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Abstract

The new tasks and methods addressed by knowledge dis-
covery algorithms often require the development of new
methods for testing statistical hypotheses. Knowledge dis-
covery in relational data has previously been shown to pose
unique challenges for conventional hypothesis tests because
of the interdependence among data instances. Conven-
tional tests systematically underestimate p-values, resulting
in large numbers of erroneous dependencies. We formally
describe when these errors occur, and we develop two spe-
cialized methods of testing for statistical independence in
relational data. We show that these methods completely re-
move the bias of conventional tests and provide practical
advice for future algorithm development.

1. Introduction

Many of the key algorithms for knowledge discovery
quantify and characterize associations among variables in
data. For example, algorithms for learning the structure of
Bayesian networks infer the existence of conditional de-
pendencies among variables, algorithms for learning as-
sociation rules discover relationships among purchases in
massive market basket data sets, and algorithms for learn-
ing classification trees identify conditional associations be-
tween the class label and other variables. Although the pre-
cise data types and tasks differ, all of these algorithms have
association learning at their core.

Any algorithm that quantifies assocations does so with
some statistic. One common choice is the chi-square statis-
tic χ2, which approximates the multinomial distribution
function for categorical data.1 The statistic calculates the
normalized squared deviation of observed frequencies from
their expected values:

χ2 =
∑ (Oi−Ei)

2

Ei

χ2 is widely applicable, and it is robust to changes in
data size, cardinality, and class distribution.[14]

1For the remainder of this paper, we will us χ2 to refer to the test
statistic, and X2 to refer to its theoretical distribution

Many algorithms attempt to infer whether a given corre-
lation is due to systematic association in the underlying pop-
ulation rather than mere random variation in the data sam-
ple. For example, Bayesian network learners infer which
edges to include in the network, association rule algorithms
attempt to filter out spurious rules, and classification tree al-
gorithms decide when to stop adding structure. Since even
modest amounts of variation in a data sample will produce
a non-zero χ2 value, these algorithms require a method for
separating signal from noise.

The most common mechanism for doing so is a statis-
tical hypothesis test, which estimates the probability p that
a value at least as high as the observed value of the statis-
tic would occur under a given null hypothesis. This null
hypothesis most often specifies no association between the
given variables (although other null hypotheses can be spec-
ified). If the p-value is smaller than a given level (commonly
0.05, or 0.01), the algorithm rejects the null hypothesis and
concludes that the observed correlation is due to a system-
atic association in the population.

Innovation in knowledge discovery tasks and methods
has frequently required new methods for hypothesis test-
ing because the tasks or methods violate the assumptions
of existing tests. For example, most knowledge discovery
algorithms seach vast spaces of possible models, and this
violates the assumption made by many tests that only a sin-
gle hypothesis will be evaluated [8, 4]. In other cases, algo-
rithms address new types of data that require fundamentally
new types of hypothesis tests. For example, several recent
papers have examined specialized methods for testing hy-
potheses about association rules [15, 6].

Many of the most recently developed algorithms for
knowledge discovery focus on analyzing relational data.
Such data sets explicitly represent multiple types of enti-
ties and the relations among those entities. One key insight
of this work is that entities are not statistically indepen-
dent, and that their interdependence can be exploited to im-
prove statistical modeling. However, this interdependence
has also raised concerns, because it violates a key assump-
tion of nearly all hypothesis tests—that data instances are
independent and identically distributed (IID).

In this work, we develop a systematic description of the
relational data structures for which conventional tests sys-
tematically underestimate p-values. We devise specialized
permutation tests and sampling algorithms that produce un-
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Figure 1. Entity-relationship diagram for a
simple NFL data set.

Figure 2. Distribution of helmet colors for
NFL teams.

biased results. Finally, we characterize the tradeoffs among
accuracy and statistical power of the different hypothesis
testing methods.

1.1. Example

An example drawn from American football can demon-
strate the biases in conventional tests when applied to re-
lational data. Figure 1 depicts a simple relational database
schema for the National Football League (NFL), the gov-
erning body for American football franchises. The league
consists of 32 teams, with each team participating in 16 reg-
ular season games per year. In our small example, teams are
characterized by a single attribute: the color of their protec-
tive helmets, which stays constant throughout the season.
Games have two attributes: the opponent and the game out-
come (won or lost). While “opponent” is actually a foreign
key in database terminology, to avoid replication all games
are associated with the home team only.

Table 1 is a contingency table tabulating the home wins
and losses of each NFL teams according to the color of their
helmets over a ten year span from 1998-2007. At seven
degrees of freedom ((number of outcomes - 1) x (number
of colors - 1) = 1 x 7 = 7), a conventional hypothesis test
would infer that a χ2 score of 33.81 is highly significant
(p0.00001). To those who follow American football, this re-
sult may seem surprising, as most sports enthusiasts would
consider helmet color to be independent of on-field perfor-

Table 1. Contingency table for helmet color
and wins/losses in the NFL, 1998–2007

helmet wins losses total
white 467 493 960
red 252 228 480
orange 193 111 304
gold 180 140 320
blue 434 462 896
silver 494 466 960
black 295 345 640
other 205 275 480
total 2520 2520 5040

mance. Changing helmet color would be expected to have
little effect on performance of an existing team, and a new
team’s performance would not be expected to be predicted
by their choice of helmet color.

To better characterize the problem with a conventional
test, consider the contingency table in Table 2. This table
was generated by tabulating a variable that was assigned
randomly with the same distribution of values as helmet
color (a permutation of helmet color). Here, the permuted
variable has an even more significant p-value than helmet
color, which itself was highly significant. Note that the
extreme p-values say nothing about the strength of effect;
the the out-of-sample predictive power of this association is
non-existent. Even so, how can this be?

Most analysts (and sports fans) would agree that neither
the original nor the permuted variable is actually correlated
with wins and losses. Something must be wrong with the
statistic itself or with the hypothesis test. The p-values
shown are calculated from the theoretical reference distri-
bution of χ2 at seven degrees of freedom. For our example,

Table 2. Contingency table for random team
attribute and wins/loses in the NFL, 1998–
2007

helmet wins losses total
white 488 472 960
red 271 209 480
orange 144 112 256
gold 141 179 320
blue 522 438 960
silver 378 566 944
black 325 315 640
other 251 229 480
total 2520 2520 5040
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Figure 3. Empirical distribution for χ2 statis-
tic on NFL team attributes. The vertical line
represents the value of the χ2 statistic as cal-
culated for the attribute helmet color. When
compared against the theoretical reference
distribution X2 (dashed line), this value is
significant with a p-value < 0.000001. When
compared with the empirical distribution, the
value is not significant.

though, the traditional X2 reference distribution turns out
to be inappropriate.

The curve in Figure 3 was constructed by creating thou-
sands of permutations of helmet color, assessing their χ2

values, and plotting the frequency of those values. This pro-
cedure for calculating a p-value empirically is called a per-
mutation test and will be discussed below. The vertical line
represents the χ2 value of the helmet color attribute. When
compared against this distribution (rather than the theoreti-
cal X2), a χ2 value of 33.81 is not at all unexpected under
the null hypothesis of no association.

As we will see below, this effect is an example of a gen-
eral problem that is inherent in essentially all relational data
sets. In this work, we detail the precise nature of the dan-
gers of using conventional hypothesis tests for knowledge
discovery in relational data. Through simulation, we are
able to explain the precise cause of issues raised in previ-
ous work on hypothesis testing [9, 10, 11], and identify the
precise situations where conventional hypothesis tests are
inadequate. Finally, we offer the first general-purpose so-
lutions for conducting effective hypothesis tests using rela-
tional data sets.

2. Relational data

In recent years, statistical relational learning (SRL) has
represented an exciting frontier in the data mining and
knowledge discovery communities. Relational data consist
of entities connected by links, where links encode relation-
ships. Relational data sets are often represented in the form
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Figure 4. Relational representation of NFL
data.

Figure 5. RDBMS representation of NFL data
storage. When data from different tables is
joined for processing, the relational structure
(in this case, the one-to-many relationship
between teams and games) is lost. The re-
sulting table resembles an IID table of propo-
sitional data, but treating it as such can lead
to erroneous significance estimates.
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of a directed or undirected graph, where graph vertices and
edges represent entities and links, respectively. Figure 4 de-
picts a small portion of the data graph for the NFL data set.

Traditionally, contingency tables were constructed from
independent, identically distributed (IID) or propositional
data sets. Hypothesis tests utilizing χ2 were developed for
this type of data. When we create a contingency table from
relational data, we take the attributes associated with the
endpoints of each link. This process can create dependence
between instances in two ways. First, nodes that have a de-
gree greater than one will source more than one entry in the
table. By definition, instances born from the same node will
have dependence.[5] We refer to this effect as attribute repli-
cation. For instance, in the NFL example, a single team’s
helmet color get replicated over one hundred times, leading
to perfect dependence among those instances.

A second source of instance dependence stems from au-
tocorrelation, also known as homophily. Autocorrelation
is an association between the attribute values of nodes that
share links with a common node or set of nodes. For ex-
ample, game outcome is autocorrelated among the games
played by a single team. The existence of an autocorrelated
attribute signifies a dependence between the link structure
and that attribute; as a result, the attribute values of neigh-
boring nodes are not independent.

Propositional data sets may also exhibit instance de-
pendence. Relational database management systems
(RDBMSs) often store data in normalized form to ensure
data integrity and compactness. When data is exported
for analysis, the relevant tables are joined together form a
record set that is then fed to a learning algorithm.

Figure 5 illustrates the join process for the NFL data set.
In this example, the “helmet table” (which stores the hel-
met color attribute for each team in its 32 rows) is joined
to a “game table.” As a results of the join, the rows of the
helmet table are replicated for each game table row with
a matching “team” field. The effect of this replication on
the resulting record set is the same instance dependence de-
scribed above for the relational case. This form of depen-
dence can be quite insidious, as the new table contains no
record of the relational structure that was used to create it.
When tables such as the one in Figure 5 are fed to proposi-
tional algorithms, the data is mistakenly treated as IID.

The inaccuracy of using a conventional sampling dis-
tribution with non-independent events has been known for
decades.[12, 2] In addition, recent work in relational learn-
ing has illustrated the effects of autocorrelation on the ac-
curacy of χ2 tests. [9, 11] Given the history in the litera-
ture, it may seem obvious that naively applying χ2 tests to
data with instance dependence can result in biases. Never-
theless, many algorithms ignore the issue of independence
violations while conducting hypothesis tests to determine
correlation.

The lack of attention paid to independence violations
may be due to the fact that not all types of dependence will
skew results. Different data sets encode different relation-
ships between entities, and the severity of the errors asso-
ciated with non-independence is a function of these rela-
tionships and how they interact with attribute values. In the
following section, we identify the situations where replica-
tion and autocorrelation affect the sampling distribution of
χ2 in bipartite data.

3. Link structure, autocorrelation, and biased
p-values

In propositional data, the x,y pairs that populate a con-
tingency table come from a single data table, perhaps stored
in the form of rows in a relational database. The attributes x
and y are associated with the same experimental unit (e.g., a
person’s height and weight), and each unit is associated with
a single row. Since the units (and rows representing them)
are IID, and there is no hidden dependency encoded in the
contingency table. Relational data is more complicated in
terms of structure and dependence. Below, we examine the
effects of different structural motifs on the distribution of
the χ2 statistic.

To isolate the effects of structure and dependence, we
utilize a synthetic data generator. The generator works as
follows: first, the graph structure is created in accordance
with the degree distributions supplied as inputs. Once the
structure is in place, attribute values are randomly assigned
to each node according to a class distribution supplied as
input. To create autocorrelated attributes on the entities of
type B, a “latent” attribute is generated for each A object.
The autocorrelated attributes are then drawn randomly for
the B objects, conditioned on the values of the latent at-
tribute for the A objects they connect.

3.1. One-to-one subgraphs

The first case we consider consists of simple object pairs.
Figure 6a shows a schema for the data indicating a one-to-
one relationship between entities A and B. The variables X
and Y are statistically independent, indicated by the lack of
an arrow connecting the two variables. Figure 6b gives an
example data set corresponding to the schema.

While technically relational, each isolated subgraph con-
tains only a single value of X and Y , and thus pairs of val-
ues are IID, satisfying the independence assumptions of the
conventional χ2 test. As a result, p-values supplied by the
theoretical X2 distribution for the appropriate degrees of
freedom will be accurate.
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Figure 6. Entity-relationship diagram for one-
to-one data along with sample subgraphs.
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Figure 7. Distribution of χ2 for synthetic one-
to-one data.
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Figure 8. Entity-relationship diagram for one-
to-many data along with sample subgraphs.
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Figure 9. Distribution of χ2 for synthetic one-
to-many data with no autocorrelation.

3.2. One-to-many without autocorrelation

Bipartite data grouped in a one-to-many manner is the
simplest form of truly relational data. Examples of data of
this type include movie studios and the films they produce,
journals and the articles they contain, etc. Figure 8a shows
the schema with a one-to-many relationship between A and
B and independent variables X and Y . Figure 8c shows a
representative data set corresponding to this schema.

As noted previously, when data of this form are flattened
to populate a contingency table, the values used to calculate
frequencies for χ2 are dependent. Whether this violation
of the independence assumption affects the probability dis-
tribution depends on the relationship between links and the
attributes on their endpoints. Problematic dependencies are
reflected in the autocorrelation of the ”many” objects within
individual subgraphs.

When autocorrelation is absent from the values of Y ,
then pairs of values can be considered independent. In this
situation, again, the conventional χ2 test is accurate.

3.3. One-to-many with autocorrelation

When the Y variable does exhibit autocorrelation, as-
sessing correlation between X and Y becomes more com-
plicated. Figure 8b shows the schema with a one-to-many
relationship between A and B and autocorrelation among
the values of Y produced by the latent variable Z on A.
Note that X and Z are independent, as are X and Y . The
relational structure of the data would look similar to Figure
8c, although the values of Y would be autocorrelated.

Here, the link structure is not independent of the attribute
values that we care about, as a result, the units in the con-
tingency table are not independent, and the distribution of
the χ2 statistic changes. This case matches the helmet color
example detailed earlier, as well as the issues explored in by
previous investigators.[9] Here, the null hypothesis H0 dic-
tates that any perceived correlation between X and Y (as
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Figure 10. Distribution of χ2 for synthetic
one-to-many data for various degree distri-
butions (top) and levels of autocorrelation
(bottom). As degree and autocorrelation in-
crease, the sampling distribution of χ2 is
shifted.

reflected by a high χ2 value) is actually a statistical artifact
of the same dependence that produces autocorrelation.

Depending on the degree distribution and level of auto-
correlation, the distribution of the χ2 statistic can be equiv-
alent to one produced by multiplying contingency a table
by a constant factor. As first detailed by Jensen and Neville,
the higher the degree (“concentrated linkage”, in their lan-
guage) and autocorrelation, the more the sampling distribu-
tion is shifted. Figure 10 illustrates the effects of different
levels of each on the empirically-derived distribution of the
statistic.

It should be noted that many propositional data sets are
actually “flattened” versions of data sets with this structure.
Furthermore, depending on representation choices, it’s not
always obvious whether or not autocorrelation-producing
dependencies exist.

3.4. Many-to-many without autocorrelation

Figure 11a shows the schema with a many-to-many rela-
tionship between A and B and independent variables X and
Y . Figure 11d shows a representative data set correspond-
ing to this schema.

This case is similar to the one-to-many without autocor-
relation case. While a contingency table drawn from this
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Figure 11. Entity-relationship diagram for
many-to-many data along with sample sub-
graphs.
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Figure 12. Distribution of χ2 for synthetic
many-to-many data.

data will certainly not be composed of independent obser-
vations, the lack of autocorrelation among the values of Y
indicates that the distribution of χ2 will not be affected; as
a result, a conventional test is adequate.

3.5. Many-to-many with one-sided autocor-
relation

Figure 11b shows the schema with a many-to-many re-
lationship between A and B and autocorrelated values of
Y .

This case is similar to the one-to-many case with auto-
correlation, in that dependencies alter the distribution of χ2.
As seen in Figure 13 that the degree distribution and of the
A entities and the dependency between attributes on the B
entities are associated with changes to the reference distri-
bution, but the degree distribution of the B entities does not
affect the value distribution of the statistic.
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Figure 13. Distribution of χ2 for synthetic
many-to-many data for various degree distri-
butions. For small degrees (top), the distri-
bution of χ2 resembles the one-to-many case
shown in Figure 10. For large degrees, how-
ever, the distribution of χ2 shifts back toward
the propositional case.

3.6. Many-to-many with two-sided autocor-
relation

Figure 11c shows the schema with a many-to-many rela-
tionship between A and B and autocorrelated values of both
X and Y .

In this scenario, the two entity types are linked in a
many-to-many relationship, with autocorrelation on both at-
tributes. While less interesting in terms of its effect on the
χ2 distribution, this case illustrates an important point re-
garding the nature of autocorrelation among entity types
and its relationship to correlation between entity types.
Simply put, autocorrelation can exist on either side of a bi-
partite graph only in cases where there is correlation.

4. Solutions for hypothesis testing

In the previous section, we outlined several scenarios in
which the use of a conventional χ2 test to assess statistical
significance will produce biased results. Here, we consider
several alternative methods for conducting valid hypothesis
tests to determine association in relational data sets. Each
of our proposed methods modify the conventional χ2 test in
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Figure 14. Using a permutation test, the dis-
tribution of χ2 can be corrected under auto-
correlation.

one of two ways: altering the reference distribution to which
our test statistic is compared, or modifying the calculation
of the test statistic itself and comparing it to a the theoretical
X2 probability distribution.

4.1. Permutation tests

Permutation tests (sometimes also called randomization
tests) are a type of computationally-intensive method for
conducting accurate hypothesis tests. [3, 7, 13]

Permutation tests work by creating several near-
replicates of the data set, called pseudosamples. By
calculating the test statistic on each pseudosample, an
empirically-derived estimate of the probability distribution
can be estimated. The pseudosamples are generating by ran-
domly permuting the values of a given attribute among the
entities in the data. Jensen, Neville, and Rattigan demon-
strated that such a technique is effective for performing hy-
pothesis tests on single linkage (one-to-many) data that ex-
hibit autocorrelation, as in the case above.

The test works by modelling the distribution of the test
statistic under the null hypothesis that any measurable cor-
relation is an artifact of dependencies between instances
(which are, in turn, reflected in the form of autocorrelation).
By permuting the attributes on the A objects while holding
those on the B objects constant, the level of autocorrelation
among y attributes is preserved. In contrast, the random-
ization procedure effectively destroys any systematic asso-
ciation between connected x and y variables (as dictated by
H0). The distribution curve in figure x was generated using
a permutation test. Specifically, since teams are connected
to games in a one-to-many fashion, the values of the team
attribute “helmet color” were permuted, while holding the
“win/loss” attribute on games constant.

In addition to the one-to-many case, permutation tests
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can be applied to many-to-many data with one-sided auto-
correlation as described in a case above. Finally, permuta-
tion tests can be effectively applied to propositional data, as
an alternative to a conventional test when prior processing
may have introduced latent dependencies through database
joins.

4.2. Link sampling

Link sampling is a novel technique for accurate hypoth-
esis testing in relation data. Rather than adjusting the ref-
erence distribution, link sampling works by modifying the
calculation of the test statistic itself such that it will be cor-
rectly distributed with a X2 distribution. Recall that the
problem identified in the previous section stemmed for non-
independence between attribute values when link endpoints
are used to populate a contingency table. Using link sam-
pling, we can “enforce” the independence assumption by
constructing a contingency table out of independent links.
To select the set of links for inclusion in the contingency
table, we use the randomized greedy matching algorithm
presented by Aronson et al.[1] This algorithm produces a
matching, a set of edges which share no common vertices.
While the algorithm as presented seeks to find a maximal
matching, it can be trivially adapted to select a set of in-
dependent links of a given target size (assuming that one
exists).

To gauge correlation using link sampling, the contin-
gency table is populated with a subset of the links such that
no two links in the subset share an endpoint. If the assump-
tion holds within the data that the attribute values of any
node are conditionally independent of others in the graph
given those of their neighbors, the x,y pairs that fill the con-
tingency table will be independent as well. Since the in-
dependence assumption is no longer violated, a χ2 statistic
calculated from the subset contingency table will be dis-
tributed with the theoretical X2.

The link sampling technique is applicable to any form
of relational data, regardless of link structure or attribute
distribution and dependencies. However, as we will see in
the following section, link sampling can drastically reduce
sample size, negatively effecting power.

5. Discussion

In the previous sections, we outlined several data sce-
narios in which conventional χ2 tests fail, and provided a
pair of solutions. Given these choices, how should a prac-
titioner proceed? The answer to this question depends on
the structure of the data, and whether the attribute values
exhibit autocorrelation.
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Figure 15. When generated from independent
edges, the distribution of χ2 closely matches
the theoretical X2 distribution.

5.1. Applicability

If the data are propositional, then the conventional χ2

test often applies, assuming the absence of latent depen-
dence as discussed in 2. Furthermore, relational data sets
with one-to-many or many-to-many link structures will also
work with a conventional test if the data are not autocorre-
lated. Of course determining whether autocorrelation exists
is not a trivial task itself, and failing to assess it correctly
will result in the variety of Type I error detailed in the hel-
met example (incorrectly rejecting the null hypothesis).

The permutation test approach produces accurate p-
values for data that are not IID. Since it derives sampling
distributions empirically, it is robust to autocorrelation in
the data. Furthermore, permutation tests can be utilized in
situations in which there is no information about the rela-
tionship between attributes and structure. The one excep-
tion occurs with many-to-many data that exhibit undeter-
mined or two-sided autocorrelation. Since the procedure
relies on preserving the autocorrelation on one entity type
while destroying correlation between entity types under the
null hypothesis, it cannot be applied if dependence exists
amongst both entity types.

The link sampling method can be applied to any rela-
tional data set or attribute structure. However, the size of
maximal matchings may be limited in data sets with dense
link structures, which limits the methods usefulness for
heavily-linked data.

5.2. Accuracy and power

Statistical power is the probability that a procedure will
not commit a Type II error (incorrectly accepting the null
hypothesis). Figure illustrates the power advantage of the
permutation method over link sampling for a synthetic one-
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Table 3. Summary of applicability of each hypothesis test method
method 1-to-1 1-to-m,

no ac
1-to-m,
ac

m-to-m,
no ac

m-to-m,
sing. ac

m-to-m,
doub. ac

conventional X2 X X X
permutation X X X X X
link sampling X X X X X X

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

strength of effect

po
w

er

permutation
link sampling 10
link sampling 20
link sampling 50
link sampling 100

Figure 16. Power as a function of effect
strength on synthetic graphs for the permu-
tation and link sampling methods. Four vari-
ations of the latter are presented for four dif-
ferent levels of sample size s (10, 20, 50, 100).
The higher the sample size, the better the
power; however, the permutation method’s
performance dominates even at s=100.

to-many data set. This higher power comes at a cost, how-
ever, as permutation tests are computationally intensive.

5.3. Conclusions

Which technique works best depends on the require-
ments of the task and domain. Given a relational data set, an
assessment of the link structure and autocorrelation among
attributes can help indicate the proper test. For large data
sets, the link sampling approach can be safely utilized re-
gardless of attribute structure. For smaller data sets, or any
situation where maximum statistical power is desired, the
permutation technique is a good choice.

In this work we explained two hypothesis testing proce-
dures for relational data, and detailed the scenarios where
they improve performance. While this issues described in
Section 2 can be present in propositional data sets, they can-
not be accounted for using these techniques. The ability to
conduct accurate hypothesis tests in the presence of data in-
stance dependence is a compelling argument for the use of

relational representations.
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