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Abstract
In this paper, we present a geometry-based method for multiview synthesis that is robust around depth discontinu-
ities. Our goal is to synthesis new views from a sparse set of images taken with a handheld camera. Our method is
based on explicit, view-dependent geometry reconstruction. We first apply structure from motion to recover cam-
era parameters and a 3D point cloud representing the scene geometry. For each view, we then estimate a set of
visible 3D points, and compute a visible surface using 2D Delaunay triangulation. The initial surface does not
preserve depth discontinuities, leading to objectionable artifacts in rendering. To solve this problem, we ask the
user to mark occlusion boundaries for a small subset of the input images. These marked boundaries are then prop-
agated to the remaining images, and used to refine the visible surfaces by splitting triangles that cross occlusion
boundaries. Using the results, we demonstrate realistic view synthesis running in real-time on modern GPUs.
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1. Introduction

In computer graphics, a fundamental challenge is to create
images that look as close as possible to real photographs.
Traditional approaches start from well-defined digital scenes
and synthesize realistic images by simulating the physical
process of illumination in the natural world. While such
approaches have enjoyed great success due to tremendous
progress in hardware and software developments, the com-
plexity of the real world continues to overwhelm our abilities
to model it successfully and render it interactively. For exam-
ple, a synthesized image of a moderately complex kitchen
scene often takes hours to compute, and even longer to
model with fine details and physically accurate materials.

This challenge has motivated research in image-based
modeling and rendering (IBR), the goal of which is to use
a set of captured photographs to generate approximate 3D
models, and then synthesize new views from the input data.
Such approaches release the users from having to create full
models with detailed geometry and materials. Moreover, as
pixels in the final image come from the input photographs,
the results often look more convincing than images synthe-
sized with traditional rendering algorithms.

With the availability of large image data sets today, image-
based modeling and rendering has gained significant popu-
larity, and has started to emerge in 3D games and technol-

ogy products such as Google’s Street View and Microsoft’s
PhotoSynth. However, several key challenges remain in ex-
isting methods, limiting their practical applications. For ex-
ample, light field rendering methods [LH96] require a great
many input images to overcome rendering artifacts due to
lack of explicit geometry. This incurs high costs in sam-
pling and compression. Surface light fields [WAA∗00] re-
quire a small number of input images but rely on the avail-
ability of an accurate 3D model. This incurs high costs in
geometry acquisition. Layered-depth images [SGHS98] and
3D warping [MMB97] explore depth information associated
with each input image to re-render the scene from nearby
viewpoints. These methods focus on synthetic scenes where
depth is readily available; for captured images, however, ob-
taining depth is significantly more challenging. A number
of existing solutions recover scene depth using stereo rigs,
laser range finders, or camera arrays. These devices are ex-
pensive and inconvenient to use to a standard user. There are
also advanced computer vision algorithms that recover scene
depth from a single image [HEH05], but these methods rely
heavily on the training data and hence are not very robust for
arbitrary scenes.

In this work, we are interested in designing an ef-
ficient image-based rendering method for smooth multi-
view synthesis, and the method should be easy to use for
a standard user. Our method is based on explicit, view-
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dependent geometry reconstruction, for which we build
upon previous work in scene analysis from uncalibrated im-
ages [PVGV∗04]. The input to our algorithm is a set of pho-
tographs captured with a handheld camera. We start by ap-
plying structure from motion (SfM) [SSS06] to automati-
cally recover camera parameters and a 3D point cloud rep-
resenting the scene geometry. We then parameterize the lo-
cations of cameras onto 2D topology, and compute a camera
graph, with which we can easily identify the neighboring
views of each image.

Next, for each view, we estimate a set of visible 3D points,
and compute a visible surface using 2D Delaunay trian-
gulation. The surface computed in this way does not pre-
serve depth discontinuities, leading to objectional artifacts in
rendering. Similar problems also exist with standard stereo
matching algorithms. Therefore, our main challenge is to de-
velop a new method that can robustly preserve depth discon-
tinuities. To solve this problem, we resort to user interac-
tions. Specifically, we compute a small set of representative
views (6∼ 12) from the input using k-means clustering; we
then ask the user to mark occlusion boundaries for each se-
lected image. The marked boundaries are then propagated to
the remaining images, and are used to refine the initially esti-
mated visible surfaces by splitting triangles that cross occlu-
sion boundaries. We show that this method can successfully
preserve depth discontinuities while requiring only a small
amount of user interactions.

To render a novel view, we first identify its closest three
input views using the camera graph, then combine the depth
information available at each input view to synthesize a
new image. The output image may contain holes due to the
lack of geometry in some areas. Therefore we also propose
a hole-filling algorithm based on real-time stereo match-
ing [YWB02] to cover the holes. All these steps are imple-
mented on the GPU to achieve real-time rendering speed.

As we recover view-dependent geometry for each image,
we avoid the need for any global geometry, which is expen-
sive to recover and prone to multiview alignment errors. Us-
ing view-dependent geometry also allows the view synthe-
sis error to be confined locally along the line of sight, caus-
ing fewer rendering artifacts. In addition, our discontinuity-
preserving method robustly keeps sharp edges around object
boundaries, leading to more convincing synthesis results.

2. Related Work

Structure from Motion The last two decades have seen
a remarkable progress in 3D computer vision algorithms,
especially in analysis of unstructured images. Structure
from motion (SfM) [HZ04] is a set of techniques that
aim to recover camera parameters and sparse 3D geome-
try from uncalibrated images. [TK92] first introduced factor-
ization methods to compute multi-frame structure from mo-
tion; [SK94] proposed global optimization techniques and

bundle adjustment for robust 3D reconstruction from corre-
spondences; self-calibration techniques have also been stud-
ied extensively [PKG99], which can upgrade a projective re-
construction to a metric reconstruction.

Our method directly uses Bundler – an open-source
SfM implementation introduced in [SSS06]. Bundler uses
SIFT [Low99] features and image EXIF tags to reliably re-
cover camera parameters and 3D points for a variety of data
sets. The images may be taken with different cameras at
varying focal lengths and resolutions, and even under dif-
ferent illumination.

Image-based Modeling Image-based modeling techniques
such as [DTM96,PVGV∗04] attempt to create a 3D model of
a scene of interest given a set of images. Compared to laser
range scanning, image-based techniques are usually more
flexible to work with and can easily produce high-resolution
results. Given the camera parameters for each image in a
multiview data set, we can apply stereo reconstruction to re-
cover depth. This typically involves finding feature corre-
spondences between image pairs, computing disparity, and
then reconstructing a consensus polygonal mesh or depth
map to represent the underlying geometry. [SCD∗06] pro-
vides a detailed overview and evaluation of the state-of-the-
art in multiview stereo reconstruction algorithms.

Recent multiview stereo algorithms focus on recovering a
global consensus geometry, by using volumetric based meth-
ods [SD97], cost function minimization [KS00], or merging
depth maps [GS05, NRK98]. Our method differs in that we
do not require global geometry; instead, we rely on view-
dependent geometry, in which we recover a different visible
surface for each input image. This eliminates the need for
aligning the multiview geometry, which is both time con-
suming and error-prone. Our method is closely related to
the view-dependent geometry approach by [KS04], where
each input image is associated with a separate depth map.
The main difference in our work is that we exploit occlusion
boundaries selected in image-space to help preserve depth-
discontinuities in geometry-space. Therefore our method
renders sharp edges between foreground and background
depth layers during view synthesis.

For hole-filling at run-time, we employ GPU-based multi-
view stereo matching [YWB02]. For a given novel view, we
are typically required to find the k nearest input views [ES04,
GCS06]. Our method uses a 2D camera graph, computed by
triangulating camera locations. This simplifies the selection
and interpolation of nearest neighbors at run-time.

Image-based Rendering As described in [SCK07], image-
based rendering techniques can be classified onto an image-
geometry continuum. At one end, techniques such as
plenoptic modeling [MB95], light fields [LH96], and lumi-
graph [GGSC96] require on little or no geometry but rely
on a large number of input views to overcome aliasing ar-
tifacts in rendering. On the other end, techniques such as
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Figure 1: An example of camera graph.

surface light fields [WAA∗00] and textured 3D rendering re-
quire only a small set of images, but rely on the availability
of accurate, global 3D models for rendering. [CTCS00] pro-
vides mathematical analysis of the plenoptic sampling rate
with respect to scene complexity, the number of image sam-
ples, and the output resolution. Our goal is to create a method
that is convenient and easy to use for standard users. There-
fore we would like to eliminate the need for either dense
input images or accurate 3D models.

View-interpolation or morphing [CW93,SD96,MHM∗09]
attempts to synthesize new views by directly transforming
pixels in image space using optical flow or feature corre-
spondence. These methods do not recover explicit 3D geom-
etry, but they require accurate image registration and work
well only for views with small baselines.

Layered-depth images [SGHS98] and 3D warp-
ing [MMB97] explore depth information associated
with each input image to re-render the scene from nearby
viewpoints; these methods focus on synthetic scenes
where depth is readily available. View-dependent texture
mapping [DTM96] renders new views by warping and
compositing input textures view-dependently. The 3D
model is recovered using a photogrammetric modeling
method.

[YPYW04] presented a unified approach for real-time
depth estimation and view synthesis using modern graph-
ics hardware. While achieving impressive performance, their
method does not robustly preserve depth-discontinuities,
which often causes blurring in the transition areas between
foreground and background layers.

[SGSS08] introduced a method for visualizing large col-
lections of photos downloaded from community photo Web-
sites. They use planar proxies to represent images in order
to create pleasing 3D viewing experience when browsing
through the photos. However, their focus is on structured
navigation of a large scene rather than edge-preserving view
synthesis.

3. Reconstruction

Our algorithm begins with a set of photos from uncalibrated
cameras. We assume only that the focal length is known.

Figure 2: Example 3D point cloud from Bundler

Figure 3: The left image shows points (in white) that are
marked visible for this view by Bundler; the right image
shows marked visible points after our visibility testing step.

Usually the focal length is available in an image’s EXIF tags.
We pass the images to Bundler [SSS06] to obtain (i) the cam-
eras parameters for each view, (ii) a cloud of recovered 3D
points, and (iii) the 2D location of each 3D point in each
image where it is visible.

3.1. The Camera-Graph

Bundler provides a rotation matrix R and a translation vector
T for each camera. The 3D location of a camera (the cam-
era center) is then Ci =−R>i ·Ti. We make the simplifying
assumption that all the camera centers lie roughly on a 2D
topology such as the surface of a sphere. This is mainly for
the efficiency of nearest neighbor search, and works well for
most of our capturing scenarios. We only require an approx-
imate 2D topology, so that we can compute a reasonable 1-1
mapping M : R3 → [−π,π)× [−π,π) from the 3D camera
positions to latitude-longitude coordinates for use in view-
interpolation. To compute the mapping M, we first find best-
fit sphere S for the camera locations. We then compute a rota-
tion matrix R about the center of S that simultaneously min-
imizes the squared z-coordinates of all camera centers. The
latitude and longitude of each camera, rotated by R about the
center of the sphere, is then used to define the 2D location of
each camera.

Next, we compute a 2D Delaunay triangulation of the 2D
camera locations. We call this the camera graph. The camera
graph is used in the rendering phase to choose a set of nearby
source views for any novel viewpoint. Figure 1 shows an ex-
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Figure 4: A mesh before and after splitting the long edges
that cross depth discontinuities.

ample camera graph for a 360-degree dataset that we cap-
tured.

3.2. Initial Mesh-Construction

The point cloud provided by Bundler is not dense enough
for direct point-based rendering. Therefore we need to re-
cover mesh geometry. While we could use techniques that
reconstruct a surface from an unstructured point cloud, such
as [HDD∗92], we found that such techniques often have
difficulties providing smooth meshes, causing noticeable
rendering artifacts. In practice a single global mesh does
not give good results where there are depth-discontinuities
that the camera cannot see around. We could also recon-
struct a dense depth map using multi-view stereo match-
ing [YPYW04]. However, we found that these approaches
have difficulties handling sharp depth discontinuities.

Our method computes a set of meshes from the point
cloud and uses the results for depth-interpolation at a novel
view. Our method computes an explicit, view-dependent
mesh for each source image, and then refines the mesh
using edge information in image-space to preserve depth-
discontinuities. Computing view-dependent meshes avoids
the problem of reconstructing global geometry. While there
will be error in each estimated mesh, the view-dependent
property ensures that the error is restricted to the line of
sight. Our rendering stage only uses meshes generated from
source images that are close to the novel viewpoint, so this
line of sight error remains largely hidden.

The mesh-generation step begins by identifying points
that are visible in each source view. Bundler returns a list
of images in which each point appears. However, we have
found that this estimation is often very conservative – many
points that are visible in a given view are not marked as visi-
ble by Bundler. Since a denser set of points will improve the
quality of our results, we use a simple testing step to detect
the visibility of every 3D point in every view.

The visibility testing can be done efficiently using
OpenGL rasterization. The basic idea is to use the entire

Figure 5: Top: Synthesized view before and after edge-
splitting. Bottom: The corresponding depth maps.

3D point cloud to perform point-based rendering, and ob-
tain a rough depth map for each source view. Specifically,
from each of the original cameras, we render 3D point cloud
using a sufficiently large point size and a shader that col-
ors each point with the window z-coordinate. We then use
this depth-map to find points in each view that are not al-
ready marked as visible. First, we compute the window z-
coordinate of every 3D point in every view. Then any 3D
point that lies within a range (typically about 0.01) of the
value in the depth map is marked as visible. We perform
the computation of this step on the GPU using NVIDIA’s
CUDA, and we are able to process ∼ 240,000 points in 96
views in a few seconds. Figure 3 shows an example point
cloud before and after the visibility-test in one of the source
viewpoints.

Since the set of visible points at each view has a natural
2D parametrization, we can compute a mesh Mi for view i by
triangulating the visible points in the 2D domain with a 2D
Delaunay triangulation. We then replace the 2D points with
their corresponding 3D points to obtain a 3D mesh. Since
only visible points are considered, we automatically avoid
the problem of including occluded points in the mesh.

Note that our visibility-testing step may incorrectly ex-
clude some visible points around depth-discontinuities, be-
cause the point size used for rasterization may be large
enough that some foreground points incorrectly occlude
some visible background points. The direct consequence is
that the triangulated mesh will contain long triangles that
connect foreground and background points, and these trian-
gles are not along the line of sight. However, this issue is
not a serious concern because our mesh splitting step below
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(a) (b)

Figure 6: (a) Manually-marked edges. (b) Automatically-
marked edges in a nearby view.

will split triangles that cross occlusion boundaries, thereby
preserving the sharp depth-discontinuities.

3.3. Edge-Splitting

We could use the meshes computed above directly for view
synthesis. While this will be good enough for rendering a
large part of the scene, there are serious problems around
depth-discontinuities, because each mesh will initially have
a large number of long triangles connecting foreground and
background objects. While these triangles are not difficult to
detect, removing triangles from a mesh creates holes which
must be filled. Our algorithm can both detect and remove
these triangles, and with the help of some user input, fill in
the missing geometry by splitting the long edges into seg-
ments that closely approximate the true geometry. Figure 4
shows a mesh before and after our edge-splitting algorithm.
Figure 5 shows the rendered results and the corresponding
depth maps before and after our edge-splitting algorithm.

User-Marked Boundaries. Our edge-splitting algorithm
requires the user to mark obvious depth discontinuities in a
subset of the source images (typically around one image for
every 15 to 30 degrees of camera rotation about the scene).
The subset is chosen automatically with K-means cluster-
ing. If m images are to be manually marked, we use K-
means to compute m clusters from the set of 3D camera
locations, with the 3D Euclidean distance as our distance
metric. Then in each cluster, the user manually marks the
depth-discontinuities in the view that is closest to the clus-
ter’s centroid. Figure 6a shows an example of an image with
manually-marked edges.

Edge Splitting. In each manually-marked view Vi, we use
the user-marked boundaries to split the long foreground-to-
background edges. We begin by reprojecting the correspond-
ing mesh Mi onto the image plane. We must then find all
triangles in Mi that intersect one or more manually-marked
boundaries in 2D. We efficiently detect the intersections with
a uniform grid spatial structure.

If a mesh-edge intersects at least one user-marked bound-
ary, we have found a foreground-to-background triangle. We
call these the bad triangles. Our algorithm will then attempt
to subdivide each bad triangle into a set of new triangles
that more closely approximate the scene geometry. We make
the simplifying assumption that each edge of a bad triangle

Image Plane
A

Camera

g

P
B’Camera

center

B

A’

Figure 7: An example of a long edge showing the original
line segment AB and the new line segments AA′ and BB′.

crosses at most one depth discontinuity, and thus at most one
user-marked boundary. If this assumption is violated, we use
the boundary that has the strongest image-space gradient.
Thus we can guarantee that any edge is either split in two
by a single depth discontinuity, or left intact.

When an edge AB intersects a depth discontinuity at a 2D
point P, we split the edge AB at P by creating two new points,
A′ and B′, such that the projections of A′ and B′ coincide
with P (that is, A′ and B′ both lie on the line of sight through
P). The edge AB is then replaced with edges AA′ and BB′.
Since A′ and B′ both project to P, the 2D geometry will ap-
pear the same with the addition of a new point along the
segment AB. However, we can shift A′ and B′ along the line
of site through P so that the new edges AA′ and BB′ more
closely approximate the local geometry around A and B re-
spectively. Fig 7 shows an illustration.

The 3D locations of A′ and B′ are inferred from A and
B and their neighbors, respectively. For A′, we choose the
depth to be the average of the depth of A and all its neigh-
boring vertices that are connected by mesh-edges (excluding
bad edges). We then position A′ on the line of site through
P at the desired depth. We do the same for B′ using B and
its neighbors. If A and B have accurate 3D locations, we
can guarantee that A′ and B′ will be reasonable approxima-
tions. While we could possibly gain some accuracy by fit-
ting planes to the local geometry around A and B, we have
found that in practice, using the average depth gives bet-
ter results. While we introduce some inaccuracy in this ap-
proach, we also avoid introducing errors due to inaccurate
plane-fitting when the local geometry is imperfect. Since the
error is along the line of sight and the mesh will only be
rendered from nearby novel viewpoints, the error typically
has little effect. Figure 7 shows an example of the two split
points A′ and B′.

Once the bad edges have been split, we need to retrian-
gulate the affected triangles. A foreground-to-background
triangle can have either one, two, or three bad edges, and
we need to handle each case independently. Since the user-
marked edges can be arbitrary, all three possible cases must
be considered.

Retriangulation. If a triangle has only one bad edge
(Fig 8a), there is only one way to re-triangulate it, namely by
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Figure 8: The three possibilities for splitting a bad triangle.
The dotted lines represent user-marked edges, and the solid
lines represent the splits.

connecting each of the new vertices with the original vertex
opposite the single bad edge. This splits the original triangle
into two new triangles.

If a triangle has two bad edges (Fig 8b), we add new edges
connecting the split points, thus splitting the original triangle
into a triangle and a quadrilateral. While the 2D projection of
the mesh appears to have one new edge, there are in fact two
new edges. Each split-point has a foreground copy (which
is always closer along the line of sight) and a background
copy (which is always farther along the line of sight). One
of the new edges joins the foreground split-points and the
other joins the background split-points.

If a triangle has three bad edges (Fig 8c), we create three
new triangles, each one containing one of the original ver-
tices and two of the new vertices. The central triangle is not
filled in. If we were to fill in the central triangle, we would in
fact have three new vertices at each split point. Each vertex
connected to the central triangle would not be connected to
any of the original vertices, and thus there would be no way
to infer its depth. Instead, we make the assumption that every
pixel in the central triangle is on the same depth plane as one
of the neighboring triangles. The depth plane for each pixel
is then selected by the rendering algorithm. At this stage, we
simply maintain a list of these triangles, along with a list of
depth estimates for each one. This list will be passed to the
rendering algorithm.

Automatic Boundaries. We only require the user to mark
a subset of the source images. In the remaining images, we
attempt to ’propagate’ the boundaries from the nearest user-
marked view. This is done by finding 3D locations for the
user-marked edges, and reprojecting them into unmarked
views. The 3D locations are determined from the 3D loca-
tions of the new vertices in the foreground to background tri-
angles. We began by finding all bad triangles that were split
along exactly two edges. Each of these triangles will have
two split points, and two new edges between the two copies
of the split points. We can determine which new edge is at-
tached to the foreground copies by checking the distances
from the endpoints to the camera center. The foreground
copy is then reprojected into the unmarked view, which cre-
ates a single line segment. This is repeated for every such
triangle, creating a set of edges in the unmarked view. These

edges are then used to split the mesh in the same manner as
the user-marked edges in the marked views. Fig 6b shows an
example of an image with automatically-marked edges.

Outlier-Rejection. Due to error in the marked edges
and 3D vertex positions, a small number of foreground-
background edges remain in the meshes even in the user-
marked views. The final step in our mesh generation algo-
rithm is to detect and remove these edges. We do this with
a histogram of 3D edge lengths. The histogram ranges from
the length of the shortest edge to the length of the longest
edge (before we split the bad triangles). Since most of the
bad edges are eliminated at this stage, the histogram bins
that would contain bad edges are relatively empty. We ex-
ploit this observation to choose a threshold for eliminating
bad edges. We find the first bin in the histogram having fewer
than a constant number of edges (typically around 500), and
then delete any edge that falls into either this bin or a larger
bin.

Each time we eliminate an edge, we create a hole in the
mesh. Since we do not have any split points on the edges
eliminated at this stage, we can’t apply our previous ap-
proach for filling in the geometry. Instead, we treat the holes
exactly like the central triangles in the 3-way splits, and fill
in the geometry in the rendering stage.

4. Rendering

4.1. View Interpolation

Camera Interpolation. Our rendering algorithm begins
with the choice of a novel viewpoint. The new viewpoint is
selected by clicking on the desired location within a 2D view
of the camera graph. This provides the 2D coordinates of the
new camera, but not the position or rotation. Both the po-
sition and rotation are determined by interpolating from the
three source cameras at the vertices of the triangle containing
the novel viewpoint. The barycentric coordinates are used to
obtain weights w1, w2, and w3, which guarantees smooth
transitions between frames across the entire camera graph.
For rotation, we use spherical linear interpolation (SLerp).
Given two quaternions q1 and q2, we compute the interpo-
lated rotation by:

SLerp(q1,q2, t) =
q1sin((1− t)θ)+q2sin(tθ)

sin(θ)
(1)

where θ is the angle between q1 and q2. This works well for
interpolating two quaternions, but it is not immediately obvi-
ous how to apply SLerp to three quaternions. If we represent
the rotations for our three source cameras using quaternions
q1, q2, and q3, we define three possible interpolators, q123,
q213, and q312, where

qi jk = SLerp(qi,SLerp(q j,qk,w j/(w j +wk)),wi) (2)

Each of these three quaternions will differ slightly, and
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so by choosing one, we could not gaurantee smooth transi-
tions between frames. Our solution is to combine them by
computing a weighted average of q123, q132, and q312. They
are close enough that simple linear interpolation will suffice.
Our new camera rotation is thus given by:

q =
w1 ·q123 +w2 ·q213 +w3 ·q312
||w1 ·q123 +w2 ·q213 +w3 ·q312||

(3)

Free-Navigation. Our viewer also supports free naviga-
tion in the 3D view without clicking on the camera graph.
In free navigation mode, the novel viewpoint is chosen by
mouse navigation within the 3D view window. We choose
our source views by projecting the novel camera into the
camera graph. If the novel viewpoint falls inside a triangle,
we process the interpolation as described above. Otherwise,
we use the two nearest views, weighted by their relative dis-
tance to the novel view.

Depth Blending. Given a novel camera, we can easily ob-
tain depth estimates for most pixels of the new image. This
is done by rasterizing the meshes associated with the three
source cameras into the new viewpoint, and then blending
the results using the barycentric weights w1, w2, and w3 de-
scribed above. For now, we assume that at least one source
mesh has projected geometry covering each pixel. The next
section describes how we handle cases of holes, where no
geometry exists. If one or two meshes do not have projected
geometry covering a pixel, we exclude them from the com-
putation for that pixel.

To obtain the color for a pixel, we reproject the blended
3D point to the three source views in order to obtain three
colors C1, C2, and C3. Using barycentric weights again, we
compute a weighted sum of the three colors, and assign that
as the synthesized color.

Vertex Weights. We improve the accuracy of our system
by observing that the 3D location an original vertex, which
was computed from Bundler, is more trustworthy than a split
vertex, which was computed on a bad triangle and inferred
from the geometry of its surrounding points. We incorpo-
rate this observation into our algorithm by assigning a con-
fidence value to each vertex. We define the confidence to
be 1 for each of the original vertices, and 0 for the new
vertices that were added to split occlusion-boundaries. We
place the confidence value for each vertex in the alpha chan-
nel when rasterizing the source meshes, thus providing an
interpolated confidence value for each pixel covered by a
source mesh. This gives us three additional weights u1, u2
and u3 which represent the confidence for pixel p in the three
source meshes. Putting everything together, we compute the
blended 3D location as:

P =
∑

3
i=1 ui ·gi ·wi ·Pi

∑
3
i=1 ui ·gi ·wi

(4)

where wi’s are the barycentric weights, gi is a binary value
indicating whether the projected geometry of a source mesh

Figure 9: A closeup of a synthesized view before and after
our hole-filling algorithm.

covers the pixel, and Pi is the 3D location obtained from the
ith source view. We then blend the color as described above.

4.2. Hole Filling

If none of the three source meshes covers a pixel p, there
will be a hole in the final rendered image. This happened in
1 to 3 percent of the pixels in our experiments. As described
in section 3.3, in the case where a triangle is split on all three
sides, the resulting mesh will have no geometry in the center
subdivided triangle. In addition, the elimination of outlier
triangles creates holes in the source meshes.

Instead of trying to fix the holes offline, we propose to fill
the holes on the fly using a modified version of [YWB02],
which performs real-time multi-view stereo matching on the
GPU. The original algorithm in [YWB02] tried to guess the
pixel depth in a novel image by taking discrete steps in a
global depth range. The depth assignment is chosen as the
one that results in the best color consistency in the source
views.

In our case, we can compute the depth more efficiently
and robustly in most holes because our reconstruction step
provides reliable depth estimates for the missing triangles.
Specifically, in both cases of holes above, our reconstruction
step determined three guesses for the depth of any pixel that
is part of one of these triangles. Thus for each source mesh,
if a pixel p lies in a hole, we can intersect the ray through
p with each of the three possible planes to get an estimated
3D location, and then use the 3D location that minimizes
the variance across the three source images. If possible, we
repeat this process for each of the source meshes, which will
provide up to three depth-estimates. The final depth-estimate
is obtained by blending the depth-estimates with our three
weights, w1, w2, and w3.

Any remaining hole pixels p that cannot be filled with the
above method will occur in locations where we have neither
geometry from any of the meshes nor a set of possible depth
planes. In these cases, we test a fixed number of depth values
(typically around 20) spaced evenly along the line of site
through p, ranging from the near clipping plane to the far
clipping plane. We take the 3D location to be the point on the
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Figure 10: Left column: original images; right column: syn-
thesized images from the same viewpoint. Note that the syn-
thesized images look qualitatively the same to the originals,
but slight differences may be observed in tone and details
geometry on the boundary.

line of site that minimizes the color variance across the three
source images. We found this approach to be quite efficient
as the number of hole pixels that need this computation is
very small.

Figure 9 shows a comparison of rendered images with
hole filling and without. Clearly the hole filling results in
a much more pleasing image, while adding only a small
amount of computation overhead on the fly.

5. Results

We have tested our algorithm on a number of datasets, rang-
ing from 64 to 135 images. In each case, while there are
some artifacts, the majority of the scene is realistically ren-
dered. Figure 11 summarizes some of our datasets. In figures
12, 13, 14, and 15, we show the results from each dataset in-
cluding (a) the camera triangulation, showing the location
of the novel camera, (b) the synthesized image, and (c) the
depthmap obtained from blending the three source images.

We tested our system at 640× 480 on a Dell Studio XPS
with an Intel Core i7 920 CPU (2.67 GHz), 6 GB of RAM,
and a GeForce GTX 280 GPU. Since the computation for
each view is mostly independent, the algorithm is easily par-
allelized to take advantage of multicore CPU’s. We ran 8
threads in each of our test cases. Each thread processes a sub-
set of the views. The computation times are reported in fig-
ure 11 for the mesh-generation algorithm only. In all cases,

the computation time is dominated by Bundler, which runs
for 30 to 45 minutes on our datasets.

The framerates are reported both with hole-filling enabled
(20 depth steps) and with hole-filling disabled. Column f
lists the approximate percentages of pixels for which hole-
filling was required in each dataset. Since hole-filling is only
used on a small percentage of pixels, errors in the hole-filling
algorithm are typically difficult to spot. As a result, we can
get good results with a relatively small number of depth
planes, even if there is a large depth range in the scene. Us-
ing a larger number of depth planes does improve the quality,
but at the cost of a lower frame rate. We have found that in
practice, the improvement is barely noticeable above about
20 depth steps.

To demonstrate the accuracy of our system, we ran our
algorithm on two of the datasets with one image excluded.
We then resynthesized the missing image in each dataset.
Figure 10 shows the results. The resynthesized and origi-
nal views are difficult to distinguish. There is a slight differ-
ence in color in the second example, but this is only due to
slight differences in lighting between the original view and
the source views for the resynthesized image.

6. Limitations and Future Work

In this paper, we have presented a practical method for mul-
tiview synthesis that is robust around depth discontinuities.
Our method computes a visible surface for each input view
by triangulating visible points detected via structure from
motion. We propose a method that exploits user-marked oc-
clusion boundaries on a small set of representative images
to robustly preserve depth discontinuities. We also employ
a GPU-based real-time stereo matching algorithm for hole
filling during view synthesis.

Our method currently assumes that camera locations ex-
ist on a 2D topology, such as a planar surface or a hemi-
sphere. This makes it easy to locate neighboring views for
a novel viewpoint. We observe that this assumption is true
in many capturing scenarios. In cases where the cameras are
not obviously aligned on a plane or hemisphere, we can ap-
ply nonlinear dimensionality reduction to analyze the cam-
era parametrization. It is also possible to relax this assump-
tion and use a kd-tree for efficient nearest neighbor search in
case of a general camera topology.

The quality of our rendering will degrade if the input im-
ages are very sparse or non-uniformly distributed. In this
case, the visible surfaces of adjacent views do not have suf-
ficient overlaps, causing the results to contain many holes.
Although our real-time hole filling algorithm can partially
account for this problem, we won’t be able to robustly pre-
serve depth discontinuities.

Another direction for future work is to parallelize the tri-
angle splitting computation on the GPU. Currently this step
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Images (a) Clusters (b) 3D Points (c) Time (d) FPS (e) Hole-Filling (f)
Castle (fig 12) 96 12 243,384 (∼ 100,000) 5 m 11 s 8 / 10 1 - 3%
Lego house (fig 13) 64 6 87,485 (∼ 44,000) 1 m 8 s 13 / 14 < 1%
Stone House (fig 14) 76 6 44,059 (∼ 7,000) 15 s 11 / 19 1 - 2%
Birdhouse (fig 15) 136 12 72,839 (∼ 31,000) 1 m 50 s 22 / 22 < 1%

Figure 11: Summary of test datasets. The columns show (from left to right) the number of images in each dataset, the number
of camera clusters, the total number of 3D points found by Bundler, the average number 3D points visible in each view, the time
required to generate the meshes from the 3D point cloud, the average fps for rendering (with and without hole-filling), and the
average percentage of pixels for which hole-filling was applied.

takes 1 to 5 minutes to compute on the CPU. By improving
its speed toward interactive rates, we may allow the user to
obtain real-time feedbacks of edge marking, therefore short-
ening the processing time and modeling cycles.
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Figure 12: Castle dataset

Figure 13: Lego house dataset

Figure 14: Stone house dataset Figure 15: Birdhouse dataset
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