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Abstract

Proto-value functions and diffusion wavelets are graph-based basis functions that capture
topological structure of the MDP state space. A subset of these basis functions must be se-
lected when approximating value functions in order to maintain computational efficiency and
prevent overfitting. We evaluated four basis selection algorithms for performing this task. This
is an enhancement over the previously used heuristic of always selectingthe most global, or
smoothest, subset of basis functions regardless of the policy being evaluated. We analyzed two
schemes, one direct and one indirect, for combining basis selection and approximate policy
evaluation. The indirect scheme requires more computation than the direct scheme, but gains
flexibility in the manner in which basis functions are selected. The coefficientsapplied to the
basis functions were set using least-squares methods. We also described how least-squares
methods can be altered to include regularization. Laplacian-based regularization provides a
bias toward smoother approximate value functions which can prevent overfitting and can be
useful in stochastic domains. A thorough set of experiments was conducted on a simple chain
MDP to understand how basis selection and the different least-squares policy evaluation algo-
rithms impact one another. Although the experiments used graph-based basis functions, the
algorithms described in this paper can be applied to any set of basis functions.

1 Introduction

Value function based reinforcement learning (RL) algorithms estimate the long-term expected
value of each state or state-action pair. To scale RL algorithms to large and continuous domains,
the value function must be approximated with acompactrepresentation. The precise form of
this representation is crucial in determining the success or failure of any learning algorithm. Con-
structing a useful representation has typically been an iterative, domain-dependent process. Recent
work, however, has sought to automate this process in a dynamic, domain-independent fashion
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[1, 2, 3, 4, 5]. Basis construction, feature generation, andrepresentation discovery are all differ-
ent names referring to this same task of generating a representation used to approximate a value
function.

To date, RL feature construction algorithms can be categorized into two types1: one that itera-
tively generates basis functions based upon the current function approximation error [1, 4, 5] and
the other that generates a dictionary of basis functions based upon a state space analysis [2, 3].
Note the latter type requires aselectionstrategy to determine which elements from the dictionary
to utilize. We focus on the dictionary approach to basis construction, and the diffusion wavelet
construction [3, 6] in particular, for three reasons. First, a dictionary offers the flexibility of ap-
proximating value functions associated with many different policies. The other basis construction
type iteratively generates basis functions for fitting justa single policy and must start over when-
ever the policy is changed. Second, there is significant interest in the machine learning community
on methods for generatingdata-dependent dictionaries[7, 8, 6, 9, 10]. By creating algorithms that
operate on such dictionaries, we can naturally leverage future advances. Third, of the two basis
construction methods based upon a state space analysis, diffusion wavelets appear to have been
overlooked in the literature despite their excellent representational capabilities. We hope that our
evaluation of diffusion wavelets in this paper encourages further investigation by other researchers.

Two techniques have been explored for generating basis functions based upon a state space
analysis of a Markov decision process (MDP): proto-value functions (PVFs) [2] and, as just men-
tioned above, diffusion wavelets [3]. We refer collectively to both PVFs and diffusion wavelets as
graph-based basis functionssince both are generated from a graph. The graph, which is thetangi-
ble output of the state space analysis, encodes state similarity. Proto-value functions are generated
from a Fourier-style decomposition of the graph Laplacian [11]. As such, PVFs areglobal basis
functions that span the space of all possible square-integrable functions on the graph. Diffusion
wavelets are a generalization of classical wavelets to manifolds and graphs. They are associated
with amultiscalediffusion process. At small scales, diffusion wavelet bases capture local features
over the graph, while the features are more global at larger scales. The entire set of diffusion
wavelet bases is anovercompleterepresentation for functions on the graph or manifold. Thus, a
basis selection mechanism is required for determining a subset of basis functions to use for func-
tion approximation. This promotes sparsity and computational efficiency while also preventing
overfitting. All previous applications of graph-based basis functions have used the same basis se-
lection heuristic of always using the most global, or smoothest, basis functions. This heuristic is
independent of the policy being evaluated, meaning that allvalue functions are represented with
the same set of basis functions. Using just the smoothest basis functions has the advantages of
being computationally simple and robust to overfitting (although too much regularization can be
just as problematic as too little regularization), but it does not exploit the full power of the basis
function dictionary. One goal of this paper is to explore different selection mechanisms that better
utilize the dictionary.

We evaluated four sparse basis selection algorithms: orthogonal matching pursuit (OMP) [12],
order recursive matching pursuit (ORMP) [13], the LASSO [14], and least angle regression (LARS)
[15]. We tested the selection algorithms using the graph-based basis functions as a dictionary, but
the algorithms can be used withanyset of basis functions. Each algorithm returns a subset of basis
functions from the dictionary and a scalar coefficient associated with each selected basis function.

1We focus here on techniques forexplicitlyconstructing features.
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The selected basis functions and coefficients are linearly combined to produce an approximate
value function. We tested two different schemes for combining approximate policy evaluation and
basis selection. The factor distinguishing these two schemes is whether the basis selection algo-
rithm directly or indirectly considers the Bellman equation. This distinction will be made more
clear in Section 4 of this paper; however, to provide some motivation now, we note that these two
schemes differ in terms of sparsity (how many basis functions are used in the approximate value
function) and computational efficiency. To assess the combination of basis selection and approxi-
mate policy evaluation, experiments were conducted on a simple MDP using least-squares policy
evaluation method. An additional contribution this paper makes is to employ Laplacian-based
regularization to the least-squares methods.

2 MDPs and Policy Iteration

A discrete Markov decision process (MDP)M = 〈S,A, P,R〉 is a four-tuple consisting of a set of
statesS, a set of actionsA, a state transition functionP (s, a, s′) yielding the probability of moving
from states ∈ S to states′ ∈ S given actiona ∈ A, and a reward functionR(s, a, s′) specifying
a scalar reward upon the transition. We also consider MDPs with continuous state spaces, but
for ease of exposition the remainder of this section holds for the discrete case. Given a policyπ
mapping states to actions, letP π be a matrix withP π(i, j) = P (i, π(i), j) and letRπ be a vector
with Rπ(i) =

∑

j P
π(i, j)R(i, π(i), j). The value functionV π is a vector that solves the Bellman

equationV π = Rπ + γP πV π := T π(V π) whereT π : R
|S| → R

|S| is the Bellman operator. An
optimal policy π∗ induces a value functionV ∗ with the propertyV ∗(s) ≥ V π′

(s) for all states
s ∈ S and any policyπ′. V ∗ is the optimal value function, which is unique for the MDP.

Policy iteration [16] is one of the principal algorithms used to determine the optimal value
function and an optimal policy. One round of policy iteration consists of two phases: policy
evaluation and policy improvement. Policy evaluation involves computingV π for some policy
π. Policy improvement then computes a new policyπg that is greedy with respect toV π (i.e.
πg(s) = argmaxa T

a(V π(s)) ∀s). The new policyπg is then used at the beginning of the next
round of policy iteration. This process is guaranteed to converge in a finite number of rounds.

When an exact representation ofV π is infeasible, the value function must be approximated. We
consider linear function approximation where a value function V̂ is expressed as a linear combina-
tion of basis functions. This is written̂V = Φw wherew ∈ R

K is an adjustable parameter vector
andΦ = [Φ1| . . . |ΦK ] ∈ R

|S|×K with each columnΦ(:, j) = Φj being a basis function and each
row Φ(i, :) = φ(si)

T being a state feature vector. It is typical for the number of free parameters to
be much smaller than the number of states,K ≪ |S|.

Approximate policy evaluation algorithms take as input a set of basis functionsΦ and produce
a weight vectorw for the approximation̂V = Φw. We consider least-squares algorithms due to
their sample efficiency. Two common least-squares algorithms are the fixed-point (FP) algorithm
(also referred to as the least-squares temporal difference(LSTD) algorithm [17]) and the Bellman
residual (BR) minimization algorithm. The BR algorithm computes a value function that approx-
imatesV π by minimizing the Bellman residual‖T π(V̂ ) − V̂ ‖2ρ. The notation‖ · ‖2ρ indicates the
squaredL2 norm with distributionρ and‖ · ‖2 indicates a squaredL2 norm that is unweighted.
The FP algorithm produces an approximate value function by minimizing theprojectedBellman
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residual‖ΠρT
π(V̂ )− V̂ ‖2ρ. Πρ is a projection operator which, for linear subspacesΦ, is defined as

Πρ = Φ(ΦTDρΦ)−1ΦTDρ whereDρ is a diagonal matrix with elementsρ. The solutions produced
by the two algorithms have the form̂VFP = ΦA−1

FP
bFP andV̂BR = ΦA−1

BR
bBR where:

AFP = ΦTDρ(Φ− γP
πΦ)

bFP = ΦTDρR
π

ABR = (Φ− γP πΦ)TDρ(Φ− γP
πΦ)

bBR = (Φ− γP πΦ)TDρR
π. (1)

Johns et al. [18] showed that an entire spectrum of least-squares algorithms exists with the FP
solution at one end and the BR solution at the other.Hybrid solutions can be found between the two
extremes by considering a convex combination of the FP and BRobjectives. Johns et al. described
two hybrid algorithmsH1 andH2 which also have the form̂VH1

= ΦA−1
H1
bH1

andV̂H2
= ΦA−1

H2
bH2

where:

AH1
= (Φ− γP πΦ)TDρ (ξI + (1− ξ)Πρ) (Φ− γP πΦ)

bH1
= (Φ− γP πΦ)TDρ (ξI + (1− ξ)Πρ)R

π

AH2
= (Φ− ξγP πΦ)TDρ(Φ− γP

πΦ)

bH2
= (Φ− ξγP πΦ)TDρR

π (2)

given the constantξ ∈ [0, 1]. AlgorithmsH1 andH2 produce the FP solution whenξ = 0 and the
BR solution whenξ = 1.

The square matricesAFP , ABR, AH1
, andAH2

haveK rows and columns. WhenK is large,
it may be infeasible to form sample-based estimates of the matrices. This issue is one of the
motivating factors for sparse basis selection. If only a small subset of basis functions are necessary
for approximating a value function, then these matrices canbe much smaller and performing matrix
inversion can become feasible.

Although we describe the basis selection algorithms in thispaper using value functions, they
are easily extended to approximating action-value functions. The action-value functionQπ ∈
R

|S||A| is defined as the expected value of being in states, taking actiona, and and then following
policy π thereafter. Note that approximate action-value functions(Q̂ = Φw) have basis functions
that are defined over state-action space. Graph-based basisfunctions, which are defined over the
state space, can be used to approximate action-value functions by handling each discrete action
separately. As an example, consider an action-value function with two discrete actionsa1 anda2.
The approximate action-value function can be represented as Q̂(·, a1) = Φwa1

and Q̂(·, a2) =
Φwa2

where the same basis functionsΦ are used for both actions. An alternative to this scheme is
to define the basis functions directly over state-action space [19]. Given a set of samples from a
MDP, the least-squares policy iteration (LSPI) [20] algorithm is used to produce an approximation
of the optimal action-value function. LSPI alternates between approximate policy evaluation (i.e.
estimatingQπ with Q̂) and policy improvement. We assume policy improvement simply selects
the greedy policy implicit inQ̂ (i.e. greedy policyπg(s) = argmaxa Q̂(s, a)∀s). Farahmand et al.
[21] have analyzed aregularizedversion of the LSPI algorithm.
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3 Previous Work

3.1 Basis Construction from Graphs

Mahadevan and Maggioni [2, 3] proposed two techniques for generating a dictionary of basis
functions based upon a state space analysis. The analysis isperformed on a graph data structure
where vertices correspond to states and edges connect neighboring states. Note the graph can
represent either discrete or continuous state MDPs. Given this graph, a dictionary is created by
either computing diffusion wavelets [3, 6] or proto-value functions [2].

We begin with a brief description of the PVF construction before addressing diffusion wavelets.
LetW be a symmetric, positive weight matrix representing the state graph.W (i, j) = 0 indicates
there is no edge between statessi andsj whileW (i, j) > 0 indicates the strength of the connection
betweensi andsj. The valency matrixD is a diagonal matrix whose values are the row sums of
the weight matrix (D(i, i) =

∑

j W (i, j)). The combinatorial graph Laplacian is defined asL =

D−W and the normalized graph Laplacian isL = I−D−0.5WD−0.5 [11]. SinceW is symmetric,
the eigenvectors of both Laplacians form a complete orthonormal basis. The eigendecomposition
is L = ΦΛΦT where the columns ofΦ are the eigenvectors andΛ is a diagonal matrix containing
the eigenvalues. Note that in Section 2 the symbolΦ referred to a set of basis functions; we
purposefully reuseΦ here because the Laplacian eigenvectors are the proto-value functions. Given
the complexity of the eigenvector computation, it is typical for large graphs to only compute the
eigenvectors associated with the smallest eigenvalues as those are thesmoothesteigenvectors over
the graph2. If a subset of eigenvectors is computed, then the dictionary is incomplete.

Like Laplacian eigenvectors, diffusion wavelets are constructed from a neighborhood graph
over the state space. Diffusion wavelets are amultiscale, overcompleterepresentation. They ef-
ficiently represent powers of a diffusion operator on the graph. The diffusion operator is defined
asT = (I −L ) with powersT t, t > 0. To make the diffusion aspect more obvious, this can be
rewrittenT = D−0.5WD−0.5 = D0.5PD−0.5 whereP = D−1W is a stochastic matrix represent-
ing a random walk (diffusion process) on the graph. Note thatP is conjugatealong with its powers
to T ; thus, studyingT andP are equivalent in terms of spectral properties. It is computationally
easier to deal withT since it is symmetric. Small powers ofT t correspond to short-term behavior
in the diffusion process and large powers correspond to long-term behavior. Diffusion wavelets are
naturally multiscale basis functions because they accountfor increasing powers ofT t. We give a
brief sketch of the diffusion wavelet algorithm; a more thorough description can be found in the
original paper [6]. Aside from matrixT , the other inputs to the algorithm areJ , the maximum
number of levels to compute,ǫ, a precision parameter, andSpQR(A, ǫ), a sparse QR algorithm that
outputs (sparse) matricesQ andR such thatA =ǫ QR (i.e. the columns ofQ ǫ-span the columns
of A). The outputs of the algorithm are a set of scaling functions{φj} and wavelet functions{ψj}
at different levels/scales. As the levelj gets larger, the number of scaling and wavelet functions
gets smaller because the diffusion process spreads out and becomes more compressible. Algo-
rithm 1 shows the details of the construction and uses the following notation: [T ]φb

φa
is a matrix

representingT with respect to the basisφa in the domain andφb in the range (nb × na matrix) and
2Smoothness of a functionf on the graph can be measured by the Dirichlet sum:〈f, Lf〉 =

∑

u∼v W (u, v) (f(u)− f(v))
2 whereu ∼ v is an edge in the graph. For a Laplacian eigenvectorφ, the Dirichlet

sum is〈φ,Lφ〉 = λ. Thus, smaller eigenvalues correspond to smoother eigenvectors.
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Algorithm 1: DiffusionWaveletTree

Input: [T ]φ0

φ0
, φ0, J, SpQR, ǫ

Output: {φj}
J
j=0, {ψj}

J−1
j=0

for j = 0 to (J − 1) do
[φj+1]φj

, [T 2j

]
φj+1

φj
← SpQR([T 2j

]
φj

φj
, ǫ)

[T 2j+1

]
φj+1

φj+1
← [T 2j

]
φj+1

φj
([T 2j

]
φj+1

φj
)∗

[ψj]φj
← SpQR(I〈φj〉 − [φj+1]φj

([φj+1]φj
)∗, ǫ)

end for

[φb]φa
is a set of functionsφb represented on the basisφa (na × nb matrix). Note that the scaling

functions[φj]φj−1
provide a mapping from levelj − 1 to level j. In order to view the functions

in the original basisφ0 (which is usually assumed to be the unit basis), the mapping is unrolled to
give [φj]φ0

= [φj]φj−1
[φj−1]φj−2

. . . [φ1]φ0
[φ0]φ0

.
There are at least two ways to form a dictionary of basis functions given the diffusion wavelet

tree. One approach is to include all the scaling functions{φj}
J
j≥jmin

and the wavelet functions
{ψj}

J−1
j=jmin−1 above a minimum leveljmin > 0. Specifying a minimum level can be useful for

both computational reasons (to control the size of the dictionary) and because some of the scal-
ing functions at lower tree levels can have a large gradient,thus providing challenges for robust
function approximation. The second approach is to select anorthonormal dictionary from the set
of possible orthonormal dictionaries. In this approach, a dictionary consists of the scaling func-
tions at levelj∗ ∈ [1, 2, . . . , J ], φj∗, and all the wavelet functions from leveljmin up to level
(j∗ − 1), {ψj}

j∗−1
j=jmin

. There are techniques for finding the best such dictionary given a function to
be approximated. We evaluate both approaches to constructing a diffusion wavelet dictionary.

3.2 Basis Selection for Regression

We provide a brief introduction to the basis selection problem and a few of the major algorithms
since the literature is vast. The basic formulation is that there is a signaly ∈ R

N to be represented
with elements from an overcomplete dictionaryΦ ∈ R

N×K . Each basis functionΦj ∈ R
N has

unit norm. The problem is to find a vectorw such thatΦw = y.3 The decomposition ofy is not
unique; therefore, additional constraints are added to prefer solutions with certain qualities (e.g.
sparseness, independence).

Two popular approaches to the sparse regression problem arematching pursuit and basis pur-
suit. Matching pursuit is an iterative, greedy algorithm whereas basis pursuit is an optimization
principle (that can be solved using any appropriate algorithm). Therefore, matching pursuit and
basis pursuit are not mutually exclusive approaches to sparse regression.

Matching pursuit (MP) [22] is a greedy algorithm that selects elements sequentially to best
capture the signal. The algorithm begins with a coefficient vectorw equal to all zeros and a
residual vectoryres equal to the signaly. The first element is selected by scanning the dictionary
and finding the largest correlation with the residual:j∗ ← argmaxj |Φ

T
j yres|, j ∈ [1, K]. The

3The model could also include a noise term,Φw + e = y.
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coefficient for the selected basis function is adjusted:wj∗ ← wj∗ + ΦT
j∗yres. Then the residual

signal is computedyres ← yres − (ΦT
j∗yres)Φj∗ and the process iterates. With MP, a basis function

can be selected many times. There are other variants of MP, two of which are orthogonal matching
pursuit (OMP) [12] and order recursive matching pursuit (ORMP) [13]. OMP differs from MP
in the way the residual signal is computed. OMP makes the residual orthogonal to the selected
dictionary elements, which means OMP will never select the same dictionary element more than
once whereas MP can. ORMP goes even further than OMP and adds the orthogonalization step
into the selection process. Moghaddam et al. [23] proposed an efficient implementation of ORMP
(using partitioned matrix inverse techniques [24]) and showed that sparse least-squares regression
is equivalent to a generalized eigenvalue problem.

Algorithm 2 is a side-by-side comparison of the pseudocode for MP, OMP, and ORMP. We use
the symbolI to refer to a set of indices in[1, K] that indicate the elements of the dictionaryΦ that
are selected by the algorithm. Similarly,wI refers to the scalar coefficients applied to the selected
basis functions. Basis functions that are not selected havea scalar coefficient of 0. Thus, the signal
y is approximated asΦ(:, I)w(I) = ΦIwI .

Algorithm 2: MP, OMP, and ORMP
Input: Φ, y
Output: I, wI such that̂y ← ΦIwI

I ← ∅, ,w ← 0, yres ← y

while (not done)do
For MP: j∗ ← argmaxj |Φ

T
j yres|

wj∗ ← wj∗ + ΦT
j∗yres

If (wj∗ 6= 0), I ← I ∪ {j∗}. Else, I ← I − {j∗}
yres ← yres − (ΦT

j∗yres)Φj∗

For OMP: j∗ ← argmaxj /∈I |Φ
T
j yres|

I ← I ∪ {j∗}
wI ← (ΦT

I ΦI)−1ΦT
I y

yres ← y − ΦIwI

For ORMP: j∗ ← argminj /∈I ‖ΦI+j
(ΦT

I+j
ΦI+j

)−1ΦT
I+j

y − y‖2 where: I+j ← I ∪ {j}

I ← I ∪ {j∗}
wI ← (ΦT

I ΦI)−1ΦT
I y

end while

Matching pursuit finds a sparse representation by greedily selecting the most promising ele-
ments. In contrast, basis pursuit (BP) [25] achieves sparsity by finding solutions to the following
optimization problem:min ‖w‖1 such thatΦw = y. Sparsity of the solution comes from the use
of L1 norm. The BP problem can be solved using linear programming.Note the hard constraint
Φw = y is appropriate when the signal is noiseless. When the signal is noisy, it is appropriate
to require‖Φw − y‖2 to be small. The LASSO (least absolute shrinkage and selection opera-
tor) [14] implements this noisy version of basis pursuit in the following optimization problem:
min ‖y − Φw‖2 subject to‖w‖1 ≤ k. The LASSO can be solved using quadratic programming;
however, a more efficient solution is to use the recently introduced least angle regression (LARS)
algorithm [15] with a minor modification. LARS selects elements from the dictionary one at a
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time (which is the same way the matching pursuit algorithms work). The first element selected is
the one that is most correlated with the signaly. Then LARS proceeds until another element has
as much correlation with the current residual. At that point, LARS includes this second element
and then proceeds in a directionequiangularbetween the first two elements. This strategy is less
greedy than other algorithms that sequentially add dictionary elements. Interestingly, a small mod-
ification to the LARS algorithm produces the LASSO solution.While LARS by itself only adds
basis functions at each step, this modification for LASSO gives the algorithm the ability to remove
basis functions from the selected subset as well.

We evaluated the OMP, ORMP, LASSO, and LARS algorithms. It iseasy to control the sparsity
of each of these algorithms by limiting the number of basis functions that can be selected.

4 Basis Selection For Approximate Policy Evaluation

The basis selection problem involves choosing elements from a dictionary to efficiently represent
a target signal. The approximate policy evaluation problemis to represent the true value function
V π with an accurate approximation̂V . If V π were known, then basis selection could simply be
performed with the target signal beingV π. However,V π only becomes known through the Bellman
equation:V π = Rπ + γP πV π = T π(V π). Thus, some framework is needed that effectively
combines approximate policy evaluation (i.e. finding an accurate approximation̂V ) and basis
selection (i.e. efficiently representinĝV ). There are at least two ways to achieve this combination.
The two schemes differ in how they use the Bellman equation. The first scheme uses the Bellman
equation within the basis selection algorithm. This means that when the basis selection algorithm
adjusts the weight vectorw, this not only changes the approximationΦw but alsochanges the
target signal based on a function of the Bellman equation. Wecall this the direct scheme because
the selection algorithm directly encodes the Bellman equation. The second, or indirect, scheme
doesnotuse the Bellman equation within the basis selection algorithm. Rather, there is an iterative
process that alternates between (1) setting the target signal using the Bellman equation, and (2)
representing the target signal using the basis selection algorithm. These two schemes are described
below in a very general form wheref (T π(Φw′)− Φw′) is some functionf of the Bellman residual
(the least-squares algorithms FP, BR, H1, and H2 use different functionsf ).

Direct Scheme
[I, wI ]← BasisSelectionw′ (f (T π(Φw′)− Φw′))
OPTIONAL: wI ← SetWeightsw′ (f (T π(ΦIw

′)− ΦIw
′))

V̂ ← ΦIwI

Indirect Scheme
I ← ∅, wI ← ∅
while (not converged)

targety ← T π(ΦIwI)
[I, wI ]← BasisSelectionw′ (y − Φw′)
OPTIONAL: wI ← SetWeightsw′ (f (T π(ΦIw

′)− ΦIw
′))

V̂ ← ΦIwI

8



The direct and indirect schemes differ in their computational complexity and degree of sparsity.
The computational complexity of the indirect scheme has thepotential to be greater than the direct
scheme because it iteratively calls the basis selection algorithm. This could be wasteful when the
target signal given to the basis selection algorithm does not change significantly between iterations.
On the other hand, the direct scheme, by using the Bellman residual as the target function for the
basis selection algorithm, forces the regression algorithm to follow a specific path. To see this,
consider the beginning of the basis selection algorithm when no basis functions have yet been
selected. The Bellman residual is equal to the immediate reward functionRπ. This means the
first basis function selected is attempting to fit the immediate reward. For the sake of argument,
assume the first basis function exactly fits the immediate reward. Now the Bellman residual is
equal to the Bellman backup of the immediate reward,(T π(Rπ) − Rπ) = γP πRπ. This same
logic can be used inductively to show the basis selection process proceeds in order of the elements
in the Neumann series,

∑∞
i=0(γP

π)iRπ.4 Attempting to fit the elements in the Neumann series
can lead to inefficient use of the basis functions. This occurs when there is structure inV π that
does not exist in the Neumann series; hence, the basis selection algorithm is unable to exploit the
structure. Since the indirect scheme is not confined to this path, it has the potential to use fewer
basis functions when representing the eventual approximate value function̂V .

As an example of the potential inefficiency of the direct scheme, consider an undiscounted,
deterministic chain MDP with an absorbing state at one end ofthe chain. Assume the reward
function is 0 everywhere except+1 at the absorbing state. The optimal value function is a constant
function equaling 1 in each state, but the Neumann series is asequence of delta functions from
one end of the chain to the other. Given a dictionary consisting of all the delta functions and a
constant function, a basis selection algorithm implementing the direct scheme will select all the
delta functions rather than the constant function. This maybe an extreme example, but it is not
uncommon for a MDP to have a spiky reward function that would cause similar behavior. Note
this behavior can be particularly problematic for the multiscale diffusion wavelet dictionary where
very localized basis functions (that are not necessary for representingV π) can get selected before
larger scale basis functions.

Before outlining the basis selection algorithms within thedirect and indirect schemes, we first
describe how we augmented the least-squares algorithms to include Laplacian-based regulariza-
tion.

4.1 Least-Squares Methods with Laplacian-based Regularization

In Section 2, four least-squares algorithms were describedfor approximate policy evaluation.
Those four algorithms compute approximate value functionsthat minimize a loss function as-
sociated with the Bellman residual. Here, we include an additional loss function thatregularizes
the solution. We specifically use adata-dependentform of regularization that uses the graph
Laplacian [26]. This is in fact the same graph Laplacian usedto produce PVFs and diffusion
wavelets. Laplacian-based regularization has been applied with great success to semi-supervised
learning problems where the geometric structure of unlabeled data points can be exploited. To un-
derstand how the graph Laplacian provides regularization,consider again the Dirichlet sum which

4For a bounded operatorT , the Neumann series is defined as
∑

∞

i=0
T i. One can show

∑

∞

i=0
T i = (I−T )−1. The

value functionV π can be defined using the Neumann series asV π = (I − γPπ)−1Rπ =
∑

∞

i=0
(γPπ)iRπ.
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was described in a footnote in Section 3.1. Given functionf , the Dirichlet sum is〈f, Lf〉 =
∑

u∼v W (u, v) (f(u)− f(v))2. The Dirichlet sum is large whenf is not smooth according to the
structure of the graph. For functions that are smooth, the Dirichlet sum is small. Thus, the Lapla-
cian can be used to penalize (regularize) functions that arenot smooth according to the structure
of the MDP state space that is encoded in the graph.

As a concrete example, consider the fixed-point least-squares algorithm. FP’s loss function is
based on the projected Bellman residual. We augment that loss function with a Laplacian-based
regularization (LR) term as follows:

wFP,LR = argmin
w′∈RK

1

2
‖ΠρT

π(Φw′)− Φw′‖2ρ +
βm

2
‖LΦw′‖2ρ (3)

whereβm ∈ R
+ is a parameter controlling the influence of the regularization term. It is easy to

show thatwFP,LR = A−1
FP,LR

bFP,LR where:

AFP,LR = ΦTDρ(Φ− γP
πΦ) + βmΦTLDρLΦ

bFP,LR = ΦTDρR
π. (4)

Notice thatbFP,LR = bFP andAFP,LR = AFP + βmΦTLDρLΦ. Laplacian-based regularization has
this same effect on the three other least-squares algorithms (BR, H1, and H2). Given a sample
〈s, π(s), r, s′〉 from the MDP, estimates of the matrixAFP,LR and vectorbFP,LR can be formed using
the following updates:

b̂FP,LR ← b̂FP,LR + ρ(s)φ(s)r

ÂFP,LR ← ÂFP,LR + ρ(s)
[

φ(s)(φ(s)− γφ(s′))T + βmg(s)g(s)
T
]

.

The termg(s) in the updates is computed as:

g(s)← L(s, s)φ(s)

g(s)← g(s) + L(s, snbr)φ(snbr) ∀{snbr|snbr 6= s ∧ s ∼ snbr in graph}.

A common assumption is that MDP state space graphs are sparsely connected. This means that
any states has at most a few neighboring statessnbr in the graph. In this case, the time to compute
g(s) is negligible. Of course, if the basis functionsφ(s) are the PVFs, then the eigendecomposition
LΦ = ΦΛ can be exploited to simplify the computation asg(s)← Λφ(s).

4.2 Direct Schemes

The next three sections outline the OMP-FP algorithm (i.e. OMP for basis selection and FP for
setting the coefficients), the ORMP-FP algorithm, and the LASSO-FP and LARS-FP algorithms.
Laplacian-based regularization is used in each algorithm.The LASSO-FP and LARS-FP algo-
rithms are nearly identical, so we describe them simultaneously. It is important to point out that
all of these algorithms can easily be adapted to use the BR, H1, or H2 least-squares methods rather
than FP. We simply chose to illustrate the algorithms using the FP least-squares method because
that is the most common technique used in the literature.
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Each algorithm takes as input a set of MDP samples{si, ri, s
′
i}

n
i=1, the discount factorγ, the

dictionaryΦ of basis functions, the graph LaplacianL along with the regularization parameterβm,
a distributionρ over the states for weighting the least-squares problem, and a maximum allowable
number of basis functionsk′ that the algorithm can select. Each algorithm returns a set of indices
I into the columns ofΦ and scalar coefficientswI such that the approximate value functionV̂ =
ΦIwI . The sparsity of the solution is directly controlled by limiting the basis selection algorithm
to at most|I| ≤ k′ basis functions. The parameterk′ also limits the basis selection algorithm’s
computation and memory usage. Since the selection algorithm builds up sample-based estimates
of the least-squares data structures (e.g.Â−1

FP,LR
andb̂FP,LR), the size of the data structures cannot

be larger thank′. This can be very important when the number of basis functions in the dictionary
is large. To further speed up OMP-FP, ORMP-FP, LASSO-FP, andLARS-FP, we take advantage
of the fact that the algorithms insert or remove one basis function at a time to the active setI.
The matrix Â−1

I,I can be incrementally formed. However, to keep the pseudocode simple, the
algorithms are not shown with this improvement. The appendix describes how the algorithms can
incrementally updatêA−1

I,I .
The OMP-FP and ORMP-FP algorithms terminate when eitherk′ basis functions have been

selected or when the change in the norm of the Bellman residual goes beneath a threshold.5 The
LASSO-FP and LARS-FP algorithms use both of those termination conditions as well as one other
condition (related to the parameterk′) that we discuss in that section.

4.2.1 OMP

Algorithm 3 shows the direct approach for combining orthogonal matching pursuit and the fixed-
point least-squares algorithm with Laplacian-based regularization. The algorithm maintains a
sample-based estimate of the vectorc where

cj =
[

ΦTDρR
π − ΦTDρ(Φ− γP

πΦ)w − βmΦTLDρLΦw
]

j

=
[

ΦTDρR
π − ΦTDρ(ΦI − γP

πΦI)wI − βmΦTLDρLΦIwI

]

j
. (5)

This equation forcj is based on the FP least-squares method. If a different algorithm is used (BR,
H1, H2), thencj will have a different form. These changes are discussed in Section 4.2.4.

Each iteration of OMP-FP selects a new basis function to add to the active set by findingj /∈ I
that maximizes|cj|. Then the weightswI are adjusted to make the residual orthogonal toΦI .

4.2.2 ORMP

Algorithm 4 shows the direct approach for combining ORMP andthe FP least-squares algorithm
with Laplacian-based regularization. We present Algorithm 4 using FP to be consistent with our
presentations of OMP-FP, LASSO-FP, and LARS-FP. This helpsmake the pseudocode more read-
able since the FP least-squares data structures are identical from one algorithm to the next. How-
ever, as we show later in Section 4.2.4, it is only valid to combine ORMP and the BR least-squares
method. Section 4.2.4 also describes the changes that must occur to switch from FP to BR.

5Using the terminology described in the algorithm boxes, thesquared norm of the Bellman residual is written
∑n

i=1
ρ(si)

[

ri − (φI(si) + βm gI(si)− γφI(s′i))
TwI

]2

. The change in the norm of the Bellman residual can easily
be computed when inserting or removing a new basis function from the active setI.
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Algorithm 3: OMP-FP with Laplacian-based Regularization
Input: {si, ri, s

′
i}

n
i=1, samples generated using policyπ

φ : S → R
K , basis function

ρ : S → R
+, weighting over the states

L, graph Laplacian defined over states{si}
n
i=1 (graph edges denoted with∼)

γ ∈ [0, 1], discount factor
βm ∈ R

+, Laplacian-based regularization parameter
k′ ≤ K, maximum allowable number of basis functions

Output: I, set of selected basis functions (indices intoφ)
wI , weight vector such that̂V (s) = φI(s)TwI

c←
∑n

i=1 ρ(si)φ(si)ri
Initialize active setI ← ∅

while (|I| < k′) and(Bellman residual not converged) do
1. Find most correlated inactive element:

j∗ ← argmaxj /∈I(|cj |)
2. Adjust active set:

I ← I ∪ {j∗}
3. ComputeÂI,I andb̂I :

ÂI,I ←
∑n

i=1 ρ(si)
[

φI(si)(φI(si)− γφI(s′i))
T + βmgI(si)gI(si)

T
]

b̂I ←
∑n

i=1 ρ(si)φI(si)ri

where: g(si)← L(si, si)φ(si)
g(si)← g(si) + L(si, snbr)φ(snbr) ∀{snbr|snbr 6= s ∧ s ∼ snbr}

4. Compute least-squares weights:
wI ← Â−1

I,I b̂I
5. Compute updated correlations:

c←
∑n

i=1 ρ(si)
[

φ(si)
(

ri − (φI(si)− γφI(s′i))
TwI

)

− βm g(si)gI(si)
TwI

]

end while

The ORMP algorithm works by considering the impact each inactive basis function has on the
least-squares problem. We use the terminologyI+j to indicate the inclusion of basis functionj in
the active set (i.e.I+j ← I ∪{j}). The first step of Algorithm 4 determines the best inactive basis

functionj /∈ I that maximizes
(

b̂TI+j
Â−1

I+j ,I+j
b̂I+j

)

.

However, it was pointed out by Moghaddam et al. [23] that it isactually faster to find the inac-

tive basis function that maximizes
(

b̂TI+j
Â−1

I+j ,I+j
b̂I+j
− b̂TI Â

−1
I,I b̂I

)

because some of the interme-

diate computation cancels out. The intermediate terms cancel due to properties of the partitioned

matrix inverse. Note that since the extra term
(

b̂TI Â
−1
I,I b̂I

)

is independent of all inactive basis

functions, it does not alter the result of the maximization problem. ORMP-FP then inserts the best
basis function into the active set, updatesÂ−1

I,I andb̂I , and iterates.
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Algorithm 4: ORMP-FP with Laplacian-based Regularization
Input: {si, ri, s

′
i}

n
i=1, samples generated using policyπ

φ : S → R
K , basis function

ρ : S → R
+, weighting over the states

L, graph Laplacian defined over states{si}
n
i=1 (graph edges denoted with∼)

γ ∈ [0, 1], discount factor
βm ∈ R

+, Laplacian-based regularization parameter
k′ ≤ K, maximum allowable number of basis functions

Output: I, set of selected basis functions (indices intoφ)
wI , weight vector such that̂V (s) = φI(s)TwI

Initialize active setI ← ∅

while (|I| < k′) and(Bellman residual not converged) do
1. Find best inactive element:

j∗ ← argmaxj /∈I

(

b̂TI+j
Â−1

I+j ,I+j
b̂I+j

)

where: I+j ← I ∪ {j}

b̂I+j
←

∑n
i=1 ρ(si)φI+j

(si)ri

ÂI+j ,I+j
←

∑n
i=1 ρ(si)[φI+j

(si)(φI+j
(si)− γφI+j

(s′i))
T + . . .

βmgI+j
(si)gI+j

(si)
T ]

where: g(si)← L(si, si)φ(si)
g(si)← g(si) + L(si, snbr)φ(snbr) ∀{snbr|snbr 6= s ∧ s ∼ snbr}

2. Adjust active set:
I ← I ∪ {j∗}

3. ComputeÂI,I andb̂I :
ÂI,I ←

∑n
i=1 ρ(si)

[

φI(si)(φI(si)− γφI(s′i))
T + βmgI(si)gI(si)

T
]

b̂I ←
∑n

i=1 ρ(si)φI(si)ri
4. Compute least-squares weights:

wI ← Â−1
I,I b̂I

end while

4.2.3 LASSO and LARS

To achieve sparsity, the LASSO algorithm takes the loss function from Equation 3 and includes a
L1 constraint on the coefficient vector. This takes the form:

wFP,LR = argmin
w′∈RK

1

2
‖ΠρT

π(Φw′)− Φw′‖2ρ +
βm

2
‖LΦw′‖2ρ + βs‖w

′‖1 (6)

whereβs ∈ R
+ is a regularization parameter that dictates the sparsity ofthe solution. Larger

values ofβs result in a coefficient vectorw with more zero entries. In fact, there exists a value of
βs for which the resulting vectorw has all zero entries.

Kolter and Ng [27] recently proposed using the LASSO algorithm with the FP least-squares
method. Our description of the algorithm and its derivationfollows along the same lines as their
paper. The only exception is that we consider Laplacian-based regularization and they did not.

13



Therefore, our LASSO-FP algorithm withβm = 0 exactly coincides with their algorithm.6

The minimization problem in Equation 6 can be converted intothe following set of optimality
conditions:

−βs ≤ cj ≤ βs ∀j

cj = βs ⇒ wj ≥ 0

cj = −βs ⇒ wj ≤ 0

−βs < cj < βs ⇒ wj = 0 (7)

where variablecj is defined according to Equation 5. The LASSO-FP algorithm continually adjusts
the weight vector (by adding or subtracting basis functionsfrom the active set) while satisfying the
optimality conditions. The algorithm is initialized withI ← ∅ andw ← 0. The optimality
conditions can be satisfied with this initialization for some β̄s > βs. The algorithm proceeds
to reduceβ̄s while satisfying the optimality conditions until̄βs = βs or some other termination
criteria is triggered. The other termination criteria we used were a maximum number of basis
functions (k′) and a threshold on the change in the norm of the Bellman residual. Note thatk′ and
βs are related.

The optimality conditions ensure that|cI | = β̄s for all basis functions in the active set. This
property is maintained by changing the weight vector according to

∆wI =
(

ΦT
IDρ(ΦI − γP

πΦI) + βmΦT
ILDρLΦI

)−1
sign(cI)

where sign(cI) replaces the entries incI with values±1 depending on the sign. The change in the
weight vector∆wI dictates how the vectorc changes:

∆c =
(

ΦTDρ(ΦI − γP
πΦI) + βmΦTLDρLΦI

)

∆wI .

The vector∆c allows one to compute if and when an inactive basis functionj /∈ I will have a
valuecj that reaches the same value as those in the active set. The first inactive basis function that
reaches this point is computed as:

[α∗, j∗] = [min+, argmin]j /∈I

(

cj − β̄s

∆cj − 1
,
cj + β̄s

∆cj + 1

)

wheremin+ indicates the minimization is only over positive values,α∗ is the minimizing value,
andj∗ is the minimizing argument.

Before adding basis functionj∗ to the active set, the LASSO-FP algorithm must check to see
whether an element in the active setj ∈ I has a coefficientwj differing in sign withcj as such
an event would violate the optimality conditions.7 The first active basis function that reaches this
point is computed as:

[α#, j#] = [min+, argmin]j∈I

(

−
wj

∆wj

)

.

6Our terminology is slightly different from that used by Kolter and Ng [27]. Their LARS-TD algorithm is the
same as our LASSO-FP algorithm withβm = 0. The distinction we draw between LARS and LASSO is whether the
algorithm only adds basis functions to the active set (LARS)or both adds and removes basis functions (LASSO).

7Note this is the only difference between LASSO-FP and LARS-FP. LARS-FP is not required to ensurewj andcj
have the same sign. Therefore, LARS-FP does not remove basisfunctions from the active set.
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If all elements in the minimization are negative, thenα# is set to∞. If the step sizeα∗ < α#, then
basis functionj∗ is added to the active set. If the reverse is true, then basis functionj# is removed
from the active set. Pseudocode for LARS-FP and LASSO-FP is given in Algorithm 5.

The LARS-FP and LASSO-FP algorithms adjust the coefficient vectorwI in an equiangular
direction. This means that the residual is never made completely orthogonal with the selected
basis functionsΦI . A common “fix” to this issue is to enforce orthogonality onceLARS-FP and
LASSO-FP terminate. We list this as an optional step at the end of the Algorithm 5.

Algorithm 5: LARS-FP and LASSO-FP with Laplacian-based Regularization
Input: {si, ri, s

′
i}

n
i=1, samples generated using policyπ

φ : S → R
K , basis function

ρ : S → R
+, weighting over the states

L, graph Laplacian defined over states{si}
n
i=1 (graph edges denoted with∼)

γ ∈ [0, 1], discount factor
βs ∈ R

+, L1 regularization parameter
βm ∈ R

+, Laplacian-based regularization parameter
k′ ≤ K, maximum allowable number of basis functions

Output: I, set of selected basis functions (indices intoφ)
wI , weight vector such that̂V (s) = φI(s)TwI

c←
∑n

i=1 ρ(si)φ(si)ri
[

β̄s, j
∗
]

← [max, argmax]j (|cj |)
Initialize active setI ← {j∗}, w ← 0

while (β̄s > βs) and(|I| ≤ k′) and(Bellman residual not converged) do
1. Compute weight update direction∆wI :

∆wI ← Â−1
I,I sign(cI)

where: ÂI,I ←
∑n

i=1 ρ(si)
[

φI(si)(φI(si)− γφI(s′i))
T + βmgI(si)gI(si)

T
]

g(si)← L(si, si)φ(si)
g(si)← g(si) + L(si, snbr)φ(snbr) ∀{snbr|snbr 6= s ∧ s ∼ snbr}

2. Compute correlation update direction∆c:

∆c←
∑n

i=1 ρ(si)
[

φ(si) (φI(si)− γφI(s′i))
T ∆wI + βm g(si)gI (si)

T ∆wI

]

3. Find step size to add element to active set:

[α∗, j∗]←
[

min+, argmin
]

j /∈I

(

cj−β̄s

∆cj−1
,

cj+β̄s

∆cj+1

)

4. Find step size to remove element from active set:
If (using LARS-FP), α# ←∞

Else,
[

α#, j#
]

←
[

min+, argmin
]

j∈I

(

−
wj

∆wj

)

5. Updateβ̄s, wI , c:
α← min(α∗, α#, β̄s − βs), β̄s ← β̄s − α, wI ← wI + α∆wI , c← c− α∆c

6. Adjust active set:
If (α∗ < α#), I ← I ∪ {j∗}
Else, I ← I − {j#}

end while
OPTIONAL: wI ← Â−1

I,I b̂I where: b̂I ←
∑n

i=1 ρ(si)φI(si)ri
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4.2.4 Other Least-Squares Algorithms

The previous three sections described the OMP-FP, ORMP-FP,LASSO-FP, and LARS-FP algo-
rithms. Each algorithm can be changed to instead optimize the BR, H1, and H2 least-squares
criteria. We describe here how the algorithms would change to meet these different objectives. We
do this in detail for OMP and then simply highlight where the (similar) changes need to be made
in ORMP, LASSO, and LARS.

The memory and computation requirements are identical whether using the FP, BR, or H2 least-
squares criteria. The hybrid algorithm H1 however requires more memory and computation time.
As shown in the equations below, H1 requires forming two matrices of sizeK ×K whereK is the
number of basis functions in the dictionary. This can be prohibitively large depending on the size
of the dictionary. Note that all basis selection algorithmswhen using FP, BR, and H1 do not form
matrices larger thank′ × k′ wherek′ ≤ K is specified by the user to be the maximum number of
basis functions that the algorithm can select.

The following four lines of Algorithm 3 (OMP-FP) would need to change to accommodate the
objective functions of BR, H1, and H2.

(1) The first timec is initialized.

BR c←
∑n

i=1 ρ(si)(φ(si)− γφ(s′i))ri

H2 c←
∑n

i=1 ρ(si)(φ(si)− ξγφ(s′i))ri

H1 c← ξb̂BR + (1− ξ)(ÂFP )T Ĉ−1b̂FP

b̂BR ←
∑n

i=1 ρ(si)(φ(si)− γφ(s′i))ri

b̂FP ←
∑n

i=1 ρ(si)φ(si)ri

ÂFP ←
∑n

i=1 ρ(si)
[

φ(si)(φ(si)− γφ(s′i))
T + βmg(si)g(si)

T
]

Ĉ ←
∑n

i=1 ρ(si)φ(si)φ(si)
T

(2) ComputingÂI,I in Step 3.

BR ÂI,I ←
∑n

i=1 ρ(si)
[

(φI(si)− γφI(s′i))(φI(si)− γφI(s′i))
T + βmgI(si)gI(si)

T
]

H2 ÂI,I ←
∑n

i=1 ρ(si)
[

(φI(si)− ξγφI(s′i))(φI(si)− γφI(s′i))
T + βmgI(si)gI(si)

T
]

H1 ÂI,I ← ξÂBR

I,I + (1− ξ)(ÂFP

I,I)T Ĉ−1
I,IÂ

FP

I,I

ÂBR

I,I ←
∑n

i=1 ρ(si)
[

(φI(si)− γφI(s′i))(φI(si)− γφI(s′i))
T + βmgI(si)gI(si)

T
]

ÂFP

I,I ←
∑n

i=1 ρ(si)
[

φI(si)(φI(si)− γφI(s′i))
T + βmgI(si)gI(si)

T
]

ĈI,I ←
∑n

i=1 ρ(si)φI(si)φI(si)
T
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(3) ComputinĝbI in Step 3.

BR b̂I ←
∑n

i=1 ρ(si)(φI(si)− γφI(s′i))ri

H2 b̂I ←
∑n

i=1 ρ(si)(φI(si)− ξγφI(s′i))ri

H1 b̂I ← ξb̂BR

I + (1− ξ)(ÂFP

I,I)T Ĉ−1
I,I b̂

FP

I

b̂BR

I ←
∑n

i=1 ρ(si)(φI(si)− γφI(s′i))ri

b̂FP

I ←
∑n

i=1 ρ(si)φI(si)ri

ÂFP

I,I ←
∑n

i=1 ρ(si)
[

φI(si)(φI(si)− γφI(s′i))
T + βmgI(si)gI(si)

T
]

ĈI,I ←
∑n

i=1 ρ(si)φI(si)φI(si)
T

(4) Updatingc in Step 5.

BR c←
∑n

i=1 ρ(si)
[

(φ(si)− γφ(s′i))(ri − (φI(si)− γφI(s′i))
TwI)− βmg(si)gI(si)

TwI

]

H2 c←
∑n

i=1 ρ(si)
[

(φ(si)− ξγφ(s′i))(ri − (φI(si)− γφI(s′i))
TwI)− βmg(si)gI(si)

TwI

]

H1 c← ξcBR + (1− ξ)(ÂFP )T Ĉ−1cFP

cBR ←
∑n

i=1 ρ(si)
[

(φ(si)− γφ(s′i))(ri − (φI(si)− γφI(s′i))
TwI)− βmg(si)gI(si)

TwI

]

cFP ←
∑n

i=1 ρ(si)
[

φ(si)(ri − (φI(si)− γφI(s′i))
TwI)− βmg(si)gI(si)

TwI

]

ÂFP ←
∑n

i=1 ρ(si)
[

φ(si)(φ(si)− γφ(s′i))
T + βmg(si)g(si)

T
]

Ĉ ←
∑n

i=1 ρ(si)φ(si)φ(si)
T

The changes to ORMP, LARS, and LASSO are very similar to the changes made for OMP;
therefore, we just point out the lines that need to be edited.For ORMP, four lines would need to
change: computinĝbI+j

in Step 1, computinĝAI+j ,I+j
in Step 1, computinĝAI,I in Step 3, and

computingb̂I in Step 3. For LARS and LASSO, four lines would need to change:the first time
c is initialized, computingÂI,I in Step 1, computing∆c in Step 2, and computinĝbI at the final
optional step of the algorithm.

The ORMP algorithm merits further attention. This algorithm is particularly interesting be-
cause it uses the least-squares method to determine which basis function to include in the active

set. The best basis function is determined by:argmaxj /∈I

(

bTI+j
A−1

I+j ,I+j
bI+j

)

. In other words,

ORMP considers the impact of each inactive basis function onthe least-squares problem. When
the BR least-squares algorithm is used, the best basis function is:

j∗ ← argmax
j /∈I

(

(bBR

I+j
)T (ABR

I+j ,I+j
)−1bBR

I+j

)

← argmax
j /∈I

(

(bBR

I+j
)TwBR

I+j

)

← argmax
j /∈I

(

(Rπ)TDρ(ΦI+j
− γP πΦI+j

)wBR

I+j

)

← argmax
j /∈I

〈Rπ, V̂ BR

I+j
− γP πV̂ BR

I+j
〉ρ

where〈·, ·〉ρ denotes theρ-weighted inner product. This makes intuitive sense since the BR least-
squares problem is fitting a function̂V BR that minimizes‖Rπ + γP πV̂ BR− V̂ BR‖2ρ. Now consider
the direct scheme for combining ORMP and the FP least-squares algorithm. One can show the
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best inactive basis function for ORMP-FP is:argmaxj /∈I 〈R
π, V̂ FP

I+j
〉ρ. This maximization does

not make sense since selecting basis functions using this criteria leads to a value function that ap-
proximates the rewardRπ. A simple idea to try to rescue ORMP-FP is to change the maximization

to: argmaxj /∈I

(

(bBR

I+j
)T (AFP

I+j ,I+j
)−1bFP

I+j

)

. Notice the use of the two different vectorsbBR

I+j
and

bFP

I+j
. This leads to selecting basis functions according to:argmaxj /∈I 〈R

π, V̂ FP

I+j
− γP πV̂ FP

I+j
〉ρ.

Although this is seemingly more valid than the original formulation, it is still problematic. The un-
derlying problem is that the FP least-squares formulation does not correspond to any optimization
problem (i.e. the FP objective function‖Πρ(R

π + γP πV̂ FP ) − V̂ FP‖2ρ can always be set to0 for
any set of basis functions).

One must be careful when directly combining least-squares policy evaluation algorithms and
basis selection algorithms. The result of this analysis is that ORMP-FP isnot valid but ORMP-
BR is valid. However, ORMP can be used with both FP and BR in theindirect schemes that we
describe next.

4.3 Indirect Schemes

The indirect scheme uses an iterative approach to sparse approximate policy evaluation. The itera-
tive approach alternates between (1) setting the target function using the Bellman backup operator,
and (2) representing the the target function using the basisselection algorithm. This potentially
makes the indirect scheme more computationally intensive than the the direct scheme, but it frees
up the basis selection algorithm to choose the best basis functions for fitting the approximate value
function (instead of fitting the ordered elements in the Neumann series). We describe the iterative,
indirect scheme in Algorithm 6. This is a general framework which can utilize any sparse basis
selection (regression) algorithm. The sparse basis selection algorithm is denoted as inputBSel(y)
wherey is the target function thatBSel fits using dictionaryΦ. For BSel , we evaluated the pure
regression versions of OMP, ORMP, LASSO, and LARS with the only exception being they were
augmented to include Laplacian-based regularization. Thepure regression versions of OMP and
ORMP without regularization are described in Algorithm 2.

4.4 Approximating the Action-Value Function

The previous two sections described the direct and indirectschemes for approximating the value
function. The same algorithms can also be used to approximate the action-value function. The
graph-based basis functions, which are defined just over states, can be also used to approximate
the action-value function. This is accomplished by using the basis functions for each discrete
action. For example, consider a MDP with two actions,a1 anda2. The approximate action-value
functionQ̂ can take the form:

Q̂ =

[

Q̂(·, a1)

Q̂(·, a2)

]

=

[

ΦIa1
0

0 ΦIa2

][

wIa1

wIa2

]

= ΦI wI .

Notice the approximate action-value function can use a different set of basis functions for each
action: Q̂(·, a1) uses the basis functions indexed byIa1

andQ̂(·, a2) uses basis functions indexed
by Ia2

.
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Algorithm 6: Indirect Scheme for Sparse Approximate Policy Evaluation
Input: {si, ri, s

′
i}

n
i=1, samples generated using policyπ

φ : S → R
K , basis function

ρ : S → R
+, weighting over the states

L, graph Laplacian defined over states{si}
n
i=1 (graph edges denoted with∼)

γ ∈ [0, 1], discount factor
βm ∈ R

+, Laplacian-based regularization parameter
maxIter ∈ N, maximum number of iterations
BSel(y), sparse basis selection algorithm that approximates a target functiony

using the dictionaryφ. The termination criteria forBSel includes:
k′ ≤ K, maximum allowable number of basis functions
a threshold on the residual‖y − Φw‖2ρ
any other algorithm specific parameters (e.g.βs for LARS/LASSO)

Output: I, set of selected basis functions (indices intoφ)
wI , weight vector such that̂V (s) = φI(s)TwI

Initialize active setI ← ∅, ŵI ← ∅, iter ← 0

while (iter < maxIter) and(Bellman residual not converged) do
1. Form target vectory using the Bellman backup:

yi ← ri + γφI(s′i)
TwI ∀i

2. Run the sparse basis selection (regression) algorithm to fity:
[I, wI ]← BSel(y)

3. OPTIONAL: AdjustwI using one of the least-squares methods:
wI ← Â−1

I,I b̂I
For example, if using FP least-squares method, then:

ÂI,I ←
∑n

i=1 ρ(si)
[

φI(si)(φI(si)− γφI(s′i))
T + βmgI(si)gI(si)

T
]

b̂I ←
∑n

i=1 ρ(si)φI(si)ri
4. Increment the iteration count:

iter ← iter + 1
end while

Algorithms 3, 4, 5, and 6 can be used with this definition without changing any steps. However,
if these algorithms are used without changes, the number of selected basis functions per action may
not be equal. For the MDP with two actionsa1 anda2, this means|Ia1

| will not necessarily be
equal to|Ia2

|. It may be desirable to require the number of basis functionsper action to be equal
(or approximately equal). This constraint can easily be added to the indirect scheme (Algorithm
6) and to the direct schemes involving OMP and ORMP (Algorithms 3 and 4). It does not seem
possible to add this constraint to the direct scheme involving LASSO and LARS (Algorithm 5)
without making other significant algorithmic changes.

Algorithms 3, 4, 5, and 6 can produce approximate action-value functions for a specific policy.
These algorithms can also be used within least-squares policy iteration (LSPI) [20] to compute an
approximation ofQ∗. One LSPI iteration takes a batch of MDP samples{si, ai, ri, s

′
i}

n
i=1 and a

policy π and produceŝQ, an approximation ofQπ. The greedy policy implicitly defined bŷQ is
then used in the next iteration of LSPI.
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5 Policy Evaluation Experiments

The following components were varied in the experiments:

• least-squares method (FP, BR, and H2).

• basis selection method (OMP, ORMP, LASSO, and LARS).

• scheme for sparse approximate policy evaluation (direct and indirect).

• amount of Laplacian-based regularization (βm).

• dictionary (PVF and diffusion wavelet basis functions).

To get a solid understanding of how each component influencesthe policy evaluation problem,
we chose the 50 state chain MDP [20]. This domain is easily visualized. The problem consists of
50 states (si, i ∈ [1, 50]) and two actions moving the agent left (si  si−1) or right (si  si+1).
Actions succeed with probability0.8; failed actions result in staying in the same state (probability
0.1) or moving to the adjacent state in the opposite direction (probability0.1). The reward function
is defined as+1 in statess10 ands41 and zero everywhere else. The discount factor isγ = 0.9.

We consider the task of evaluating the optimal policyπ∗. Rather than sampling fromπ∗ to
generate a data set, we used the true modelP π∗

andRπ∗

in the following experiments. This choice
was made to remove any influence that sampling may have on eachcomponent that we vary so that
we can adequately compare and contrast performance.

The graph used to form the PVFs and diffusion wavelets consists of 50 vertices with self-
edges and edges between “adjacent” vertices. The PVF dictionary, which was constructed using
the combinatorial Laplacian, consists of 50 global basis functions. The diffusion wavelet tree was
constructed using the parameterǫ = 10−4. The number of scaling and wavelet functions is shown
in Table 5. We evaluated three dictionaries constructed from this tree. The first dictionary con-

Tree Levelj |ψj−1| |φj |

1 0 50
2 9 41
3 13 28
4 7 21
5 5 16
6 5 11
7 3 8
8 2 6
9 2 4
10 1 3

Table 1:Number of wavelet and scaling functions at each tree level for the 50 statechain MDP.

sisted of all 235 functions in the tree (47 wavelet and 188 scaling functions). The second dictionary
consisted of the 135 functions at tree level 3 or greater (38 wavelet and 97 scaling functions). The
100 extra functions in the first dictionary consist of very localized basis functions as well as some
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oscillatory functions. Note that both the first and second dictionaries are overcomplete, so select-
ing elements from these dictionaries can lead to linear dependence in the basis functions. The
third dictionary consisted of all 47 wavelet functions and the 3 scaling functions at tree level 10.
This third dictionary is orthonormal whereas the first two dictionaries are overcomplete. A fur-
ther optimization that we did not pursue would be to select the “best” such orthonormal dictionary
(amongst the 10 possible orthonormal dictionaries) instead of just using the dictionary that reaches
to tree level 10.

To help navigate the figures at the back of this paper, Table 5 provides a list of the figures
indexed by scheme, algorithm, and dictionary. The next foursections describe the results in detail.
The reader may find it easier to read the summary of the resultsin Section 6 before going into the
finer details.

Figure Scheme Algorithm Dictionary
1 Direct OMP-FP, LASSO-FP PVFs
2 Direct OMP-BR, ORMP-BR, LASSO-BR PVFs
3 Direct OMP-H2 PVFs
4 Indirect FP & BR OMP PVFs
5 Indirect FP & BR ORMP PVFs
6 Indirect FP & BR LASSO PVFs
7 Direct OMP-FP, LASSO-FP, LARS-FP 235 Diffusion Wavelets
8 Direct OMP-FP, LASSO-FP, LARS-FP 135 Diffusion Wavelets
9 Direct OMP-FP, LASSO-FP 50 Orthog. Diffusion Wavelets
10 Direct ORMP-BR 235 Diffusion Wavelets
11 Direct OMP-BR, ORMP-BR, LASSO-BR 135 Diffusion Wavelets
12 Direct OMP-BR, ORMP-BR, LASSO-BR 50 Orthog. Diffusion Wavelets
13 Indirect FP OMP, ORMP, LASSO, LARS 235 Diffusion Wavelets
14 Indirect FP OMP, ORMP, LASSO, LARS 135 Diffusion Wavelets
15 Indirect FP OMP, ORMP, LASSO 50 Orthog. Diffusion Wavelets
16 Indirect BR OMP, ORMP, LASSO, LARS 235 Diffusion Wavelets
17 Indirect BR OMP, ORMP, LASSO, LARS 135 Diffusion Wavelets
18 Indirect BR OMP, ORMP, LASSO 50 Orthog. Diffusion Wavelets

Table 2: List of figures.

5.1 Direct Scheme with PVF Dictionary

Figure 1 shows results using OMP-FP and LASSO-FP. We varied the amount of regularization
(βm = 0 andβm = 0.1) and the number of basis functions (4, 8, and 12) that the algorithms could
select. For LASSO-FP, we also present results where the optional orthogonalization step at the end
of Algorithm 5 is used (Orthog.) and not used (Not Orthog.). Since LASSO-FP did not remove
any basis functions from the active set in this experiment, it produces identical results to LARS-FP.
In all of the figures in this paper, if there is no plot involving LARS, that is because LARS and
LASSO produced identical results.
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The two figures in the top row of Figure 1 are for OMP-FP with andwithout Laplacian-
based regularization. The results with regularization clearly demonstrate the potential benefits
the smoothness assumption can have on basis selection underthe direct scheme. The two figures
in the second row of Figure 1 show the LASSO-FP results without the optional orthogonalization
step. Notice how the approximate value functions have smallmagnitude. This is due to the con-
servative nature of the LASSO algorithm’s equiangular approach. The two figures in the third row
show the same approximate value functions as those in the second row, but with the y-axis limits
adjusted to show finer detail. The two figures in the last row ofFigure 1 show the LASSO-FP
results with the optional orthogonalization step. Qualitatively, OMP-FP seems to perform slightly
better than LASSO-FP on this problem.

Figure 2 shows results using OMP-BR, ORMP-BR, and LASSO-BR.The regularization pa-
rameter was set toβm = 0 andβm = 0.1. Notice that OMP-BR and LASSO-BR did not perform
well. We show results using 20 basis functions, which is morethan enough for an excellent ap-
proximation of the value function. On the other hand, ORMP-BR produced good approximations.
The true value function is almost exactly fit using 12 basis functions and no regularization. When
using 4 or 8 basis functions, Laplacian-based regularization smooths out some of the jaggedness
of the approximate value functions.

Recall the hybrid algorithm H2 uses a parameterξ that causes the algorithm to produce the
same results as FP whenξ = 0 and BR whenξ = 1. Figure 3 shows results using OMP-H2 and
LASSO-H2. Intermediate values ofξ between 0 and 1 tend to produce approximate value functions
between the extremes produced by the FP and BR algorithms.

5.2 Indirect Scheme with PVF Dictionary

The experiments in this section were all conducted using Algorithm 6 under three conditions. First,
the while loop in Algorithm 6 was executed for 10 iterations.Second, we used a single termination
criterion for the basis selection algorithm. The algorithmstopped when it had selected a specified
number of basis functions. Third, we always used the optional third step in Algorithm 6 which is
to set the weights on the selected features using a least-squares method. We used the BR and FP
least-squares methods. Since BR and FP produced similar results, we do not report results using
the hybrid method H2.

Figure 4 shows results using the OMP algorithm with both the BR and FP least-squares meth-
ods. The regularization was again varied by settingβm = 0 andβm = 0.1. Likewise, the number
of basis functions was varied between 4, 8, and 12. The plots on the left of Figure 4 show the
final approximate value function and the plots on the right show the norm of the Bellman error
‖T π(ΦIwI) − ΦIwI‖

2 after each iteration of Algorithm 6. We just show the Bellmanerror plots
for the OMP algorithm to point out that the Bellman error is not monotonically decreasing. The
Bellman error plots for ORMP and LASSO were very similar to those for OMP.

Figures 5 and 6 show results using the ORMP and LASSO algorithms respectively. LARS
is now shown because it was identical to LASSO. ORMP, LASSO, and OMP all achieved very
similar performance for both the FP and BR least-squares methods. The only noticeable difference
was when just 4 basis functions were used. In this case, the approximate value function using the
FP least-squares method proved to be smoother than the valuefunction learned using BR.

The indirect scheme for sparse approximate policy evaluation performed well for all basis
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selection algorithms and both the FP and BR least-squares methods. The same cannot be said for
the direct scheme. The direct scheme worked well for OMP-FP and LASSO-FP (although not as
well as their indirect versions) and for ORMP-BR. As we show in the next two sections, this split
(OMP and LASSO performing well with FP under the direct scheme with ORMP performing well
with BR) also held up when using the diffusion wavelet dictionary.

5.3 Direct Scheme with Diffusion Wavelet Dictionary

Figures 7, 8, and 9 show the results using OMP-FP, LASSO-FP, and LARS-FP with the three
different diffusion wavelet dictionaries. The dictionarycontaining all 235 scaling and wavelet
functions is used for Figure 7, the dictionary containing the 135 scaling and wavelet functions
beyond tree level 3 is used for Figure 8, and the orthonormal dictionary is used for Figure 9. We
varied the amount of regularization (βm = 0 andβm = 0.1) and the number of basis functions (4,
8, and 12) that the algorithms could select.

The two figures in the top row of Figure 7 are for OMP-FP with andwithout Laplacian-based
regularization. Notice the approximate value function estimated using 12 basis functions (with
βm = 0) is unstable. This occurs because the matrixÂ−1

I,I became nearly singular. The result-
ing value functions were slightly more stable whenβm = 0.1. The results using LASSO-FP and
LARS-FP were nearly identical. When the optional orthogonalization step was not used, the ap-
proximate value functions tracked the shape of the true value function well. LASSO-FP produced
more accurate approximations using 8 and 12 basis functionsthan LARS-FP when the orthogonal-
ization step was used.

The approximate value functions shown in Figure 8 are formedfrom a less expressive, but still
overcomplete, dictionary than those in Figure 7. Interestingly, the results using OMP-FP were
better while those using LASSO-FP and LARS-FP were worse. This trend continued with the
approximate value functions shown in Figure 9. In Figure 9, OMP-FP produced even more accu-
rate approximate value functions than those shown in Figure8 while LASSO-FP produced worse
approximations. This trend is best explained by highlighting the difference between OMP-FP’s
aggressive behavior and LASSO-FP’s conservative behavior. OMP-FP fully utilizes the selected
basis functions,ΦI , by forcingΦI to be orthogonal with the Bellman residual. This lead to unsta-
ble behavior given the most expressive diffusion wavelet dictionary. The conservative LASSO-FP
updates help to maintain stability.

Figures 10, 11, and 12 show the results using OMP-BR, ORMP-BR, and LASSO-BR with
the three diffusion wavelet dictionaries. Just like with the PVF dictionary, the only algorithm that
performed well was ORMP-BR. The approximate value functions formed using 8 and 12 basis
functions were similar across all three dictionaries. The only noticeable difference was when 4
basis functions were used. In that case, the approximate value functions learned using the over-
complete dictionaries were much more accurate than the approximate value function learned using
the orthonormal dictionary.

5.4 Indirect Scheme with Diffusion Wavelet Dictionary

Algorithm 6 was used for all the experiments in this section under the same conditions described
in Section 5.2 when using the PVF dictionary. To save space, we just show the approximate
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value functions estimated without regularization. The impact of Laplacian-based regularization
(βm = 0.1) was similar to that shown in Figures 4, 5, and 6 when using thePVF dictionary.

Figures 13, 14, and 15 show the results using the OMP, ORMP, LASSO, and LARS algorithms
with the FP least-squares method. For OMP and ORMP, the approximate value functions formed
from the orthonormal diffusion wavelet dictionary are smoother and more accurate than those
formed from the overcomplete dictionaries. LASSO and LARS,on the other hand, produce accu-
rate approximate value functions using 8 and 12 basis functions from all three diffusion wavelet
dictionaries. When only 4 basis functions are used, LASSO andLARS produce much better ap-
proximate value functions when using the orthonormal dictionary (compared to the overcomplete
dictionaries).

Figures 16, 17, and 18 show the results using OMP, ORMP, LASSO, and LARS with the BR
least-squares method. All four selection algorithms produce accurate approximate value functions
when using 12 basis functions. The only exception was OMP when using the dictionary of 135
scaling and wavelet functions beyond tree level three. Thatparticular approximate value function
had the correct shape but smaller magnitude. When using 8 basis functions, LASSO and LARS
produced accurate value functions for all three dictionaries while OMP and ORMP only performed
well using the orthonormal dictionary and the 135 element dictionary. The only time 4 basis
functions resulted in an accurate approximate value function was when the orthonormal dictionary
was used. This held true for all four selection algorithms.

6 Summary and Future Work

Proto-value functions and diffusion wavelets are graph-based basis functions that capture topo-
logical structure of the MDP state space. The basis functions are independent of any policy and
therefore can be used to approximate any policy’s value function. A mechanism is required though
to select a subset of the basis functions for approximating avalue function. The previous approach
to using PVFs and diffusion wavelets used the following basis selection heuristic: the most global
functions were selected regardless of the policy being evaluated. This heuristic is simple and leads
to smooth approximations, but it does not fully utilize the graph-based dictionaries. To make bet-
ter use of the dictionaries, a sparse basis selection algorithm must be combined with approximate
policy evaluation. In this paper, we evaluated a scheme thatdirectly combines basis selection
and policy evaluation and a scheme that indirectly combinesthem via an iterative process. Both
schemes are general and can be used with any set of basis functions. We considered least-squares
policy evaluation algorithms based on the fixed-point method, the Bellman residual minimization
method, and a hybrid method [18]. We augmented the least-squares algorithms with a regulariza-
tion term that penalizes non-smoothness[26]. This form of regularization is provided by the graph
Laplacian, which is also used in the construction of PVFs anddiffusion wavelets. For the basis
selection algorithm, we implemented orthogonal matching pursuit (OMP), order recursive match-
ing pursuit (ORMP), and LASSO and LARS. A systematic study was conducted on a simple chain
MDP to determine the most promising way(s) of combining these various components. From these
experiments, we summarize with the following six findings.

1. We showed that the direct scheme for sparse approximate policy evaluation, when combined
with the fixed-point least-squares method, constrains the order in which a basis selection
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algorithm selects elements from a dictionary. The order is dictated by the elements in the
Neumann series,

∑∞
i=0(γP

π)iRπ. This can lead to the selection of basis functions that fit
some of the early terms in the series, but are in fact not useful for representing the underlying
value function. Of course, an algorithm like LASSO that can prune basis functions has the
possibility of removing basis functions that become useless. The indirect scheme for sparse
approximate policy evaluation sidesteps this issue by separating the Bellman equation from
the basis selection algorithm. This adds computational complexity, but frees up the basis
selection algorithm to represent the value function in the order it sees fit.

2. The graph Laplacian, which is used in constructing PVFs and diffusion wavelets, can also be
used to provide regularization. This was accomplished by adding a term to the least-squares
policy evaluation objective functions. Laplacian-based regularization can help smooth out
the approximate value function. It also provides a bias toward smoother basis functions in
the dictionary. This bias can be helpful when using the direct scheme for sparse approximate
policy evaluation. We speculate that in an online setting, it may be beneficial to adjust the
amount of regularization over time as more samples are seen.

3. For direct sparse approximate policy evaluation with an orthonormal dictionary:
OMP-FP produce accurate approximations and outperformed LASSO-FP. The approximate
value functions had small magnitude for LASSO-FP without the orthogonalization step at the
end of Algorithm 5. The only algorithm that worked using the Bellman residual least-squares
method was ORMP-BR. This was an interesting result that shows one must be careful when
combining basis selection and approximate policy evaluation algorithms.

4. For direct sparse approximate policy evaluation with an overcomplete dictionary:
OMP-FP became unstable in some of the experiments. This was because the least-squares
matrix Â−1

I,I became nearly singular. The algorithm could be made more robust by checking
the condition number of the matrix before including a new basis function. The more conser-
vative nature of LASSO-FP and LARS-FP produced accurate approximate value functions
(without the orthogonalization step at the end of Algorithm5). The magnitude of the value
functions was much greater compared to those using an orthonormal dictionary. ORMP-
BR remained the only algorithm that worked when using the Bellman residual least-squares
method.

5. For indirect sparse approximate policy evaluation with an orthonormal dictionary:
OMP, ORMP, and LASSO all produced accurate approximate value functions while using
both the fixed-point and Bellman residual least-squares methods. The results were particu-
larly impressive when using a very small number of basis functions. Overall, the results were
noticeably better than using an orthonormal dictionary with the direct scheme for sparse ap-
proximate policy evaluation. This confirms the hypothesis that the indirect scheme can select
a more efficient set of basis functions than the direct scheme.

6. For indirect sparse approximate policy evaluation with an overcomplete dictionary:
OMP, ORMP, and LASSO all produced accurate approximate value functions while using
both the FP and BR least-squares methods when allowed enoughbasis functions. The result-
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ing value functions were much worse than those produced using an orthonormal dictionary
when using a small number of basis functions.

The experiments in this paper partially demonstrate the expressiveness and flexibility of the dif-
fusion wavelet dictionary. However, we believe the true value of diffusion wavelets will be evident
on more challenging value functions with discontinuities and different degrees of smoothness. For
future work, it would be worthwhile further decomposing thediffusion wavelet tree using diffusion
wavelet packets [28]. This increases the size of the dictionary and provides even more flexibility
for function approximation. Another area for future work isto design a faster sparse QR algorithm
that would help scale diffusion wavelets to larger problems.
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APPENDIX

We described the OMP-FP, ORMP-FP, LASSO-FP, and LARS-FP algorithms as forming the matrix̂AI,I

and the vector̂bI . Then each of the algorithms invert the matrixÂI,I . This is very wasteful when the active
setI only changes by one element at a time. To take advantage of the single elementinsertion and removal,
Â−1

I,I can be incrementally formed using the following partitioned matrix inverse property. Consider a square
matrixA′ partitioned as follows:

A′ =

[

A b
cT d

]

where matrixA is square,b andc are vectors, andd is a scalar. Then the inverse ofA′ can be computed
from the inverse ofA as:

A′−1
= e

[

(e−1A−1 +A−1bcTA−1) −A−1b
−cTA−1 1

]

wheree = (d − cTA−1b)−1. ComputingA′−1 in this manner has quadratic complexity instead of cubic.
OMP-FP, ORMP-FP, LASSO-FP, and LARS-FP can exploit this propertyby maintaining the matrix̂A−1

I,I .
When inserting a new elementj∗ into I, the update is as follows:

I ← I ∪ {j∗}

Â−1
I,I ←

[

(Â−1
I,I + uj∗Â

−1
I,IÂI,j∗Âj∗,IÂ

−1
I,I) −uj∗Â

−1
I,IÂI,j∗

−uj∗Âj∗,IÂ
−1
I,I uj∗

]

b̂I ←

[

b̂I
b̂j∗

]

where

uj∗ ← (Âj∗,j∗ − Âj∗,IÂ
−1
I,IÂI,j∗)

−1

Âj∗,j∗ ←
n

∑

i=1

ρ(si)
[

φj∗(si)(φj∗(si)− γφj∗(s
′
i)) + βmgj∗(si)gj∗(si)

]

ÂI,j∗ ←
n

∑

i=1

ρ(si)
[

φI(si)(φj∗(si)− γφj∗(s
′
i)) + βmgI(si)gj∗(si)

]

Âj∗,I ←
n

∑

i=1

ρ(si)
[

φj∗(si)(φI(si)− γφI(s′i))
T + βmgj∗(si)gI(si)

T
]

b̂j∗ ←
n

∑

i=1

ρ(si)φj∗(si)ri.

Similarly, when LASSO-FP removes an elementj# from I, the matrixÂ−1
I,I can be shrunk with the follow-

ing update:

I ← I − {j#}

Partition the currentÂ−1
I,I ←

[

U xj#

yT
j# zj#

]

to isolate the influence ofj#

Â−1
I,I ← U − xj#yT

j#/zj# .
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Figure 1: Results of OMP-FP and LASSO-FP with the PVF dictionary.
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Figure 2: Results of OMP-BR, ORMP-BR, and LASSO-BR with the PVF dictionary.
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Figure 3: Results of OMP-H2 and LASSO-H2 with the PVF dictionary using 12 basis functions
while varyingξ (ξ = 0 is equivalent to FP andξ = 1 is equivalent to BR).
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Figure 4: Results using the indirect scheme with OMP for basis selection and FP and BR for setting
the coefficients. The PVF dictionary was used.
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Figure 5: Results using the indirect scheme with ORMP for basis selection and FP and BR for
setting the coefficients. The PVF dictionary was used.
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Figure 6: Results using the indirect scheme with LASSO for basis selection and FP and BR for
setting the coefficients. The PVF dictionary was used.
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Figure 7: Results of OMP-FP, LASSO-FP, and LARS-FP using the diffusion wavelet dictionary with all
235 scaling and wavelet functions.
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Figure 8: Results of OMP-FP, LASSO-FP, and LARS-FP using the diffusion wavelet dictionary with the
135 scaling and wavelet functions beyond tree level 3.
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Figure 9:Results of OMP-FP and LASSO-FP using the diffusion wavelet dictionary with all the wavelet
functions and just the scaling functions at tree level 10.
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Figure 10:Results of ORMP-BR using the diffusion wavelet dictionary with all 235 scaling and wavelet
functions. Results of OMP-BR and LASSO-BR were omitted because they produced approximations similar
to those in Fig. 11.
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Figure 11:Results of OMP-BR, ORMP-BR, and LASSO-BR using the diffusion wavelet dictionary with
the 135 scaling and wavelet functions beyond tree level 3.
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Figure 12:Results of OMP-BR, ORMP-BR, and LASSO-BR using the diffusion wavelet dictionary with
all wavelet functions and just the scaling functions at tree level 10.
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Figure 13:Results using the indirect scheme with FP. The diffusion wavelet dictionary included all 235
scaling and wavelet functions.
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Figure 14:Results using the indirect scheme with FP. The diffusion wavelet dictionary included 135 scaling
and wavelet functions beyond tree level 3.
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Figure 15:Results using the indirect scheme with FP. The diffusion wavelet dictionary included all wavelet
functions and just the scaling functions at tree level 10.
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Figure 16:Results using the indirect scheme with BR. The diffusion wavelet dictionary included all 235
scaling and wavelet functions.
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Figure 17: Results using the indirect scheme with BR. The diffusion wavelet dictionary included 135
scaling and wavelet functions beyond tree level 3.

40



0 10 20 30 40 50
0

1

2

3

4

5

State

V
al

ue
 F

un
ct

io
n

OMP Indirect (BR), β
m

 = 0

 

 

Exact
4
8
12

0 10 20 30 40 50
0

1

2

3

4

5

State

V
al

ue
 F

un
ct

io
n

ORMP Indirect (BR), β
m

 = 0

 

 

Exact
4
8
12

0 10 20 30 40 50
0

1

2

3

4

5

State

V
al

ue
 F

un
ct

io
n

LASSO Indirect (BR), β
m

 = 0

 

 

Exact
4
8
12

Figure 18:Results using the indirect scheme with BR. The diffusion wavelet dictionary included all wavelet
functions and just the scaling functions at tree level 10.
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