each basis functio®; € R" has
unit norm. The problem is to find a vectar such thatbw = y.2 The decomposition of is not
unique; therefore, additional constraints are added téepsmolutions with certain qualities (e.g.
sparseness, independence).

Two popular approaches to the sparse regression problemathing pursuit and basis pur-
suit. Matching pursuit is an iterative, greedy algorithmendas basis pursuit is an optimization
principle (that can be solved using any appropriate algorjt Therefore, matching pursuit and
basis pursuit are not mutually exclusive approaches tesspagression.

Matching pursuit (MP) [22] is a greedy algorithm that sedeelements sequentially to best
capture the signal. The algorithm begins with a coefficiesttor w equal to all zeros and a
residual vector,., equal to the signaj. The first element is selected by scanning the dictionary
and finding the largest correlation with the residugl: < argmax; @]Tyres],j € [1,K]. The

3The model could also include a noise tedny + ¢ = y.



coefficient for the selected basis function is adjusteck «— w;- + CI)jT*yTeS. Then the residual
signal is computed, .., < Yres — (@ﬂyres)cbj* and the process iterates. With MP, a basis function
can be selected many times. There are other variants of MRftwhich are orthogonal matching
pursuit (OMP) [12] and order recursive matching pursuit (@ [13]. OMP differs from MP
in the way the residual signal is computed. OMP makes thelwakiorthogonal to the selected
dictionary elements, which means OMP will never select Hraesdictionary element more than
once whereas MP can. ORMP goes even further than OMP and lzeldsthogonalization step
into the selection process. Moghaddam et al. [23] proposesffcient implementation of ORMP
(using partitioned matrix inverse techniques [24]) andvatab that sparse least-squares regression
is equivalent to a generalized eigenvalue problem.

Algorithm 2 is a side-by-side comparison of the pseudocod&tiP, OMP, and ORMP. We use
the symbolZ to refer to a set of indices ifi, K] that indicate the elements of the dictiondryhat
are selected by the algorithm. Similarly; refers to the scalar coefficients applied to the selected
basis functions. Basis functions that are not selected daealar coefficient of 0. Thus, the signal
y is approximated a®(:, 7)w(Z) = ®rwz.

Algorithm 2. MP, OWP, and ORMP
Input: @,y
Output: Z, wz such thatj «— d7wz

IHQ), ,w <0, Yres < Y

while (not done)do
For MP:  j* « argmax; ]@?ym;]
Wi* <= Wy =+ q)g;yres
If (wj= #0),Z —ZU{j*}. Else, T —7—{j*}
Yres < Yres — (@3; yres)q)j*
For OMP: j* « argmax;gs ]@?yresl
I —TU{j*}
W (‘I’%@jﬂil@%y
Yres <— Y — Prwz
For ORMP: j* — argmin g7 H<I>I+_7.(<I>%+j <I>I+j)*1<I>£jy —y|*> where:Z.; — Z U {j}
T TU{j*)
WL ((I)%ﬂq)jﬂ*l@%y

end while

Matching pursuit finds a sparse representation by greedilcting the most promising ele-
ments. In contrast, basis pursuit (BP) [25] achieves sfydoyi finding solutions to the following
optimization problemmin ||w/||; such thatbw = y. Sparsity of the solution comes from the use
of L; norm. The BP problem can be solved using linear programniNwe the hard constraint
dw = y is appropriate when the signal is noiseless. When the signabisy, it is appropriate
to require||®w — y||? to be small. The LASSO (least absolute shrinkage and setecipera-
tor) [14] implements this noisy version of basis pursuit re following optimization problem:
min ||y — ®w||? subject to|jw||; < k. The LASSO can be solved using quadratic programming;
however, a more efficient solution is to use the recentlyoohticed least angle regression (LARS)
algorithm [15] with a minor modification. LARS selects elem® from the dictionary one at a



time (which is the same way the matching pursuit algorithrosk)v The first element selected is
the one that is most correlated with the sigpalThen LARS proceeds until another element has
as much correlation with the current residual. At that poiARS includes this second element
and then proceeds in a directiequiangularbetween the first two elements. This strategy is less
greedy than other algorithms that sequentially add dietipelements. Interestingly, a small mod-
ification to the LARS algorithm produces the LASSO solutiédhile LARS by itself only adds
basis functions at each step, this modification for LASS@gihe algorithm the ability to remove
basis functions from the selected subset as well.

We evaluated the OMP, ORMP, LASSO, and LARS algorithms.dasy to control the sparsity
of each of these algorithms by limiting the number of basiefions that can be selected.

4 Basis Selection For Approximate Policy Evaluation

The basis selection problem involves choosing elemenis &alictionary to efficiently represent
a target signal. The approximate policy evaluation probieito represent the true value function
V™ with an accurate approximation. If V™ were known, then basis selection could simply be
performed with the target signal beif@. However,l’™ only becomes known through the Bellman
equation: V™ = R™ + ~P™V7™ = T7(V™). Thus, some framework is needed that effectively
combines approximate policy evaluation (i.e. finding anusate approximatiori’) and basis
selection (i.e. efficiently representing). There are at least two ways to achieve this combination.
The two schemes differ in how they use the Bellman equatite. first scheme uses the Bellman
eqguation within the basis selection algorithm. This me&aswhen the basis selection algorithm
adjusts the weight vectap, this not only changes the approximatidmw but alsochanges the
target signal based on a function of the Bellman equationcallehis the direct scheme because
the selection algorithm directly encodes the Bellman dqnatThe second, or indirect, scheme
doesnotuse the Bellman equation within the basis selection algaritRather, there is an iterative
process that alternates between (1) setting the targedlsiggmg the Bellman equation, and (2)
representing the target signal using the basis selectgmrigim. These two schemes are described
below in a very general form where(T™ (dw’) — dw’) is some functiory of the Bellman residual
(the least-squares algorithms FP, BR, Bind H, use different functiong).

Direct Scheme

[Z, wr] + Basi sSel ecti on, (f (T™(dw') — dw’))
OPTIONAL: wr < Set Wi ght s, (f (T™(®zw') — Prw'))
Vo— drwr

Indirect Scheme
1 — @, Wz < 0
while (not convergedl
targety «— 7™ (Prwz)
[Z, wr] +— Basi sSel ecti on, (y — duw’)
OPTIONAL: wr <« Set Wi ght s, (f (T™(®Pzw’) — Pruw'))
V — (I)I’U)I




The direct and indirect schemes differ in their computal@omplexity and degree of sparsity.
The computational complexity of the indirect scheme haptitential to be greater than the direct
scheme because it iteratively calls the basis selectiaritign. This could be wasteful when the
target signal given to the basis selection algorithm doésimange significantly between iterations.
On the other hand, the direct scheme, by using the Bellmaduasas the target function for the
basis selection algorithm, forces the regression algorith follow a specific path. To see this,
consider the beginning of the basis selection algorithmnwuhe basis functions have yet been
selected. The Bellman residual is equal to the immediatangviunction ™. This means the
first basis function selected is attempting to fit the immedraward. For the sake of argument,
assume the first basis function exactly fits the immediatearéw Now the Bellman residual is
equal to the Bellman backup of the immediate rewdfid;(R™) — R™) = yP"R™. This same
logic can be used inductively to show the basis selectionge®proceeds in order of the elements
in the Neumann serie$,;° (yP™)'R™.* Attempting to fit the elements in the Neumann series
can lead to inefficient use of the basis functions. This aceuren there is structure ™ that
does not exist in the Neumann series; hence, the basisisalatgorithm is unable to exploit the
structure. Since the indirect scheme is not confined to thib,pt has the potential to use fewer
basis functions when representing the eventual approginatie functiori/’.

As an example of the potential inefficiency of the direct subeconsider an undiscounted,
deterministic chain MDP with an absorbing state at one enthefchain. Assume the reward
function is 0 everywhere exceptl at the absorbing state. The optimal value function is a @mtst
function equaling 1 in each state, but the Neumann serieséaence of delta functions from
one end of the chain to the other. Given a dictionary comgjstif all the delta functions and a
constant function, a basis selection algorithm implenmgnthe direct scheme will select all the
delta functions rather than the constant function. This fm@yn extreme example, but it is not
uncommon for a MDP to have a spiky reward function that wowdse similar behavior. Note
this behavior can be particularly problematic for the nadéle diffusion wavelet dictionary where
very localized basis functions (that are not necessarydprasenting’™) can get selected before
larger scale basis functions.

Before outlining the basis selection algorithms within ¢iect and indirect schemes, we first
describe how we augmented the least-squares algorithnmlicde Laplacian-based regulariza-
tion.

4.1 Least-Squares Methodswith Laplacian-based Regularization

In Section 2, four least-squares algorithms were describedpproximate policy evaluation.
Those four algorithms compute approximate value functithrad minimize a loss function as-
sociated with the Bellman residual. Here, we include antamidil loss function thategularizes
the solution. We specifically use data-dependentorm of regularization that uses the graph
Laplacian [26]. This is in fact the same graph Laplacian usedroduce PVFs and diffusion
wavelets. Laplacian-based regularization has been apypiidn great success to semi-supervised
learning problems where the geometric structure of unkbdhta points can be exploited. To un-
derstand how the graph Laplacian provides regularizatonsider again the Dirichlet sum which

“For a bounded operatdt, the Neumann series is defined)s- , 7. One can shoy_;~ 7% = (I —T)~'. The
value functionV’™ can be defined using the Neumann serie§as= (I — yP™)"'R™ = Y ° [ (vP™)'R".



was described in a footnote in Section 3.1. Given functforthe Dirichlet sum is(f, Lf) =
S ow W(u, v) (f(u) — f(v))?. The Dirichlet sum is large whefi is not smooth according to the
structure of the graph. For functions that are smooth, thiellet sum is small. Thus, the Lapla-
cian can be used to penalize (regularize) functions thaharemooth according to the structure
of the MDP state space that is encoded in the graph.

As a concrete example, consider the fixed-point least-eguagorithm. FP’s loss function is
based on the projected Bellman residual. We augment thafflostion with a Laplacian-based
regularization (LR) term as follows:

1 . Bim

Wpp,p p = argmin §|\HpT (Pw') — Q' + 7”L®w/”‘2’ (3)
w’ ERE

where3,, € R* is a parameter controlling the influence of the regulararaterm. It is easy to

ShOW thatl,UFpLR — Ail bFP,LR Where:

FP,LR

Apprn=®"D,(® — yP"®) + 3,0"LD,L
bFP,LR = (I)TDpRﬂ- (4)

Notice thathsp . = bpp aNdAppr = Arp + 3,27 LD,L®. Laplacian-based regularization has
this same effect on the three other least-squares alg@i(BR, H, and H). Given a sample
(s,m(s),r, s') from the MDP, estimates of the matrik. ., . and vectob,... , . can be formed using
the following updates:

BFP,LR — I;FP,LR + p(s)d(s)r
AFP,LR — AFP,LR + p(s) [¢(3>(¢(3) - ’Ws(s/))T + ﬁmg(s)g(s)T] :

The termg(s) in the updates is computed as:

g(s) < L(s,s)d(s)
9(8) — g(8) + L(8, S0 ) D(Supr)  V{Sntr|Susr 8 N\ 8 ~ s, 10 graph}.

A common assumption is that MDP state space graphs are gpacsmected. This means that
any states has at most a few neighboring states. in the graph. In this case, the time to compute
g(s) is negligible. Of course, if the basis functiop&s) are the PVFs, then the eigendecomposition
L® = ®A can be exploited to simplify the computation@s) < A¢(s).

4.2 Direct Schemes

The next three sections outline the OMP-FP algorithm (i.81FRCfor basis selection and FP for
setting the coefficients), the ORMP-FP algorithm, and th&BE®-FP and LARS-FP algorithms.
Laplacian-based regularization is used in each algoritfiime LASSO-FP and LARS-FP algo-
rithms are nearly identical, so we describe them simultasigo It is important to point out that
all of these algorithms can easily be adapted to use the BRyrHH; least-squares methods rather
than FP. We simply chose to illustrate the algorithms usirgRP least-squares method because
that is the most common technique used in the literature.
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Each algorithm takes as input a set of MDP samplesr;, s;}7_,, the discount factor, the
dictionary® of basis functions, the graph Laplaciaralong with the regularization parametgy,,

a distributionp over the states for weighting the least-squares problethaanaximum allowable
number of basis functions that the algorithm can select. Each algorithm returns afsetaces

7 into the columns ofb and scalar coefficients; such that the approximate value functign=
d7wz. The sparsity of the solution is directly controlled by Itmg the basis selection algorithm
to at most|Z| < &’ basis functions. The parametéralso limits the basis selection algorithm’s
computation and memory usage. Since the selection algotithilds up sample-based estimates
of the least-squares data structures (eflg;m andBFp,LR), the size of the data structures cannot
be larger thart’. This can be very important when the number of basis funstinrihe dictionary

is large. To further speed up OMP-FP, ORMP-FP, LASSO-FPL&RIS-FP, we take advantage
of the fact that the algorithms insert or remove one basistfan at a time to the active s&t
The matrixfl;fz can be incrementally formed. However, to keep the pseudonsidple, the
algorithms are not shown with this improvement. The appeddscribes how the algorithms can
incrementally updatel ;.

The OMP-FP and ORMP-FP algorithms terminate when eithdrasis functions have been
selected or when the change in the norm of the Bellman relsghes beneath a thresholdThe
LASSO-FP and LARS-FP algorithms use both of those ternonatonditions as well as one other
condition (related to the parameté) that we discuss in that section.

421 OMP

Algorithm 3 shows the direct approach for combining orthoglanatching pursuit and the fixed-
point least-squares algorithm with Laplacian-based waigdtion. The algorithm maintains a
sample-based estimate of the vectavhere

¢j = [®"D,R" — ®"D,(® — yP"®)w — (3,,9" LD,Ldw]

= [®"D,R" — ®"D,(®7 — yP"®1)wr — 3, ®" LD, LP7ws] (5)
This equation for; is based on the FP least-squares method. If a differentitiigors used (BR,
Hi, Hy), thenc; will have a different form. These changes are discusseddtid@e4.2.4.

Each iteration of OMP-FP selects a new basis function to adakt active set by finding ¢ Z
that maximizesc;|. Then the weights); are adjusted to make the residual orthogonab1o

e

422 ORMP

Algorithm 4 shows the direct approach for combining ORMP #relFP least-squares algorithm
with Laplacian-based regularization. We present Algonith using FP to be consistent with our
presentations of OMP-FP, LASSO-FP, and LARS-FP. This haelgise the pseudocode more read-
able since the FP least-squares data structures are @dnbic one algorithm to the next. How-
ever, as we show later in Section 4.2.4, it is only valid to bora ORMP and the BR least-squares
method. Section 4.2.4 also describes the changes that wmstto switch from FP to BR.

5Using the terminology described in the algorithm boxes, gheared norm of the Bellman residual is written

S p(si) [ri = (6z(si) + B 9z (si) — vz (s})) T wz) ?. The change in the norm of the Bellman residual can easily
be computed when inserting or removing a new basis functimm the active sef.

11



Algorithm 3: OVP- FP with Lapl aci an- based Regul ari zati on

Input: {s;,r,s;}",, samples generated using policy
¢: S — RE, Dbasis function
p: S — RT, weighting over the states
L, graph Laplacian defined over stafes}” ; (graph edges denoted with)
v € [0,1], discount factor
Bm € RT, Laplacian-based regularization parameter
k' < K, maximum allowable number of basis functions

Output: Z, setof selected basis functions (indices igjo

wz, Wweight vector such that (s) = ¢z(s) wz

¢ iy p(si)d(si)ri

Initialize active sefl «— ()

while (|Z| < k") and(Bellman residual not converggdo
1. Find most correlated inactive element:
j* « argmax;gz(|cj|)
2. Adjust active set:
I—Tu{j}
3. ComputeAdz 7 andbz:
{11,1 — > p(si) [dz(si)(Dz(s6) — vz ()T + Bmgz(si)gz(si)’]
br — > p(si)dz(si)ri
where: g(s;) < L(si, si) ¢(si)
9(si) < g(si) + L(8i, Srr) G(Spr) V{Snbr|Snbr 8 N 8~ S}
4. Compute least-squares weights:
W7 “— AE}IZA)I
5. Compute updated correlations:
¢ =ity p(si) [$(si) (ri = (92(s:) = 192(s7) wz) = B 9(50)gz(si)" wa]

end while

The ORMP algorithm works by considering the impact eachtimadasis function has on the
least-squares problem. We use the terminoldgyto indicate the inclusion of basis functigrin
the active set (i.€Z,; < ZU{j}). The first step of Algorithm 4 determines the best inactiasi®

. . . . j A_l -~
function;j ¢ 7 that maxmaes(b%ﬂ,AIH’IHbzﬂ. .

However, it was pointed out by Moghaddam et al. [23] that #dtually faster to find the inac-
tive basis function that maximize(dgﬂ, A7l g br,, - B%Ailzl;I) because some of the interme-
diate computation cancels out. The intermediate termsatahue to properties of the partitioned
matrix inverse. Note that since the extra te @Ag}@z) is independent of all inactive basis

functions, it does not alter the result of the maximizatioolgeem. ORMP-FP then inserts the best
basis function into the active set, updakégg} andbz, and iterates.

12



Algorithm 4. ORMP- FP wi t h Lapl aci an- based Regul ari zati on

Input: {s;,r,s;}",, samples generated using policy
¢: S — RE, Dbasis function
p: S — RT, weighting over the states
L, graph Laplacian defined over stafes}” ; (graph edges denoted with)
v € [0,1], discount factor
Bm € RT, Laplacian-based regularization parameter
k' < K, maximum allowable number of basis functions

Output: Z, setof selected basis functions (indices igjo

wz, Wweight vector such that (s) = ¢z(s) wz

Initialize active sef « ()

while (|Z| < k") and(Bellman residual not convergedo
1. Find best inactive element:

J* — argmax;gr Z’%ﬂ- AE:J-,L”- BL—]')
where: 7Z.; —ZU{j}
i?;ﬂ =2 p(si)dz,, (si)rs
Az, 10— Yy p(si)loz., (si) (o1, (si) — vz, ()T + ...

5mgIﬂ- (Si)gzﬂ- (Si)T]
where: g(s;) < L(si, s;) ¢(s:)
9(si) < g(si) + L(8i, Srpr) G(Spr) V{Snbr|Snbr 8 N 8~ S}
2. Adjust active set:
I —TU{j*}

3. Computedr 7 andbz:
Az — 3Ty p(si) [¢2(50) (07 (s:) — 107 (s))T + Brmgz(si)gz(si)” ]
br — 327y p(si)dz(si)ri
4. Compute least-squares weights:
W7 — Aflzi)z
end while ’

423 LASSO and LARS

To achieve sparsity, the LASSO algorithm takes the losstiondrom Equation 3 and includes a
L, constraint on the coefficient vector. This takes the form:

1 - m
Wpppr = argmin §]|HpT (Pw') — (I)w'Hf) + %HLCIW/HZ + Gsl|w'||1 (6)

w’' eRE

where 3, € R" is a regularization parameter that dictates the sparsithefsolution. Larger
values ofg3, result in a coefficient vectar with more zero entries. In fact, there exists a value of
(s for which the resulting vectow has all zero entries.

Kolter and Ng [27] recently proposed using the LASSO aldponitwith the FP least-squares
method. Our description of the algorithm and its derivatiolliows along the same lines as their
paper. The only exception is that we consider Laplaciaedasgularization and they did not.
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Therefore, our LASSO-FP algorithm with,, = 0 exactly coincides with their algorith#.
The minimization problem in Equation 6 can be converted th&following set of optimality
conditions:

_6s§0jgﬁs VJ
cj:ﬁsz>wj20
cj:—ﬁ5:>wj§O
—ﬁs<cj<ﬁs:>wj:0 (7)

where variable; is defined according to Equation 5. The LASSO-FP algorithntiooally adjusts
the weight vector (by adding or subtracting basis functioos the active set) while satisfying the
optimality conditions. The algorithm is initialized with < () andw < 0. The optimality
conditions can be satisfied with this initialization for sem, > 3,. The algorithm proceeds
to reducel, while satisfying the optimality conditions until, = /3, or some other termination
criteria is triggered. The other termination criteria weedsvere a maximum number of basis
functions ¢’) and a threshold on the change in the norm of the Bellmanuweaskitlote that’ and
0, are related.

The optimality conditions ensure that| = /3, for all basis functions in the active set. This
property is maintained by changing the weight vector acogrtb

Awy = (¥FD,(®7 — yP™®7) + 3,8 LD, Le7) " sigicr)

where sigricr) replaces the entries it with valuest1 depending on the sign. The change in the
weight vectorAwz dictates how the vecterchanges:

Ac= (9" D,(®7 — yP"®1) + 3, ®" LD,LO1) Aws.

The vectorAc allows one to compute if and when an inactive basis funcjigh Z will have a
valuec; that reaches the same value as those in the active set. TthadaBve basis function that
reaches this point is computed as:

+

[a*, j*] = [min™, argmin]; G =0 &+
J ’ itz AC]‘—17ACJ'+1
wheremin™ indicates the minimization is only over positive values,is the minimizing value,
and;* is the minimizing argument.

Before adding basis functioft to the active set, the LASSO-FP algorithm must check to see
whether an element in the active get 7 has a coefficienty; differing in sign withc; as such
an event would violate the optimality conditiohs he first active basis function that reaches this

point is computed as:

#H — [mint 1. _ W
[a™ j7] = [min ,argmln]3g< ij>‘

60ur terminology is slightly different from that used by Kedtand Ng [27]. Their LARS-TD algorithm is the
same as our LASSO-FP algorithm with), = 0. The distinction we draw between LARS and LASSO is whether th
algorithm only adds basis functions to the active set (LABRS)oth adds and removes basis functions (LASSO).

"Note this is the only difference between LASSO-FP and LARPSLARS-FP is not required to ensurg andc;
have the same sign. Therefore, LARS-FP does not removefoasisons from the active set.
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If all elements in the minimization are negative, thehis set toco. If the step sizev* < o, then
basis functionj* is added to the active set. If the reverse is true, then basiibn;# is removed
from the active set. Pseudocode for LARS-FP and LASSO-FReéngn Algorithm 5.

The LARS-FP and LASSO-FP algorithms adjust the coefficieatarw; in an equiangular
direction. This means that the residual is never made cdmiplerthogonal with the selected
basis functiongbz. A common “fix” to this issue is to enforce orthogonality orlc&RS-FP and
LASSO-FP terminate. We list this as an optional step at tloeogéthe Algorithm 5.

Algorithm 5. LARS- FP and LASSO FP wi t h Lapl aci an- based Regul ari zati on
Input: {s;,7,s;}" ,, samples generated using policy
¢: S — RE, Dbasis function
p: S — RT, weighting over the states
L, graph Laplacian defined over stafes}! ; (graph edges denoted with)
v € [0,1], discount factor
Bs € RT, Lj regularization parameter
Bm € RT, Laplacian-based regularization parameter
k' < K, maximum allowable number of basis functions
Output: Z, setof selected basis functions (indices injo
wz, weight vector such that (s) = ¢7(s) wz

¢ > iy p(si)p(si)ri
[Bs, %] « [max, argmax]; (|¢;|)
Initialize active se «— {j*}, w0

while (85 > 3;) and(|Z| < k') and(Bellman residual not converggdo
1. Compute weig[mt update directidxwyz:
Awr — A7 sign(er)
where: Az 7« S0 p(s:) [oz(s:)(0z(si) — vz ()T + Bmgz(si)gz(si)7]
9(si) < L(si, si) o(si)
g(sl) — 9(32) + L(Si7 Snbr) ¢(Snb7‘) v{snbr‘snbr % S /\ s~ Snbr}
2. Compute correlation update directige:

Ac >3 p(si) [ﬁb(si) (67(si) — vz (s))" Awg + B g(s3)g7 (s0)" sz}
3. Find step size to add element to active set:

+ . Cj—gs Cj“l‘Bs
, argmin] J¢T (Acrl » D41

4. Find step size to remove element from active set:
If (using LARS-FB, o « oo
Else, [oz#, j#] — [minJr,argmin]jeI (—;—J)j)
5. Updates,, wr, c:
a « min(a*, o™, Bs — Bs), PBs— Bs —a, wr <« wr+alwz, c—c—alc
6. Adjust active set:
If (o* <o), T —TU{j*}
Else, 7T T — {j#}
end while
OPTIONAL: wy AE}II}I where: by — Y7 p(si)dz(si)rs

[a*, j*] — [min
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4.2.4 Other Least-Squares Algorithms

The previous three sections described the OMP-FP, ORMRAPSO-FP, and LARS-FP algo-
rithms. Each algorithm can be changed to instead optimigeBR, H, and H least-squares
criteria. We describe here how the algorithms would changedet these different objectives. We
do this in detail for OMP and then simply highlight where tsen{ilar) changes need to be made
in ORMP, LASSO, and LARS.

The memory and computation requirements are identicallvenetsing the FP, BR, orHeast-
squares criteria. The hybrid algorithm, However requires more memory and computation time.
As shown in the equations below; iFequires forming two matrices of siz€ x K whereK is the
number of basis functions in the dictionary. This can be {itikiely large depending on the size
of the dictionary. Note that all basis selection algorithmtgen using FP, BR, and;Hlo not form
matrices larger thak’ x £’ wherek’ < K is specified by the user to be the maximum number of
basis functions that the algorithm can select.

The following four lines of Algorithm 3 (OMP-FP) would neeal ¢hange to accommodate the
objective functions of BR, I and H.

(1) The first timec is initialized.

BR | ¢ 370 p(si)(8(s:) — v9(s)))ri

Ha | e 371 p(si)(o(si) — Evo(s)))ri

Hi | ¢ b+ (1- 5)(AFP)TO_1[;FP

BBR — iy p(si)(o(s ) — yo(s}))ri

BFP — iy p(si)o(si)

AFP = ST p(si) [o(s )(<Z>( i) = 0(s)" + Bng(si)g(si)"]
C — 300y plsi)d(si)(si)"

(2) ComputingA; 7 in Step 3.

BR | A7z — Y1) p(si) [(6(si) — vbz(s)(dz(si) — v0z(s))T + Brmgr(si)gz(si)T]
(s
(

Hy | Azz < 30 p(si) [(é2(si) — §7¢I( N(@z(si) =0z ()T + Bmgz(si)gr(si)T]
Hy | Azz fAZI +(1 - A?DI) Z%A§%

ABE — ST p(si) [(¢2(s0) = v62(59))(¢2(50) = 162(5)T + Bmgz(s:)gz(si)"]
ALE <3 p(si) [¢z(s:) (D (si) — vz(s))T + Brmgz(si)gz(si)”]

Crz — Y, p(si)pz(si)pz(si)”

’L

£)
) ((
)
)
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(3) Computingpz in Step 3.

BR | by «— iy pl(si)(dz(si) — voz(s))ri
Hy | by — i, p(si)(dz(si) — éwz( DT
Hi | by — €b5" + (1 - €)(Af5)T Crpby”
B — I, plsi)(éx(s0) — 1oz(sL))r,
bEF — S p(si) bzl sz)n
(si) [0z
(si)61

AFP n
AI,I — i p(si
A n
Crz— > iy p(s

(si) = voz(s\)T + Bimgz(si)gz(si)']
(s ) ( i)’

(4) Updatingc in Step 5.

BR | ¢ — >y p(si) [(¢(si) — vo(si)) (i — (dz(si) — voz(s))) wr) — Bmg(si)gz(si) T ws]
Hy | ¢ 00 p(si) [(#(si) — Evo(s))) (ri — (dz(si) — voz(sh)) wr) — Bmg(si)gz(si) T ws]
Hi | c— §cpr + (1 - ‘f)(AFP)TCAPl

car = Dy p(si) [(B(si (s0)(ri = (9z(si) — voz(si) wr) — Bmg(si)gr(si) wr]
crp iz p(si) [o(si (Tz ¢1(s:) — v97(8})) wr) — Brmg(si)gz(si) wr]
AFE ST p(si) [(5i)(B(si) — ¥ ()T + Bmg(si)g(si)T]

C E?:l P(31)¢(51)¢)(51)

The changes to ORMP, LARS, and LASSO are very similar to trenghs made for OMP;
therefore, we just point out the lines that need to be edifed.ORMP, four lines would need to
change: computingz,, in Step 1, computinglz, , 7, in Step 1, computingl; 7 in Step 3, and
computingbz in Step 3. For LARS and LASSO, four lines would need to charge:first time
¢ is initialized, computingAz 7 in Step 1, computing\¢ in Step 2, and computinky at the final
optional step of the algorithm.

The ORMP algorithm merits further attention. This algamiths particularly interesting be-
cause it uses the least-squares method to determine whsthfhaction to include in the active

set. The best basis function is determined hygmax g, (b%ﬂAIjj z,,bz,, ). In other words,

ORMP considers the impact of each inactive basis functiotherleast-squares problem. When
the BR least-squares algorithm is used, the best basisduarist

j* « argmax <(b§fj)T(ABR_ )—1bIij>

e L5 Ly
— arirrzlax <(bBR )wafj)
— ar%;rzlax <(RW)TDP(®I+J' - VPW(I)IH)@U%I;)
— arg;;;ér%ax (R™, ‘A/Iﬁlj - vpﬁvzilpp

where(:, -),, denotes the-weighted inner product. This makes intuitive sense siheeBR least-
squares problem is fitting a functidi”* that minimizeg| R™ 4-yP™V*" — V"*|>. Now consider
the direct scheme for combining ORMP and the FP least-squagerithm. One can show the
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best inactive basis function for ORMP-FP istgmax;,; (R", VIiI;}p. This maximization does
not make sense since selecting basis functions using itesi@ieads to a value function that ap-
proximates the rewar®™. A simple idea to try to rescue ORMP-FP is to change the mastiun

to: argmax;,; ((bff]) (A7 7,.)” 7" ) Notice the use of the two different vectdr$®, and

b77,- This leads to selecting basis functions according degmax .7 (R™, VIFP - 7P”fo>
AIthough this is seemingly more valid than the original fodation, |t is still problematlc The un-
derlying problem is that the FP least-squares formulatimeschot correspond to any optimization
problem (i.e. the FP objective functidil,(R™ + vP™V"F) — V”’Hi can always be set tofor
any set of basis functions).

One must be careful when directly combining least-squaodisypevaluation algorithms and
basis selection algorithms. The result of this analysifiag ORMP-FP isiot valid but ORMP-
BR is valid. However, ORMP can be used with both FP and BR inntigect schemes that we
describe next.

4.3 Indirect Schemes

The indirect scheme uses an iterative approach to sparsexamate policy evaluation. The itera-
tive approach alternates between (1) setting the targetibmusing the Bellman backup operator,
and (2) representing the the target function using the Isedection algorithm. This potentially
makes the indirect scheme more computationally intensiaa the the direct scheme, but it frees
up the basis selection algorithm to choose the best basitidms for fitting the approximate value
function (instead of fitting the ordered elements in the Nanmseries). We describe the iterative,
indirect scheme in Algorithm 6. This is a general framewotkietr can utilize any sparse basis
selection (regression) algorithm. The sparse basis seteglgorithm is denoted as inpBSel (y)
wherey is the target function thaBSd fits using dictionaryp. For BSel, we evaluated the pure
regression versions of OMP, ORMP, LASSO, and LARS with thig erception being they were
augmented to include Laplacian-based regularization. piiie regression versions of OMP and
ORMP without regularization are described in Algorithm 2.

4.4 Approximating the Action-Value Function

The previous two sections described the direct and indselsemes for approximating the value
function. The same algorithms can also be used to approaithat action-value function. The
graph-based basis functions, which are defined just ovegsstaan be also used to approximate
the action-value function. This is accomplished by using blasis functions for each discrete
action. For example, consider a MDP with two actiomsanda,. The approximate action-value
function can take the form:
[ wzﬂl ] = (I)IUJI.
U)Za2

Q = Q:(’ CL1> = (I)Ial 0
Q(, a2) 0 &g,

Notice the approximate action-value function can use audfit set of basis functions for each

action: Q(-, a;) uses the basis functions indexedZy andQ(-, a,) uses basis functions indexed

by Z,,.

18



Algorithm 6: I ndi rect Schene for Sparse Approxinmate Policy Eval uation
Input: {s;,r,s;}",, samples generated using policy
¢: S — RE, Dbasis function
p: S — RT, weighting over the states
L, graph Laplacian defined over stafes}” ; (graph edges denoted with)
v € [0,1], discount factor
Bm € RT, Laplacian-based regularization parameter
maxzlter € N, maximum number of iterations
BSd (y), sparse basis selection algorithm that approximates a target fugction
using the dictionary). The termination criteria foBSel includes:
k' < K, maximum allowable number of basis functions
a threshold on the residug) — w||?
any other algorithm specific parameters (gigfor LARS/LASSO)
Output: Z, setof selected basis functions (indices injo
wr, Wweight vector such that (s) = ¢7(s) wr

Initialize active sefl «+ (), wr <« 0, iter 0

while (iter < maxIter) and(Bellman residual not convergedo
1. Form target vectoy using the Bellman backup:
yi — ri +v9z(s)) T wg Vi
2. Run the sparse basis selection (regression) algorithmgo fit
Z, wr] < BSel(y)
3. OPTIONAL: Adjustwz using one of the least-squares methods:
W7 “— AE}IZ;I
For example, if using FP least-squares method, then:
Azz — 31 p(si) [92(50)(@x(si) — 192(s))" + Bmgz(si)gz(s:)"]
br — 3271 p(si)dz(si)rs
4. Increment the iteration count:
iter «— iter + 1
end while

Algorithms 3, 4, 5, and 6 can be used with this definition withchanging any steps. However,
if these algorithms are used without changes, the numbelettd basis functions per action may
not be equal. For the MDP with two actions andas, this meansZ,, | will not necessarily be
equal to|Z,,|. It may be desirable to require the number of basis functpersaction to be equal
(or approximately equal). This constraint can easily beedd the indirect scheme (Algorithm
6) and to the direct schemes involving OMP and ORMP (Algangl8 and 4). It does not seem
possible to add this constraint to the direct scheme inaghiASSO and LARS (Algorithm 5)
without making other significant algorithmic changes.

Algorithms 3, 4, 5, and 6 can produce approximate actione/élinctions for a specific policy.
These algorithms can also be used within least-squaresyptaration (LSPI) [20] to compute an
approximation of@*. One LSPI iteration takes a batch of MDP samplesa;,r;, i}, and a
policy 7 and produces), an approximation of)™. The greedy policy implicitly defined b§) is
then used in the next iteration of LSPI.
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5 Policy Evaluation Experiments

The following components were varied in the experiments:

e |east-squares method (FP, BR, ang.H

basis selection method (OMP, ORMP, LASSO, and LARS).

scheme for sparse approximate policy evaluation (diredtiagirect).

amount of Laplacian-based regularizatigt),§.

dictionary (PVF and diffusion wavelet basis functions).

To get a solid understanding of how each component influetheggolicy evaluation problem,
we chose the 50 state chain MDP [20]. This domain is easilyalized. The problem consists of
50 statesq;,7 € [1,50]) and two actions moving the agent left (-~ s; 1) or right (s; ~> s;11).
Actions succeed with probability.8; failed actions result in staying in the same state (prdlgbi
0.1) or moving to the adjacent state in the opposite directioalfability 0.1). The reward function
is defined as-1 in statess;, ands,; and zero everywhere else. The discount factoris 0.9.

We consider the task of evaluating the optimal policy Rather than sampling from* to
generate a data set, we used the true m@deland R™" in the following experiments. This choice
was made to remove any influence that sampling may have orceagbonent that we vary so that
we can adequately compare and contrast performance.

The graph used to form the PVFs and diffusion wavelets ctmsis50 vertices with self-
edges and edges between “adjacent” vertices. The PVF wlgtiowhich was constructed using
the combinatorial Laplacian, consists of 50 global basiefions. The diffusion wavelet tree was
constructed using the parameter 10~*. The number of scaling and wavelet functions is shown
in Table 5. We evaluated three dictionaries constructenh fiilois tree. The first dictionary con-

Tree Levelj | [vj—1| | |oj]
1 0 50
2 9 41
3 13 28
4 7 21
5 5 16
6 5 11
7 3 8
8 2 6
9 2 4

10 1 3

Table 1:Number of wavelet and scaling functions at each tree level for the 50cttate MDP.

sisted of all 235 functions in the tree (47 wavelet and 188rsgéunctions). The second dictionary
consisted of the 135 functions at tree level 3 or greater (88et and 97 scaling functions). The
100 extra functions in the first dictionary consist of vergdtized basis functions as well as some
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oscillatory functions. Note that both the first and secordficinaries are overcomplete, so select-
ing elements from these dictionaries can lead to linear widgece in the basis functions. The
third dictionary consisted of all 47 wavelet functions ahd 8 scaling functions at tree level 10.
This third dictionary is orthonormal whereas the first twatdinaries are overcomplete. A fur-
ther optimization that we did not pursue would be to seleet'best” such orthonormal dictionary
(amongst the 10 possible orthonormal dictionaries) irst#gust using the dictionary that reaches
to tree level 10.

To help navigate the figures at the back of this paper, Tableobiges a list of the figures
indexed by scheme, algorithm, and dictionary. The next $&ations describe the results in detalil.
The reader may find it easier to read the summary of the resuiection 6 before going into the
finer details.

Figure Scheme Algorithm Dictionary

1 Direct OMP-FP, LASSO-FP PVFs

2 Direct OMP-BR, ORMP-BR, LASSO-BR PVFs

3 Direct OMP-H, PVFs

4 Indirect FP & BR OMP PVFs

5 Indirect FP & BR ORMP PVFs

6 Indirect FP & BR LASSO PVFs

7 Direct OMP-FP, LASSO-FP, LARS-FP 235 Diffusion Wavelets

8 Direct OMP-FP, LASSO-FP, LARS-FP 135 Diffusion Wavelets

9 Direct OMP-FP, LASSO-FP 50 Orthog. Diffusion Wavelets
10 Direct ORMP-BR 235 Diffusion Wavelets

11 Direct OMP-BR, ORMP-BR, LASSO-BR 135 Diffusion Wavelets

12 Direct OMP-BR, ORMP-BR, LASSO-BR 50 Orthog. Diffusion Wavelet$
13 Indirect FP OMP, ORMP, LASSO, LARS 235 Diffusion Wavelets

14 Indirect FP OMP, ORMP, LASSO, LARS 135 Diffusion Wavelets

15 Indirect FP OMP, ORMP, LASSO 50 Orthog. Diffusion Wavelets
16 Indirect BR OMP, ORMP, LASSO, LARS 235 Diffusion Wavelets

17 Indirect BR OMP, ORMP, LASSO, LARS 135 Diffusion Wavelets

18 Indirect BR OMP, ORMP, LASSO 50 Orthog. Diffusion Wavelets

Table 2: List of figures.

5.1 Direct Schemewith PVF Dictionary

Figure 1 shows results using OMP-FP and LASSO-FP. We vahiecainount of regularization
(6, = 0 andf,,, = 0.1) and the number of basis functions (4, 8, and 12) that therigthgas could
select. For LASSO-FP, we also present results where theradtorthogonalization step at the end
of Algorithm 5 is used (Orthog.) and not used (Not Orthog.inc® LASSO-FP did not remove
any basis functions from the active set in this experimeéptaduces identical results to LARS-FP.
In all of the figures in this paper, if there is no plot involgiARS, that is because LARS and
LASSO produced identical results.
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The two figures in the top row of Figure 1 are for OMP-FP with amithout Laplacian-
based regularization. The results with regularizatioradiedemonstrate the potential benefits
the smoothness assumption can have on basis selectionthedsirect scheme. The two figures
in the second row of Figure 1 show the LASSO-FP results witltioel optional orthogonalization
step. Notice how the approximate value functions have smagnitude. This is due to the con-
servative nature of the LASSO algorithm’s equiangular apph. The two figures in the third row
show the same approximate value functions as those in tlimdeow, but with the y-axis limits
adjusted to show finer detail. The two figures in the last rowiglure 1 show the LASSO-FP
results with the optional orthogonalization step. Quéliely, OMP-FP seems to perform slightly
better than LASSO-FP on this problem.

Figure 2 shows results using OMP-BR, ORMP-BR, and LASSO-B# regularization pa-
rameter was set t3,, = 0 and(,, = 0.1. Notice that OMP-BR and LASSO-BR did not perform
well. We show results using 20 basis functions, which is nthean enough for an excellent ap-
proximation of the value function. On the other hand, ORMRBoduced good approximations.
The true value function is almost exactly fit using 12 basixfions and no regularization. When
using 4 or 8 basis functions, Laplacian-based reguladnatmooths out some of the jaggedness
of the approximate value functions.

Recall the hybrid algorithm Huses a parametérthat causes the algorithm to produce the
same results as FP whén= 0 and BR whert = 1. Figure 3 shows results using OMR-End
LASSO-H,. Intermediate values gfbetween 0 and 1 tend to produce approximate value functions
between the extremes produced by the FP and BR algorithms.

5.2 Indirect Schemewith PVF Dictionary

The experiments in this section were all conducted usin@dtigm 6 under three conditions. First,
the while loop in Algorithm 6 was executed for 10 iteratioBg&cond, we used a single termination
criterion for the basis selection algorithm. The algoritetopped when it had selected a specified
number of basis functions. Third, we always used the optithiia step in Algorithm 6 which is

to set the weights on the selected features using a leaatesymethod. We used the BR and FP
least-squares methods. Since BR and FP produced simildtsiese do not report results using
the hybrid method Kl

Figure 4 shows results using the OMP algorithm with both tRea®d FP least-squares meth-
ods. The regularization was again varied by settipg= 0 andj,, = 0.1. Likewise, the number
of basis functions was varied between 4, 8, and 12. The plothe left of Figure 4 show the
final approximate value function and the plots on the riglivsithe norm of the Bellman error
|T™(®7wr) — ®rwz||?* after each iteration of Algorithm 6. We just show the Bellneror plots
for the OMP algorithm to point out that the Bellman error ig nmnotonically decreasing. The
Bellman error plots for ORMP and LASSO were very similar togh for OMP.

Figures 5 and 6 show results using the ORMP and LASSO alguasittespectively. LARS
is now shown because it was identical to LASSO. ORMP, LASS@, @MP all achieved very
similar performance for both the FP and BR least-squarebadst The only noticeable difference
was when just 4 basis functions were used. In this case, fr@@éimate value function using the
FP least-squares method proved to be smoother than thefualcteon learned using BR.

The indirect scheme for sparse approximate policy evalnagpierformed well for all basis
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selection algorithms and both the FP and BR least-squardsnse The same cannot be said for
the direct scheme. The direct scheme worked well for OMP4#PLEASSO-FP (although not as
well as their indirect versions) and for ORMP-BR. As we shawitie next two sections, this split
(OMP and LASSO performing well with FP under the direct sckemith ORMP performing well
with BR) also held up when using the diffusion wavelet dictoy.

5.3 Direct Scheme with Diffusion Wavelet Dictionary

Figures 7, 8, and 9 show the results using OMP-FP, LASSO+#®PLARS-FP with the three
different diffusion wavelet dictionaries. The dictionacgntaining all 235 scaling and wavelet
functions is used for Figure 7, the dictionary containing &85 scaling and wavelet functions
beyond tree level 3 is used for Figure 8, and the orthonornaéilbdiary is used for Figure 9. We
varied the amount of regularization,{ = 0 andg3,, = 0.1) and the number of basis functions (4,
8, and 12) that the algorithms could select.

The two figures in the top row of Figure 7 are for OMP-FP with anthout Laplacian-based
regularization. Notice the approximate value functionmated using 12 basis functions (with
Gm = 0) is unstable. This occurs because the maJlélq;xlZ became nearly singular. The result-
ing value functions were slightly more stable wheép = 0.1. The results using LASSO-FP and
LARS-FP were nearly identical. When the optional orthogmadion step was not used, the ap-
proximate value functions tracked the shape of the trueevalaction well. LASSO-FP produced
more accurate approximations using 8 and 12 basis fundi@msLARS-FP when the orthogonal-
ization step was used.

The approximate value functions shown in Figure 8 are forfnau a less expressive, but still
overcomplete, dictionary than those in Figure 7. Interggy, the results using OMP-FP were
better while those using LASSO-FP and LARS-FP were worses Tand continued with the
approximate value functions shown in Figure 9. In Figure MIFBFP produced even more accu-
rate approximate value functions than those shown in Fi§ushile LASSO-FP produced worse
approximations. This trend is best explained by highligiptihe difference between OMP-FP’s
aggressive behavior and LASSO-FP’s conservative beha@dtP-FP fully utilizes the selected
basis functions®z, by forcing®; to be orthogonal with the Bellman residual. This lead to anst
ble behavior given the most expressive diffusion waveletioinary. The conservative LASSO-FP
updates help to maintain stability.

Figures 10, 11, and 12 show the results using OMP-BR, ORMP&d LASSO-BR with
the three diffusion wavelet dictionaries. Just like witle fAVF dictionary, the only algorithm that
performed well was ORMP-BR. The approximate value funditormed using 8 and 12 basis
functions were similar across all three dictionaries. Thé/amoticeable difference was when 4
basis functions were used. In that case, the approximate Wahctions learned using the over-
complete dictionaries were much more accurate than theoappate value function learned using
the orthonormal dictionary.

5.4 Indirect Scheme with Diffusion Wavelet Dictionary

Algorithm 6 was used for all the experiments in this sectioder the same conditions described
in Section 5.2 when using the PVF dictionary. To save spaeejust show the approximate
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value functions estimated without regularization. The actpof Laplacian-based regularization
(6,» = 0.1) was similar to that shown in Figures 4, 5, and 6 when usind®¥ME dictionary.

Figures 13, 14, and 15 show the results using the OMP, ORMBS@®, and LARS algorithms
with the FP least-squares method. For OMP and ORMP, the sippaite value functions formed
from the orthonormal diffusion wavelet dictionary are srt@y and more accurate than those
formed from the overcomplete dictionaries. LASSO and LABSthe other hand, produce accu-
rate approximate value functions using 8 and 12 basis fonstirom all three diffusion wavelet
dictionaries. When only 4 basis functions are used, LASSOLs®RS produce much better ap-
proximate value functions when using the orthonormal diwdry (compared to the overcomplete
dictionaries).

Figures 16, 17, and 18 show the results using OMP, ORMP, LAS8® LARS with the BR
least-squares method. All four selection algorithms poedaccurate approximate value functions
when using 12 basis functions. The only exception was OMPhwising the dictionary of 135
scaling and wavelet functions beyond tree level three. Phdicular approximate value function
had the correct shape but smaller magnitude. When using 8 faasitions, LASSO and LARS
produced accurate value functions for all three dicticggmwhile OMP and ORMP only performed
well using the orthonormal dictionary and the 135 elemeantialary. The only time 4 basis
functions resulted in an accurate approximate value fanatias when the orthonormal dictionary
was used. This held true for all four selection algorithms.

6 Summary and Future Work

Proto-value functions and diffusion wavelets are grapsebabasis functions that capture topo-
logical structure of the MDP state space. The basis funstaye independent of any policy and
therefore can be used to approximate any policy’s valuetfomcA mechanism is required though
to select a subset of the basis functions for approximatwegwee function. The previous approach
to using PVFs and diffusion wavelets used the following $asiection heuristic: the most global
functions were selected regardless of the policy beinguatall. This heuristic is simple and leads
to smooth approximations, but it does not fully utilize thragh-based dictionaries. To make bet-
ter use of the dictionaries, a sparse basis selection #igomust be combined with approximate
policy evaluation. In this paper, we evaluated a schemedimattly combines basis selection
and policy evaluation and a scheme that indirectly combihem via an iterative process. Both
schemes are general and can be used with any set of basi®fisdi/e considered least-squares
policy evaluation algorithms based on the fixed-point mdthbe Bellman residual minimization
method, and a hybrid method [18]. We augmented the leastregualgorithms with a regulariza-
tion term that penalizes non-smoothness[26]. This fornegtifarization is provided by the graph
Laplacian, which is also used in the construction of PVFs diffdsion wavelets. For the basis
selection algorithm, we implemented orthogonal matchiagpit (OMP), order recursive match-
ing pursuit (ORMP), and LASSO and LARS. A systematic studg w@nducted on a simple chain
MDP to determine the most promising way(s) of combining ¢hesrious components. From these
experiments, we summarize with the following six findings.

1. We showed that the direct scheme for sparse approximaty pwaluation, when combined
with the fixed-point least-squares method, constrains tderdn which a basis selection
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algorithm selects elements from a dictionary. The orderngtated by the elements in the
Neumann seriesy ;- (vP™)'R". This can lead to the selection of basis functions that fit
some of the early terms in the series, but are in fact not Usafrepresenting the underlying
value function. Of course, an algorithm like LASSO that canne basis functions has the
possibility of removing basis functions that become usel@ée indirect scheme for sparse
approximate policy evaluation sidesteps this issue byraéipg the Bellman equation from
the basis selection algorithm. This adds computationalptexity, but frees up the basis
selection algorithm to represent the value function in trteoit sees fit.

. The graph Laplacian, which is used in constructing PVesdaffusion wavelets, can also be
used to provide regularization. This was accomplished lojyrada term to the least-squares
policy evaluation objective functions. Laplacian-basedularization can help smooth out
the approximate value function. It also provides a bias tdvenoother basis functions in

the dictionary. This bias can be helpful when using the dsebeme for sparse approximate
policy evaluation. We speculate that in an online settingyay be beneficial to adjust the

amount of regularization over time as more samples are seen.

. For direct sparse approximate policy evaluation with an ortbrmal dictionary:

OMP-FP produce accurate approximations and outperford&S50-FP. The approximate
value functions had small magnitude for LASSO-FP withoatdlthogonalization step at the
end of Algorithm 5. The only algorithm that worked using thellBhan residual least-squares
method was ORMP-BR. This was an interesting result that slume must be careful when
combining basis selection and approximate policy evabmegigorithms.

. For direct sparse approximate policy evaluation with an @eenplete dictionary:

OMP-FP became unstable in some of the experiments. This eemibe the least-squares
matrix Ailz became nearly singular. The algorithm could be made monestdiy checking
the condition number of the matrix before including a newidasction. The more conser-
vative nature of LASSO-FP and LARS-FP produced accuratecappate value functions
(without the orthogonalization step at the end of AlgoritBjn The magnitude of the value
functions was much greater compared to those using an anthwi dictionary. ORMP-
BR remained the only algorithm that worked when using thérBah residual least-squares
method.

. For indirect sparse approximate policy evaluation with ath@normal dictionary:

OMP, ORMP, and LASSO all produced accurate approximateevaloctions while using
both the fixed-point and Bellman residual least-square$ioast The results were particu-
larly impressive when using a very small number of basistions. Overall, the results were
noticeably better than using an orthonormal dictionanhwiite direct scheme for sparse ap-
proximate policy evaluation. This confirms the hypothelsé the indirect scheme can select
a more efficient set of basis functions than the direct scheme

. For indirect sparse approximate policy evaluation with armomplete dictionary:
OMP, ORMP, and LASSO all produced accurate approximateevialoctions while using
both the FP and BR least-squares methods when allowed ebasgfunctions. The result-
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ing value functions were much worse than those producedywsirorthonormal dictionary
when using a small number of basis functions.

The experiments in this paper partially demonstrate thessgiveness and flexibility of the dif-
fusion wavelet dictionary. However, we believe the truareadf diffusion wavelets will be evident
on more challenging value functions with discontinuitiesl different degrees of smoothness. For
future work, it would be worthwhile further decomposing th#usion wavelet tree using diffusion
wavelet packets [28]. This increases the size of the diatipand provides even more flexibility
for function approximation. Another area for future workasdesign a faster sparse QR algorithm
that would help scale diffusion wavelets to larger problems
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APPENDIX

We described the OMP-FP, ORMP-FP, LASSO-FP, and LARS-FP algwitis forming the matrixizl
and the vectobz. Then each of the algorithms invert the matﬁxl. This is very wasteful when the active
setZ only changes by one element at a time. To take advantage of the single eleseetibn and removal,
Af,lz can be incrementally formed using the following partitioned matrix inverse prpp@éonsider a square
matrix A’ partitioned as follows:

s { A b ]

' d
where matrixA is squarep andc are vectors, and is a scalar. Then the inverse df can be computed
from the inverse ofA as:
A, (e AL+ AT A7) —A71p
a —cTA™T 1
wheree = (d — ¢’ A=1p)~1. Computing4’~* in this manner has quadratic complexity instead of cubic.

OMP-FP, ORMP-FP, LASSO-FP, and LARS-FP can exploit this progsrtmaintaining the matrixflglI
When inserting a new elemejit into Z, the update is as follows:

IT—TU{j*}
) (A% 4upArt Ag oA 7A7Y) —uie AL Ag e
A-l T.T G AT AL g Ag* I AT T J* AT 1T,
7,7 A AL .
uje Aje 1 AI,I U=
. b
br — [ oz
j*

where

Uj* — (121]* g A* IAE]i—AI,j*)il

HHZp [67+ (80)(65+ (81) = ¥y (1) + Bungy (1) (s:)]

Agje — Z p(si) [¢1(5i)(¢j+ (8i) — v (57)) + Bmgz(si)gs= (si)]

=1

Ajs IHZP ) [¢5(50) (02 (s) = 107())" + Bings (s)97(5:)" ]

=1

Similarly, when LASSO-FP removes an elemﬁﬁtfrom 7, the matrixflglz can be shrunk with the follow-
ing update:

T —1-{j*}
Partition the currentA; 7 N to isolate the influence of
; %

i1 T
AZ,I — U - xj#yj#/zj#.
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Figure 1: Results of OMP-FP and LASSO-FP with the PVF dicrgn
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setting the coefficients. The PVF dictionary was used.
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Figure 7: Results of OMP-FP, LASSO-FP, and LARS-FP using the diffusion wadétéionary with all

235 scaling and wavelet functions.
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Figure 8: Results of OMP-FP, LASSO-FP, and LARS-FP using the diffusion waditéonary with the
135 scaling and wavelet functions beyond tree level 3.
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Figure 9: Results of OMP-FP and LASSO-FP using the diffusion wavelet dictiondtty all the wavelet
functions and just the scaling functions at tree level 10.
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Figure 12:Results of OMP-BR, ORMP-BR, and LASSO-BR using the diffusion wa\ditgionary with
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Figure 13: Results using the indirect scheme with FP. The diffusion wavelet dictionahydad all 235
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Figure 14:Results using the indirect scheme with FP. The diffusion wavelet dictionelydad 135 scaling
and wavelet functions beyond tree level 3.
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Figure 15:Results using the indirect scheme with FP. The diffusion wavelet dictioneiydad all wavelet
functions and just the scaling functions at tree level 10.
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Figure 16:Results using the indirect scheme with BR. The diffusion wavelet dictionatyded all 235
scaling and wavelet functions.
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Figure 17: Results using the indirect scheme with BR. The diffusion wavelet dictionatyded 135
scaling and wavelet functions beyond tree level 3.
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Figure 18:Results using the indirect scheme with BR. The diffusion wavelet dictionahyded all wavelet
functions and just the scaling functions at tree level 10.
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