DTN Routing as a Resource Allocation Problem

Aruna Balasubramanian

Brian Neil Levine

Arun Venkataramani

Department of Computer Science, University of Massachusetts, Amherst, USA 01003
{arunab, brian, arun}@cs.umass.edu
revised: October 25, 2009

ABSTRACT

Routing protocols for disruption-tolerant networks (DTNs)
use a variety of mechanisms, including discovering the meet-
ing probabilities among nodes, packet replication, and net-
work coding. The primary focus of these mechanisms is to
increase the likelihood of finding a path with limited infor-
mation, and so these approaches have only an incidental ef-
fect on such routing metrics as maximum or average delivery
delay. In this paper, we present RAPID, an intentional DTN
routing protocol that can optimize a specific routing metric
such as the worst-case delivery delay or the fraction of pack-
ets that are delivered within a deadline. The key insight is
to treat DTN routing as a resource allocation problem that
translates the routing metric into per-packet utilities which
determine how packets should be replicated in the system.
We evaluate RAPID rigorously through a prototype deployed
over a vehicular DTN testbed of 40 buses and simulations
based on real traces. To our knowledge, this is the first paper
to report on a routing protocol deployed on a real outdoor
DTN. Our results suggest that RAPID significantly outper-
forms existing routing protocols for several metrics. We also
show empirically that for small loads, RAPID is within 10%
of the optimal performance.

1. INTRODUCTION

Disruption-tolerant networks (DTNs) enable transfer
of data when mobile nodes are connected only intermit-
tently. Applications of DTNs include large-scale disaster
recovery networks, sensor networks for ecological mon-
itoring [30], ocean sensor networks [22, 19], vehicular
networks [21, 6], and projects such as TIER [2], Digi-
tal Study Hall [12], and One Laptop Per Child [1] to
benefit developing nations. Intermittent connectivity
can be a result of mobility, power management, wire-
less range, sparsity, or malicious attacks. The inherent
uncertainty about network conditions make routing in
DTNs a challenging problem.

The primary focus of many existing DTN routing pro-
tocols is to increase the likelihood of finding a path with
extremely limited information. To discover such a path,
a variety of mechanisms are used, including estimating
node meeting probabilities, packet replication, network
coding, placement of stationary waypoint stores, and
leveraging prior knowledge of mobility patterns. Unfor-

tunately, the burden of finding even one path is so great
that existing approaches have only an incidental rather
than an intentional effect on such routing metrics as
worst-case delivery latency, average delay, or percentage
of packets delivered. This disconnect between applica-
tion needs and routing protocols hinders deployment of
DTN applications. Currently, it is difficult to drive the
routing layer of a DTN by specifying priorities, deadlines,
or cost constraints. For example, a simple news and
information application is better served by maximizing
the number of news stories delivered before they are
outdated, rather than eventually delivering all stories.

In this paper, we formulate the DTN routing problem
as a resource allocation problem. The protocol we de-
scribe, called RAPID (Resource Allocation Protocol for
Intentional DTN) routing, allocates resources to packets
to optimize an administrator-specified routing metric.
At each transfer opportunity, a RAPID node replicates
or allocates bandwidth resource to a set of packets in
its buffer, in order to optimize the given routing metric.
Packets are delivered through opportunistic replication,
until a copy reaches the destination.

RAPID makes the allocation decision by first translat-
ing the routing metric to a per-packet utility. DTNs
are resource-constrained networks in terms of transfer
bandwidth, energy, and storage; allocating resources to
replicas without careful attention to available resources
can cause more harm than good. Therefore, a RAPID
node replicates packets in the order of their marginal
utility of replication, i.e., the first packet to be replicated
is the one that provides the highest increase in utility
per unit resource used. We show how RAPID can use
this simple approach to optimize three different routing
metrics: average delay, worst-case delay, and the number
of packets delivered before a deadline.

RAPID loosely tracks network resources through a con-
trol plane to assimilate a local view of the global network
state. To this end, RAPID uses an in-band control chan-
nel to exchange network state information among nodes
using a fraction of the available bandwidth, and uses the
additional information to significantly improve routing
performance. RAPID’s control channel builds on insights
from previous work. For example, Jain et al. [15] suggest
that DTN routing protocols that use more knowledge of

network conditions perform better, and Burgess et al. [6]
show that flooding acknowledgments improves delivery
rates by removing useless packets from the network.

We present hardness results to substantiate RAPID’s
heuristic approach. We prove that online algorithms
without complete future knowledge and with unlimited
computational power, or computationally limited algo-
rithms with complete future knowledge, can be arbitrar-
ily far from optimal.

We have built and deployed RAPID on a vehicular
DTN testbed, DieselNet [6], that consists of 40 buses
covering a 150 square-mile area around Ambherst, MA.
We collected 58 days of performance traces of the RAPID
deployment. To our knowledge, this is the first paper to
report on a routing protocol deployed on a real outdoor
DTN. Similar testbeds have deployed only flooding as a
method of packet propagation [30]. We also conduct a
simulation-based evaluation using real traces to stress-
test and compare various protocols. We show that the
performance results from our trace-driven simulation
is within 1% of the real measurements with 95% con-
fidence. We use this simulator to compare RAPID to
four existing routing protocols [18, 25, 6] and random
routing. We also compare the protocols using synthetic
mobility models.

We evaluate the performance of RAPID for three differ-
ent routing metrics: average delay, worst-case delay, and
the number of packets delivered before a deadline. All
experiments include the cost of RAPID’s control channel.
Our experiments using trace-driven and synthetic mobil-
ity scenarios show that RAPID significantly outperforms
the four routing protocols. For example, in trace-driven
experiments under moderate-to-high loads, RAPID out-
performs the second-best protocol by about 20% for all
three metrics, while also delivering 15% more packets for
the first two metrics. With a priori mobility information
and moderate-to-high loads, RAPID outperforms random
replication by about 50% for high packet loads. We
also compare RAPID to an optimal protocol and show
empirically that RAPID performs within 10% of optimal
for low loads.

2. RELATED WORK

Replication versus Forwarding.

We classify related existing DTN routing protocols
as those that replicate packets and those that forward
only a single copy. FEpidemic routing protocols repli-
cate packets at transfer opportunities hoping to find a
path to a destination. However, naive flooding wastes
resources and can severely degrade performance. Pro-
posed protocols attempt to limit replication or otherwise
clear useless packets in various ways: (i) using historic
meeting information [11, 7, 6, 18]; (i) removing useless
packets using acknowledgments of delivered data [6];

(#ii) using probabilistic mobility information to infer
delivery [24]; (iv) replicating packets with a small prob-
ability [29]; (v) using network coding [28] and coding
with redundancy [14]; and (vi) bounding the number of
replicas of a packet [25, 24, 20].

In contrast, forwarding routing protocols maintain
at most one copy of a packet in the network [15, 16,
27]. Jain et al. [15] propose a forwarding algorithm
to minimize the average delay of packet delivery using
oracles with varying degrees of future knowledge. Our
deployment experience suggests that, even for a sched-
uled bus service, implementing the simplest oracle is
difficult; connection opportunities are affected by many
factors in practice including weather, radio interference,
and system failure. Furthermore, we present formal
hardness and empirical results to quantify the impact
of not having complete knowledge.

Jones et al. [16] propose a link-state protocol based
on epidemic propagation to disseminate global knowl-
edge, but use a single path to forward a packet. Shah et
al. [23] and Spyropoulos et al. [27] present an analyti-
cal framework for the forwarding-only case assuming a
grid-based mobility model. They subsequently extend
the model and propose a replication-based protocol,
Spray and Wait [25]. The consensus appears to be [25]
that replicating packets can improve performance (and
security [5]) over just forwarding, but risk degrading
performance when resources are limited.

Incidental versus Intentional.

Our position is that most existing schemes only have
an incidental effect on desired performance metrics, in-
cluding commonly evaluated metrics such as average
delay or delivery probability. Therefore, the effect of a
routing decision on the performance of a given resource
constrained network scenario is unclear. For example,
several existing DTN routing algorithms [25, 24, 20,
6] route packets using the number of replicas as the
heuristic, but the effect of replication varies with dif-
ferent routing metrics. Spray and Wait [25] routes to
reduce delay metric, but it does not take into account
bandwidth or storage constraints. In contrast, routing
in RAPID is intentional with respect to a given perfor-
mance metric. RAPID explicitly calculates the effect of
replication on the routing metric while accounting for
resource constraints.

Resource Constraints.

RAPID also differs from most previous work in its
assumptions regarding resource constraints, routing pol-
icy, and mobility patterns. Table 1 shows a taxonomy
of many existing DTN routing protocols based on as-
sumptions about bandwidth available during transfer
opportunities and the storage carried by nodes; both
are either finite or unlimited. For each work, we state

Problem | Storage Bandwidth | Routing Previous work (and mobility)

P1 Unlimited Unlimited Replication | Epidemic [20], Spray and Wait [25]: Constraint in the form of channel
contention (Grid-based synthetic)

P2 Unlimited Unlimited Forwarding | Modified Djikstra’s et al. [15] (simple graph), MobySpace [17] (Powerlaw)

P3 Finite Unlimited Replication | Davis et al. [11] (Simple partitioning synthetic), SWIM [24] (Exponential),
MV [7] (Community-based synthetic), Prophet [18] (Community-based syn-
thetic)

P4 Finite Finite Forwarding | Jones et al. [16] (AP traces), Jain et al. [15] (Synthetic DTN topology)

P5 Finite Finite Replication | This paper (Vehicular DTN traces, exponential, and power law meeting
probabilities, testbed deployment), MaxProp [6] (Vehicular DTN traces)

Table 1: A classification of some related work into DTN routing scenarios

in parentheses the mobility model used. RAPID is a
replication-based algorithm that assumes constraints on
both storage and bandwidth (P5) — the most challeng-
ing and most practical problem space.

P1 and P2 are important to examine for valuable
insights that theoretical tractability yields but are im-
practical for real DTNs with limited resources. Many
studies [18, 11, 7, 24] analyze the case where storage
at nodes is limited, but bandwidth is unlimited (P3).
However, we find this scenario to be uncommon. Band-
width is likely to be constrained for most typical DTN
scenarios. Specifically, in mobile and vehicular DTN,
transfer opportunities are typically short-lived [13, 6].

We were unable to find other protocols in P5 except
MazProp [6] that assume limited storage and bandwidth.
However, it is unclear how to optimize a specific routing
metric using MazProp, so we categorize it as an inci-
dental routing protocol. Our experiments indicate that
RAPID outperforms MazProp for each metric that we
evaluate.

Some theoretical works [31, 26, 24, ?] derive closed-
form expressions for average delay and number of repli-
cas in the system as a function of the number of nodes
and mobility patterns. Although these analyses con-
tributed to important insights in the design of RAPID,
their assumptions about mobility patterns or unlimited
resources were, in our experience, too restrictive to be
applicable to practical settings.

3. THE RAPID PROTOCOL

3.1 System model

We model a DTN as a set of mobile nodes. Two
nodes transfer data packets to each other when within
communication range. During a transfer, the sender
replicates packets while retaining a copy. A node can
deliver packets to a destination node directly or via in-
termediate nodes, but packets may not be fragmented.
There is limited storage and transfer bandwidth avail-
able to nodes. Destination nodes are assumed to have
sufficient capacity to store delivered packets, so only
storage for in-transit data is limited. Node meetings
are assumed to be short-lived. The nodes are assumed

to have sufficient computational capabilities as well as
enough resources to maintain state information.

Formally, a DTN consists of a node meeting sched-
ule and a workload. The node meeting schedule is a
directed multigraph G = (V| E), where V and F rep-
resent the set of nodes and edges, respectively. Each
directed edge e between two nodes represents a meet-
ing between them, and it is annotated with a tuple
(te, Se), where t is the time and s is the size of the
transfer opportunity. The workload is a set of pack-
ets P = {(u1,v1,81,t1), (u2,v2, 82, t2),...}, where the
ith tuple represents the source, destination, size, and
time of creation (at the source), respectively, of packet
i. The goal of a DTN routing algorithm is to deliver
all packets using a feasible schedule of packet transfers,
where feasible means that the total size of packets trans-
fered during each opportunity is less than the size of the
opportunity, always respecting storage constraints.

In comparison to Jain et al.[15] who model link proper-
ties as continuous functions of time, our model assumes
discrete short-lived transfers; this makes the problem
analytically more tractable and characterizes many prac-
tical DTNs well.

3.2 RAPID design

RAPID models DTN routing as a utility-driven resource
allocation problem. A packet is routed by replicating
it until a copy reaches the destination. The key ques-
tion is: given limited bandwidth, how should packets be
replicated in the network so as to optimize a specified
routing metric? RAPID derives a per-packet utility func-
tion from the routing metric. At a transfer opportunity,
it replicates a packet that locally results in the highest
increase in utility.

Consider a routing metric such as minimize average
delay of packets, the running example used in this section.
The corresponding utility U; of packet i is the negative
of the expected delay to deliver i, i.e., the time 7 has
already spent in the system plus the additional expected
delay before 4 is delivered. Let dU; denote the increase
in U; by replicating ¢ and s; denote the size of . Then,
RAPID replicates the packet with the highest value of
0U;/s; among packets in its buffer; in other words, the

D(i) | Packet i’s expected delay = T'(i) + A(i)
T(i) | Time since creation of ¢

a(t) | Random variable that determines the
remaining time to deliver ¢

A(7) | Expected remaining time = E[a(%)]

Mx 7 | Random variable that determines inter-meeting
time between nodes X and Z

Table 2: List of commonly used variables.

packet with the highest marginal utility.

In general, U; is defined as the expected contribution
of 7 to the given routing metric. For example, the metric
minimize average delay is measured by summing the
delay of packets. Accordingly, the utility of a packet
is its expected delay. Thus, RAPID is a heuristic based
on locally optimizing marginal utility, i.e., the expected
increase in utility per unit resource used.

Using the marginal utility heuristic has some desirable
properties. The marginal utility of replicating a packet
to a node is low when (i) the packet has many replicas,
or (ii) the node is a poor choice with respect to the
routing metric, or (4ii) the resources used do not justify
the benefit. For example, if nodes meet each other
uniformly, then a packet ¢ with 6 replicas has lower
marginal utility of replication compared to a packet j
with just 2 replicas. On the other hand, if the peer is
unlikely to meet j’s destination for a long time, then 4
may take priority over j.

RAPID has three core components: a selection algo-
rithm, an inference algorithm, and a control channel.
The selection algorithm is used to determine which pack-
ets to replicate at a transfer opportunity given their
utilities. The inference algorithm is used to estimate the
utility of a packet given the routing metric. The control
channel propagates the necessary metadata required by
the inference algorithm.

3.3 The selection algorithm

The RAPID protocol executes when two nodes are
within radio range and have discovered one another.
The protocol is symmetric; without loss of generality,
we describe how node X determines which packets to
transfer to node Y (refer to the box marked PrROTOCOL
RAPID).

RAPID also adapts to storage restrictions for in-transit
data. If a node exhausts all available storage, packets
with the lowest utility are deleted first as they contribute
least to overall performance. However, a source never
deletes its own packet unless it receives an acknowledg-
ment for the packet.

3.4 Inference algorithm

Next, we describe how PROTOCOL RAPID can support

PROTOCOL RAPID(X,Y):

1. Initialization: Obtain metadata from Y about
packets in its buffer as well as metadata it
collected over past meetings (detailed in Sec-
tion 4.2).

2. Direct delivery: Deliver packets destined to Y
in decreasing order of creation times.

3. Replication: For each packet ¢ in node X'’s
buffer

(a) If i is already in Y'’s buffer (as determined
from the metadata), ignore i.

(b) Estimate marginal utility, 6U;/s;, of repli-
cating ¢ to Y.

(c) Replicate packets in decreasing order of
marginal utility.

4. Termination: End transfer when out of radio
range or all packets replicated.

specific metrics using an algorithm to infer utilities.
Table 2 defines the relevant variables.

3.4.1 Metric 1: Minimizing average delay

To minimize the average delay of packets in the net-
work we define the utility of a packet as

U; = —D(i) (1)

since the packet’s expected delay is its contribution to
the performance metric. RAPID attempts to greedily
replicate the packet whose replication reduces the delay
by the most among all packets in its buffer.

3.4.2 Metric 2: Minimizing missed deadlines

To minimize the number of packets that miss their
deadlines, the utility is defined as the probability that
the packet will be delivered within its deadline:

U, = { P(a(i) < L(i) = T(%)), L(i) > T(3))

0, otherwise

where L(4) is the packet life-time. A packet that has
missed its deadline can no longer improve performance
and is thus assigned a value of 0. The marginal utility
is the improvement in the probability that the packet
will be delivered within its deadline.

3.4.3 Metric 3: Minimizing maximum delay

To minimize the maximum delay of packets in the
network, we define the utility U; as

0= {37 e 7@

where S denotes the set of all packets in X’s buffer. Thus,
U; is the negative expected delay if ¢ is a packet with
the maximum expected delay among all packets held by
Y. So, replication is useful only for the packet whose
delay is maximum. For the routing algorithm to be work
conserving, RAPID computes utility for the packet whose
delay is currently the maximum; i.e., once a packet with
maximum delay is evaluated for replication, the utility
of the remaining packets is recalculated using Eq. 3.

4. ESTIMATING DELIVERY DELAY

How does a RAPID node estimate expected delay in
Eqgs. 1 and 3, or the probability of packet delivery within
a deadline in Eq. 27 The expected delivery delay is the
minimum expected time until any node with the replica
of the packet delivers the packet; so a node needs to
know which other nodes possess replicas of the packet
and when they expect to meet the destination.

To estimate expected delay we assume that each node
with the copy of the packet delivers the packet directly to
the destination, ignoring the effect of further replications.
This assumption simplifies the expected delay estimation,
and we make this assumption only for networks with
dense node meetings, were every node meets every other
node. In Section 4.1.2, we describe a modification to
this assumption for networks with sparse node meetings.
Estimating expected delay is nontrivial even with an
accurate global snapshot of system state. For ease of
exposition, we first present RAPID’s estimation algorithm
as if we had knowledge of the global system state, and
then we present a practical distributed implementation.

4.1 Algorithm Estimate Delay

A RAPID node uses the algorithm ESTIMATE_DELAY
to estimate the delay of a packet in its buffer. ESTI-
MATE_DELAY works as follows (refer to box marked
ALGORITHM ESTIMATE_DELAY): In Step 1, each node
X maintains a separate queue of packets @ destined to
a node Z sorted in decreasing order of creation times;
this is the order in which the packets will be delivered
when X meets Z in PROTOCOL RAPID. In Step 2 of
EsTIMATE_DELAY, X computes the delivery delay dis-
tribution of packet i if delivered directly by X. In Step 3,
X computes the minimum across all replicas of the cor-
responding delivery delay distributions; we note that the
delivery time of ¢ is the time until the first node delivers
the packet. ESTIMATE_DELAY assumes that the meeting
time distribution is the same as the inter-meeting time
distribution.

The Assumption 2 in ESTIMATE_DELAY is a simpli-
fying independence assumption that does not hold in
general. Consider Figure 2(a), an example showing the
positions of packet replicas in the queues of different
nodes. All packets have a common destination Z and
each queue is sorted by T'(z). Assume that the transfer

ALGORITHM ESTIMATE_DELAY:

Node X storing a set of packets @ to destination Z
performs the following steps to estimate the time
until packet i € @ is delivered

1. X sorts all packets ¢ € @ in the descending
order of T'(4), time since i is created.

a) Let b(i) be the sum size of packets that
precede packet ¢ in the sorted list of X.
Figure 1 illustrates a sorted buffer containing
packet 7.

b) Let B be the expected transfer opportunity
in bytes between X and Z. (For readability,
we drop subscript X since we are only talking
about one node; in general b(i) and B are
functions of the node). Node X locally
computes B as a moving average of past
transfers between X and Z.

2. Assumption 1: Suppose only X delivers pack-
ets to Z with no further replication.

Let ax (i) be the delay distribution of X de-
livering the packet. Under our assumption, X
requires [b(i)/B] meetings with Z to deliver
i.

Let M be a distribution that models the inter-
meeting times between nodes, and let My 7 be
the random variable that represents the time
taken for X and Z to meet. We transform
My, 7z to random variable My , that repre-
sents the time until X and Z meet [b(i)/B]
times. Then, by definition

ax(i) = MYy » (4)

3. Assumption 2: Suppose the k random variables
ay(i),y € [1,k] were independent, where k is
the number of replicas of i.

The probability of delivering 7 within time ¢
is the minimum of the £ random variables
ay(%),y € [1,k]. This probability is:
k
Pa(i) <t)=1-[[(1 = Play(i) <t) (5)

y=1

a) Accordingly:A(i) — Bla(i)] ()

opportunities and packets are of unit-size.

In Figure 2(a), packet b may be delivered in two ways:
(i) if W meets Z; (ii) one of X and Y meets Z and
then one of X and Y meet Z again. These delay depen-

B bytes (Average transfer
> size)

| |

Sorted ! |
list of packets | i |
destined to Z ! !

1]
| |
1 |
| |
| 1
| |
| |
L

—>
b(i) bytes (Sum of packets
before i)

Figure 1: Position of packet i in a queue of packets
destined to Z.

Node W Node X Node Y

Node W Node X Node Y

(a) Packet destined to Z buffered
at different nodes

(b) Delay dependancies between
packets destined to node Z

Figure 2: Delay dependencies between packets des-
tined to Z buffered in different nodes.

dencies can be represented using a dependency graph
as illustrated in Fig 2(b); packets with the same letter
and different indices are replicas. A vertex corresponds
to a packet replica. An edge from one node to another
indicates a dependency between the delays of the cor-
responding packets. Recall that Mxy is the random
variable that represents the meeting time between X
and Y.

ESTIMATE_DELAY ignores all the non-vertical depen-
dencies. For example, it estimates b’s delivery time
distribution as

min(Mwz, Mxz + Mxz, Myz + Myz),
whereas the distribution is actually
min(sz, min(sz, Myz) + min(sz, Myz)).

Estimating delays without ignoring the non-vertical
dependancies is challenging. Using a simplifying as-
sumption that the transfer opportunities and packets are
unit-sized, we design algorithm DAG_DELAY(described
in a Technical report citerapid-tr), that estimates the
expected delay by taking into account non-vertical de-
pendancies. Although DAG_DELAY is of theoretical in-
terest, it cannot be implemented in practice because
DAG_DELAY assumes that — (%) the transfer opportunity
size is exactly equal to the size of a packet.This assump-
tion is fundamental for the design of DAG_DELAYand (77)
nodes have a global view of the system.

In general, ignoring non-vertical edges can arbitrarily
inflate delay estimates for some pathological cases (de-
tailed in a Technical report [3]). However, we find that
EsTIMATE_DELAY works well in practice, and is simple

and does not require a global view of the system.

4.1.1 Estimating delays when transfer opportunities
are exponentially distributed

We walk through the distributed implementation of
ESTIMATE_DELAY for a scenario where the inter-meeting
time between nodes is exponentially distributed. Assume
that the mean meeting time between nodes is % In the
absence of bandwidth restrictions, the expected delivery
delay when there are k replicas is the mean meeting time
divided by k, i.e., P(a(i) < t) = 1—e " and A(i) = .
(Note that the minimum of k i.i.d. exponentials is also
an exponential with mean % of the mean of the i.i.d
exponentials [8].)

When transfer opportunities are limited, the expected
delay depends on the packet’s position in the nodes’
buffers. In Step 2 of ESTIMATE_DELAY, the node esti-
mates the number of times it needs to meet the destina-
tion to deliver a packet as a function of [b(i)/B]. Ac-
cording to our exponential meeting time assumption, the
time for some node X to meet the destination [b(z)/B]
times is described by a gamma distribution with mean
L [o(i)/B1.

If packet i is replicated at k nodes, Step 3 computes
the delay distribution a(i) as the minimum of k¥ gamma
variables. We do not know of a closed form expression
for the minimum of gamma variables. Instead, if we
assume that the time taken for a node to meet the
destmation b(i)/B times is exponential with the same
mean 5 - [b(7)/B]. We can then estimate a(i) as the
minimum of k exponentials.

Let n1(i),n2(i), . .., nk(i) be the number of times each
of the k nodes respectively needs to meet the destination
to deliver ¢ directly. Then A(7) is computed as:

Pla(i) <t) =1 —¢ motmot-+mmt (1)
1

A(l) = 8
() 4+4+...+4 ()
n1(i) ' n2(i)

ng(2)

When the meeting time distributions between nodes
are non-uniform, say with means /\ , /\ /\— respec—

tively, then A(i) = (=24~ 4 —22- 4, nk()

nq(z) no(7)

4.1.2 Estimating delays when transfer opportunity
distribution is unknown

To implement RAPID on the DieselNet testbed, we
adapt Eq. 8 to scenarios where the transfer opportunities
are not exponentially distributed. First, to estimate
mean inter-node meeting times in the DieselNet testbed,
every node tabulates the average time to meet every
other node based on past meeting times. Nodes exchange
this table as part of metadata exchanges (Step 1 in
PROTOCOL RAPID). A node combines the metadata into
a meeting-time adjacency matrix and the information
is updated after each transfer opportunity. The matrix

contains the expected time for two nodes to meet directly,
calculated as the average of past meetings.

Node X estimates E(Mxyz), the expected time to
meet Z, using the meeting-time matrix. E(Mxyz) is
estimated as the expected time taken for X to meet Z
in at most h hops. (Unlike uniform exponential mobility
models, some nodes in the trace never meet directly.)
For example, if X meets Z via an intermediary Y, the
expected meeting time is the expected time for X to
meet Y and then Y to meet Z in 2 hops. In our im-
plementation we restrict h = 3. When two nodes never
meet, even via three intermediate nodes, we set the
expected inter-meeting time to infinity. Several DTN
routing protocols [6, 18, 7] use similar techniques to
estimate meeting probability among peers.

RAPID estimates expected meeting times by taking
into account transitive meetings. However, our delivery
estimation (described in ESTIMATE_DELAY) assumes
that nodes do not make additional replicas. This dis-
connect is because, in DieselNet, only few buses meet
directly, and the pair-wise meeting times between several
bus pairs is infinity. We take into account transitive
meetings when two buses do not meet directly, to in-
crease the number of potential forwarders.

Let replicas of packet ¢ destined to Z reside at nodes
X1,...,Xg. Since we do not know the meeting time
distributions, we simply assume they are exponentially
distributed. Then from Eq. 8, the expected delay to
deliver ¢ is

k
1
A(r) = _]! 9

0= % it) 9)

We use an exponential distribution because bus meet-
ing times in the testbed are difficult to model. Buses
change routes several times in one day, the inter-bus
meeting distribution is noisy, and we found them hard
to model even using mixture models. Approximating
meeting times as exponentially distributed makes delay
estimates easy to compute and performs well in practice.

4.2 Control channel

Previous studies [15] have shown that as nodes have
the benefit of more information about global system state
using oracles, they can make significantly better routing
decisions. We extend this idea to practical DTNs where
no oracle is available. RAPID nodes gather knowledge
about the global system state by disseminating metadata
using a fraction of the transfer opportunity.

RAPID uses an in-band control channel to exchange ac-
knowledgments for delivered packets as well as metadata
about every packet learnt from past exchanges. For each
encountered packet ¢, RAPID maintains a list of nodes
that carry the replica of i, and for each replica, an esti-
mated time for direct delivery. Metadata for delivered
packets is deleted when an ack is received.

For efficiency, a RAPID node maintains the time of last
metadata exchange with its peers. The node only sends
information about packets whose information changed
since the last exchange, which reduces the size of the
exchange considerably. A RAPID node sends the follow-
ing information on encountering a peer: (i) Average size
of past transfer opportunities; (i) Expected meeting
times with nodes; (iii) Acks; (iv) For each of its own
packets, the updated delivery delay estimate based on
current buffer state; (v) Delivery delay of other packets
if modified since last exchange.

When using the control channel, nodes have only an
imperfect view of the system. The propagated informa-
tion may be stale due to changes in number of replicas,
changes in delivery delays, or if the packet is delivered
but acknowledgments have not propagated. Neverthe-
less, our experiments confirm that (i) this inaccurate
information is sufficient for RAPID to achieve significant
performance gains over existing protocols and (i) the
overhead of metadata itself is not significant.

5. IMPLEMENTATION ON A VEHICULAR
DTN TESTBED

We implemented and deployed RAPID on our vehicular
DTN testbed, DieselNet [6] (http://prisms.cs.umass.
edu/dome), consisting of 40 buses, of which a subset is
on the road each day. The routing protocol implemen-
tation is a first step towards deploying realistic DTN
applications on the testbed. In addition, the deployment
allows us to study the effect of certain events that are
not perfectly modeled in the simulation of our routing
protocol. These events include delays caused by com-
putation, wireless channel interference, and operating
system delays.

Each bus in DieselNet carries a small-form desktop
computer, 40 GB of storage, and a GPS device. The
buses operate a 802.11b radio that scans for other buses
10 times a second and an 802.11b access point (AP) that
accepts incoming connections. Once a bus is found, a
connection is created to the remote AP. (It is likely that
the remote bus then creates a connection to the discov-
ered AP, which our software merges into one connection
event.) The connection lasts until the radios are out of
range. Burgess et al. [6] describes the DieselNet testbed
in more detail.

5.1 Deployment

Buses in DieselNet send messages using PROTOCOL
RAPID in Section 3, computing the metadata as described
in Section 4.2. We generated packets of size 1 KB
periodically on each bus with an exponential inter-arrival
time. The destinations of the packets included only buses
that were scheduled to be on the road, which avoided
creation of many packets that could never be delivered.
We did not provide the buses information about the

Avg. buses scheduled per day 19
Avg. total bytes transfered per day || 261.4 MB
Avg. number of meetings per day 147.5

Percentage delivered per day 88%
Avg. packet delivery delay 91.7 min
Meta-data size/ bandwidth 0.002
Meta-data size/ data size 0.017

Table 3: Deployment of Rapid: Average daily statistics

location or route of other buses on the road. We set
the default packet generation rate to 4 packets per hour
generated by each bus for every other bus on the road;
since the number of buses on the road at any time varies,
this is the simplest way to express load. For example,
when 20 buses are on the road, the default rate is 1,520
packets per hour.

During the experiments, the buses logged packet gen-
eration, packet delivery, delivery delay, meta-data size,
and the total size of the transfer opportunity. Buses
transfered random data after all routing was complete
in order to measure the capacity and duration of each
transfer opportunity. The logs were periodically up-
loaded to a central server using open Internet APs found
on the road.

5.2 Performance of deployed RAPID

We measured the routing performance of RAPID on
the buses from Feb 6, 2007 until May 14, 2007'. The
measurements are tabulated in Table 3. We exclude
holidays and weekends since almost no buses were on the
road, leaving 58 days of experiments. RAPID delivered
88% of packets with an average delivery delay of about
91 minutes. We also note that overhead due to meta-
data accounts for less than 0.2% of the total available
bandwidth and less than 1.7% of the data transmitted.

5.3 Validating trace-driven simulator

In the next section, we evaluate RAPID using a trace-
driven simulator. The simulator takes as input a sched-
ule of node meetings, the bandwidth available at each
meeting, and a routing algorithm. We validated our
simulator by comparing simulation results against the
58-days of measurements from the deployment. In the
simulator, we generate packets under the same assump-
tions as the deployment, using the same parameters for
exponentially distributed inter-arrival times.

Figure 3 shows the average delay characteristics of
the real system and the simulator. Delays measured
using the simulator were averaged over the 30 runs and
the error-bars show a 95% confidence interval. From
those results and further analysis, we find with 95%
confidence that the simulator results are within 1% of the
implementation measurement of average delay. The close

IThe traces are available at http://traces.cs.umass.edu.

160

Real mmmm
— 140 Simulation 7
c
£ 120 + I B
Z 100 : , 1
8 80 ; ‘ ,
;-fa 60 1
% 40 1
20 —
0
0 10 20 30 40 50 60
Day

Figure 3: Trace: Average delay for 58 days of RAPID real
deployment compared to simulation of RAPID using traces

correlation between system measurement and simulation
increases our confidence in the accuracy of the simulator.

6. EVALUATION

The goal of our evaluation is to show that, unlike
existing work, RAPID can improve performance for cus-
tomizable metrics. We evaluate RAPID using three met-
rics: minimize maximum delay, minimize average delay,
and minimize missed deadlines. In all cases, we found
that RAPID significantly outperforms existing protocols
and also performs close to optimal for small workloads.

6.1 Experimental setup

Our evaluations are based on a custom event-driven
simulator, as described in the previous section. The
meeting times between buses in these experiments are
not known a priori. All values used by RAPID, including
average meeting times, are learned during the experi-
ment.

We compare RAPID to five other routing protocols:
MaxProp [6], Spray and Wait [25], Prophet [18], Ran-
dom, and Optimal. In all experiments, we include the
cost of RAPID’s in-band control channel for exchanging
metadata.

MaxProp operates in a storage- and bandwidth-con-
strained environment, allows packet replication, and
leverages delivery notifications to purge old replicas;
of recent related work, it is closest to RAPID’s objec-
tives. Random replicates randomly chosen packets for
the duration of the transfer opportunity. Spray and
Wait restricts the number of replications of a packets to
L, where L is calculated based on the number of nodes
in the network. For our simulations, we implemented
the binary Spray and Wait and set? L = 12. We imple-
mented Prophet with parameters P;,;; = 0.75, 8 = 0.25
and v = 0.98 (parameters based on values used in [18]).

2We set this value based on consultation with authors and
using LEMMA 4.3 in [25] with a = 4.

Exponential/| Trace-driven
Power law

Number of nodes 20 max of 40

Buffer size 100 KB 40 GB

Transfer opp. size 100 KB given by trace
Duration 15 min 19 hours each trace
Size of a packet 10 KB 10 KB

Packet generation rate | 50 sec mean 1 hour

Delivery deadline 20 sec 2.7 hours

Table 4. Experiment parameters

[N
N
(=1

=
[=}
S

©
=]

Avg delay with undelivered (min)
(2}
o

40 Optimal
Rapid: Instant global control channel
20 ¢ Rapid: In-band control channel
Maxprop —=—
0 L L L p p L
0 1 2 3 4 5 6

Number of packets generated in 1 hour per destination

Figure 13: (Trace) Comparison with Optimal: Average
delay of RAPID is within 10% of Optimal for small loads

We also perform experiments where mobility is mod-
eled using a synthetic distribution — in this work we
consider exponential and power law distribution. Pre-
vious studies [9, 17] have suggested that DTNs among
people have a skewed, power law inter-meeting time
distribution. The default parameters used for all the
experiments are tabulated in Table 4. The parameters
for the synthetic mobility model is different from the
trace-driven model because the performance between
the two models are not comparable.

Each data point is averaged over 10 runs; in the case
of trace-driven results, the results are averaged over 58
traces. Each of the 58 days is a separate experiment. In
other words, packets that are not delivered by the end
of the day are lost. In all experiments, MaxProp, RAPID
and Spray and Wait performed significantly better than
Prophet, and the latter is not shown in the graphs for
clarity.

6.2 Results based on testbed traces

6.2.1 Comparison with existing routing protocols

Our experiments show that RAPID consistently out-
performs MazProp, Spray and Wait and Random. We
increased the load in the system up to 40 packets per
hour per destination, when Random delivers less than
50% of the packets.

Figure 4 shows the average delay of delivered packets
using the four protocols for varying loads when RAPID’s
routing metric is set to minimize average delay (Eq. 1).
When using RAPID, the average delay of delivered packets
are significantly lower than MaxProp, Spray and Wait

and Random. Moreover, RAPID also consistently delivers
a greater fraction of packets as shown in Figure 5.

Figure 6 shows RAPID’s performance when the routing
metric is set to minimize maximum delay (Eq. 3) and
similarly Figure 7 shows results when the metric is set
to maximize the number of packets delivered within a
deadline (Eq. 2).

We note that among MaxProp, Spray and Wait and
Random, MazProp delivers the most number of packets,
but Spray and Wait has marginally lower average delay
than MaxzProp. RAPID significantly outperforms the
three protocol for all metrics because of its intentional
design.

Standard deviation and similar measures of variance
are not appropriate for comparing the mean delays as
each bus takes a different geographic route. So, we
performed a paired t-test [8] to compare the average
delay of every source-destination pair using RAPID to
the average delay of the same source-destination pair
using MazProp (the second best performing protocol).
In our tests, we found p-values always less than 0.0005,
indicating the differences between the means reported
in these figures are statistically significant.

In a separate experiment (not shown in figure), we
find that the number of replications per delivery made
by RAPID is 5.2, for a load of 5 packets per hour per des-
tination. For the same load, the number of replications
per delivery made by Random is 3.5 and Spray and Wait
is 4.2. We note that we only consider the number of
replications for packets that are delivered, and RAPID is
set to optimize the average delay metric. Even though it
seems that RAPID replicates more aggressively to deliver
more packets, RAPID only replicates when bandwidth
is available. For example, when the load is increased
to 15 packets per hour per destination, the number of
replications per delivery made by RAPID reduced to 4.3.

6.2.2 Metadata exchange

We allow RAPID to use as much bandwidth at the
start of a transfer opportunity for exchanging metadata
as it requires. To see if this approach was wasteful or
beneficial, we performed experiments where we limited
the total metadata exchanged. Figure 8 shows the av-
erage delay performance of RAPID when metadata is
limited as a percentage of the total bandwidth. The
average delay metric shown here includes the delay for
undelivered packets. When a packet is undelivered, it is
assumed to be delivered at the end of the day.

The results show that performance increases as the
limit is removed and that the best performance results
when there is no restriction on metadata at all. The
performance of RAPID with complete metadata exchange
improves by 20% compared to when no metadata is ex-
changed. The metadata in this experiment is represented
as a percentage of available bandwidth.

160
140 |
120 |
100 |
80 |
60 |
40 |
20 |

Avg delay (min)
% delivered

Rapid ——
MaxProp
Spray and Wait
Random —s=—

1000
900
800 |

e

£ w0t

= 600 |

% 500
Rapid —— | x do0y id |
MaxPr?)p —— g 300 Ma?s:lols —
Spray and Wait —— 200 ¢ Spray and Wait —=— |

_ Random —e— 100 -

Random —=—

0

0 5 10 15 20 25 30 35 40 5 10

Number of packets generated in 1 hour per destination

Figure 4: (Trace) Average Delay: RAPID
has up to 20% lower delay than MaxProp
and up to 35% lower delay than Random

Number of packets generated in 1 hour per destination

0

20 25 30 35 40 0 5 10 15 20 25 30 35

40

Number of packets generated in 1 hour per destination

Figure 5: (Trace) Delivery Rate: RAPID Figure 6: (Trace) Max Delay: Maximum
delivers up to 14% more than MaxProp, delay of RAPID is up to 90 min lower
28% than Spray and Wait and 45% than than MaxProp, Spray and Wait, and Ran-

Random dom
1 = 180 : : : : : : 100 "Meta information/RAPID data —— |
) | £ eta information ata
% 0.9 = 160 % channel utilization —s—
g 0.8 © 140 | 80 ivery rate —x— | 08
0.7 g
i Y S —— g g
5 ! § 100 | S T e g 60 - 1 06 g
S o5¢f 5 gl I3 g
3 04| < S 40t 104 2
& 03} { % 60 10 e
% 0.2+ MaxProp —— | E‘ 40 | Load: 6 packet per hour per node —— | 20 L 1 02
S o1l Spray and Wait —— | 2 20| Load: 12 packet per hour per node —<— |
3 'O ‘)))) Ranqom e < o Load: 20 packet per hour per node —s— 0 bl e o
2 . : A 7 . . n n t : :
6 5 10 15 20 25 30 35 40 0 005 01 015 02 025 03 035 0O 10 20 30 40 50 60 70 80

Number of packets generated in 1 hour per destination

Percentage Metadata (of the available bandwidth)

Number of packets generated in 1 hour per destination

Figure 7: (Trace) Delivery within dead- Figure 8: (Trace) Control channel bene- Figure 9: (Trace) Channel utilization: As
line: RAPID delivers up to 21% more fit: Average delay performance improves load increases, delivery rate decreases to
than MaxProp, 24% than Spray and as more metadata is allowed to be ex- 65% but channel utilization is only about

Wait, 28% than Random changed

In the next experiment, we analyze total metadata
as a percentage of data. In particular, we increase the
load to 75 packets per destination per hour to analyze
the trend in terms of bandwidth utilization, delivery
rate and metadata. Figure 9 shows this trend as load
increases. The bandwidth utilization is about 35% for
the load of 75 packets per hour per destination, while
delivery rate is only about 65%. This suggests that the
performance drops even though the network is under-
utilized, and it is because of the bottleneck links in the
network. The available bandwidth varies significantly
across transfer opportunities in our bus traces [6].

We also observe that metadata increases to about
4% of data for high loads. This is an order of magni-
tude higher than the metadata observed as a fraction
of bandwidth, again because of the poor channel uti-
lization. The average metadata exchange per contact is
proportional to the load and the channel utilization.

RAPID uses more information to improve routing per-
formance. Although the result is intuitive, RAPID uses
the additional information to compute packet utilities
accurately and in-turn replicate packets intentionally.
In contrast, Spray and Wait or Random cannot use
additional information even if available, and MaxProp
uses additional information only to remove delivered

10

35%

packets [6]. Further, collecting the additional informa-
tion does not incur a huge overhead in RAPID. The
metadata overhead reduces even further with increasing
packet size. For example, moving from 1-KB to 10-KB
packets reduces RAPID’s metadata overhead by an order
of magnitude.

There are several scenarios where metadata exchange
needs to be limited. For example, when transfer opportu-
nities sizes are much smaller than the number of packets,
exchanging all metadata during a transfer opportunity
may affect performance. Similarly, since RAPID is a
link-state routing protocol, it scales only as well as a
link-state protocol. As the network size increases, a node
may need to limit the state information it maintains as
well as the amount of metadata exchanged. The issue
of limiting metadata exchange according to the network
scenario will be addressed as part of future work.

6.2.3 Hybrid DTN with thin continuous connectivity

In this section, we compare the performance of RAPID
using an instant global control channel for exchanging
metadata as opposed to the default (delayed) in-band
control channel.

Figure 10 shows the average delay of RAPID when
using an in-band control channel compared to a global

[N
N
o

. 3 .
120 1 g 091 —— — g oo
2 08y — T g 08 1
€ 100 1 S 07t € o7t 1
£ 2
3 97 g e B i e e
g S 05 S 05}
S 60 S 04¢ 3 04} i
2 4l 2 03} g 03
< £ 02!] 2 02]
20 + In-band control channel S o1l In-band control channel —— | S o1 In-band control channel —+— |
Instant global control channel —— e 'o Instant global channel —-— B '0 Instant global control channel —x—
0 . . . ! . 1 , ’ f 1 . . .
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Number of packets generated in 1 hour per destination Number of packets generated in 1 hour per destination

Number of packets generated in 1 hour per destination
Figure 10: (Trace) Global channel: Aver- Figure 11: (Trace) Global channel: De-
age delay of RAPID decreases by up to livery rate increases by up to 12% using
20 minutes using instant global control an instant global control channel, for the
channel average delay metric

Figure 12: (Trace) Global channel: Pack-
ets delivered within deadline increases by
about 15% using instant global control
channel

channel. We observe that the average delay of delivered
packets decreases by up to 20 minutes when using a
global channel. For the same experiments, the delivery
rate when using an instant global channel increases by up
to 12% (shown in Figure 11). Similarly, Figure 12 shows
that the percentage packets delivered within a deadline
increases by an average of 20% using a global channel.
This observation suggests that RAPID’s performance can
benefit further by using more control information.

One interpretation of the global channel is the use of
RAPID as a hybrid DTN where all control traffic goes over
a low-bandwidth, long-range radio such as XTend [4].
Since XTend radios support a data rate of about 1 KBps
for a range of 1 mile, the radios cannot be used to deliver
data packets when the incoming rate is high or packet
sizes are large. A hybrid DTN will use a high-cost, low-
bandwidth channel for control whenever available and
low-cost high-bandwidth delayed channel for data. In
our experiments, we assumed that the global channel
is instant. While this may not be feasible in practice,
the results give an upper bound on RAPID’s performance
when accurate channel information is available.

6.3 Results compared with Optimal

We compare RAPID to Optimal, which is an upper
bound on the performance. To obtain the optimal delay,
we formulate the DTN routing problem as an Integer
Linear Program (ILP) optimization problem when the
meeting times between nodes are precisely known (de-
tails in a Technical report [3]) and solve the problem
using a CPLEX solver [10]. Because the problem grows
in complexity with the number of packets, these results
are limited to only 6 packets per hour per destination.
The ILP objective function minimizes delay of all pack-
ets, where the delay of undelivered packets is set to time
the packet spent in the system. Accordingly, we add the
delay of undelivered packets when presenting the results
for RAPID and MaxProp.

Figure 13 presents the average delay performance of
Optimal, RAPID, and MaxProp. We observe that for

11

small loads, the performance of RAPID using the in-
band control channel is within 10% of the optimum
performance, while using MazProp the delays are about
22% from the optimal. RAPID using a global channel
performs within 6% of optimal.

6.4 Results from synthetic mobility models

Next, we use an exponential and power law mobility
model to compare the performance of RAPID to Maz-
Prop, Random, and Spray and Wait. When mobility
is modeled using power law, two nodes meet with an
exponential inter-meeting time, but the mean of the
exponential distribution is determined by the popular-
ity of the nodes. For the 20 nodes, we randomly set a
popularity value of 1 to 20, with 1 being most popular.

We set the mean meeting time for both mobility dis-
tribution to 30 seconds. For the power law mobility
model, the meeting time is skewed from 30 seconds ac-
cording to the node’s popularity. All other parameters
for exponential and power law are identical.

6.4.1 Powerlaw mobility model, increasing load

Figure 14 shows the average delay for packets to be
delivered (i.e., RAPID is set to use Eq. 1 as a metric). The
average delay of packets quickly increase to 20 seconds
as load increases in the case of MaxProp, Spray and
Wait and Random. In comparison, RAPID’s delay does
not increase rapidly with increasing load, and is on an
average 20% lower than all the three protocols.

Figure 15 shows the performance with respect to min-
imizing the maximum delay of packets (using Eq. 3 as
a metric). RAPID reduces maximum delay by an aver-
age of 30% compared to the other protocols. For both
the traces and the synthetic mobility, the performance
of RAPID is significantly higher than MaxProp, Spray
and Wait, and Random for the maximum delay metric.
The reason is MaxProp prioritizes new packets; older,
undelivered packets will not see service as load increases.
Similarly, Spray and Wait does not give preference to
older packets. However, RAPID specifically prioritizes

25 T T T T T T T
o 20 q
D
&
T 15 ,
[53
a
g 10+ 1
g Rapid ——
CD
> L MaxProp —x— |
< 5 Spray and Wait —x—
0 Random —&—
0 10 20 30 40 50 60 70 80
Number of packets generated in 50 sec per destination
Figure 14: (Powerlaw) Avg Delay:

RAPID reduces delay by about 20% com-
pared to MaxProp, and 23% than Spray
and Wait and 25% than Random

25 T T T T T
2]
z]
[
[a}
<3
S 10t _ 1
> Rapid ——
E MaxProp —x— |

Spray and Wait ——
0 Random —s—

0 50 100 150 200

Available storage (KB)

250 300

Figure 17: (Powerlaw) Avg Delay with
constrained buffer: RAPID reduces av-
erage delay by about 23%when buffer
size is constrained compared to MaxProp,
Spray and Wait and Random

80 T T T T T T T

70 4
< 60 q
Q
£ 50 4
>
§ 40 1
% 30 Rapid —— |
= 20r MaxProp —s<— 1
10 - Spray and Wait —«— |
0 Random —=—
0 10 20 30 40 50 60 70 80
Number of packets generated in 50 sec per destination
Figure 15: (Powerlaw) Max delay:

RAPID's max delay is about 30% lower
than MaxProp, 35% lower than Spray
and Wait and 45% lower than Random

70
60 - 4
@ 50 q
& 40} ,
[5
2 30t 1
§ 20 L Rapid —— |
MaxProp —s—
10 + Spray and Wait —— 4
0 Random —=—

0 50 100 150 200

Available storage (KB)

250 300

Figure 18: (Powerlaw) Max delay with
constrained buffer: RAPID's max delay
is about 22% lower than MaxProp, 35%
lower than Spray and Wait and 38%
lower than Random when buffer is con-
strained

12

(]

£ 1
b= 1
IS

[}

3]
£ 1
£

g]
T o .]
§ 031l Rapid —— |
= ool MaxProp 1
C ' Spray and Wait

X O'é [Random —=—]|

0 10 20 30 40 50 60 70 80

Number of packets generated in 50 sec per destination

Figure 16: (Powerlaw) Delivery Deadline:
RAPID delivers about 20% more pack-
ets within deadline when buffer size is
constrained, compared to MaxProp, and
45% more packets compared to Spray
and Wait and Random

= Rapid
MaxProp
Spray and Wait
Random —

% delivered within deadline
o
(5]

0 L L L
100 150 200

Available storage (KB)

250 300

Figure 19: (Powerlaw) Delivery Deadline
with constrained buffer: RAPID delivers
about 20% more packets within deadline
when buffer size is constrained compared
to MaxProp, and 45% more than Spray
and Wait and Random

older packets to reduce maximum delay.

We observe similar trends in Figure. 16, that shows
the performance of the different routing protocols with
respect to maximizing the number of packet delivered
within an average deadline of 20 sec (RAPID uses Eq. 2).

6.4.2 Powerlaw mobility model: decreasing storage
constraint

In this set of experiments, we varied available storage
from 10 KB to 280 KB and compared the performance
of the four routing protocols. We fixed the load to 20
packets per destination and generated packets with a
inter-arrival time of 50 seconds.

Figure 17 shows how the average delay of all four
protocols vary with increase storage availability. RAPID
is able to maintain low delays even when only 10 KB
space is available at each node. In comparison, MaxProp,
Spray and Wait and Random have an average 23% higher
delay.

Figure 18 shows a similar performance trend in terms
of minimizing maximum delay. Similar to other exper-
iments, the difference in performance between RAPID
and the other three protocols is more marked for the
maximum delay metric.

Figure 19 shows how constrained buffers affect the
delivery deadline metric. When storage is restricted,
MazxProp deletes packets that are replicated most num-
ber of times, while Spray and Wait and Random deletes
packets randomly. RAPID, when set to maximizing num-
ber of packets delivered within a deadline, deletes pack-
ets that are most likely to miss the deadline. RAPID is
able to best manage limited buffers to deliver packets
within a deadline and improves delivery performance by
12% compared to the second-best performing protocol.
These experiments suggest that RAPID’s utility-driven
approach adapts well to storage restrictions as well. We
observed similar trends for increasing storage restrictions
when using exponential mobility model (not shown in
figure).

7. DISCUSSION

1. Not surprising that with more information, rapid
performs better.

As a general comment, the paper should express the
limitations of RAPID better: the authors perform a
quite extensive comparison against a variety of routing
protocols for different traffic loads. They do not, how-
ever, cover larger messages (10 KB seems unnecessarily
small) — which would benefit their data to overhead
ratio further (as they note for 10KB to 1KB messages).
More importantly, their entire evaluation is limited to
a small scale scenario where the suggested metadata
exchange and state maintenance is feasible. The authors
should at least provide some intuition for larger net-
works: even if one would limit this to public transport

13

scenarios, most city bus networks will have ten or more
times the number of buses in operation. These are clear
limitations and they should be clearly stated, e.g., in the
discussion/conclusion in the end. Currently, the final
picture appears a bit too general.

We agree. We added a discussions section to address
this concern. HOW TO DO THIS. ACCEPT THAT
FOR SMALLER MESSAGES, THE META DATA IS
UNACCEPTABLE.

ADD A DISCUSSIONS SECTION

2) The suggestion with the low rate Xtend background
channel warrants careful consideration given the message
sizes the authors have discussed: at this size, a control
channel (or a cellular network or even MMS) could easily
be used to distribute this data. This would also argue
for larger message sizes where such alternatives become
infeasible. This might be a worth a statement or two.

8. CONCLUSIONS

Previous work in DTN routing protocols has seen
only incidental performance improvement from various
routing mechanisms and protocol design choices. In
contrast, we have proposed a routing protocol for DTNs
that intentionally optimizes a specific routing metric
by treating DTN routing as a resource allocation prob-
lem. Although our approach is heuristic-based, we have
proven that an online DTN routing protocol without
future knowledge can perform arbitrarily far from op-
timal. We have also proven that optimally solving the
DTN routing problem even with complete knowledge is
NP-hard. Our deployment of RAPID in a DTN testbed
illustrates that our approach is realistic and effective.
We have shown through trace-driven simulations us-
ing 65 days of testbed measurements that RAPID yields
significant performance gains over previous work.

Acknowledgments

We thank Mark Corner, John Burgess, and Brian Lynn
for helping build and maintain DieselNet, Ramgopal
Mettu for helping develop the NP-hardness proof, and
Erik Learned-Miller and Jérémie Leguay for feedback
on earlier drafts. We thank Karthik Thyagarajan for his
help in formulating the Integer Linear Program. This
research was supported in part by National Science Foun-
dation awards NSF-0133055 and CNS-0519881, CNS-
0721779, CNS-0845855.

9. REFERENCES

[1] One laptop per child. http://www.laptop.org.

[2] TIER Project, UC Berkeley.
http://tier.cs.berkeley.edu/.

(3] A. Balasubramanian, B. N. Levine, and A. Venkataramani.
DTN Routing as a Resource Allocation Problem. Technical
Report 07-37, UMass Amherst, 2007.

[4] N. Banerjee, M. D. Corner, and B. N. Levine. An
Energy-Efficient Architecture for DTN Throwboxes. In Proc.
IEEE Infocom, May 2007.

(5]

[6]

[7]

(8]

[9]

[10]
(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

25]

(26]

27]

28]

J. Burgess, G. Bissias, M. D. Corner, and B. N. Levine.
Surviving Attacks on Disruption-Tolerant Networks without
Authentication. In Proc. ACM Mobihoc, September 2007.
J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine.
MaxProp: Routing for Vehicle-Based Disruption- Tolerant
Networks. In Proc. IEEE Infocom, April 2006.

B. Burns, O. Brock, and B. N. Levine. MV Routing and
Capacity Building in Disruption Tolerant Networks. In Proc.
IEEE Infocom, pages 398—408, March 2005.

G. Casella and R. L. Berger. Statistical Inference. Second
Edition. Duxbury, 2002.

A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and
J. Scott. Impact of Human Mobility on the Design of
Opportunistic Forwarding Algorithms. In Proc. IEEE
Infocom, May 2006.

CPLEX. http://wuw.ilog.com.

J. Davis, A. Fagg, and B. N. Levine. Wearable Computers
and Packet Transport Mechanisms in Highly Partitioned Ad
hoc Networks. In Proc. IEEE ISWC, pages 141-148,
October 2001.

N. Garg, S. Sobti, J. Lai, F. Zheng, K. Li,

A. Krishnamurthy, and R. Wang. Bridging the Digital
Divide. ACM Trans. on Storage, 1(2):246-275, May 2005.
B. Hull et al. CarTel: A Distributed Mobile Sensor
Computing System. In Proc. ACM SenSys, pages 125-138,
Oct. 2006.

S. Jain, M. Demmer, R. Patra, and K. Fall. Using
Redundancy to Cope with Failures in a Delay Tolerant
Network. In Proc. ACM Sigcomm, pages 109-120, 2005.

S. Jain, K. Fall, and R. Patra. Routing in a Delay Tolerant
Network. In Proc. ACM Sigcomm, pages 145-158, Aug.
2004.

E. Jones, L. Li, and P. Ward. Practical Routing in
Delay-Tolerant Networks. In Proc. ACM Chants Workshop,
pages 237-243, Aug. 2005.

J. Leguay, T. Friedman, and V. Conan. DTN Routing in a
Mobility Pattern Space. In Proc. ACM Chants Workshop,
pages 276-283, Aug. 2005.

A. Lindgren, A. Doria, and O. Schelén. Probabilistic
Routing in Intermittently Connected Networks. In Proc.
SAPIR Workshop, pages 239-254, Aug. 2004.

A. Maffei, K. Fall, and D. Chayes. Ocean Instrument
Internet. In Proc. AGU Ocean Sciences Conf., Feb 2006.
W. Mitchener and A. Vadhat. Epidemic Routing for
Partially Connected Ad hoc Networks. Technical Report
CS-2000-06, Duke Univ., 2000.

J. Ott and D. Kutscher. A Disconnection-Tolerant Transport
for Drive-thru Internet Environments. In Proc. IEEE
INFOCOM, pages 1849-1862, Mar. 2005.

J. Partan, J. Kurose, and B. N. Levine. A Survey of
Practical Issues in Underwater Networks. In Proc. ACM
WUWNet, pages 17-24, Sept. 2006.

R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data MULEs:
Modeling a Three-tier Architecture for Sparse Sensor
Networks. In Proc. IEEE SNPA, pages 30-41, May 2003.
T. Small and Z. Haas. Resource and Performance Tradeoffs
in Delay-Tolerant Wireless Networks. In Proc. ACM WDTN,
pages 260—267, Aug. 2005.

T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Spray
and Wait: An Efficient Routing Scheme for Intermittently
Connected Mobile Networks. In Proc. ACM WDTN, pages
252-259, Aug. 2005.

T. Spyropoulos, K. Psounis, and C. S. Raghavendra.
Performance analysis of mobility-assisted routing. In ACM
MobiHoc, pages 49-60, May 2006.

T. Spyropoulos and K. Psounis and C. Raghavendra.
Single-copy Routing in Intermittently Connected Mobile
Networks. In IEEE SECON, October 2004.

J. Widmer and J.-Y. Le Boudec. Network Coding for
Efficient Communication in Extreme Networks. In Proc.
ACM WDTN, pages 284-291, Aug. 2005.

14

[29] Y.-C. Tseng and S.-Y. Ni and Y.-S. Chen and J.-P. Sheu.
The Broadcast Storm Problem in a Mobile Ad hoc Network.
Springer Wireless Networks, 8(2/3):153-167, 2002.

[30] P. Zhang, C. M. Sadler, S. A. Lyon, and M. Martonosi.
Hardware Design Experiences in ZebraNet. In Proc. ACM
SenSys, pages 227-238, Nov. 2004.

[31] X. Zhang, G. Neglia, J. Kurose, and D. Towsley.
Performance Modeling of Epidemic Routing. In Proc. IFIP
Networking, May 2006.

APPENDIX

Delay estimation based on dependency graphs:

In Section 3, we presented ESTIMATE_DELAY that es-
timates expected delays of packets based on the packet’s
position in a node’s buffer. The algorithm ignores some
dependencies between packets across node buffers. In
this section, we present an algorithm DAG_DELAY to esti-
mate expected delays more accurately without ignoring
non vertical dependancies.

To formalize the dependancies, we introduce some
notation. Let G = (V, E) be a graph representing a
markov network with vertices V. ={V; UVoU...UV,,}
where V; = {x;1,%i2,..., i} is the set of k replicas of
packet 7. All packets in V' are destined to the same DTN
node — recall that we wish to estimate expected delays
of packets based on the current state of the network
assuming no further replication, so packets destined to
other DTN nodes do not affect the delays of packets in V.
An edge (or a path) from one vertex to another indicates
a dependency between the delivery time distributions of
the corresponding packets. The edges are constructed
as follows.

e Each replica is connected to its successor, i.e., the
replica immediately ahead of it in the current buffer.

e Each replica is connected to all the replicas of its
successor at other DTN node buffers.

8 d(a) = min(e, €;)

b d(b) = min(ej,d(a) ® e, d(a) D e)

c d

d(c) = e, @ d(b) d(d) = min(e; ® d(b), er, @ dp, e; & d(a))

Figure 20: A topologically sorted dependancy graph.

Let the delay distribution of a packet in buffer x be e,,.
Let @ represent the addition of two distributions (e.g.,
adding two identical exponential distributions yields
a gamma distribution with twice the mean). Assume
unit-sized transfer opportunity and packet.

DAG_DELAY first topologically sorts the dependancy
graph. For example, the topological sort of Figure 2
is shown in Figure 20. DAG_DELAY computes the de-
lay of the packets in the graph in the topologically

order starting from the top. The information main-
tained for each of the k replicas p1,...,pr of packet p is
{succ(py), everten(p,) }> 1 < J < k, where succ(p;) is the
successor of the replica p;, and vertez(p;) is the DTN
buffer where p; exists.

PROCEDURE DAG_DELAY(p):
1. for each replica p;,1 < j < k of p, do
(a) Let s = succ(p;), and n = vertez(p;)
(b) if d(s) is not defined, then
i. d(s) =DAG_DELAY(s)
(c) d'(p;) = d(s) @ en
2. return d(p) = min(d'(p1),...,d (pr))

Figure 20 presents the delay of each packet as com-
puted using DAG_DELAY. Although the algorithm is
recursive, sequentially computing the delay of packets
top down in the DAG and storing the delay values of
already computed packets ensures that the delay of each
packet is computed exactly once. And since the DAG
has no cycles, DAG_DELAY will converge.

DAG_DELAY is an idealized algorithm and its imple-
mentation requires a global control channel (introduced
in section 6.2.3) with complete knowledge of the system
state. Therefore, in our implementation, we use the
less accurate but local ESTIMATE_DELAY algorithm. In
addition, DAG_DELAY fails when the transfer opportuni-
ties are not unit-sized. For example, in Figure 2, if the
transfer opportunity and packets are unit-sized, then
the delay of packet b depends on the delay of packet a.
But if not, then the delay of b may not depend on the
delay of a and the dependancy graph is no longer valid.
In general, estimating the expected delay of packets is a
hard problem even when global knowledge is available
but transfer opportunities are not unit-sized.

Pathological examples when ESTIMATE_DELAY fails

ESTIMATE_DELAY ignores non-vertical edges in the de-
pendency DAG and therefore is not an accurate estimate.
Figure 21 shows a pathological case of packet distribu-
tion where the estimation error of ESTIMATE_DELAY
can be arbitrarily large. In this example, we assume
that all packets are destined to node Z. There are k 4 1
replicas of a distributed among nodes Wy, Wy - - Wy
and X. There are no replicas of b. We assume that the
meeting times between all pairs of nodes is exponentially
distributed; further we let the mean meeting time be-
tween Wi, Wy --- Wy and Z be A and between X and Z
be 10 - A. The transfer opportunities are unit-sized.

Algorithm ESTIMATE_DELAY computes the delay of
delivery b as the expected time taken for X to meet des-
tination Z twice. Accordingly, a RAPID node estimates
the delivery delay of b as an exponential distribution
with mean 20 - \.

DAG_DELAY, on the other hand, takes into account
non-vertical dependancies and estimates the delivery

Node W; Node W, Node Wi Node X

Figure 21: A pathological example of packet distribution
among nodes.

delay distribution of b accurately as — the time taken for
one of the k + 1 replicas of a to be delivered followed by
X meeting Z. The time taken for a to be delivered is
an exponential distribution with mean % Accordingly,
DAG_DELAY estimates the delivery time of b as a gamma
distribution with mean 10 - A + %

The difference is delay estimation between DAG_DELAY
and ESTIMATE_DELAY can be arbitrarily large in this
pathological example. But notwithstanding such patho-
logical scenarios, ESTIMATE_DELAY is simple, local, and
computationally efficient heuristic to estimate expected
delays and we find that it works well in practice.

ILP Formulation

We formulate the DTN routing problem as an ILP to
solve it optimally. For the ILP formulation, we assume
that the nodes have complete knowledge of future trans-
fer opportunities. To make the formulation tractable,
we borrow the idea used in [15] and first divide time
into discrete intervals so every node meets at most one
other node in an interval. The notations used in the
formulation are as follows.

e [: set of time intervals. ¢(¢) is the time interval 4

ends, and A is the last time interval.

e N: set of nodes

e F: set of edges. An edge is defined when two nodes
meeting in an interval. f(e) and s(e), for e € E are
the two vertices incident on the edge. d(e) is the
interval in which the edge exists, and b(e) is the
bandwidth.When two nodes ¢ and j meet, they are
represented by two edges in either direction.

e P: set of packets. src(p) and dest(p) for p € P are
the source and destination of the packet p. c¢(p)
is the time interval when the packet was created
size(p) is the size of the packet.

The variables of the ILP are

e X(p€ Pe€ E)=1if packet p is forwarded over
the edge e and is 0 otherwise
e N(pe Pne N,ieI)=1if node n has packet p
in the interval ¢ and is 0 otherwise
e D(p e PyieI)=1Iif packet p is delivered before
interval ¢ and is 0 otherwise
X is used to construct the optimal path taken by a

packet. The formulation is:

miny Y Y (t(i) —cp) - X(p,e)

peP iel eeE(desL(p),i)
+ 320 = D(pt(h) - (1(h) ~ e(p)
peEP
All constraints use notations Vp,n,i,e to mean Vp €
P,¥Yn e N,Vi € I and Ve € E.
Initialization constraints
N(p,n,i) =0if i < c(p) Vp,n,i
N(p,n,i) =1 if sre(p) =n and ¢(p) =i Vp
Bandwidth constraint
Z(X(p, e) x size(p) < b(e) Ve
peEP
Transfer constraints

N(p,n,i—1)— > X(p,e)=0Vp,n,i
eeE(i,n)

Z X(p,e)—N(p,n,z)ZOVp,n,z
SGE(n’i)
N(pa f(6)7 d(e) - 1) - X(p7 6) >=0 vpv €
Conservation constraint
1- Z N(p,n,i) =0ifi > c(p) Vp,e
neN
Delivery Constraint

Dpi)— Y. X(pe)=0Vpi
€€ B (dest(p),.):d(e)<i

16

