
Dynamic Resource Scheduling in Disruption-Prone
Software Development Environments

Junchao Xiao1,2, Leon J. Osterweil2, Qing Wang1, Mingshu Li1,3

1 Laboratory for Internet Software Technologies, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

2 Department of Computer Science University of Massachusetts,
Amherst, MA 01003-9264 USA

3 Key Laboratory for Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

Abstract. Good resource scheduling plays a pivotal role in successful software
development projects. However, effective resource scheduling is complicated
by such disruptions as requirements changes, urgent bug fixing, incorrect or
unexpected process execution, and staff turnover. Such disruptions demand
immediate attention, but can also impact the stability of other ongoing projects.
Dynamic resource rescheduling can help suggest strategies for addressing such
potentially disruptive events by suggesting how to balance the need for rapid
response and the need for organizational stability. This paper proposes a multi-
objective rescheduling method to address the need for software project resource
management that is able to suggest strategies for addressing such disruptions.
A genetic algorithm is used to support rescheduling computations. Examples
used to evaluate this approach suggest that it can support more effective
resource management in disruption-prone software development environments.

Keywords: Disruption, rescheduling, multi-objective, genetic algorithm.

1 Introduction

Software development processes are highly dependent upon human resources [1, 25].
Thus a key problem in software project management is appropriate human resource
scheduling. Effective resource scheduling should ensure that assigned resources have
the capability and capacity to execute their assigned tasks, that resource contention is
minimized, project efficiency is maximized, and that organizational value and
customer satisfaction are increased [3, 28, 29].

But disruptive events such as requirements changes, needs for fixing important
bugs, incorrect or unexpected process execution, and staff turnover can create
uncertainty that complicates resource scheduling [13, 21]. A particularly vexing
aspect of this problem is how to balance the need to respond effectively to disruptive
events against the need to be sure that this response does not create other (perhaps
even more severe) disruptions by destabilizing other ongoing projects. There are
risk management approaches that suggest how to anticipate and address some kinds of
such disruptive events, but unexpected events simply cannot be predicted with
sufficient accuracy, thus suggesting the need for a dynamic rescheduling approach.

Accurate answers to the following four questions are needed if such rescheduling to
be most effective:

(1) Under what circumstances should a rescheduling be executed? That is, how can
the problems caused by disruptions and the current state of the process
execution be used to suggest when a rescheduling should be undertaken?

(2) Which activities should be covered by the rescheduling? That is, what activities
should be within the scope of the rescheduling when rescheduling is undertaken?

(3) How can the approach to rescheduling be tailored to accommodate different
kinds of disruptions? What kinds of measures can be used to support finding a
balance between dealing with current disruptions and avoiding the creation of
excessive new disruptions in doing so?

(4) What kind of scheduling algorithm should be used? Which algorithm can
provide as optimal a scheduling result as possible for costs in time and
computing power that are as minimal as feasible?

This paper proposes a software process rescheduling method to address the issues
of software project management in these kinds of dynamic disruption-prone
environments. Articulate process and resource models are used to support this
method. The value obtained from proposed reschedulings is computed using a
function that weights both how well the rescheduling addresses the disruption (utility)
and how little it creates new disruptions (stability). To address the problems posed by
the high degree of complexity of such a rescheduling problem, a genetic algorithm
(GA) [14] is adopted as the basis for our rescheduling approach.

The paper provides the following contributions:
(1) A procedure for performing resource rescheduling in response to the

occurrence of disruptive events that assumes pre-specified responses to
disruptions, and tackles the problems caused by executing these responses.

(2) A multi-objective value function for evaluating rescheduling results that
takes into consideration the need for both high stability and high utility.

(3) A GA based rescheduling method that seems to be effective both in
delivering good results and efficient in keeping costs modest.

Section 2 analyzes uncertainties and process change in software development.
Section 3 describes the rescheduling approach we use to address disruptions. Section
4 presents the models used as the bases for both the rescheduling and the evaluation
of the multi-objective function used to evaluate the rescheduling. Section 5 provides
some case studies aiming at evaluating this method. Section 6 describes some related
work, and section 7 presents conclusions and suggests future work.

2 Uncertainty and Process Change in Dynamic Environments

Software development managers need to make resource rescheduling decisions to
respond to disruptions [15] such as:

(1) Requirement velocity: Requirements continually change during process
executions [12, 16]. To address these changes, new activities may be inserted
into development processes, requiring assigning resources to these activities.

(2) Sudden arrival of urgent activities: New activities may be needed to address
urgent problems (e.g. serious bugs in delivered software) [20]. Although such

events might not be unexpected, it may be hard to predict when they occur, and
thus the changes they require may cause disruption to schedule or cost [5].

(3) Deviations in process execution: Inaccuracies in project cost estimates, incorrect
performance of tasks by project personnel, the unexpected need for rework, or
the occurrence of process exceptions may cause a project to fail to proceed as
planned thus necessitating the rescheduling of project resources.

(4) Staff turnover: The software industry experiences high personnel mobility and
staff turnover that create disruptions that typically require rescheduling [7].

3 Management of Dynamic Change by Rescheduling

This paper presents a resource rescheduling method designed to tackle the impact
of these kinds of disruptions in dynamic environments.

The first step in our method entails determining the changes to process execution
needed to respond to the occurrence of disruptive events. These changes may include
either the insertion of new process activities, the deletion of activities that were
present in the initial process, or the addition or deletion of resources that had been in
the initial resource set. Any of these changes triggers resource rescheduling.

The second step entails determining the scope of the resource rescheduling, namely
identification of the activities and resources to be involved in a rescheduling. There
are a number of reasons why rescheduling does not necessarily entail reconsideration
of all the activities and resources in an entire software organization. One such reason
is that process changes may occur in only one project or even in only a part of one
project, and the needed resource scheduling adjustments might be readily restricted to
this range. Moreover, we note that if rescheduling spans the entirety of a long term
process, the rescheduling might itself introduce more disruptions than it addresses. In
this paper the scope of a rescheduling is restricted to only a subset of the projects
being performed by an organization at the time of the rescheduling.

Third, we construct the constraints and value objectives for rescheduling. The goal
of rescheduling is to obtain optimal organizational value while conforming to various
constraints. Since resource scheduling decisions are usually made under conflicting
goals, a value function that can balance the goals is needed in rescheduling. This
paper uses as an example addressing the conflicting goals of stability and utility.

Fourth, we seek value function optimization by using GA. This optimization
problem has a high level of complexity, so we use GA as the scheduling approach,
hoping to achieve near-optimal results at acceptable costs.

Section 4 describes our approaches to the problems arising in doing these steps.

4 Multi-Objective Resource Rescheduling Using a GA

4.1 Project, Activity and Resource Models Used in Scheduling

4.1.1 Project model

Software organizations are usually performing a group of projects, each described by
basic information, constraints, and its value objectives. Thus we define a project as:

Definition 1.),,(PWSetConSetBasicAttrP = , where,

• BasicAttr describes such basic attributes as name, generation, descriptions, etc.
• ConSet is the set of all project level constraints (e.g. cost and time). Violation of

each constraint will incur some quantified penalty.
• PWSet is a preference weight set. Each project in a multi-project environment is

assigned a priority weight relative to the other projects. This weight is used to
evaluate the importance of the resource requirements of each project. Note that
this weight may change dynamically (e.g. to emphasize the importance of
responding to the need to fix an important bug).

4.1.2 Activity Model

Precision and specificity in evaluating competing resource schedules are enhanced
through the use of a project specification notation that is more precise and detailed.
Thus, the Little-JIL process definition language [26] is used in this paper to define
software development project activities, their dependencies upon each other, and their
needs for resources. This language offers simplicity, semantic richness and
expressiveness, and a formal and precise, yet graphical, syntax.

Fig. 1. Project development process described by Little-JIL

Fig. 1 shows a Little-JIL definition of a process for carrying out two software
development projects in parallel. The “=” sign in the “ProjectDevelopment” root step
indicates that its substeps (Project1 and Project2) are performed in parallel. Projects
are decomposed into requirement analysis (RA), development (Develop), and testing
(TST), which are executed sequentially (represented by “ ” sign). Development is
further decomposed into design (AD), implementation (IMP), and write test case
(WTC). WTC is executed parallel with AD and IMP, which are executed sequentially.

Requests for resources are represented iconically by the dot atop the step, and are
described as required skills, skill levels, and required quantities of skills.

Fig. 2 shows an example of how an activity may be added to a process to respond
to a disruption. Thus Project3 executes RA, IMP, and TST sequentially to realize a
changed requirement and Project4 and Project5 use IMP and TST sequentially to
realize urgent bug fixing. All are executed in parallel with Project1 and Project2. This
process definition is used to select the activities that will be included in the scope of

the rescheduling. This is done using graph searching algorithms whose details are
omitted due to space constraints. A summary of these details is in [27].

Fig. 2. Combine new project activities with initial project development process

4.1.3 Resource Model

The human resource model proposed in [29] is used to describe human resources.
Each human resource is described by its identification (ID), executable activity type
set (EATS), skill set (SKLS), experience data (EXPD), schedulable time and
workload (STMW), together with salary per person-hour (SALR). EATS, SKLS and
EXPD are capability attributes, and STMW is the capacity attribute.

Resources available for the rescheduling are preserved in a resource repository.
The set of resources that are candidates to perform a step are those such that 1) the
work type of the step is included in the EATS attribute of the resource, 2) the skills
described in the step’s requirements are also in the resource’s SKLS attribute, and 3)
the resource has a higher skill level than is required by the step. Note that when
there is resource turnover, the resource repository is changed accordingly.

4.2 Multi-Objective Value Measure of Rescheduling

A rescheduling may have different objectives that conflict with each other. Thus, for
example, attaching a high priority to fixing a bug in one project indicates that this bug
fix will return high value to the organization. But this may require using the resources
of a different project, causing disruption to that project and loss of value to the
organization. Thus rescheduling must be measured against a possible multiplicity of
objectives. Assume a rescheduling has n objectives, nooo ,...,, 21 , each having

weight wi , then the value of the rescheduling is defined to be ∑
=

=
n

i
ii owMO

1
*

Note that each objective in this function can be further decomposed into sub-
objectives, each having its own importance weight. This paper presents, as an
example, two resource rescheduling objectives to define the value function. The first
(stability) weights the importance of keeping the rescheduled process similar to the
initial process. The second (utility) weights the importance of responding to the
disruption. Though the examples in this paper assume the existence of only two
objectives, the approach scales up to consideration of any number of objectives.

4.2.1 Stability Value

Process stability is measured using two factors, change in the scheduling of each
activity and change in human resource assignments to each of the activities.
Schedule changes can cause changes in project commitment and customer
satisfaction. Resource assignment changes can necessitate more communication
effort, more training time, and waste of previous preparations. These reduce the value
of a project and thus should be avoided.

Schedule deviation is measured by the differences between initial process and
rescheduled process start times and end times. Let the start time before and after
rescheduling of an activity ACT be ACTts and '

ACTts respectively, the end time of

ACT be ACTte and '
ACTte respectively. Since impact of start time and end time

deviations may differ, let impact coefficients be α and β respectively. Then the
deviation of ACT is defined to be '' ** ACTACTACTACT tetetsts −+− βα , and the total

deviation of the activities in ActivitySet due to rescheduling is:

∑
∈

−+−=
tActivitySe

ACTACTACTACT tetetstsSDeviation
ACT

'')**(βα

Note that in this example only the activities in the initial process are used to
compute schedule deviation. Other measures can easily be defined.

To measure human resource changes, workload changes for each human resource
scheduled to an activity are accumulated. Assume a human resource set HRS
represents all the human resources assigned to an activity ACT in either the initial or
the rescheduled process. For each hr ∈ HRS, assume the workload allocated to ACT
before rescheduling is b

hrE , and after rescheduling is a
hrE . If hr is not in ACT before

rescheduling, b
hrE is zero. If hr is not in ACT after rescheduling, a

hrE is zero. Then
total human resource changes are defined to be: ∑

∈

−=
ACTHRS

a
hr

b
hr EEnHRDeviatio

hr

Schedule deviation and resource change may have different impacts on stability,
and so HC, a coefficient of human resource change is used to compute total deviation.

∑ ∑
∈ ∈

−+−+−=
tActivitySe HRS

a
hr

b
hrACTACTACTACT

ACT

EEHCtetetstsDeviation
ACT hr

'')***(βα

The goal of stable rescheduling is to minimize the above stability loss. Therefore,
total stability value is DeviationDPalueStabilityV *C−= , where DP is the
deviation penalty coefficient and constant C causes the stability value to be positive.

4.2.2 Utility Value

Utility describes the value obtained from a project that satisfies its constraints at its
conclusion. If the project succeeds and satisfies its constraints, benefits will be
obtained. If the project is delayed, penalties are incurred. The schedule utility of a
project is defined by comparing the actual finishing date to the constraint finishing
date. Let the actual finishing date and the constraint finishing date of a project be
AFD and CFD respectively. Let benefit of finishing one day ahead the constraint be
SB, and the penalty for a one day delay be SP. The schedule utility is defined to be:

}0),max{(*}0),max{(* AFDCFDSPCFDAFDSBSUtility −−−=
Since the cost of developers is the primary cost in software development, our

method only takes human resource cost into consideration. This cost is the total over
all activities of the product of the salary rate of each human resource multiplied by the
workload required. Assume the cost of a project is CST and cost constraint of this
project is CCST, then cost utility of this project is: CSTCCSTCUtility −=

Weighting schedule and cost preference by coefficients SWeight and CWeight
respectively, project utility is: CUtilityCWeightSUtilitySWeightPU ** +=

The preference weights of projects vary. For example, an urgent bug fix project
may be very important and should have a high priority for resources. Thus a project
preference weight (PPW) is set for each project and the utility value for all projects in
an organization is defined by: ∑

∈

=
ProjectSetP

PP PUPPWueUtilityVal)*(

Now finally, assume the stability and utility objectives for a scheduling are given
weights sw and uw respectively. Then a rescheduling’s value is computed by:

ueUtilityValwalueStabilityVwValue us ** +=

4.3 Rescheduling Using a GA

4.3.1 Encoding and Decoding

The first step in using GA as a problem solver is to represent the problem as a
chromosome. In the activity model described by Little-JIL, non-leaf steps are used to
represent scopes and to group certain kinds of activities, but only leaf steps represent
actual project performance activities. Thus, once the scope of rescheduling has been
determined, only the leaf steps in that scope are selected for GA encoding. Assume
the N steps, NSSS ,...,, 21 are selected, and the human resources capable of executing
step Si are HRi,1, HRi,2, ..., HRi,ti. We construct a resource queue HR1,1, HR1,2, ...,
HR1,t1, ..., HRN,1, ..., HRN,,tN, consisting of all resources that are schedulable to
activities in the rescheduling scope. The first part of the chromosome (shown as the
left part of Fig. 3) is generated by creating a gene for each step, as just described.

The length of this part is: ∑
=

=
N

i
itT

1

. Once GA has run, if a gene has value “1” the

corresponding human resource has been scheduled to the corresponding step. The
value “0” means the corresponding human resource is not scheduled to the step.

Fig. 3 Structure of the Chromosome.

The chromosome also contains priority genes (shown on the right of Fig. 3) to
represent the priority weight of each project. A priority weight is a binary number. If

the GA assigns a human resource to more than one step, the step with highest priority
value is assigned the human resource. Therefore, the length of the chromosome is:

gNTCL ∗+= , where g is the base 2 logarithm of the maximum priority level.
After GA has been run, a chromosome is decoded into a schedule as follows. First,

sort all the steps involved in the rescheduling into a queue. In this queue, steps that
precede others are placed in front of those that follow. If steps do not have a
precedent/succedent relationship, steps with higher priority are placed in front of
those with lower priority. Second, assign each resource whose gene has the value “1”
to the corresponding step in the queue. If a step requires only a certain number of
resources, then at most that number of resources are assigned. Third, allocate the
schedulable workload of the assigned resources to each step and update the
availability state of the resources. Finally, set the start time of the step so that it is the
earliest time that is not earlier than the end time of all of its preceding steps.

Constraint satisfaction: Rescheduling constraints are built into the encoding and
decoding process. During encoding, candidate resources for each step are determined
to have the capability to execute the step. In the decoding process, only resources that
have available workload are scheduled, and they are scheduled only at times when
they are available and when the activity is actually executable.

4.3.2 Running GA

The initial population of the GA is generated by creating chromosomes as described
above. Evolution is realized by using predefined crossover and mutation rates, for
each population generation. The fitness of each chromosome is evaluated by the value
function presented in section 3.2 and chromosomes with higher fitnesses are selected
for each succeeding generation. Evolution continues for a predetermined number of
generations, and the chromosome with the highest fitness in the last generation is
selected as the solution.

5 Evaluation

To evaluate our method, we used it to simulate the allocation of resources by a
software company engaged in two different projects. We hypothesize that each of
the two projects is addressing requirements for a group of modules, and that both are
doing so by performing the process shown in Fig. 1.

Resources available to the company are listed in Table 1 and the leaf activities of
the two projects are described in Table 2. Due to space constraints, in the human
resource description in Table 1 we show only productivity (obtained from experience
data) and salary rates for each resource. We assume human resources are available
only on workdays from 1 January 2009 through 31 December 2010 and each workday
has 8 person-hour workloads available. In the activity description shown in Table 2,
we show only the candidate resources, size, initial allocated resources, and the start
and end time for each activity execution. The candidate resources are identified by
matching activity resource requests to human resource capabilities.

Table 1. Human resource information of initial process

Human
resource

Executable activity and
corresponding productivity

(KLOC/Person-Hour)

Salary
rate

(RMB)

Human
resource

Executable activity and
corresponding productivity

(KLOC/Person-Hour)

Salary
rate

(RMB)
HR1 RA/0.06 60 HR8 IMP/0.025 40
HR2 RA/0.04 45 HR9 IMP/0.02 35
HR3 RA/0.05 50 HR10 IMP/0.015 35
HR4 AD/0.06 60 HR13 WTC/0.05; TST/0.04 45
HR5 AD/0.05 60 HR14 WTC/0.045; TST/0.035 45
HR6 AD/0.05 50 HR15 WTC/0.035; TST/0.03 45
HR7 IMP/0.03 45 HR16 WTC/0.03; TST/0.03 40

Table 2. Activity information of initial process

Activity Candidate resources Size
(KLOC)

Initial allocated
resources [Start, End]

RA1 HR1, HR2, HR3 20 HR1, HR2 [2009-05-01, 2009-06-05]
AD1 HR4, HR5, HR6 20 HR4, HR5 [2009-06-08, 2009-07-08]

IMP1a HR7, HR8, HR9, HR10 12 HR7, HR8 [2009-07-09, 2009-08-17]
IMP1b HR7, HR8, HR9, HR10 8 HR9, HR10 [2009-07-09, 2009-08-18]
WTC1 HR13, HR14, HR15, HR16 20 HR13, HR14 [2009-06-08, 2009-07-23]
TST1 HR13, HR14, HR15, HR16 20 HR13, HR14 [2009-08-19, 2009-10-5]
RA2 HR1, HR2, HR3 16 HR1, HR3 [2009-05-21, 2009-06-24]
AD2 HR4, HR5, HR6 16 HR5, HR6 [2009-06-25, 2009-07-30]

IMP2a HR7, HR8, HR9, HR10 10 HR7, HR8 [2009-08-18, 2009-09-17]
IMP2b HR7, HR8, HR9, HR10 6 HR9, HR10 [2009-08-19, 2009-09-17]
WTC2 HR13, HR14, HR15, HR16 16 HR15, HR16 [2009-06-25, 2009-08-11]
TST2 HR13, HR14, HR15, HR16 16 HR15, HR16 [2009-09-18, 2009-11-4]
We now assume that after resources have been scheduled to the projects’ activities

three new requirements are issued. One is an upgrade requirement that is addressed by
the process specified as Project3 in Fig. 2, and the other two are to address the sudden
arrival of urgent bug fixing requests to be done as specified by Project4 and Project5
in Fig. 2. Leaf activities of these projects are described in Table 3.
Table 3. Activity information of added process

Activity Candidate resources Size (KLOC)
RA3 HR1, HR2, HR3 14

IMP3 HR4, HR5, HR6 14
TST3 HR13, HR14, HR15, HR16 14
IMP4 HR7, HR8, HR9, HR10 10
TST4 HR13, HR14, HR15, HR16 10
IMP5 HR7, HR8, HR9, HR10 8
TST5 HR13, HR14, HR15, HR16 8

Rescheduling is required in order to provide resources to address these new
requirements. For this example we assume that rescheduling parameters of the multi-
objective value function are set as shown in Table 4 and parameters used for
computing project utility are set as shown in Table 5.
Table 4. Parameters of multi-objective value function

α/ β/ HC 1 / 1 / 1
C 600,000

DP 300

Table 5. Parameters of projects used for computing utility
 Project1 Project2 Project3 Project4 Project5

Constraint start and
finish date

[2009-05-01,
2009-10-30]

[2009-05-21,
2009-11-31]

[2009-06-01,
2009-8-31]

[2009-07-01,
2009-9-20]

[2009-08-01,
2009-10-30]

Constraint cost 200000 150000 120000 90000 90000
Schedule benefit/penalty 100 / 200 100 / 200 200 / 400 200 / 400 200 / 400

Schedule/Cost weight 1 / 1 1 / 1 2 / 1 2 / 1 2 / 1
Project weight 1 1 2 3 4

Before running GA, parameters such as population scale, crossover rate, mutation

rate, and generation number must also be set. Our past experience has suggested that
the following settings are effective in enabling GA to obtain near optimal results.
• Population scale: 60
• Crossover rate: 0.8
• Mutation rate: 0.02
• Generation number: 500

5.1 The Need for Rescheduling

We begin by computing an initial resource assignment plan for Project1 and Project2
assuming that there will be no disrupting events. This plan is shown in Fig. 4.

Fig. 4. Initial scheduling result

We then hypothesize the need to provide resources for Project3 starting on 1 June
2009. Activity RA3 has three candidate resources, and let us assume that it is decided
that HR1 and HR2 are to be allocated to it. Thus its execution would require 18
workdays, from June 1 to June 24. Then IMP3 would need to be executed starting on
June 25. IMP3 has four candidate resources and let us further assume that HR7 and
HR8 are selected. Thus IMP3’s execution would require 32 workdays, from June 25
to August 7. Finally, TST3 would need to be executed starting on August 8. However,
note that from June 1 to June 5, HR1 and HR2 are occupied by RA1 and from June 1
to June 24, HR1 and HR3 are occupied by RA2, thus RA3 could not obtain the
resources it needs without disrupting other projects. In addition, from July 9 to
September 17, all resources able to execute IMP3 are occupied performing Project1
and Project2. Thus either Project3 must wait or other projects must be disrupted.
Organizational value is lost in either case. Therefore, a rescheduling is indicated.

5.2 Results under a Specific Stability and Utility Weight Configuration

We start exploring the efficacy of our approach by examining the consequences of
two rescheduling approaches, where stability is the only objective, and where utility is
the only objective. Fig. 5 shows the rescheduling plan where stability is the only
consideration (stability and utility weights are set to 1 and 0 respectively). The
start/end times of activities in Project1 and Project2 are not changed, nor are
scheduled human resources. The new added activities are executed only when
resources are available, causing delay and low utility for Project3.

Fig. 5. Rescheduled plan when stability is 1 Fig. 6. Rescheduled plan when stability is 0

Fig. 6 shows the rescheduling plan where only utility value is considered (the
stability and utility weights are set to 0 and 1 respectively). This schedule causes
Project3 to have higher utility, but the start/end times and scheduled resources of most
activities in Projects 1 and 2 are changed causing substantial reduction in
organizational value. This case study and others not shown due to space constraints
indicate that our approach supports scheduling resources to address stability and
utility objectives. We now suggest how this capability can help project managers.

5.3 Results under Different Stability and Utility Weights

Using a multi-objective value function to evaluate rescheduling can help support
exploring the way that different balances between stability and utility can affect
organizational value. To demonstrate this we varied the stability and utility weights
for a series of reschedulings. Fig. 7 shows the different values of the schedules
obtained. As expected increasing the stability weight causes a consequent increase in
stability value while utility value decreases. Conversely increasing the utility weight
causes utility value to increase while decreasing stability value. Of perhaps more
interest, however, is that the maximum total of the two values is obtained over a broad
range of stability weights, and dips only when the stability weight is near either 0 or 1.
This suggests that moderation in addressing disruption is likely to be the best course
of action, but the precise relatively weighting of the importance of stability and utility
may not be particularly important.

-200000

0

200000

400000

600000

800000

1000000

1200000

0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Stability weight (Utility weight = 1 - Stability weight)

Va
lu

e
Stability
value

Utility
value

Sum of
stability
and utility
value

Fig. 7. Stability and utility value under different stability and utility weights

(results are averages of 10 different simulations)

5.4 A Series of Reschedulings to Tackle Multiple Disruptions

The foregoing suggests that our approach could help in deciding how to deal with a
single disruptive event. But most software organizations experience a continuing flow
of disruptions. Thus next we used our approach to seek a strategy for dealing with
such sequences of disruptions. To do this we ran three sets of simulations using the
same stability and utility weight combination, but different strategies for handling the
disruptions. The first strategy involves one rescheduling, done on June 1, with all
three projects initiated simultaneously. The second strategy involves two
reschedulings, one on June 1 when Project3 is initiated; and the second on July 1
when Project4 and Project5 are initiated. The third strategy involves initiating one
new project on June 1, one on July 1, and one on August 1. We computed utility
values for each strategy, where for each we increased the stability weight from 0 to 1
in increments of one tenth. Fig. 8 suggests that none of the approaches seems to offer
clear advantages over the others, but that for all total value remains high, and roughly
constant when the stability value increases from 0.0 to 0.5, but drops sharply at values
higher than 0.5. This result seems to confirm the importance of responding promptly
to disruptions, but also suggests that a “drop everything” approach seems to offer
little advantage over a more measured response.

0

100000

200000

300000

400000

500000

600000

700000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Stability weight (Utility weight = 1 - Stability weight)

U
til

ity
 v

al
ue

Total utility value of
ONE rescheduling

Total utility value of
TWO reschedulings

Total utility value of
THREE reschedulings

Fig. 8. Utility value curves for three different rescheduling strategies (results are

averages of 10 different simulations)

More generally, this case study seems to us to indicate that our rescheduling
approach offers promise of being a useful tool in formulating and analyzing various
strategies for dealing with various kinds and scenarios of disruption.

6 Related Work

Researchers have observed that software development project disruptions can be due
to uncertainties in requirements, process execution, and human resources. Ebert et al.
[1] analyze requirement uncertainties and provide problems that are caused by them.
Li et al. [16] use rough set analysis to solve problems caused by requirement
uncertainties. Pfahl et al. [22] and Liu et al. [17] use simulation to explain some
effects arising from requirements volatility. Cass et al. [8] indicate that rework is an
ongoing problem in software development. Melo et al. [19] point out that resource
change is a key factor in maintenance schedule postponement and cost overrun.
Dynamic rescheduling is not suggested as a way to deal with any of these different
kinds of uncertainties.

Software process scheduling has been explored by quite a few researchers. Some
methods provide schedules that are based upon the assumption of accurate human
resource specifications, such as skills, productivity, and availability, and are thus able
to satisfy constraints and obtain optimal scheduling values [3, 6, 9, 11]. However,
these methods fail to consider uncertainties in process execution, and thus unexpected
changes can cause these scheduling results to be inaccurate.

To address uncertainties in software development and maintenance processes,
Antoniol et al. [4] present a scheduling method that combines a genetic algorithm and
queue simulation. Though the method realizes scheduling under some uncertainties,
issues such as stability are not taken into account. Other methods tackle uncertainties
by introducing probability into scheduling. Liu et al. [18] suggest a probability based
two stage scheduling method. Though the method uses probability of commitment
satisfaction in scheduling, dynamic changes still lead schedule disruption.

There are a lot of rescheduling methods in the manufacturing domain [2, 10, 23,
24]. These methods use rescheduling to achieve both makespan and stability value.
However, the resources in manufacturing are usually machines, which do not pose
problems such as volatility and skill level change that are characteristics of human
resources. This limits the applicability of this work to software development

7 Conclusions and Future Work

This paper has presented a multi-objective software process resource rescheduling
method using a GA. We identified some conditions that can necessitate rescheduling
and introduced models to describe projects, activities, and resources. We then used
these models to define some rescheduling problems, and presented a multi-objective
value function that weights stability and utility to compute rescheduling value. The
evaluation of our method shows that this multi-objective value function can be used to
guide rescheduling, and might help managers to balance potentially conflicting
objectives in making resource rescheduling decisions.

Future work:
Continuous rescheduling: In our case study, we used examples for which

relatively accurate parameter estimates are available. However, such estimates usually
change during process execution. Thus process delay and activity completion date
changes happen frequently. In future work, such continuous changes and
reschedulings will be taken into consideration.

More constraints: This paper only models capability constraints, availability
constraints, and activity execution order constraints in scheduling. Other constraints,
such as different activities needing the same resource, will be modeled in future work.

Analysis of different objectives and their importance: The activities on a critical
path have more impact on the stability of a project. Thus it seems more critical to
schedule these activities than to schedule other activities. Furthermore, there are many
other kinds of objectives in rescheduling. In future work, more objectives and more
details of these objectives will be analyzed and used in rescheduling.

Acknowledgments. This paper was supported by the National Natural Science
Foundation of China under grant No. 90718042, the Hi-Tech Research and
Development Program (863 Program) of China under grant No. 2007AA010303,
2007AA01Z186, as well as the National Basic Research Program (973 program)
under grant No. 2007CB310802. This work was also supported by the National
Science Foundation under Awards No. CCR-0205575, CCR-0427071, and IIS-
0705772. Any opinions, findings, and conclusions or recommendations expressed in
this publication are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

References
1. Acuña, S. T., Juristo, N., and Moreno, A. M.: Emphasizing Human Capabilities in Software

Development. IEEE Software, vol. 23, pp. 94-101, (2006).
2. Adibi, M. A., Zandieh, M., and Amiri, M.: Multi-objective scheduling of dynamic job shop

using variable neighborhood search. Expert Systems with Applications, (2009).
3. Alba, E. and Chicano, J. F.: Software Project Management with GAs. Journal of

Information Sciences, vol. 177, pp. 2380-2401, (2007).
4. Antoniol, G., Penta, M. D., and Harman, M.: A Robust Search–Based Approach to Project

Management in the Presence of Abandonment, Rework, Error and Uncertainty. In:
Proceedings of the 10th International Symposium on Software Metrics (2004).

5. Antoniol, G., Penta, M. D., and Harman, M.: Search–Based Techniques Applied to
Optimization of Project Planning for a Massive Maintenance Project. In: Proceedings of the
21st IEEE International Conference on Software Maintenance (ICSM' 05) (2005).

6. Barreto, A., Barros, M. d. O., and Werner, C. M. L.: Staffing a software project: A
constraint satisfaction and optimization-based approach. Computer & Operations Research,
vol. 35, pp. 3073-3089, (2008).

7. Boehm, B.: Software risk management: principles and practices. IEEE Software, vol. 8, pp.
32 - 41, (1991).

8. Cass, A. G., Jr., S. M. S., and Osterweil, L. J.: Formalizing Rework in Software Processes.
In: EWSPT 2003, LNCS 2786, pp. 16-31 (2003).

9. Chang, C. K., Jiang, H.-y., Di, Y., Zhu, D., and Ge, Y.: Time-line based model for software
project scheduling with genetic algorithms. Information and Software Technology, vol. 50,
pp. 1142-1154, (2008).

10. Cowling, P. and Johansson, M.: Using real time information for effective dynamic
scheduling. European Journal of Operational Research, vol. 139, pp. 230–244, (2002).

11. Duggan, J., Byrne, J., and Lyons, G. J.: Task Allocation Optimizer for Software
Construction. IEEE Software, pp. 76-82, (2004).

12. Ebert, C. and Man, J. D.: Requirements Uncertainty: Influencing Factors and Concrete
Improvements In: Proceedings of the 27th International Conference on Software
Engineering pp. 553-560 (2005).

13. Erdogmus, H., Favaro, J., and Halling, M.: Valuation of Software Initiatives Under
Uncertainty: Concepts, Issues, and Techniques. In Value-Based Software Engineering, S.
Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P. Grünbacher, Eds., pp. 39-66 (2005).

14. Holland, J. H.: Adaptation in natural and artificial systems. MIT Press Cambridge (1992).
15. Li, M., Yang, Q., Zhai, J., and Yang, G.: On Mobility of Software Processes In:

SPW/ProSim 2006, LNCS 3966, pp. 105–114 (2006).
16. Li, Z. and Ruhe, G.: Uncertainty Handling in Tabular-Based Requirements Using Rough

Sets. In: RSFDGrC 2005, LNAI 3642, pp. 678 – 687 (2005).
17. Liu, D., Wang, Q., Xiao, J., Li, J., and Li, H.: RVSim: A Simulation Approach to Predict

the Impact of Requirements Volatility on Software Project Plans In: ICSP 2008, LNCS
5007, pp. 307 – 319 (2008).

18. Liu, X., Yang, Y., Chen, J., Wang, Q., and Li, M.: Achieving On-Time Delivery: A Two-
Stage Probabilistic Scheduling Strategy for Software Projects. In: ICSP 2009, LNCS 5543,
pp. 317-329 (2009).

19. Melo, A. C. V. d. and Sanchez, A. d. J.: Bayesian Networks in Software Maintenance
Management. In: SOFSEM 2005, LNCS 3381, pp. 394–398 (2005).

20. Moratori, P., Petrovic, S., and Vazquez, A.: Match-Up Strategies for Job Shop
Rescheduling. IEA/AIE 2008, LNAI 5027, pp. 119-128, (2008).

21. Ozdamar, L. and Alanya, E.: Uncertainty Modelling in Software Development Projects
(With Case Study). Annals of Operations Research, vol. 102, pp. 157-178, (2001).

22. Pfahl, D. and Lebsanft, K.: Using Simulation to Analyze the Impact of Software
Requirements Volatility on Project Performance. Information and Software Technology,
vol. 42, pp. 1001–1008, (2000).

23. Pfeiffer, A. s., Kadar, B., and Monostori, L. s.: Stability-oriented evaluation of rescheduling
strategies, by using simulation. Computers in Industry, vol. 58, pp. 630–643, (2007).

24. Rangsaritratsamee, R., Jr., W. G. F., and Kurz, M. B.: Dynamic rescheduling that
simultaneously considers efficiency and stability. Computers & Industrial Engineering, vol.
46, pp. 1–15, (2004).

25. Wang, Q., Xiao, J., Li, M., Nisar, M. W., Yuan, R., and Zhang, L.: A Process-Agent
Construction Method for Software Process Modeling in SoftPM. In: SPW/ProSim 2006,
Shanghai China, pp. 204-213 (2006).

26. Wise, A.: Little-JIL 1.5 Language Report. Department of Computer Science at the
University of Massachusetts Amherst. Technical report: UM-CS-2006-51, (2006).

27. Xiao, J., Osterweil, L. J., Wang, Q., and Li, M.: Dynamic Scheduling in Systems with
Complex Resource Allocation Requirements. Department of Computer Science at the
University of Massachusetts Amherst. Technical report: UM-CS-2009-049, (2009).

28. Xiao, J., Wang, Q., Li, M., Yang, Q., Xie, L., and Liu, D.: Value-based Multiple Software
Projects Scheduling with Genetic Algorithm. In: International Conference on Software
Process 2009 (ICSP2009), LNCS 5543, Vancouver, Canada, pp. 50-62 (2009).

29. Xiao, J., Wang, Q., Li, M., Yang, Y., Zhang, F., and Xie, L.: A Constraint-Driven Human
Resource Scheduling Method in Software Development and Maintenance Process. In:
Proceedings of 24th International Conference on Software Maintenance (ICSM' 08), pp. 17-
26 (2008).

