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Abstract

Causal knowledge is frequently pursued by researchers
in many fields, such as medicine, economics, and social
science, yet very little research in knowledge discovery fo-
cuses on discovering causal knowledge. Those researchers
rely on a set of methods, called experimental and quasi-
experimental designs, that exploit the ontological structure
of the world to limit the set of possible statistical models
that can produce observed correlations among variables.
As a result, designs are powerful techniques for drawing
conclusions about cause-and-effect relationships. However,
designs are almost never used explicitly by knowledge dis-
covery algorithms. In this work, we provide explicit evi-
dence that designs have the potential to be highly useful
as part of algorithms to discover causal knowledge. We
first formalize the basic elements of experimental and quasi-
experimental designs to characterize a design search space.
We then quantify the range and diversity of designs that
can be applied to examine the central questions associated
with a large and complex domain (Wikipedia). Finally, we
show that explicit consideration of designs can substantially
improve the accuracy of causal inference and increase the
statistical power of algorithms for learning the structure of
graphical models.

1. Introduction

The strongest type of knowledge we can discover is
causal. Causal knowledge is actionable, as opposed to as-
sociational knowledge, which is only predictive. The exis-
tence of a causal dependence between two variables, x and
y, implies that manipulating x will result in a change in y.
While a necessary precondition for causality, statistical as-
sociation between x and y merely implies that knowledge of
x can help predict the value of y. Thus, causal knowledge is
commonly pursued in fields such as medicine, economics,

biology, and social science where true understanding of be-
havior and knowledge of how to effect changes are neces-
sary.

Causal discovery is strictly a more difficult task than
non-causal discovery because it requires inferring a superset
of the conditions of non-causal discovery. The most chal-
lenging of these conditions is to eliminate the effects of all
potential common causes, whether observed or latent. As a
result, very little research in knowledge discovery focuses
on causal discovery, and discovering causal knowledge is
left as a manual activity for researchers in fields that re-
quire explicit determination of causal knowledge. Those
researchers rarely use the algorithms developed within the
knowledge discovery community; instead, they much more
often employ a set of formal frameworks and guidelines
for gathering and analyzing data that has been developed
over the past eighty years. Some of these approaches—
collectively called experimental designs—help structure the
planning and conduct of prospective experiments. The rest
of these approaches—called quasi-experimental designs—
help structure the analysis of retrospective studies of obser-
vational data. Such designs can alleviate the challenges of
causal knowledge discovery by increasing statistical power
and eliminating common causes.

In work published last year, Jensen conjectured that in-
corporating specific consideration of designs could improve
algorithms for machine learning and knowledge discovery
[10], and Jensen et al. later showed that quasi-experimental
designs could be identified automatically [11]. In this paper,
we formalize designs with respect to relational databases
and adapt them to knowledge discovery in order to char-
acterize the search space of designs. The formalization of
a search space of designs presents an unexploited opportu-
nity to develop algorithms that automate the identification
and application of designs for causal discovery. We show
that the design space is large for relational domains, and
that relational data enables the expression of designs and
facilitates their applicability to causal discovery. We also
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Figure 1. Wikipedia is a complex domain with
various entities, relationships, and attributes.

demonstrate how designs can improve causal knowledge
discovery by eliminating common causes (both latent and
observed), reducing the space of alternative causal models,
and increasing statistical power.

1.1. Example

Consider the problem of understanding the operation of
Wikipedia, a peer-produced general knowledge encyclope-
dia [21]. Wikipedia articles, or pages, are produced collec-
tively by thousands of volunteer users. Pages are created
and modified by users, and users often organize themselves
into groups called projects, each of which covers a general
topic. Within a project, individual pages are assessed by ed-
itors for “importance” (how central the page is to the project
theme) and “quality” (a project-independent objective eval-
uation of key criteria). See Figure 1 for a more complete
relational data schema describing the major entities and re-
lations that make up Wikipedia.

Wikipedia exemplifies many common aspects of mod-
ern data sets. It is made up of heterogeneous entities con-
nected by relations. Many data elements record temporally-
varying characteristics; Wikipedia records the precise mo-
ment of all user actions, page edits, etc. so any associations
can easily be examined with respect to temporal order. Fi-
nally, the data exhibit sufficient complexity that they allow
examination of a remarkably wide variety of questions.

For example, one of the most persistent claims about
Wikipedia is that its reputability stems from the large num-
ber of users that collaborate to write each article [12]. We
call this the “many-eyes hypothesis”—the more users that
revise an article, the higher the quality of that article. If we
knew that this claim were actually causal, then we could
theoretically increase the quality of an article by asking
more users to participate in revisions. However, to actually
determine that there exists a causal dependence between the
number of users editing an article and its quality, we must

eliminate other plausible alternative models that could ex-
plain the observed correlation. In other words, we must ac-
count for all potential common causes, which can be very
challenging. Fortunately, the data available on Wikipedia
make it possible to evaluate this claim. In fact, the data al-
low the use of a number of different designs, each eliminat-
ing different potential threats to a valid causal conclusion.

A naive approach to this question would be to simply ex-
amine a large number of pages at a given point in time and
estimate the correlation between the number of editors and
the quality of the page. This design tests the assumptions of
the graphical model shown in Figure 2, and given this de-
sign, the variables are highly correlated. A chi-square test
yields χ2=101.83 (n=189; DOF=12; p=2.44× 10−16), and
approximately 66% of the variance of page quality would be
attributed to the number of editors. This approach is quite
similar to those conducted by many algorithms in knowl-
edge discovery and data mining—it identifies a statistical
association between two variables, but it does little to iden-
tify cause and effect. The observed correlation could stem
from a common cause, such as general topic. Pages on
topics of high interest to Wikipedians may be edited by a
disproportionately large number of users, and that interest
could also drive editors to exert special care when editing,
thereby improving quality.

We could remove this potential common cause by us-
ing an alternative design. Since projects govern pages
that are thematically similar, we can use page-project re-
lations to factor out the influence of subject matter. This
more complex design helps to differentiate between the
graphical model shown in Figure 2 and the model in Fig-
ure 3a. When we use project links to arrange pages into
groups (called “blocks” in the language of experimen-
tal and quasi-experimental design), we find that the av-
erage correlation between editor count and page quality
has decreased. A Cochran-Mantel-Haenszel test [1] yields
M2=82.33 (n=189; DOF=12; p=1.48 × 10−12). Although
lower, this value is still highly significant, and roughly
53.4% of the variance would now be attributed to the num-
ber of editors. The effect size has dropped, but it is still sig-
nificant. Moreover, using this approach allows a stronger
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Figure 2. A simple graphical model can de-
scribe the dependence between the number
of editors and quality of an article, but it does
not account for common causes.
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Figure 3. (a) A more complex graphical model
incorporates common causes (potentially la-
tent) due to project; (b) An even more com-
plex graphical model adds measured vari-
ables of article importance and age to ac-
count for all plausible common causes of
number of editors and quality.

claim regarding the source of the association because we
have plausibly factored out at least one potential (unmea-
sured) common cause. The ability to factor out multiple
variables, observed or latent, is a highly valuable benefit of
this type of design. This design is easily found by exploit-
ing the relational structure of the data, yet it is unexploited
in current knowledge discovery algorithms.

There are still other potential common causes that could
account for the observed correlation between editors and
quality. For example, the importance or age of a page could
influence both the number of edits and the page quality. For-
tunately, we can build on the design above to factor out the
potentially confounding influence of importance and age.
Both of these effects can be mathematically modeled, al-
lowing us to statistically control for their effects. When we
do so, the correlation between editors and quality drops to
M2=29.13 (n=189; DOF=12; p=0.00377), and the effect
size also drops to 18.9% of the variance. After ruling out
several plausible common causes of variation, we now have
much stronger evidence that the relationship between editor
count and page quality is indeed causal, and that the “many-
eyes hypothesis” is valid.

1.2. Central concepts

The example in the previous section illustrates many im-
portant concepts. First, learning causal knowledge is very
useful and can have greater utility than associational knowl-

edge. If many eyes cause page quality, then Wikipedia ad-
ministrators seeking to improve article quality could try en-
couraging a diversity of editors within single pages. How-
ever, if we only know that the number of editors and page
quality covary, then various alternative causal models could
explain the correlation, each implying a different action.
Thus, causal knowledge is highly useful in domains we
would like to control, and, in settings that are not amenable
to change, true understanding of behavior can be derived
only under causal interpretations.

Second, causal knowledge discovery is a difficult task.
To infer a causal dependence between two variables x and
y, three conditions must be met:

1. Association — x and y must be statistically correlated.

2. Direction — The direction of causality is known.

3. No common causes — All possible common causes of
x and y have been accounted for.

Clearly, causal discovery requires inferring a superset of
the conditions of standard knowledge discovery. Finding
statistical associations is the focus of most current knowl-
edge discovery algorithms. The second condition is typi-
cally achieved with temporal precedence and is straightfor-
ward given some notion of time within the data. The third
condition of eliminating the effects of all possible common
causes is challenging.

One approach is to statistically model all possible com-
mon cause variables. In fact, structure learning algorithms
that learn probabilistic models of a set of variables, in-
cluding propositional algorithms (e.g., Bayesian networks
[8]) and relational algorithms (e.g., Probabilistic Relational
Models [6]), follow this approach. They determine structure
by finding dependencies among the variables through statis-
tical control of restricted sets of parent variables. However,
even with a highly accurate model, this approach succumbs
to various problems, such as the existence of latent, unmea-
sured variables and low statistical power.

Third, designs are useful for causal knowledge discov-
ery. Designs are mostly employed by researchers in other
fields to alleviate the challenges of discoverying causal
knowledge, and the techniques used in the previous section
emphasize their utility. The first design used in the example
is similar to those implicitly encoded in many knowledge
discovery algorithms. It can certainly identify a statistical
association between two variables, but it does not address
common causes. It is important to note that causal conclu-
sions are only valid up to the assumptions, or causal con-
straints, that we make. If we assume that there are no com-
mon causes between the number of editors and page quality,
then this design, upon detecting a significant association,
could conclude causation. The other designs in the exam-
ple incorporate additional elements of blocking and statisti-



cal control that help to account for more potential common
causes.

Finally, the space of designs is large. The example high-
lights that, for a given analytical task, several potential de-
signs apply, and we are interested in identifying and se-
lecting among those designs. Additionally, it is the rela-
tional structure of the data that enables many designs. For
example, the project-page relations in Wikipedia allow the
blocking design that controls for all variables attributed to
projects. By utilizing the complex structure of our data, dif-
ferent designs are able to rule out different sets of competing
hypotheses that can explain an observed correlation.

In the sections that follow, we formalize the concept of
designs for knowledge discovery and relate them to exper-
imental and quasi-experimental designs found in other em-
pirical sciences. We demonstrate that, for typical data sets
such as Wikipedia, there exist many valid designs for each
given task, and that selecting among these designs provides
higher analytical power than consistently selecting a single
simple design.

2. Designs

The full range of experimental and quasi-experimental
designs is unfamiliar to many researchers in knowledge dis-
covery. As a result, almost no knowledge discovery algo-
rithms incorporate explicit consideration of experimental
and quasi-experimental designs. A system might consis-
tently make use of one hard-coded design, and human in-
vestigators sometimes explicitly select a design before sub-
mitting data to a knowledge discovery algorithm, but no
system known to us automatically and dynamically selects
among multiple potential designs in an effort to maximize
the statistical power or identify causal relationships. The
algorithm developed by Jensen et al. was the first system
to explicitly identify one type of quasi-experimental design,
but this work was primarily proof-of-concept and very sim-
plistic [11]. Given the widespread use of designs in data
analyses directed by human analysts and the absence of de-
signs from current knowledge discovery algorithms, devel-
oping algorithms that automate the identification and ap-
plication of designs appears to be a great opportunity for
causal knowledge discovery.

Our goal in this section is to adapt and translate the lit-
erature of experimental and quasi-experimental design into
a body of ideas that complement existing concepts familiar
to researchers and practitioners in the knowledge discovery
community. We formally define designs in terms of rela-
tional databases and the relational algebra. Given the natu-
ral composition of the relational algebra, this formalization
of designs clearly characterizes a large search space for de-
signs and stresses the potential, and need, for automating
the process of identifying applicable designs.

2.1. Designs defined

Given a relational database D characterized by a schema
S = {R1, . . . , Rk} with attributes A(Ri) defined over each
relation Ri, a design is a function from S to a result ta-
ble R, such that R specifies the data necessary to conduct
a hypothesis test that determines the dependence between
some treatment variable x ∈ A(Ri) and some outcome
variable y ∈ A(Rj). For example, the naive design that
tests the many-eyes hypothesis for Wikipedia specifies both
the treatment and outcome variables as attributes of the Page
relation. The aim of a design is to construct a situation in
which the outcome of a single hypothesis test will deter-
mine, with high probability, whether a causal dependence
holds between two specified variables. That is, designs are
formulated in such a way that a valid conclusion about sta-
tistical association will correctly determine causal depen-
dence.

The design itself does not specify the hypothesis test,
only the necessary data to conduct such a test. An analyst
(or algorithm) must choose both a design and an accom-
panying statistical test. The statistical test depends on the
levels of measurement for the variables (i.e., nominal, or-
dinal, or continuous) and the type of design. For example,
the design that blocks for associated projects must group
the instances and use a hypothesis test that can handle strat-
ified data (e.g., the Cochran-Mantel-Haenszel test). As we
are primarily concerned with formally defining designs, we
leave the choice of hypothesis tests as a separate issue.

As defined above, a design can be formulated given
knowledge about the entities, relationships, and attributes in
a domain such as those in the schema for Wikipedia shown
in Figure 1. A design tests the dependence between two
variables, the treatment and outcome, of a particular class
of units. Units denote some experimental subject (e.g., en-
tity, group of entities, relationship) during a specific period
of time and corresponds to a single row in the result table.
Treatments are potential causes and can be any measurable
item that affects a unit, including an attribute value (of a
specific entity or an aggregate) or a link to another entity.
Formally, treatments can be defined in the relational alge-
bra as

πtreatment(RBase ./ · · · ./ RTreatment)

where RBase is the base table of the unit, and the treatment
variable is projected following a series of joins (i.e., a path
in the relational schema) to the underlying table that defines
the treatment variable. Outcomes are potential effects and
can be defined in the same manner as treatments.

2.2. Design elements

We discuss different designs in terms of three main ele-
ments: (1) sampling; (2) blocking; and (3) statistical con-



trol. Each of these elements can be formally defined within
the relational algebra, and they can be naturally composed
to form a vast design space. We believe this space of de-
signs has great potential as a search space that can be au-
tomatically explored, and this is an avenue of research we
are actively pursuing. In this work, we focus on defin-
ing the search space and, in later sections, demonstrating
the wide applicability of designs to relational domains and
the large benefit associated with using designs to discover
causal knowledge.

Sampling is the process of refining units, treatments, or
outcomes, and it is formally defined as

σϕ(RBase ./ · · · ./ RSample)

where ϕ is a propositional formula specifying conditions
necessary to be included in the sample.

In the KD community, data sampling is usually only em-
ployed as a computational necessity. We tend to sample data
to speed up algorithms or calculations with unacceptable
runtimes, or to clean data in hopes of reducing noise. Oth-
erwise, KD practitioners are hesitant to “throw away” data
by sampling; by analyzing all the data that are available, we
hope to maximize the sample sizes involved in our calcula-
tions and increase power. However, selecting subsets of the
data to analyze can improve the accuracy of causal infer-
ence, yield an increase in statistical power, or help identify
context-sensitive dependencies. For example, twin studies
are able to draw conclusions about the population at large
by looking at a small fraction of all available individuals [3].
Of course, the accuracy gained through sampling may come
at the expense of generalizability. If twins are not represen-
tative of the population at large, the conclusions we draw
from their study will not be widely applicable.

Blocking is a data grouping strategy, a way of organiz-
ing units to improve models and increase power. Blocking
serves similar purposes to statistical control: reducing vari-
ability and pruning the space of alternative causal models.
However, blocking simultaneously controls for the influ-
ence of entire classes of variables as opposed to that of indi-
vidual ones. The goal of blocking is to organize experimen-
tal units into groups such that variability within each group,
or block, is reduced. Blocks contain units with varying
treatments and outcomes while homogenizing confounding
factors that make detecting the relationship between treat-
ment and outcome more difficult. These blocks are then
modeled individually, and the results are combined into a
hypothesis test to make a determination about the popula-
tion at large.

Relational data sets lend themselves to the creation of
blocks, as link structure is often correlated with attribute
values. One main type of blocking is entity blocking, which
can be defined as

πblockId(RBase ./ · · · ./ RBlock)

in which we identify entities that are related to a particular
base unit through a series of joins in the schema. Units with
common blocking entity identifiers can then be grouped to-
gether. In the example above, we blocked Wikipedia ar-
ticles according to their related projects. By blocking in
this manner, we control for any possible confounding as-
pect of projects on page quality. This allows us to control
for all project attributes simultaneously, whether they are
measured or unmeasured. This ability to factor out the ef-
fects of latent variables is one of the key strengths of block-
ing over more traditional approaches to statistical control of
individual variables.

In addition to blocking by entities, we can block in-
stances of the same experimental unit over time.

πid(στ1(RBase)) ∪ στ2(RBase)))

The same base unit, at different times τi, is unioned with it-
self. This allows analysts to control for all aspects of an en-
tity, except those that are influenced by the passage of time
itself, so-called maturation effects [4, 17]. In a sense, a unit
at an instant in time t1 is a “twin” of the same unit at some
time t2. Temporal blocking is often implicit in relational
learning; any time we examine multiple measurements of
the same attribute on an entity we are blocking their associ-
ated instances temporally.

Finally, in addition to sampling and blocking, we can
account for common causes using statistical control.

πcontrol(RBase ./ · · · ./ RControl)

The design can specify additional variables to control for,
retrieving them in a similar manner as the treatment and
outcome variables. This class of methods models the ef-
fects of potential common causes so that their effects can
be removed mathematically. If there can be any claim that
concepts from quasi-experimental design are used in exist-
ing knowledge discovery algorithms, then they would be
based on the use of statistical control. For example, work by
Pearl [14], Spirtes, Scheines, and Glymour [18], and others
has explored this approach within the context of graphical
models.

The design testing the many-eyes hypothesis that com-
bines blocking on projects and controlling for importance
and age can be expressed as follows:

πeditorcount(PAGE) ./pageid πquality(PAGE)
./pageid πprojectid(PAGE ./ ADOPT ./ PROJECT)
./pageid πage(PAGE)
./pageid πimportance(PAGE ./ ADOPT)

While the precise details of the definitions of design in
the literature vary [16, 17, 19], the description above is
largely compatible with most other definitions of design.



Entity and temporal blocking may appear to be fundamen-
tally different techniques, but they are actually quite similar
when we consider that both operations group units. When
we include multiple observations of the same entities within
an experiment, we’re including multiple instances of the
same entity and blocking them together. Furthermore, if
we consider these instances to be connected by “temporal”
links, then relational and temporal blocking amount to the
same technique: using link structure to group instances to-
gether to reduce variability and eliminate common causes.

One distinction between our categorization of designs
and those found in the social science literature involves how
we define treatment. Traditional experimental descriptions
separate units into distinct treatment and control groups. In
our context, treatment can take on many possible values;
they are not merely binary designations. Also, most discus-
sions of experimental design in the social science literature
include detailed discussions of different “threats to valid-
ity” that accompany designs or design elements (e.g., mea-
surement error, maturation, resentful demoralization among
subjects). While we do not discuss specific threats here, all
internal validity concerns can be viewed as possible alterna-
tive models that explain the data and invalidate the favored
hypothesis.

3. Applicability of designs

In order to determine whether designs are a profitable di-
rection for enhancing knowledge discovery algorithms, we
must assess how often designs actually apply to typical do-
mains targeted by knowledge discovery researchers. To ex-
amine this question, we take an in-depth look at Wikipedia.
Although the Wikipedia schema (as described in Section
1.1) is not overly complex, it can spawn dozens of causal
questions with hundreds of applicable designs. There are
four main entity types (articles, categories, projects, and
users) and six types of relationships. Wikipedia is, however,
quite large, with over 2 million pages, 8 million users, and
close to 300 million edits. Furthermore, although Wikipedia
has been the subject of several recent studies [9, 20, 22], we
know very little about how it functions, especially from a
causal standpoint. These aspects make Wikipedia an ideal
candidate for studying the applicability and utility of de-
signs.

We wanted to produce a representative list of tasks of
real concern that could then be examined in the context of
design. We surveyed a group of ten people, each with a
bachelors or masters degree in Computer Science, to obtain
a sample of interesting causal questions in the Wikipedia
domain. Respondents were given a simple list of attributes
(see Table 1) and asked to indicate ten pairs of treatments
and outcomes they found compelling for study. Treatments
and outcomes were presented in one of five random orders,

Table 1. Complete list of survey variables.
Entity Attributes
Page Adopted by Project, Age, Assessment, Editors,

Edits, Featured, Importance, Length, Notice,
Number of Links, Protected, Quality, Views

User Role, Edits, Membership in Project
Edit Size, Vandalism, Minor, Reverted
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Figure 4. For each treatment and outcome
variable pair, the degree of shade indicates
how frequently that particular task was se-
lected by survey respondents. The row and
column marginals indicate how often a par-
ticular treatment or outcome variable was se-
lected, respectively.

to eliminate biases associated with presentation order. The
group generated a list of 99 causal discovery tasks (one re-
spondent provided only 9 tasks), 71 of which were unique.
A graphical representation of the survey results can be seen
in Figure 4 (unless otherwise noted, variables correspond to
page entities). For each pair of treatment and outcome vari-
ables, the shading in the corresponding square indicates the
number of respondents who highlighted that particular re-
lationship in his/her response. Page quality and vandalism
were the most popular outcome variables selected, while
page views and project inclusion were deemed interesting
treatments.

In Section 2.2, we discussed the advantages of using
blocking designs to eliminate common causes and reduce
variability. Our ability to employ a blocking design does
not rely on the particular treatment or outcome variables;
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rather, it is based on the structure of the schema surrounding
the entity type associated with the outcome variable. Fig-
ure 5 shows the frequency that different entity types (page,
user, edit) occur as the underlying entity for either the treat-
ment or outcome variables. Page was the most frequently
selected underlying entity for both treatment (76 out of 99
tasks) and outcome (69 out of 99 tasks) variables. This is
probably due to the disproportionately large number of vari-
ables associated with page as opposed to users or edits. We
manually identified the different design choices, and Fig-
ure 6 depicts the applicability of the different relational and
temporal blocking schemes for the tasks identified in our
survey. The overwhelming majority of tasks identified were
amenable to at least one blocking design.

Below, we consider the design options for three example
tasks generated from the survey in detail. Our goal here is to
demonstrate the breadth of applicable designs for each task
rather than focus on selecting the “best” design to evaluate
the relationship in question. The first two tasks correspond
to the most cited treatment-outcome pairs in the group (each
was identified by four respondents). The third example is
one of several that were chosen by three respondents. These
three tasks are representative of the entire list of tasks, as
each employs a different outcome entity type.

Example 1: Page adoption by a project → Page quality

This task concerns the dependence between articles
being included in Wikipedia projects and their qual-
ity. In Wikipedia, quality is assessed as an ordinal
variable with 7 levels, ranging from Stub to Featured

Article. The simplest design would involve only the
treatment and outcome variables, thereby ignoring all
other related entities, but this design would not be ro-
bust in terms of factoring out potential common causes
of treatment and outcome. For instance, certain cate-
gories of pages might be highly likely to be adopted by
projects as well as of uncommon quality; blocking in-
stances by category could eliminate this interpretation
of the data from the hypothesis space. Similarly, com-
mon cause threats from users, linked pages, and addi-
tional projects can be addressed via blocking, yielding
32 different designs. In addition, a temporal design
can be applied to the pages themselves, examining the
page quality longitudinally before and after it is added
to a project. Finally, any subset of the several page en-
tity attributes (e.g., importance, age, length) could be
statistically controlled. All together, there are dozens
of designs that apply to this task.

Example 2: Edit vandalism → Edit reversion

This task involves the relationship between two vari-
ables on edits; specifically, whether edits categorized
as vandalism are reverted. While the association be-
tween these variables may appear trivial, establish-
ing the strength of a generalizable causal relationship
would be of great interest to Wikipedia administrators.
In terms of blocking choices, edits are made by users
to particular articles, so designs blocking on pages and
users apply. In addition, the influence of page category
could also be a confounding factor, as could project
inclusion. Unlike the previous example, however, not
all combinations of blocking choices are compatible
within the same design—for example, it is meaning-
less to block on page as well as project, since page
blocks would subsume project blocks. In total there are
ten different combinations of factors to use to group
edit instances into blocks via relations. Since edits are
instantaneous, they cannot be blocked temporally.

Example 3: User project membership → User edit count

This task considers whether user membership in a
Wikipedia project has an effect on the number of ed-
its they make on various articles. Possible alternative
hypotheses that could explain a correlation include the
influence of page content or project theme. Both of
these can be ruled out by blocking user instances on
those entities. Furthermore, temporal blocking can be
employed to control for the inherent variability of the
edit behavior of the users themselves.

As we demonstrate by these example tasks, the applica-
ble design choices for even simple causal questions are nu-
merous and potentially overwhelming to investigate manu-
ally. A knowledge discovery algorithm that could automat-



ically search the space of possible designs would be bene-
ficial, which is the primary motivation for performing this
assessment.

4. Utility of designs

In Section 2, we described the different elements of ex-
perimental and quasi-experimental design in a knowledge
discovery context. In Section 3, we demonstrated how vari-
ous designs can be used to examine interesting causal ques-
tions in a typical rich data set. Now we examine the key
advantages of sampling, blocking, and statistical control
through the use of two examples taken from the Wikipedia
domain. Where possible, we quantify the effects of each
design element, and we support these findings through ad-
ditional simulations.

The two example tasks from Wikipedia can be summa-
rized with the following questions:

1. Do “many eyes” cause page quality? That is, does
the number of unique contributors to an article affect
its quality? Recall this is the example used in Sec-
tion 1.1. For this task, the units are Wikipedia arti-
cles, the treatment variable is the number of distinct
users that have edited the article, and the outcome is its
quality. To analyze this question, we randomly sam-
pled 189 Wikipedia articles from within ten different
projects.

2. Does exposure of an article cause a change in editing
behavior? For this question, we examine the effect of
being featured on Wikipedia’s main page as “Today’s
featured article” on the number of edits made to that
article. In this setting, the units are also Wikipedia ar-
ticles, the treatment is being featured on Wikipedia’s
front page (which changes daily), and the outcome
is the number of edits measured over different time
periods. For this question, we randomly selected 97
Wikipedia articles that were featured in 2008.

4.1. Sampling

Sampling, the first element of design we discussed, can
be utilized in designs for both examples. Sampling has two
primary benefits: enabling the creation of blocks and reduc-
ing variability. To analyze the many-eyes hypothesis, we
sample pages that have associated projects and have been
assessed for quality. Not only does this ensure that the out-
come variable (quality) is measured, but it also enables a
more complex design to block on projects. In this case, the
sampling procedure reduces the size of the data by 72% be-
cause only a fraction of articles have been assessed. In the
second example, we sample only articles that have “featured
article” quality. Only pages designated with this status may
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Figure 7. Featured article have an immedi-
ate and vast increase in the number of edits
when they appear on Wikipedia’s front page
(left). If we remove this edit spike, a clear
downward trend in the number of edits is vis-
ible (right).

be chosen as “Today’s featured article,” and only 1 out of
every 1,130 articles actually have featured article quality.
This is equivalent to more than a 99.9% reduction in the
number of articles studied.

Additionally, sampling can be used to reduce variabil-
ity, which may change the detected effect size or increase
power. Suppose we hypothesize that users prepare an arti-
cle for an upcoming request to be “Today’s featured article”
by frequently editing the page in the weeks leading up to
the event. However, after the article’s exposure, the num-
ber of edits decreases since it no longer requires prepara-
tion for widespread exposure. We can test this by perform-
ing a one-tailed t-test on the number of edits in the month
before and month after being featured, but we will incor-
rectly reject this hypothesis regardless of doing a paired or
unpaired t-test. On closer inspection, it is clear that being
featured leads to an immediate increase in edits (see Fig-
ure 7). Therefore, if we sample the number of edits in the
month before and month after, but remove the edits during
the week surrounding being featured, then the effect size
completely changes. In fact, the sign of the effect changes
from an average increase of 128 edits due to being featured
to an average decrease of 21 edits due to being featured.

4.2. Blocking

Blocking designs can relax the causal sufficiency as-
sumption by eliminating entire classes of potential common
causes, including both measured and latent variables. In
the many-eyes task, we block pages by project in order to
control for potential common causes, as discussed in Sec-
tion 1.1. Without blocking, there is a strong correlation
between the number of editors and page quality. Using
a simple Chi-square test, we obtain a value of χ2=101.83
(n=189; DOF=12; p=2.44 × 10−16). After blocking on
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Figure 8. (a) Looking at article edits in the
month before and after an article becomes
featured, a design that employs blocking can
increase statistical power by reducing vari-
ance. (b) As the strength of effect increases
between two variables x and y, a design
blocking on common entities can detect cor-
relation with increasingly higher power as
opposed to a design without blocking.

project, the Cochran-Mantel-Haenszel test achieves a value
of M2=82.33 (n=189; DOF=12; p=1.48 × 10−12), indi-
cating that blocking on project explains some of the orig-
inally observed correlation between the number of editors
and page quality. By blocking, we have also reduced the
hypothesis space by eliminating any potential alternative
causal models in which variables on project solely control
for correlation between number of editors and quality. As a
result, we can make a stronger claim about the source of the
remaining association.

In the featured article example, we block temporally on
page by comparing the number of edits in the month be-
fore and after being featured (and ignoring the surrounding
weeks of the featured event). In this case, not only do we
factor out potential common causes residing on the page it-
self, but we also increase the power since the within-block
variability is less than the between-block variability. This is
the second main benefit of blocking: Blocking can be used
to decrease variability and increase the power to detect cor-
relation. In the featured article example, we use a paired
t-test which increases the power of the test. In Figure 8a,
we see that blocking provides for the equivalent of approx-
imately 10 additional data instances for the same level of
power (e.g., 80% power). However, beyond power, we have
again reduced the space of alternative models by eliminat-
ing potential common causes attributed to the page itself.

We can use simulation to examine the phenomenon of
blocking to increase power in more detail. We generate data
from a bipartite model that mirrors the structure of articles
and projects in Wikipedia. Each page entity has two discrete
variables x and y, and there is a latent variable z on the

project entity; x and y covary by a given strength, but z also
contributes to the value of y. In Figure 8b, we illustrate the
power gained from blocking by project as a function of the
strength of the dependence between x and y. As we increase
the strength of effect between x and y, the power of the
blocking design increases dramatically; without blocking,
even a strong dependence goes undetected.

4.3. Statistical control

Statistical control is an element of design applicable to
all tasks. Like blocking, it can be used to eliminate po-
tential common causes of measured variables and reduce
variability. In the many-eyes task, we assume that age and
importance of an article are common causes of the number
of distinct editors and page quality. As a result, it is nec-
essary to factor out the additional source of variation due
to these two variables. When we block on project and ad-
ditionally condition on age and importance, the Cochran-
Mantel-Haenszel test still indicates a highly significant cor-
relation between number of distinct editors and page qual-
ity (M2=29.1286; n=189; DOF=12; p=0.00377). Again,
by controlling for additional factors we reduce the space of
alternative models. Given the assumption that there are no
remaining common causes, we can conclude that the many-
eyes hypothesis holds true for Wikipedia: To achieve high
quality articles, we should encourage more volunteers to
contribute to articles.

As shown in Section 3, large numbers of different de-
signs can be formulated for most causal questions of inter-
est. In this section, we have shown that the benefits of ap-
plying any individual design can be large, and that those
benefits vary substantially depending on which design is
employed. This suggests an unexploited opportunity for
knowledge discovery algorithms to identify, evaluate, and
apply designs to facilitate causal discovery.

5. Related work

The ideas behind experimental and quasi-experimental
design date back decades [4, 5], but they continue to be
an active area of research to date [16, 17, 19] as new
types of designs and their associated analysis are formu-
lated and classified. Most traditional quasi-experimental
designs fit nicely into the framework of sampling, block-
ing, and statistical control. For example, the examination
of editor count and page quality was an expanded “posttest
only with nonequivalent control group” design, while the
temporally-blocked design examining page exposure and
edit frequency in Wikipedia was an example of an “un-
treated control group with dependent pretest and posttest
samples using switching replications.”



The concept of blocking as a means of controlling vari-
ance has been a widely used technique in statistical analysis
[19]. The utilization of relational structure to block by en-
tire entities rather than attributes is a generalization of the
classic twin design. For more than a century, researchers
have relied on twin data to control for whole classes of (of-
ten unmeasurable) attributes related to family environment
and heredity [3].

The idea of using designs to maximize the utility of data
collection is also studied extensively in the combinatorics
community [2]. Many of these ideas are not as directly
applicable to our work, as we work with “found” obser-
vational data rather than designing studies to be tabulated.
Furthermore, they focus almost exclusively on binary (or
at the very least, discrete) treatments and outcomes and are
unsuitable for the types of continuous data sets studied in
machine learning.

A small but active research community in computer sci-
ence, statistics, and philosophy has focused on moving from
correlational studies to causal ones, utilizing Bayes nets
with causal semantics [14, 18]. This research is providing
a solid theoretical foundation for causal analysis, but it fo-
cuses almost entirely on propositional data sets that don’t
explicitly represent relations or time. Extending these ideas
to relational-temporal domains is a promising area of future
investigation.

Several branches of the social sciences utilize statisti-
cal models based on the hierarchical nature of many data
sets to infer causality; these include hierarchical linear mod-
els [15], structural equation modeling [13], and multi-level
modeling [7]. However, each of these approaches consis-
tently, and implicitly, relies on one specific design or set of
designs. They do not define a space of designs or choose
among the applicable designs.

6. Conclusions

In this paper, we have formally defined designs with
respect to relational databases and the relational algebra,
which naturally compose to form a searchable space of de-
signs. Given a formally defined search space, it is clear
that we can develop algorithms to identify and evaluate de-
signs. We have shown that large numbers of design alterna-
tives exist for a representative sample of causal questions,
which suggests that algorithms could significantly aid in-
vestigators engaged in causal discovery. Additionally, we
have presented quantitative evidence that designs employ-
ing sampling, blocking, and statistical control can limit the
set of possible causal models and improve the statistical
power of causal discovery. The utility of designs for causal
discovery indicates that algorithms identifying such designs
would be very beneficial. We believe this is a major area of
future research, and we are actively pursuing algorithms to

search the design space and automatically apply designs to
discover causal knowledge.
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