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Abstract

Parallelism has often been used to improve the reliability and efficiency of a variety of different engineering sys-
tems. In this paper, we quantify the efficiency of parallelism in systems that are prone to failures and exhibit power
law transmission delays. We focus on the context of transmitting a data unit in communication networks, where par-
allelism can be achieved by multipath transmission (e.g., multipath routing). We investigate two types of transmission
schemes: redundant and split transmission techniques. We find that the power-law transmission delay phenomenon
still persists with multipath transmission. In particular, we show that when the transmission delays of each path are
characterized by the same power law, redundant multipath transmission can only result in a constant factor performance
gain, while order gains are possible when the delays are light tailed. We further compare the performance of redundant
transmission and split transmission, and show that there is no clear winner. Depending on the packet size distribution
properties and the manner in which splitting is performed, one scheme results in greater performance over the other.
Specifically, split transmission is effective in mitigating power law delays if the absolute value of the logarithm of the
packet size probability tail is regularly varying with positive index, and becomes ineffective if the above quantity is
slowly varying. Based on our analysis, we develop an optimal split transmission strategy, and show that this strategy

always outperforms redundant transmission.

I. INTRODUCTION

Parallelism is a common approach to improve reliability and efficiency in practice. For instance, in peer to peel
systems, a file is downloaded in parallel from multiple peers; in grid computing, a job is allocated to multiple machines
to be computed simultaneously; and in computer communication networks, multipath routing can be used to improv
the efficiency and reliability of data transfer. In one type of parallelism, a file/job is fetched/computed in its entirety,
and hence the completion time is the minimum of the completion times from/at the multiple locations. In another
type of parallelism, a file/job is split into multiple pieces, fetched/computed independently, and hence the completiol
time is the maximum of the completion times of all the pieces. In both cases, we expect better efficiency from using
parallelism since the delay is either the minimum one or because a smaller job needs to be completed.

In this paper, we quantify the efficiency of parallelism in mitigating power law tails, which have been shown to
be present when a job needs to be retransmitted after a failure occurs. For example, in wireless communicatic
networks, recent studies [8], [7], [9], [6] show that, contrary to traditional wisdom, when the probability of packet

errors is a function of the packet length, retransmission-based protocols may cause power law transmission duratic



and possibly even zero throughput. Similar results have been reported in other contexts [12], [2]. A natural questio
to ask is whether and, if so, how, using parallelism can mitigate power law delays, which is the focus of our study.

To focus our discussion, let us consider the notion of parallelism in the context of communication networks, where
a data unit can be transmitted using multiple paths (also known as multipath routing or more generally multipath trans
mission). A data unit can be a file or packet (which are used interchangeably, henceforward), and the transmissic
needs to restart after a failure (i.e., there is no check point in the transmission). We consider two multipath trans
mission strategiesedundantandsplit transmissionthat correspond respectively to the two aforementioned types of
parallelism. More specifically, redundant transmission replicates a packet and sends each copy over a different pe
and therefore, the transmission is successful once the first of the packets arrives at the destination; split transmissit
on the other hand, breaks the data unit into several pieces and dispatches each piece along a different path, wh
completes the transmission when all the pieces arrive at the destination successfully.

We aim to answer the following three questions: (I) Can redundant or split transmission eliminate power laws in
transmission delays, and how can the performance gain from multipath transmission be characterized? (ll) Is sp
transmission or redundant transmission more beneficial in mitigating power law delays? and (l1l) What is the optima
strategy to split packets and dispatch those fragmented pieces to the appropriate paths.

To address the above questions, we generalize the sthglenelmodel introduced in [8] to a multipath channel
model. First note that a channel can be viewed as a medium over which faults can occur causing jobs to be interrupt
and retransmitted. In the context of communication networks, this corresponds to a wireless communication chann
as in [8], in the context of grid computing the channel may correspond to the processor over which the computation
are completed, etc. Henceforth, we will focus on communication networks and consider the notion of a channel in the

context. Specifically, consider a communication network where ther& graths between a source and destination.

The channel dynamics of pajh1 < j < K, are modeled as an on-off procegst’, Uij)}izl that alternates between

)

available periodAf, and unavailable period],ij. Only in each time period&{ when the channel becomes available, can
a packet start its transmission over the path. If the Iength{o’ﬁ longer than the length of the packet, the transmission

is considered successful over pgthotherwise, we wait until the beginning of the next available pevikﬁgl and
retransmit the packet from the beginning. The above model can be viewed as a first order approximation to channe
that may fail. Channel failures can happen due to many reasons. For instance, in a wireless network environmel
failures occur due to channel fading, interference and contention with other nodes, multipath effects, obstructions, ar
node mobility [11]. As a consequence, the signal to noise ratio (SINR) may vary in different time scales. The on
periods{A{} in our model correspond to the situation when SINR is high, while the off pelﬁUgﬁ$ correspond to
the situation when SINR is low.
Our main contributions in this paper can be summarized as follows:
« We show that, when all packets are of the same size, redundant transmission can greatly reduce the transmiss
delay in the sense that the ratio of the delay distribution tail with and without redundant transmission tends to zer
(see Proposition 111.1). However, in reality, packet sizes are usually variable due to many other considerations

e.g., reducing communication costs and extra overhead induced from encapsulation. We prove that, when pacl



sizes are random variables that satistyP[L > z] ~ o* log P[4’/ > z], redundant transmission does not change
the order of the probability tail of the transmission delays (see Theorem 2), and can only improve the systen
performance by a constant factor (see Theorem 3).

« We show that split transmission is effective in mitigating power delays if the absolute value of the logarithm
of the packet size probability tail is regularly varying with positive index, and becomes ineffective if the above
guantity is slowly varying (see Theorems 4 and 5). To illustrate the point, we calculate the effectiveness of splif
transmission for different packet size distributions. Furthermore, we provide a solution for optimal split when we
have heterogeneous paths, and show that this optimal strategy always outperforms redundant transmission (
Theorem 6). To refine the result, we also derive an exact asymptotic for packet delivery time under optimal spli
transmission (see Theorem 7).

In terms of related work, it was observed in [12] that power law processing times can arise in a system where job
need to restart once a failure occurs. This observation was rigorously addressed in [8], [2], [7], [9] for a single channe
model. The result reveals that, when the probability of packet errors is a function of the packet length, retransmissior
based protocols could cause heavy-tailed (specifically, power law) transmission durations, even when the data un
and channel characteristics are light-tailed. Our study generalizes the single channel model to the one with multip
paths. Multipath transmissions have also been studied in [1] using Extreme Value theory, but only when the numbe
of paths goes to infinity. In this work, we focus on the context of multipath transmissions in computer networks with
a fixed (possibly small) number of paths, where multipath transmission has long been used to improve reliability an
efficiency (e.g., [10], [4], [5]).

Note that the specific investigation conducted in this paper has been in the context of data transmission in wirele:
communication networks. However, the mathematical setting described in Section 2 is quite general, and the resu
can be extended to many other applications that involve parallelism and job failures, such as computing jobs in gri
computing, file downloading in peer to peer networks, parallel experiment planning, and parallel scheduling.

The rest of the paper is organized as follows. Section 2 presents the model description and some results on sin
path transmission. Redundant transmission and split transmission are investigated in Sections 3 and 4, respective

Finally, Section 5 concludes the paper.

[I. M ODEL DESCRIPTION AND PRELIMINARY RESULTS

Let L be a random variable that denotes the length of a packet. Assume that théfe>are paths between the
source and destination, as shown in Figure 1. The channel dynamics gf path j < K are modeled as an on-off
process{ (A7, U7)};>1 that alternates between availablé and unavailablé/? periods, respectively.

Packet transmission can only be initiated at the start of an available period. For a packet transmission started
the beginning ong, if AZ > L, the transmission is considered successful over paththerwise, we wait until the
beginning of the next available perioﬁl:f+1 and retransmit the packet from the beginning.

We study two multipath transmission schemes, namely, redundant transmission and split transmission. Under r

dundant transmission, the same packet is transmitted ovér pliths, and the transmission is successful as soon as

one of theK duplicates arrives at the destination. Split transmission represents the strategy where a packet is split ini



K pieces and each piece is sent over a different path. The transmission is complete oncE gligbes arrive at the

destination successfully.

Definition 11.1. The number of (re)transmissions of a packet of ledgtiver pathj, 1 < j < K, is defined as
N; &inf{i: A > L},
and, the corresponding transmission time over this path is defined as

N;—1
T2 Y (Al+U))+ L.
=1
« Redundant transmission: the transmission completes when the first packet is successfully transmitted over one
the K paths. Therefore, the total transmission tilp€for this scheme satisfies
T, = 1giSnKTj.
« Split transmission: the transmission completes wherKalbieces of the packet are successfully transmitted.
Therefore, the total transmission tirlig for this scheme satisfies

T, £ max T},
1<j<K

and the total number of retransmissions okepaths is

K
N23"N;.
j=1

In this paper, we assume tht/, Uij}jzl and{A/, A{}jzl, 1 < j < K are mutually independent i.i.d. sequences
of random variables, which are also independent of the packefsiZesketch of the model depicting the system is
shown in Figure 1.

We use the following notation to denote the complementary cumulative distribution functiods,for< j < K
andrL,

Gjlx) £ P47 > 1,

and

F(z) 2 P[L > z].

We sayK paths ardnomogeneout A7 2 AandU? £ U for 1 < j < K, where 4> denotes equal in distribution.
Accordingly, we use7(z) £ P[A > z]. In general{ A7}, <<k (@and{U’}1<;<x) need not be identically distributed,
which represents the caselwdterogenoupaths.

Throughout this paper, a positive measurable funcfiecalled regularly varying (at infinity) with indexif

lim f(Ax)/ () = A"
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for all A\ > 0. Itis called slowly varying ifp = 0 [3]. Additionally, for any two real functiong'(¢) andg(t), we use
f(t) ~ g(t) to denotdim;_., f(t)/g(t) = 1. Similarly, we say thaf (¢t) = ¢(¢) if lim, ,  f(¢)/g(t) > Landf(t) <
g(t) if imy_.o f(t)/g(t) < 1. Furthermore, we say thdt(t) = o(g(t)) if lim; .. f(t)/g(t) = 0andf(t) = O(g(t))
if Tim; oo f(t)/g(t) < co. Also, we use the standard definition of an inverse funcfior{x) = inf{y : f(y) > z}

for a non-decreasing functiofiz); note that the notatiorf(x)~* representd /f(z). We useV to denotemax, i.e.,

x Vy = max{z,y}, andA to denotemin, i.e.,z A y = min{zx, y}.
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Fig. 1. Multipath transmission ovet channels with failures

A. Single path transmission

For the casd( = 1, there is only a single transmission path in the system, hence wié et A. The total number
of transmissiongV and transmission tim& = T,. = T, has been studied in [8], [9], [2].

Below we quote Propositions 1.1 and 1.2 from [8], [9], which show that battand T can follow power law
distributions regardless of how heavy or light the tailsAoind L might be.

Proposition I1.1. If there existsy > 0 such that

lim logP[L > x] N
z—00 logP[A > 2]
then,
logP|[N
i 8PN >l )
n—00 logn

Additionally, if E [U(@VD+6] < oo, E [A*Y] < oo andE [L2*Y] < oo for somed > 0, then,

log P[T > t]
t—00 logt

= —q. (2)

Proposition 11.2. If
P[L > z]' ~ & (P[A > 2] )

where®(-) is regularly varying with indexx > 0, then, as» — oo,

MN>M~D;%Q 3)



and, under the same conditions as in Proposition Il.1% as oo,

IMNa+ 1)(E[U + A)”

PT >t] ~ 0

(4)

Remark.Proposition 11.2 provides more refined results than Proposition 1.1 under more restrictive conditions. One

can easily check that (3) and (4) imply (1) and (2) by taking logarithms.

Ill. REDUNDANT TRANSMISSION

In this section we study redundant transmissions. We begin Mittomogeneous paths, which is followed by the
study of the general case of heterogenous paths. We investigate whether sending packétpaihsrcan mitigate

the power law suffered from single path transmission.

A. Homogeneous paths

In this part, we present results for homogeneous paths. We first consider packets of the same size, and then stt

the more realistic case where packet sizes can be variable.

Proposition III.1. If all packets are of constant siZze= [ andU = 0, then,

. logP[T, > t]
lim ——————

t—o00 t

= _Kr%

wherev is the solution oﬂé e dP[A < z] = 1.

This result can be easily derived using Corollary 3.2 in [2]. From this result, we see that using redundant transmissic
for equal size packets greatly improves performance, since the decay rate of the delay distribution incr&ases as
increases, and thus in this case we obtain order improvements in delay performance when using redundant routir
In reality, however, packets are not of equal size. We next present a theorem for the case where the packet size i
random variable.

Theoremt. If

log F'(x)
im ———= =
z—o0 log G(x)

)

E[LoFY] < o0, E [UV)+9] < 00 andE [A+] < oo for somed) > 0, then,

. logP[T, > ]
Iim —————— = —q.
t—o0 logt
Remark.Comparing the above theorem and Proposition 11.1, we observe that, the power law exponent of the total tran:
mission time under redundant transmission is the same as that under single path transmission. Informally speakir

this is becaus@, Ts, . . ., Tk are not independent, since packets sent over these paths are of the same size.

This theorem is a direct consequence of Theorem 2, which investigates a more general scenario.



B. Heterogenous paths
For heterogenous paths, we have the following result when using redundant transmission.
Theoren®. If

log F'(z)

_ = o 5
ocgrolomng(:v) “ ©)

for 1 < j < K, anda* £ max;<;j<x a; > 0, then, under the following three conditions I)-111), for soihe- 0,
) E[L*H] < oo,

”) maxi<;j<ik E [(Uj)(lvaH_ﬂ < 00, and

|||) maxlgngIE {(Aj)H_g} < 00,
we have

im 18P >4 . ©)
t—00 logt

Remark.The above theorem implies that the tail behavior of the delay distribution under redundant transmission is

determined by the best paths (i.e., the paths with the lacggst

of Theorem 2 First, we establish a lower bound by constructing a new system that has longer available periods thal
those found on all of th& paths. The construction is as follows. The new system has an on-off channel characterizec

by alternating i.i.d. sequencés\;} and{U;}, where

A; = max Al
1<K

andU; = 0. Denote byN the number of transmissions of a packet of lenfjtbver this newly constructed channel.

Now, sinceA{f, 1 < j < K are independent, we obtain

K
Pl4; > 2] =1 - [[P[4] < 2]
j=1
Therefore,
IP)[/L > 33]

)

im —
e Zfi1 Gj(ﬂU)

coupled with (5), yields

*
)

. logP[L > x]
lim ————— =
z—oo log P[A4; > ]

which, by Proposition 1.1, yields

lim log PIN > n] = —a™. (7)

n—00 logn



DefineA; = min;<j<g A{ andX; = A;1(x; < A; < z2). Choosingry, 2 such thafe[X;] > 0, we obtain
N—1
T,>> Xi+L. 8)
=1

Therefore,

t N t
P|\T.>—| 2P Xi > ——
[T logt]_ Z "7 logt

N-1
N t
>P XZ 77& 13
; ” logt ~
Nt t
>P[N >t]-P X;< — N>t
V> 1] ; ~ logt -
[ 1) "
>P[N>t]-P Xi < — 9)
P logt
SinceE[e?X/] < oo for somed > 0, we obtain, by a Chernoff bound, for some> 0,
[t]
P ZXi <t/logt
=1
[t] 1
<P EX;|—X;) > EX;]—— |t
R
<O (e™), (10)
which, in combination with (7) and (9), implies
fim 08P >4 (11)
t—o00 logt

Next, we prove the upper bound. Singe £ maxi<;<i a; > 0, there existd < j < K such thatv; = o*. For the

jth path, we havé’,. < T} sinceT, = min{71,Ts,--- ,Tk}. Using Proposition II.1, we obtain

_ log P|T;;
T log P[T, > t] < lim 108 [T > t] .

= —a*. 12
t—o00 logt ~ t—o0 logt « (12)
By combining (11) and (12), we complete the proof. O

Our preceding result characterizes the performance in terms of the "logarithmic asymptotics”. Basically, it only

contains information about the power law exponent, but yields no information about the pre-factor before the power lav



term. As a consequence, this result cannot distinguish between redundant transmission and single path transmissi
In order to investigate the performance improvement for redundant transmission, we need a more refined asympto
result. For a set of regularly varying functiods(-), 1 < j < K, we can compute the exact asymptotic tail of the
distribution of 7.

Theoren8. If F(z)™! ~ ®; (Gj(z)™") and

lim ®;()
2 B ()

= >0, (13)

where®(-) is regularly varying with indexx > 0, then, under the conditions I)-11l) in Theorem 2,tas> oo,

INa+1) 1
(SIS, (Bl 4+ o))t /)" 2

P[T, > t] ~ (14)

Remark.From the preceding result, we see that, redundant transmission improves the system performance by reduci

the tail of the distribution by a constant factor. If thdsechannels are i.i.d., this constant is equakit.
In order to prove the theorem, we need the following lemma.

Lemmal. Fory; >0,1<j <K,

]P)[Nl > Tllt7N2 > 772t7' o 7NK > 77Kt]

INa+1 1
N (Zfi(l mc};a)a oL (15)
Proof. Observe that
P[Ny > mit, No > nat, -+, Ng > nit]
K
=E|J] (1 - G| (16)
j=1

We can assume thét(z), 1 < j < K is absolutely continuous and strictly monotone since, by Proposition 1.5.8 of

[3], one can always find an absolutely continuous and strictly monotone functianlgigye enough,
x
O*(z) = a/ ®(s)s lds, z > c, (17)
(&

which satisfies

F(z)™ ~ @5 ((Gj(2)) ") ~ G2 ((Gi(x) 7).
Since®(z) is eventually non-decreasing, there exisfsuch that for alk: > xo, ®(z) has an inverse functiobh ™ (z).

The condition (13) implies that, fdr < € < 1, there exists., such that forr > z. and1 < j < K,

(1—F(2)™ < GO((G;(2)) ™) < A+ e F(2)~,
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and thus, by choosing. > x(, we obtain

O (1—e)F ()~ /¢) < (Gj(x) "

<O~ (1+e)F()7/¢) (18)

First, we prove the lower bound. For> 0 andz. selected in (18), choosing > z. with @~ (F(z;)) = t/c, we

obtain

P[Nl > mt,No >not,--- ,Ng > 77[(75]

K
>E {H (1-Gi(L)"" (L > xt)]

K 1 n;t
it (1 e (- e>F<L>-1/<j)>

L(E(L) < F(xy))

)

which, by noting that"(L) = V is a uniform random variable dn, 1], yields

P[Nl > mt, No > not,--- , N > T}Kt]

Jj=1

K 1 n;t _
>E {H (1 = e)v—l/gj)) 1(V < F(.I‘t))] : (19)

Using Theorem 1.5.12 of [3], we know thét™ (-) is also regularly varying with indek/«, which implies, for¢ > 0,

lim o (Cl’) — Cl/aa

v & (z)

and therefore, fox,; large enough antt < F(z;),

(1 _ 6)1+1/0¢
G

J

> (V) <o (1—-eV1/§)

(1+ 6)1+1/a
G

J

e (V' H >  (L+eV1/¢). (20)
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Lettingz = ¢/® (V') and using (19), we obtain

[P’[Nl > mt,No > nat,--- ,Ng > 77](75]

A (1)) ¢ ’
/ A—oFat | B(tfz) D(t/z) 2 (21)

Sinced®(¢) is regularly varying, by Theorem 1.4.1 and Theorem 1.2.1 of [3], it is easy to obtain uniforntlyfor <

e Cl/a . n;t )
= E H ( (1—¢)l+1/a d— (V—1)> LV < F(a))

¢, ast — oo,

()
P (t/2)

and, recalling (17),
¥ (t/z) _za
(t/z) t

From the preceding results and (21), we obtain, as oo,

P[N1 > mit, No > mot, - -+, Ng > nit]®(t)
~ /Cae_z(zf(lnfcl/a)(l_e)11/aza_1dz
0

(Zf 1”]7C1/a>
1 61+1/0¢ _ _
(= e T e,

_ g /
(Siam¢)/)" o
which, by passing — oo ande — 0, yields
P[Ny > mt, N > mat,- -+, Nk > nit]9(t)
1

2 (ZK Cl/a> /OOO ae T ldx

jl]

_ IMNa+1) . (22)

(Z]K:I ch;/a)a

Next, we prove the upper bound. Observe that

P[Nl >771t+1,N2 >7727f+1,"- ,NK >77Kt+1]
K
<EJ](1-GiL)" UL > x)

Jj=1

FE[(1 - Gi(L)™ 1L < ),
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which, by recalling (20) and using— x < e*, yields

[P[Nl >mt+1,No>mnt+1,--- ,NK>T]Kt—|—1]

K C}/og 1 n;t i
=k !H (1 (1 +j6)1+1/a o (V—1)> LV < F(xt))

1
t+o taJre

_<2JK17’1<;/&> t 1
<F (1+e)lt1l/a fo—(v-1) )
< e +o 7@(75)

For a constant integer> 0, ¢ £ ZJK:I 77](;/0‘ andz = ¢t/ ((1 + ¢)'*¥/2@"~ (V1)), the preceding upper bound is

no larger than

_ ¢ _t g t
(1+e)l+1/a o™ (v—1) <
’ [ ! ((1 e (V) S >]

o ¢ t
P < e <

w(am)

© [ @Attt ¢t
</0 ‘ (@2 (Ct/ (1 + e)tHl/ez)) z2(1+e)1+1/a> a2

e )]

m=c m+1)(1+€)1+1/a

Since®(z) is regularly varying with indexx > 0, we can choose large enough, such that

e ()
<I> ((m+1)(1+e)1+1/“>




for all m > ¢. Therefore, ag — oo, we obtain

P[Nl >T)1t+1,NQ >T)2t+1,--- ,NK >T]Kt+1}(1)(t)

<

[ O (C/(L+01°2) d
0 ‘ 02 (¢t/ (1 + ) F/az)) 22(1 4 ¢)l+L/a o

+ (1 + )2 i": e ™ <m2—1>a +o0(1)

m=c

1 a+1 c
< 7( —:2 / ae 2227 1dz
0

F+gery e <m§1>a,

which, by passing — 0 andc — oo, yields

P[Nl >mt+1,No>mnt+1,--- ,Ng >T}Kt+1]<l>(t)

1

N <ZK 1/(%)@/000 ez Ly

j=1"155;

I'a+1)
(Z]K:1 njC;/“)
Combining (20) and (23) finishes the proof.

of Theorem 3We begin with the upper bound. For< ¢ < 1 andn; = 1/E[A7 4+ U], we obtain,

K
P[T > (1+2€)t] =P [ﬂ {Ty > (14 2¢)t}
j=1

DL

i N;—1
=P {Z(A{+U§)+L>(1+26)t}]

j=1 | i=1
.
<P |N { (A{ +E[Uj]> > t}]
j=1 (=1
K Nj
+P {U {Z (U{ —E[Uj]) > et}]
j=1 | i=1
+ P[L > et].

13

(23)

(24)



Then, using union bound, we derive

P[T, > (1 + 2€)t] <

{ﬁ {i (A‘Z +E[Uj]> >t,N; > (1—e

K [ N;
+Y P (AJ+E[Uj])>tN <
K : N;
+yP { (Uf—E[Uﬂ) >et}]
+P[L >_et]

+3 P Y (A{AL+E[UJ‘]) >

[(1—e)n;t

=1

ol

+ P[L > et]

é[1+[2+[3+f4.

Using the result (4.20) in [9], we know + I3 + 14 = o (1/®(t)), which, in view of Lemma 1, yields

P[T;

Next, we proceed with proving t

INa+1)

1

>t 5

he lower bound.

P[T, > ] > P {ﬁ {]%:1(A{+U§)>t

(S, ®lar + U3~ /)" 20

14

(25)

(26)
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Jj=1

2P| {M> -9t |

_ J J . < S S
Sop (4] +0)) >N <1 VBT

7=1 %

I
—

21 - L. (27)

Using the same approach in deriving (4.30) in [9], we can provekhat o (1/®(t)). Therefore, by Lemma 1, we
obtain
INa+1) 1

(SIS, BL47 + U3y )" 2 )

P[T, > t] 2

which, in combination with (26), finishes the proof. O

V. SPLIT TRANSMISSION
Next, we study the case when a packet is splitinto several pieces and seRtionEpendent paths. Since each path
has to successfully transmit a fragment of the original packet, we are interested in the total number of retransmissiol
N = Zle N; and the transmission tinmE, £ max; <<k Tj. Using the derived results, we will determine which of

the two strategies, split transmission or redundant transmission, results in a lighter distribution tail.
We begin with homogeneous paths, and then investigate heterogenous paths. A fraofitime packetl is sent

over pathy, Zle 7 =1,0 <y < 1,1 < j < K. We derive the optimal splitting strategy that minimizes the

exponent of the transmission time tail.

A. Homogeneous paths

We have the following theorem for split transmission over homogenous paths, where each packet is evenly split int
K pieces. Its proof is a special case of that for heterogeneous paths (see Theorem 5), and hence is omitted.
Theoremd. Under the same conditions in Theorem 1, if there exdsts 0, such that

lim log F(Kx)

A )
z—oo log F(x) =5 (28)

then,

log P(Ts > t)
t—00 logt

= —fa.

Remark.Sinces > 1, comparing the results in Proposition 1.1 and Theorem 1, we see that, for homogeneous paths
split transmission is no worse than redundant transmission when packets are split evenly.
To provide some concrete examples, we next consider several typical distributions, and compute the power la

exponent for these distributions.
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1) Examples for typical distributions:Theorem 4 indicates that the effectiveness of split transmission is closely
related to the packet size distribution, as characterized by (28). We next apply this result to several families of distri
butions to further illustrate this point. For each distribution, we calculaa®d 3, and the power law tail exponent is
equal to—f(a.

« Exponential distribution. Consider the case where the size of the pdckietjows an exponential distribution

with parameten and the available time period, follows an exponential distribution with parameteri.e.,

eS|

(r) = P(L>z)= e A,

G(z) = PA>z)=e "

Then,

B = — S ¢

o Weibull distribution. Consider

M
&
I
=~
h
\Y
&
Il
®
|
~
2

whereX > 0, x> 0, andb > 0. Then,

log F(z) loge=2)"  _(\g)? B <)\>b

“ logG(z) loge—(#)® - —(ux)? w
5 _ lF(Kw) log(en) k)",
log F(z)  log(e=(®)*) — (A

o Pareto distribution. Consider

whereX > 0, u > 0, andby, by > 0. Then,

. Alogby —logz) A
a = lim =—,
T—00 M(log b2 — IOg l’) 1%
1 —log K —1
5 = lm A(log by — log ogx)
T—00 )\(log bl — log 1‘)

= 1.
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Remark.Observe thatt = 1 when bothF andG follow Pareto distributions. In that case, split transmission has the
same power law exponent as the single path transmission and redundant transmission. Furthermore, Pareto distribu
is not the only type of distribution under which split transmission is not beneficial. We illustrate this point in the next

subsection.

2) When is split transmission not beneficialXe next show another family of distributions under which split

transmission is not beneficial. Consider the following distribution

1, z € (—o0,1]
eos2)* 4 e 1, 400)

F(x;m&):{

wheren > 0, £ > 0. Then

Compute the-th moment ofF’(z) (p > 0),

There are three regions for parameter

o {=1. F(z;n,¢) is a Pareto distribution ana,, exists iffp < 7.

o £ < 1. F(z;7m,€) has a heavier tail than any power law, ang does not exists for any.

e &> 1. F(z;n,€) has a lighter tail than any power law, ang, exists for allp > 0.

Note that for large, the probability tail can decay fast, albeit slower than exponential. In this case, we still do not
have a gain using split transmission in terms of increasing the power law exponent.

The above discussion indicates that the Pareto distribution is not the only type of distribution under which split
transmission leads to no benefits in mitigating power law delays. In fact, distributions that do not benefit from split
transmission can have either heavier or lighter tails than Pareto distributions. Split transmission is not beneficial

long asg = 1in (28), e.g., whetiog (1/F(x)) is slowly varying.

B. Heterogenous paths

For heterogenous paths, a packet of dizis split into K smaller fragments of sizeg L, V2L, ..., vx L, respec-

tively, wherezﬁ1 7 =1,0<v; <1,1 < j < K. We have the following result on packet transmission delay.
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Theorenb. If there exista;, 3, j = 1,2, ..., K such that

log F(x)

nl = v 29
ml_{golog(;j(x) &g (29)

m BT (30)

with o° & minlngK 5]04]- > 0, then,

and, under the conditions I)-111) in Theorem 2,

log P[T > t] o

t—o0 log t

Remark.When paths are heterogeneous, the packet transmission delay is determined by the best paths under red
dant transmission and by the worst paths under split transmission. On the other hand, split transmission only send:
fraction of the packet on each path. Comparing this to Theorem 2, we see that; ;< x 3;a; > maxi<j<k o;,

split transmission is more beneficial than redundant transmission in minimizing the tail behavior; otherwise, redun
dant transmission is more beneficial. We will show later that, by carefully choosing the way to split packets, split

transmission can always result in tail performance that is no worse than redundant transmission.

of Theorem 5We begin with proving the result fdf;. Since

Ts = max T},
1<j<K

we obtain, using a union bound,

K

1%‘%{]}"[1’] >t <P[T, >1t] < ;P[TJ > 1], (31)

Next, using (29) and (30), we derive

. log P(v;L > x) . Brlog F(x)
lim 2R 2 )y, PROEENT) g
0 log P(A; > x) o log Gi(x) fiaj,

which, by Proposition 1.1, yields

Thus, fore > 0, there exist$y > 0 such that for alk > ¢,

log P[T; > t]

log < —fBja; + €.

—Bjaj —e<
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Hence, fort > ¢y, we have

max P[Tj > t] >t~ ¢
I<i<K

and

K
> P[Ty > ] < Kt
j=1

which, combined with (31) and passiag- 0, yields

log P(Ts > t)

{00 logt - 1%211({@%} -
Now, we derive the result fav. Since
K
Ny =) N,
j=1
we have
K n
max PIN; > n] <P[N >n SZIIP’[NJ- > E]' (32)
J:
Proposition I1.1 implies
log P[N; K
lim 0og [ ]>n/ ]:—/Bja],

n—00 logn
which, combined with (32) and using a similar argument as in proving the resul fgrelds

. logP[N > n] o
lim ——— = —a°.
n—00 logn

O]

1) Optimal split transmission:From Theorem 5, we can see that in order to optimize the power law delay tail, we
need to choosey, 2, ..., vk SO thatmin; <<k Bja; is maximized. To achieve this, we may speculate that we need
to chooseyy, 2, . .., vk SO thatBia; = Bras = - - - = Brak. The following theorem confirms that this is true when
log (1/F(x)) is not slowly varying.

Theoren6. Suppose we use split transmission ok&heterogeneous paths, each satisfying (29). If the limit

B log P_’(x)
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exists for all0 < v < 1, then (i) there exists a unique constant 0 suchjs(y) = v~ #; and (ii) the optimal splitting
scheme that minimizes the power law exponeri[@f; > ¢] satisfies:
a) If p > 0, then
1/p
* J

i=1%;

(07

b) If p = 0, then lety; = 0 for o; # max; <<k o; and the othety; can take arbitrary values.

The corresponding optimal power law exponent®gf; > t] is —a,, where

K P
(zag/p) 0,
o, = =1

p ‘ (34)

max o =0.
1<j<k 7 P

Remark.In the preceding result, we only minimize the power law exponent. When0, we haves(y) = 1, and

log (1/F(x)) is a slowly varying function. In this case, we should only use the best paths, and the scheme in (33)
is to split arbitrarily among the best paths. For this case, we need a more refined asymptotic result that accounts f
not only the power law exponent but also the exact pre-factors to derive the optimal split strategy. Due to limitec
space, we do not study this problem. When> 0, all the channels are utilized, and the optimal fraction on each

path is specified by (33). In this case, one can easily check that the optimal tail exponent is indeed achieved whe
pron = Peag = -+ = Prag.
Remark.Note thato, = (Zfil a}/”)p > «o* with equality if and only ifp = 0, wherea™ = maxi<j<x o > 0, as

defined in Theorem 2. Thus, under the assumption of Theorem 5, split transmission achieves a better exponent th

redundant transmission gf > 0.

of Theorem 6(i) Note that3(y) > 1 on (0,1). If 5(y) = 1 forall v € (0,1), theng(y) = y~* for p = 0. Now

assumedy = (o) > 1 for somey, € (0, 1). Observe that(v1y2) = 5(y1)B(72) for anyyi,v2 € (0,1). Thus, for
any positive integem, n,

5 = (56 ™) " = (5 (o))" = g

Sinceg3 is monotonically decreasing and the positive rationals are deri®e,in
Bw) = py, reRT
or, equivalently,

B(y) = ylosfollosro — 47y € (0,1)

wherep = —log y/ log v > 0. Itis clear thai is unique.
(i) Let {fy;} be an optimal split scheme andy, the corresponding optimal exponent. By Theorem 5,

ap = min a;(77)"". (35)
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If p =0, then
a, = min a; < max o = o
Jy;>0 1<j<K
with equality if and only ify; = 0 whenevery; # o*.
If p > 0, then (35) gives

’Y;(ap)l/pga;/pv ]: 1527"'7K'

Summing oveyj and notingzj 7; =1, we have

K
(a)/P <3 all?
j=1

with equality if v} is given by (33). O

2) Optimal split transmission examplego illustrate the results obtained in the preceding section, we compute the
optimal split transmission scheme for some typical distributions.
« Exponential distribution. Consider the case where the size of the pdgkietjows an exponential distribution

with parameten and the available time period on pathA4/, follows an exponential distribution with parameter

s i.e.,
F(z)=P(L>z)=¢e"?,
Gj(z) = P(A) > 1) = e 1",
Then,
o log F(z) A
7 logGi(z)
log F(z) 1
Ba) = B
&) log F(yz) v
and

p=—logf(v)/logy =1.

Therefore, the optimal split is

A 1

_ Hy — Hj -

Sl o iy 7=1,..., K.
SR AT YR T

« Weibull distribution. Consider the case where the size of the patketnd the available time period on path
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AJ, follow Weibull distributions, i.e.,

b

F(z)=P(L>z)=e A2

Gj(z) = P(A > z) = e (i)’

whereX > 0, 1; > 0, andb > 0. Then,

o log}?(x) _ —(\z)? _ <)\)b
T logGyx)  —(ww)®  \ny/)

log F(z) 1
—S A -

B = log F(yz) v

and
p = —logB(y)/logy ="b.

Therefore, the optimal split is
A 1
My _ Hj

K A K )
dic i dic i

« Pareto distribution. Consider the case where the size of the pdgkend the available time period on path

ry]: j:17...,K.

A, follow Pareto distributions. In this case, we ha(e/) = 1. The optimal split transmission strategy is to split
among the best paths.
3) Exact asymptotic result for optimal split transmissio@ur proposed optimal split transmission minimizes the
power law exponent dP[Ts > t]. In other words, Theorem 6 only characterizes the tail behavior in the logarithmic

scale. Next, to refine the result, we present a theorem on the exact asymptotic result for optimal split transmission.
Theoren¥. If log(F(x)~!) = () wherep > 0 andl(z) is slowly varying with
@) ) (36)
fory > 0, and
)™ ~ G (@ (Gyla) ™)™, (37)

wherea;, (; > 0 and®(-) is regularly varying with indexx > 0, then, under the conditions 1)) in Theorem 2, as

t — o0,

P[Ts > t] ~

K

I'a, +1 1
Sty ) Lo ®)
=1 (o it {1 K} (Zizl njsg:“) o(t)

g\g
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wheren); 2 1/E[A7 + U, a, I <Z§(:1 a;/p)p.

In order to prove the theorem, we need the following lemma.

Lemma2. Forn; >0,1<j <K,

1—]P)[N1 <mt,No <mat, -+, Ng <’I7Kﬂ

K
INa,+1 1
~ (= > (@ +1) o (39)
=1 e bl K} <le:1 mscj?s> (t) =

Proof. Observe that

1—]P)[N1 <mt,No < mat, -+, Ng <’I7Kﬂ

J=1

=1—-FE {ﬁ (1 _ (1 _ éj(’}/jL))thJ>

K l
SUCIEND VI e

=1 1<ji<--<ji<K  Ls=1

(40)

and therefore, we only need to compute,ffor 1 and{jq,---, 5} C {1, -, K},
: A [m54t]
E [H (1 — st(’)/st)) Mis ] .
s=1

Similar to the proof of Lemma 1, we can assume that), 1 < j < K is absolutely continuous and strictly monotone.

The conditions (36) and (37) imply that, for< ¢ < 1,y > 0, there exists,, such that forr > z. andl < j < K,

%5
«@

(1—€) (F) " <G (@(Gi(va)™) ™ <1 +e) (F(a) ",

and thus, by choosing. > xy, we obtain

<o ( < (1;; 6))0‘/ “”' F(w)—awp/aj) . (41)
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Using (41) and the same approach in deriving (19), we obtain,

l
B[] (1 Gy.001) WJ]
s=1

\/

z
E [T (1= Gj0))" 1L > l't)]

S=

[y

l

v

E

Il
A

S

ant
1
1 - o
( @*(«1@/ggaﬂwsva%Ja“)>

-1V < F(zy))

9

which, by defining)(z) £ ®(z)*/* and noting that” /a;, = 1/« yields

l

H (L ) [m5st] ]

s=1
! 1 Mjst
1-—
sl_[l ( (((1 —e)/C )a/)/%s 1))

LV < F(z))].

Following the same procedure in computing (21), we obtain

!
EIUPGMmDWM]
s=1

> l F(Oép ‘1‘1/13 = la - (42)
<Zs 1 njéé‘jg ]9) (t) P
Repeating a similar procedure in deriving the upper bound for Lemma 1, we can prove
l [mjst)
H Js /YJS ) e ]
T 1 1
(alJ + ) (43)

5(1 ) ()T
Y1 G el

which, in combination with (42), finishes the proof of the lemma. O
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of Theorem 7 We begin with the upper bound. Fo< ¢ < 1 andn; = 1/E[A’ + U], we obtain,

K
P[T, > (1+2c)t] = P [U (T; > (1+ 2e)t}]

Jj=1

+ P[L > et]. (44)

Then, using union bound, we derive

P {6 {% (A{ +IE[UJ]) > tH

i=1

K
<P | J{N>(01- G)Hjt}]
j=1
K (1—€)n;t 4
+3 B Y (AgAL+E[Uf]) >t]. (45)
j=1 i=1

Combining (44), (45) and using the results in deriving (26), we obtain, by Lemma 2,

K
PIT, >t SP || J{N; > it}
j=1
K
~ S (1 3 ['(a, +2 - 1 _
=1 {1 C{1l, K} <218:1 77;;@?) O(t) e

Using a similar approach as in deriving the lower bound for Theorem 3, we can derive a lower bound that coincide:
with the upper bound for this theorem, which completes the proof. O

V. CONCLUSION

Parallelism is a common approach to improve reliability and efficiency in practice. In this paper, we investigate
whether and how parallelism can be used to improve network performance. Specifically, we study whether and ho
multipath transmission can mitigate power law delays. We show that, when all packets are of the same size, redundz

transmission can greatly reduce the transmission delay in the sense that the ratio of the delay distribution tail with ar
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without redundant transmission tends to zero. However, when packet sizes are random variables kigdh| that

z] ~ o*log P[A7 > x|, we prove that, maybe counter intuitively, redundant transmission cannot change the order of

the probability tail of the transmission delays, and can only improve the system performance by a constant factor. W\

also show that split transmission is effective in mitigating power delays if the absolute value of the logarithm of the

packet size probability tail is regularly varying with positive index, and becomes ineffective if the above quantity is

slowly varying. Last, we provide an optimal split transmission strategy when the paths are heterogeneous, and furth

derive an exact asymptotic result for packet delivery time under this scheme. Our results can be extended to many ott

applications that involve parallelism and job failures, such as computing jobs in grid computing, file downloading in

peer to peer networks, parallel experiment planning, and parallel scheduling.
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