
Resource-bounded Information Extraction: Acquiring
Missing Feature Values On Demand

Pallika Kanani
UMass, Amherst

USA
pallika@cs.umass.edu

Andrew McCallum
UMass, Amherst

USA
mccallum@cs.umass.edu

Shaohan Hu
Dartmouth College

USA
shaohan.hu@dartmouth.edu

ABSTRACT
We present a general framework for the task of extracting
specific information “on demand” from a large corpus such
as the Web under resource-constraints. Given a database
with missing or uncertain information, the proposed system
automatically formulates queries, issues them to a search
interface, selects a subset of the documents, extracts the re-
quired information from them, and fills the missing values in
the original database. We also exploit inherent dependency
within the data to obtain more useful information with fewer
computational resources. We build such a system in the ci-
tation database domain that extracts the missing year of
publications using limited resources from the Web. We dis-
cuss a probabilistic approach for this task and present first
results. The main contribution of this paper is to propose a
general, comprehensive architecture for designing a system
that can be adapted to many different domains.

1. INTRODUCTION
The goal of traditional information extraction is to ac-

curately extract as many fields or records as possible from
a collection of unstructured or semi-structured text docu-
ments. In many scenarios, however, we already have a par-
tial database and we need only fill in its holes. This paper
proposes methods for finding such information in a large col-
lection of external documents, and doing so efficiently with
limited computational resources. For instance, this small
piece of information may be a missing record, or a missing
field in a database that would be acquired by searching a
very large collection of documents, such as the Web. Using
traditional models of information extraction for this task
is wasteful, and in most cases computationally intractable.
A more feasible approach for obtaining the required infor-
mation is to automatically issue appropriate queries to the
external source, select a subset of the retrieved documents
for processing and then extract the specified field in a fo-
cussed and efficient manner. We can further enhance the
efficiency of our system by exploiting the inherent relational

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

nature of the database. We call this process of searching
and extracting for specific pieces of information, on demand,
Resource-bounded Information Extraction (RBIE). In this
paper, we present the design of a general framework for
Resource-bounded Information Extraction, discuss various
important design choices involved and present some experi-
mental results.

1.1 Example
Consider a database of scientific publication citations, such

as Rexa, Citeseer or Google Scholar. The database is cre-
ated by crawling the web, downloading papers, extracting
citations from the bibliographies and then processing them
by tagging and normalizing. In addition, the information
from the paper header is also extracted. In order to make
these citations and papers useful to the users, it is impor-
tant to have the year of publication information available.
Even after integrating the citation information with other
publicly available databases, such as DBLP, a large fraction
of the papers do not have a year of publication associated
with them. This is because, often, the headers or the full
text of the papers do not contain the date and venue of
publication (especially for preprints available on the web).
Approximately one third of the papers in Rexa are missing
the year of publication field. Our goal is to fill in the missing
years by extracting them from the web.

We chose this particular example task, since it demon-
strates the relational aspect of RBIE. Along with extract-
ing headers, the bibliographic information is often extracted,
creating a citation network. This network information can
be further exploited by noting that in almost all cases, a
paper is published before (or the same year) as other papers
that cite it. Using these temporal constraints, we obtain
87.7% of the original F1 by using only 13.2% of computa-
tional resources such as queries and documents.

1.2 Motivation
The knowledge discovery and data mining community has

long struggled with the problem of missing information. Most
real-world databases come with holes in the form of missing
records or missing feature values. In some cases, the val-
ues exist, but there is considerable uncertainty about their
correctness. Incompleteness in the database provides incom-
plete responses to user queries, as well as leads to less ac-
curate data mining models and decision support systems.
In order to make the best use of the existing information,
it is desirable to acquire this missing information from an
external source in an efficient manner. The external source
can be another database that may be purchased, or a large

collection of free documents, such as the web. In the latter
case, we may run information extraction to obtain the miss-
ing values in our database. However, the traditional models
of information extraction can not be directly applied in this
“on demand” setting.

Note that, in the setting described above, we are often not
interested in obtaining the complete records on the database,
but in just filling in the missing values. Also, the corpus of
documents, such as the web, is extremely large. Moreover,
in most real scenarios, we must work under pre-specified re-
source constraints. The resource constraints may be compu-
tational, such as processors, network bandwidth, or related
to time and money. Any method that aims to extract re-
quired information in the described setting must be designed
to work under the given resource constraints.

Many of these databases are relational in nature, e.g. ob-
taining the value of one field may provide useful information
about the remaining fields. Similarly, if the records are part
of a network structure with uncertain or missing values, as
in the case of our example task, then information obtained
for one node can reduce uncertainty in the entire network.
We show that exploiting these kinds of dependencies can re-
duce the amount of resources required to complete the task
significantly.

In this paper, we propose a general framework for resource-
bounded information extraction, along with the design of a
prototype system used to address the task of finding missing
years of publication in citation records. We also present first
results on this task.

2. RELATED WORK
Resource-bounded Information Extraction encompasses sev-

eral different types of problems. It deals with extracting in-
formation from a large corpus, such as the web; it actively
acquires this information under resource constraints; and it
exploits the interdependency within the data for best per-
formance. Here we discuss various related tasks and how
RBIE is uniquely positioned between them.

2.1 Traditional Information Extraction
In the traditional information extraction settings, we are

usually given a database schema, and a set of unstructured
or semi-structured documents. The goal of the system is
to automatically extract records from these documents, and
fill in the values in the given database. These databases are
then used for search, decision support and data mining. In
recent years, there has been much work in developing so-
phisticated methods for performing information extraction
over a closed collection of documents, e.g. [6]. Several dif-
ferent approaches have been proposed for different phases of
information extraction task, such as segmentation, classifi-
cation, association and coreference. Most of these proposed
approaches make extensive use of statistical machine learn-
ing algorithms, which have improved significantly over the
years. However, only some of these methods remain com-
putationally tractable as the size of the document corpus
grows. In fact, very few systems are designed to scale over
a corpus as large as, say, the Web [5, 21].

2.2 Information Extraction From the Web
There are some large scale systems that extract informa-

tion from the web. Among these are KnowItAll [5], In-
foSleuth [16] and Kylin [20]. The goal of the KnowItAll

system is a related, but different task called, “Open Infor-
mation Extraction”. In Open IE, the relations of interest are
not known in advance, and the emphasis is on discovering
new relations and new records through extensive web access.
In contrast, in our task, what we are looking for is very spe-
cific and the corresponding schema is known. The empha-
sis is mostly on filling the missing fields in known records,
using resource-bounded web querying. Hence, KnowItAll
and RBIE frameworks have very different application do-
mains. InfoSleuth focuses on gathering information from
given sources, and Kylin focuses only on Wikipedia articles.
These systems also do not aim to exploit the inherent de-
pendency within the database for maximum utilization of
resources.

The Information Retrieval community is rich with work
in document relevance (TREC). However, traditional infor-
mation retrieval solutions can not directly be used, since we
first need to automate the query formulation for our task.
Also, most search engine APIs return full documents or text
snippets, rather than specific feature values.

A family of methods closely related to RBIE, is question
answering systems [11]. These systems do retrieve a subset
of relevant documents from the web, along with extracting a
specific piece of information. However, they target a single
piece of information requested by the user, whereas we tar-
get multiple, interdependent fields of a relational database.
They formulate queries by interpreting a natural language
question, whereas we formulate and rank them based on the
utility of the information within the database. They do not
address the problem of selecting and prioritizing instances or
a subset of fields to query. This is why, even though some of
the components in our system may appear similar to that of
QA systems, their functionalities differ. The semantic web
community has also been working on similar problems, but
their focus is not targeted information extraction.

2.3 Active Information Acquisition
Learning and acquiring information under resource con-

straints has been studied in various forms. There are three
different scenarios at training time. The most common sce-
nario is active learning [3], which assumes access to unla-
beled instances with complete feature values and attempts
to select the most useful instances for which to acquire class
labels while training. The next scenario is active feature
acquisition, which explores the problem of learning models
from incomplete instances by acquiring additional features.
The general case of acquiring randomly-missing values in
the instance-feature matrix is addressed in [15] . Under the
budgeted learning scenario [12], the total cost to be spent
towards acquisitions is determined a priori and the task is
to identify the best set of acquisitions for this cost. Finally,
more recent work [18] deals with learning models using noisy
labels. At test time, the two common scenarios are selecting
a subset of features to acquire [19, 1, 10], and selecting the
subset of instances for which to acquire features [9, 8].

The interdependency within the data set is often conve-
niently modeled using graphs, but it poses interesting ques-
tions about selection of instances to query and propagating
uncertainty through the graph [7]. In [8], the test instances
are not independent of each other, and the impact of acqui-
sition in the context of graph partitioning is studied. Similar
problems are addressed in [2, 17]. Ideas from other fields,
such as graph theory [4] and circuit design [13] can also be

Figure 1: General Framework for Resource-bounded
Information Extraction

borrowed in this context. The general RBIE framework de-
scribed in this paper aims to leverage these methods for both
train and test time for optimization of query and instance
selection, depending on the application scenario.

In summary, RBIE requires a comprehensive architecture
for efficiently integrating multiple functionalities, such as
instance and query selection, automatic query formulation,
and targeted information extraction by exploiting inherent
data dependency under limited resources. This leads us to
the new framework presented in this paper.

3. A GENERAL FRAMEWORK FOR
RESOURCE-BOUNDED INFORMATION
EXTRACTION

As described in the previous section, we need a new frame-
work for performing information extraction to automatically
acquire specific pieces of information from a very large cor-
pus of unstructured documents. Fig. 1 shows a top-level
architecture of our proposed framework. In this section, we
discuss the general ideas for designing a resource-bounded
information extraction system. Each of these modules may
be adapted to suit the needs of a specific application, as we
shall see for our example task.

3.1 Overview of the Architecture
We start with a database containing missing values. In

general, the missing information can either be a complete
record, or values of a subset of the features for all records,
or a subset of the records. We may also have uncertainty
over the existing feature values that can be reduced by inte-
grating external information. We assume that the external
corpus provides a search interface that can be accessed au-
tomatically, such as a search engine API.

The information already available in the database is used
as an input to the Query Engine. The basic function of the
query engine is to automatically formulate queries, prioritize
them optimally, and issue them to a search interface. The
documents returned by the search interface are then passed
on to the Document Filter. Document Filter removes doc-
uments that are not relevant to the original database and
ranks the remaining documents according to the usefulness
of each document in extracting the required information.

A machine learning based information extraction system

extracts relevant features from the documents obtained from
the Document Filter, and combines them with the features
obtained from the original database. Hence, information
from the original database and the external source is now
merged, to build a new model that predicts the values of
the missing information. In general, we may have resource
constraints at both training and test times. In the training
phase, the learned model is passed to the Confidence Evalu-
ation System, which evaluates the effectiveness of the model
learned so far and recommends obtaining more documents
through Document Filter, or issuing more queries through
the Query Engine in order to improve the model. In the test
phase, the prediction made by the learned model is tested
by the Confidence Evaluation System. If the model’s confi-
dence in the predicted value crosses a threshold, then it is
used to fill (or to replace a less certain value) in the origi-
nal database. Otherwise, the Confidence Evaluation System
requests a new document or a new query to improve the cur-
rent prediction. This loop is continued until either all the
required information is satisfactorily obtained, or we run out
of a required resource. Additionally, feedback loops can be
designed to help improve performance of Query Engine and
Document Filter.

This gives a general overview of the proposed architecture.
We now turn to a more detailed description for each module,
along with the many design choices involved while designing
a system for our specific task.

3.2 Task Example: Finding Paper’s Year of
Publication

We present a concrete resource-bounded information ex-
traction task and a probabilistic approach to instantiate the
framework described above.

We are given a set of citations from a database such as
Rexa, with fields, such as, paper title, author names, contact
information available, but the year of publication is missing.
The goal is to search the web and extract this information
from web documents to fill in the missing year values. We
evaluate the performance of our system by measuring the
precision, recall and F1 values at different confidence lev-
els. The following sections describe the architecture of our
prototype system, along with possible future extensions.

3.3 Query Engine
The basic function of query engine is to automatically

formulate queries, prioritize them optimally, and issue them
to a search interface. There are three modules of query
engine.

As discussed in the previous section, the available re-
sources may allow us to acquire the values for only a subset
of the fields, for a subset of the records. Input selection mod-
ule decides which feature values should be acquired from
the external source to optimize the overall utility of the
database. The query formulation module combines input
values selected from the database with some domain knowl-
edge, and automatically formulates queries. For instance, a
subset of the available fields in the record, combined with a
few keywords provided by the user, can form useful queries.
Out of all the queries formulated, some queries are more
successful than others in obtaining the required information.
By ranking the queries in an optimal order, we require fewer
queries to obtain the missing values. In the future, we would
like to explore sophisticated query ranking methods, based

on the feedback from other components of the system.
In our system, we use existing fields of the citation, such

as paper title and names of author, and combine them with
keywords such as “cv”, “publication list”, etc. to formulate
the queries. We experiment with the order in which we se-
lect which citations to query. In one method, the nodes with
most incoming and outgoing citation links are queried first.
We issue these queries to a search engine API and the top
n hits (where n depends on the available resources) are ob-
tained. The documents are first tokenized, the tokens which
are probable years are tagged, and the tagged documents
are passed on to the document filter.

3.4 Document Filter
The primary function of the document filter is to remove

irrelevant documents and prioritize the remaining documents,
so that most useful documents get processed first. Following
are the two main components of the Document Filter.

Even though queries are formed using the fields in the
database, some documents may be irrelevant. This may
be due to the ambiguities in the data (e.g. person name
coreference), or simply imperfections in retrieval engine. In
many scenarios, it may be efficient to run an initial filter to
remove those documents which are completely irrelevant to
the original database. The remaining documents can then
be ranked, based on their relevance to the original database.
Remember that the relevance used by the search interface is
with respect to the queries, which may not necessarily be the
same as the relevance with respect to the original database
(depending on the type of query). In the future, we would
like to learn a ranking model, based on the feedback from the
information extraction module (via Confidence Evaluation
System) about how useful the document was in making the
actual prediction.

In our system, many of the documents returned as a re-
sult of queries are not relevant to the original citation record.
For example, a query formed by a combination of an author
name along with the keyword “resume” may return several
resumes of people with similar names, who are different than
the paper author. Hence, even though these documents are
relevant to an otherwise useful query, they are irrelevant to
the original citation. Another example of irrelevant docu-
ment is when the returned document does not contain any
year information. The document filter recognizes these cases
by soft matching the title with body of the document to de-
cide if this document is relevant to the original citation. The
document filter also removes web pages without any year on
the page.

3.5 Information Extraction
The design of this module differs from traditional infor-

mation extraction in the following ways. Features from the
original database are merged with the features obtained from
the external source. Depending on the application, different
integration schemes are possible. The training algorithm up-
dates its own parameters in an incremental fashion, as new
documents arrive. Similarly, the confidence in the predic-
tion made by the system must be updated efficiently as new
information arrives. Hence, the design of this module poses
many interesting challenges.

3.5.1 Probabilistic Prediction Model
In our task, the field with missing values can take one of

a finite number of possible values (i.e. a finite number of
years). Hence, we can view this extraction task as a multi-
class classification problem. We assume that we are given a
range of years of publication and we classify each citation as
belonging to one of the possible classes. Features from both
the original citation as well as the documents obtained from
the Document Classifier are combined to make the predic-
tion using a maximum entropy classifer.

We use ci to denote a citation (i = 1, . . . , n), qij to de-
note a query formed using input from citation ci and dijk

to denote a document obtained as a result of qij . Assuming
that we exhaustively use all the queries, and the documents
pass through the document filter, we drop the index j and
use dik to denote a document relevant to citation ci. Let
yi represent a random variable that assigns a label to the
citation ci. We also define a variable yik to assign a label to
the document dik. Note that, if Y is the set of all years in
the given range, then yi, yik ∈ Y . For each ci, we define a
set of m feature functions fm(ci, yi). For each dik, we define
a set of l feature functions flk(ci, dik, yik) on the document.
For our model, we assume that fm(ci, yi) is empty. This
is because the information from the citation by itself is not
useful in predicting the year of publication. In the future, we
would like to design a more general model that takes these
features into account. We can now construct a model given
by

P (yik|ci, dik) =
1

Zd
exp(λlfl(ci, dik, yik)), (1)

where Zd =
P

y exp(λlfl(ci, dik, yik))

3.5.2 Combining Evidence in Feature Space v.s. Out-
put Space

The above model outputs yik instead of the required yi.
We have two options to model what we want. We can either
merge all the features flk(ci, dik, yik) from dik’s to form a
single feature function. This is equivalent to combining all
the evidence for a single citation in the feature space. Alter-
natively, we can combine the evidence from different dik’s
in the output space. Following are two possible schemes
for combining the evidence in the output space. In the first
scheme, we take a majority vote, i.e., the class with the high-
est number of yik is predicted as the winning class and as-
signed to yi. In the second scheme, which we call as highest
confidence scheme, we take the most confident vote, i.e.,

yi = argmaxyikP (yik|ci, dik) (2)

3.6 Uncertainty Propagation in Citation Graph
The inherent dependency within the given data set can

be exploited for better utilization of resources. In our case,
we have the citation link structure, which can be used for
inferring temporal constraints. For example, if paper A cites
paper B, then assuming that papers from future can not be
cited, we can infer the constraint that paper B must have
been published in the same or earlier year than paper A.

Initially, we have no information about the year of publi-
cation for any citation. As information from the web arrives
in the form of documents, this uncertainty is reduced. If we
propagate this reduction in uncertainty (or belief) for one
of the nodes through the entire graph, we may need fewer
documents (or fewer queries) to predict the year of publi-
cation for the remaining nodes. Furthermore, if we select
the citations to query in an effective order, we may further

improve our predictions.
This is a very interesting aspect of the problem and can

lead to many different solutions. Here we describe a few
different approaches. In the future, we would like to exper-
iment with a more formal, belief-propagation like method.

3.6.1 Notation
To explain the methods for uncertainty propagation, we

employ the following notation. Let c ∈ C be the citation
which is currently being queried. Let a → b denote that
citation a cites citation b. Let CB = {cb|cb → c} and CA =
{ca|c → a}. Let X be the random variable that represents
year of publication of c; Pc(X = x) be the probability that it
takes one of finite values in the given range, and P ′(X = x)
be the posterior probability obtained from the Document
Classifier.

3.6.2 Propagation Methods
The method Best Index passes the uncertainty message to

the neighbors of c as follows:

∀cb ∈ CBPcb(X = x) = P (X = x|x ≥ y) (3)

∀ca ∈ CAPca(X = x) = P (X = x|x < y) (4)

Where y = argmaxyP
′
c(X = y). P (X = x|x ≥ y) and

P (X = x|x < y) are given by one of the update methods
described below.

The method Weighted Average takes a weighted average
over all possible y′s:

∀cb ∈ CBPcb(X = x) = P ′c(X = y)
X

y

P (X = x|x ≥ y)

(5)

∀ca ∈ CAPca(X = x) = P ′c(X = y)
X

y

P (X = x|x < y)

(6)

3.6.3 Update Methods
The basic idea behind these update methods is as follows.

If we know that the given paper was published after a certain
year, then we can set the probability mass from before the
corresponding index to zero and redistribute it to the years
after the index. We only show update in one direction here
for brevity.

The first update method, called the Uniform Update, sim-
ply redistributes the probability mass, P (x ≥ y) uniformly
to the remaining years.

P (X = x|x ≥ y) = 0, x < y (7)

= P (X = x) + 1
P (x≥y)

, x ≥ y (8)

The second update method, called the Scale Update, uses
conditional probability:

P (X = x|x ≥ y) = 0, x < y (9)

= P (X=x)
P (x≥y)

, x ≥ y (10)

3.6.4 Combination Methods
Along with passing message to its neighbors, the node

updates itself by combining the information from the Doc-
ument Classifier and the graph structure. The following
options can be used. The Basic,

Pc(X = x) = P (X = x|x = y) (11)

Pc(X = x) = P ′c(X = y)
X

y

P (X = x|x = y) (12)

The other two options are Product Pc(X = x) = Pc(X =
x) ∗ P ′c(X = x) and SumPc(X = x) = Pc(X = x) + P ′c(X =
x)− Pc(X = x) ∗ P ′c(X = x)

3.7 Confidence Evaluation System
Following are the important functions of Confidence Eval-

uation System.
In the case of training under resource constraints, after

adding each new training document, it can measure the
‘goodness’ of the model by evaluating it on a validation set.
At test time, as more information is obtained from the ex-
ternal source, confidence in the prediction improves. It sets
a threshold on the confidence in the prediction, to either
return the required information to the database, or to re-
quest more information. It also makes the choice between
obtaining a new document or to issue a new query at each
iteration, by taking into account the cost and utility factors.
Finally, it keeps track of the effectiveness of queries and doc-
uments in making a correct prediction. This information is
useful for learning better ranking models for Query Engine
and Document Filter.

In our system, we train our model in a batch manner,
using all available resources. We focus on evaluating test
time confidence. For merging evidence in the output space,
we employ two schemes to make this decision. In the first
scheme, which we call max votes, if the percentage of doc-
uments in the winning class crosses a given threshold, then
we make a prediction. In the second scheme, which we call
highest confidence, if P (yik|ci, dik) value of the document
with the highest P in the winning class passes a thresh-
old, we make a prediction. These two schemes provide use-
ful methods for determining if we have completed the task
satisfactorily. For combining evidence in feature space, we
use the Entropy Method, in which we compute the value
H = −

P
i pi log pi of the current distribution, and compare

it against the confidence threshold.

4. EXPERIMENTAL DESCRIPTION AND
RESULTS

4.1 Dataset and Setup
Our data set consists of 462 citations from the Rexa cor-

pus, with years of publication ranging from 1989 to 2008.
In order to capture the citation links between these cita-
tions, we use Algorithm 1 to sample five citation graphs.
This method ensures that we sample graphs of reasonable
size and dense enough citation structure to work with. We
use five-fold cross validation on these data sets for all our
experiments.

We use the Mallet [14] infrastructure for training and
testing, and the Google search API to issue queries. The

Algorithm 1 Dataset Sampling Method

1: Start with all the citations, and create an inverse citation
index

2: Keep all papers that have at least 6 papers that it cites or 3
papers that cite it.

3: Keep all papers that fall within the given 20-year range (’89
to ’08)

4: repeat
5: Randomly pick a seed citation and add it to the queue
6: for all Elements in the queue do
7: If the citation is found in the filtered dataset, add it to

the graph.
8: Add all the papers it cites and all the papers that cite

it.
9: If the number of citations added to the graph exceeds a

cutoff (=100), stop.
10: end for
11: If the resulting graph is smaller than another cutoff (=20),

discard it.
12: until Required number (=5) of graphs are generated:

title
title in quotes
title in quotes + “publication list”
title in quotes + “resume”
title in quotes + “cv”
title in quotes + “year”
title in quotes + “year of publication”
author + “publication list”
author + “resume”
author + “cv”
author + title

Figure 2: Types of Queries

queries formed using the information from input citations
include the raw title, title in quotes, and author names com-
bined with keywords like “publication list”, “resume”, “cv” ,
“year” and “year of publication”. Fig. 2 shows a list of
queries issued. We issue all the queries in a random order.
In these experiments, we obtain the top 10 hits cached by
google. In our dataset, we use 6936 queries and obtain 14999
documents after removing unrelated documents. The doc-
uments are tokenized and tokens are tagged to be possible
years using a regular expression. The document filter uses
two different criteria to discard a document. If there is no
year information found on the web page at all, the document
is discarded. The second criteria uses a soft match between
the title in the citation and all n-grams of length equal to
the title in the body of the page. If there is at least one
n-gram with more than 75% overlap with title tokens, then
the document is retained.

The documents that pass these two tests are passed on to
the MaxEnt classification model in a random order. Follow-
ing features are used for classification. Distances and counts
of multiple occurrences of the same feature are discretized.

Year On Page True for all the occurrences of years
on the webpage.

Number of Different Years The total number of
occurrences of different years on the webpage.

Years In Order True if the years found on the web-
page are in any of the following three particular orders:

Entropy Precision Recall F1 #Queries #Docs
Threshold

0.1 0.9357 0.7358 0.8204 4497 9564
0.3 0.9183 0.8220 0.8666 3752 8010
0.5 0.9013 0.8718 0.8854 3309 7158
0.7 0.8809 0.9041 0.8909 2987 6535
0.9 0.8625 0.9171 0.8871 2768 6088

Table 1: Baseline results

descending, ascending, or uniform.

Following / Preceding Year These features corre-
spond to the years that immediately follow or precede
the title matches found on the webpage.

Following / Preceding Year And Distance These
two features record the distance (number of tokens)
between the following (or preceding) year and its cor-
responding title match.

Between The Same Year True if a title match has
the same following and preceding year.

4.2 Results and Discussion
We first run our RBIE system without exploiting the ci-

tation network information. We first present the results for
combining evidence in the feature space. We measure Pre-
cision, Recall and F1 based on using a confidence threshold,
where F1 is defined as follows.

F1 = 2.
precision.recall

precision+ recall
(13)

As seen in table 2, as we increase the entropy threshold,
precision drops, as expected. F1 peaks at threshold 0.7.
Note that the number of documents is proportional to the
number of queries, because in our experiments, we stop ob-
taining more documents or queries when the threshold is
reached.

Figure 3: The change in F1 v.s. the change in use
of resources

Next, we present the results of exploiting citation network
information for better resource utilization. Fig. 3 shows F1
as well as the fraction of the total documents used for the

(a) Highest Confidence Vote, Highest Confidence

(b) Highest Confidence Vote, Max Votes Confidence

(c) Majority Vote, Highest Confidence

(d) Majority Vote, Max Votes Confidence

Figure 4: Precision, Recall and F1 values for differ-

ent combinations of voting and confidence evaluation

schemes.

Propagation Update Combination F1
Best Index Uniform Basic 0.7192
Best Index Uniform Sum 0.7273
Best Index Uniform Product 0.6475
Best Index Scaling Basic 0.7249
Best Index Scaling Sum 0.6875
Best Index Scaling Product 0.6295

Weighted Avg Uniform Basic 0.7249
Weighted Avg Uniform Sum 0.5827
Weighted Avg Uniform Product 0.3460
Weighted Avg Scaling Basic 0.7249
Weighted Avg Scaling Sum 0.5365
Weighted Avg Scaling Product 0.4306

Table 2: Comparison of Uncertainty Propagation
Methods

baseline method, and for one of the graph based method
(Weighted Average propagation, Scaling update, and Basic
combination). The F1 values are smaller compared to the
baseline because we use far fewer resources, and the un-
certainty propagation methods are not perfect. Using this
method, we are able to achieve 87.7% of the baseline F1, by
using only 13.2% of the documents. This demonstrates the
effectiveness of exploiting the relational nature of the data.
Table 4 shows the results of different uncertainty propaga-
tion methods at entropy threshold 0.7.

We also experiment with combining evidence in the out-
put space using the two schemes described in section 3.5,
and the confidence evaluation schemes described in section
3.7. Fig. 4 shows the four precision-recall curves. We see
that for High Confidence Confidence evaluation scheme (fig.
4(a),(c)), we obtain high values of precision and recall for
reasonable values of confidence. That is, in the confidence
region below 0.9, we obtain a good F1 value. Especially, the
Majority Vote - High Confidence scheme (fig. 4(c)) performs
exceptionally well in making predictions. However, in the
confidence region between 0.9 to 1.0, the Max Vote scheme
(fig. 4(b),(d)) gives a better degradation performance.

5. CONCLUSION AND FUTURE WORK
We propose a new framework for targeted information ex-

traction under resource constraints to fill missing values in
a database. We present first results on an example task of
extracting missing years of publication of scientific paper,
along with exploiting the underlying citation network for
better resource utilization. The overall framework is flex-
ible, and can be applied to a variety of problem domains
and individual system components can be adapted to the
task. The specific methods recommended here can be also
be generalized in many different relational domains, espe-
cially when the dataset has an underlying network structure.
In future, we would like to explore more sophisticated un-
certainty propagation methods, such as belief-propagation.
We would also like to develop individual components like
Query Engine and Document Filter, by using good ranking
procedures. Finally, it would be interesting to see how these
methods extend to extracting multiple interdependent fields.

6. ACKNOWLEDGMENTS
We thank Google for providing a special access to their

search interface.

7. REFERENCES
[1] M. Bilgic and L. Getoor. Voila: Efficient feature-value

acquisition for classification. In AAAI, pages
1225–1230. AAAI Press, 2007.

[2] M. Bilgic and L. Getoor. Effective label acquisition for
collective classification. In ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 43–51, 2008. Winner of the
KDD’08 Best Student Paper Award.

[3] D. Cohn, L. Atlas, and R. Ladner. Improving
generalization with active learning. ML,
15(2):201–221, 1994.

[4] C. Daskalakis, R. M. Karp, E. Mossel, S. Riesenfeld,
and E. Verbin. Sorting and selection in posets. CoRR,
abs/0707.1532, 2007.

[5] O. Etzioni, M. Cafarella, D. Downey, S. Kok,
A. Popescu, T. Shaked, S. Soderland, D. Weld, and
A. Yates. Web-scale information extraction in
knowitall. In Proceedings of the International WWW
Conference, New York. ACM, May 2004.

[6] R. Grishman and B. Sundheim. Message
understanding conference-6: a brief history. In
Proceedings of the 16th conference on Computational
linguistics, pages 466–471, Morristown, NJ, USA,
1996. Association for Computational Linguistics.

[7] P. Kanani and A. McCallum. Resource-bounded
information gathering for correlation clustering. In
Computational Learning Theory 07, Open Problems
Track, COLT 2007, pages 625–627, 2007.

[8] P. Kanani, A. McCallum, and C. Pal. Improving
author coreference by resource-bounded information
gathering from the web. In Proceedings of IJCAI, 2007.

[9] P. Kanani and P. Melville. Prediction-time active
feature-value acquisition for customer targeting. In
Proceedings of the Workshop on Cost Sensitive
Learning, NIPS 2008, 2008.

[10] A. Krause and C. Guestrin. Near-optimal nonmyopic
value of information in graphical models. In
Twenty-first Conference on Uncertainty in Artificial
Intelligence (UAI, page 05, 2005.

[11] J. Lin, A. Fernandes, B. Katz, G. Marton, and
S. Tellex. Extracting answers from the web using
knowledge annotation and knowledge mining
techniques, 2002.

[12] D. Lizotte, O. Madani, and R. Greiner. Budgeted
learning of naive-Bayes classifiers. In UAI03,
Acapulco, Mexico, 2003.

[13] G. Malewicz. Parallel scheduling of complex dags
under uncertainty. In SPAA, pages 66–75, 2005.

[14] A. K. McCallum. Mallet: A machine learning for
language toolkit. http://mallet.cs.umass.edu, 2002.

[15] P. Melville, M. Saar-Tsechansky, F. Provost, and
R. Mooney. An expected utility approach to active
feature-value acquisition. In Proceedings of the
International Conference on Data Mining, pages
745–748, Houston, TX, November 2005.

[16] M. H. Nodine, J. Fowler, T. Ksiezyk, B. Perry,
M. Taylor, and A. Unruh. Active information
gathering in infosleuth. International Journal of
Cooperative Information Systems, 9(1-2):3–28, 2000.

[17] M. J. Rattigan, M. Maier, and D. Jensen. Exploiting
network structure for active inference in collective

classification. Data Mining Workshops, International
Conference on, 0:429–434, 2007.

[18] V. Sheng, F. Provost, and P. G. Ipeirotis. Get another
label? improving data quality and data mining using
multiple, noisy labelers. In KDD ’08: Proceeding of
the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 614–622,
New York, NY, USA, 2008. ACM.

[19] V. S. Sheng and C. X. Ling. Feature value acquisition
in testing: a sequential batch test algorithm. In ICML
’06: Proceedings of the 23rd international conference
on Machine learning, pages 809–816, New York, NY,
USA, 2006. ACM.

[20] F. Wu, R. Hoffmann, and D. S. Weld. Information
extraction from wikipedia: moving down the long tail.
In KDD ’08: Proceeding of the 14th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 731–739, New York, NY, USA,
2008. ACM.

[21] S. Zhao and J. Betz. Corroborate and learn facts from
the web. In KDD, pages 995–1003, 2007.

