
1

Can Multipath Mitigate Power Law Delays?
– Effects of Parallelism on Tail Performance

Jian Tan1, Wei Wei2, Bo Jiang2, Ness Shroff1, Don Towsley2
1 Department of Electrical Engineering, The Ohio State University, Columbus, OH 43210

2Department of Computer Science, University of Massachusetts, Amherst, MA 01003
UMass Computer Science Technical Report UM-CS-2009-055

Abstract

Parallelism has often been used to improve the reliability and efficiency of a variety of different engineering sys-

tems. In this paper, we quantify the efficiency of parallelism in systems that are prone to failures and exhibit power

law transmission delays. We focus on the context of transmitting a data unit in communication networks, where par-

allelism can be achieved by multipath transmission (e.g., multipath routing). We investigate two types of transmission

schemes: redundant and split transmission techniques. We find that the power-law transmission delay phenomenon

still persists with multipath transmission. In particular, we show that when the transmission delays of each path are

characterized by the same power law, redundant multipath transmission can only result in a constant factor performance

gain, while order gains are possible when the delays are light tailed. We further compare the performance of redundant

transmission and split transmission, and show that there is no clear winner. Depending on the packet size distribution

properties and the manner in which splitting is performed, one scheme results in greater performance over the other.

Specifically, split transmission is effective in mitigating power law delays if the absolute value of the logarithm of the

packet size probability tail is regularly varying with positive index, and becomes ineffective if the above quantity is

slowly varying. Based on our analysis, we develop an optimal split transmission strategy, and show that this strategy

always outperforms redundant transmission.

I. I NTRODUCTION

Parallelism is a common approach to improve reliability and efficiency in practice. For instance, in peer to peer

systems, a file is downloaded in parallel from multiple peers; in grid computing, a job is allocated to multiple machines

to be computed simultaneously; and in computer communication networks, multipath routing can be used to improve

the efficiency and reliability of data transfer. In one type of parallelism, a file/job is fetched/computed in its entirety,

and hence the completion time is the minimum of the completion times from/at the multiple locations. In another

type of parallelism, a file/job is split into multiple pieces, fetched/computed independently, and hence the completion

time is the maximum of the completion times of all the pieces. In both cases, we expect better efficiency from using

parallelism since the delay is either the minimum one or because a smaller job needs to be completed.

In this paper, we quantify the efficiency of parallelism in mitigating power law tails, which have been shown to

be present when a job needs to be retransmitted after a failure occurs. For example, in wireless communication

networks, recent studies [8], [7], [9], [6] show that, contrary to traditional wisdom, when the probability of packet

errors is a function of the packet length, retransmission-based protocols may cause power law transmission durations
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and possibly even zero throughput. Similar results have been reported in other contexts [12], [2]. A natural question

to ask is whether and, if so, how, using parallelism can mitigate power law delays, which is the focus of our study.

To focus our discussion, let us consider the notion of parallelism in the context of communication networks, where

a data unit can be transmitted using multiple paths (also known as multipath routing or more generally multipath trans-

mission). A data unit can be a file or packet (which are used interchangeably, henceforward), and the transmission

needs to restart after a failure (i.e., there is no check point in the transmission). We consider two multipath trans-

mission strategies,redundantandsplit transmission, that correspond respectively to the two aforementioned types of

parallelism. More specifically, redundant transmission replicates a packet and sends each copy over a different path

and therefore, the transmission is successful once the first of the packets arrives at the destination; split transmission,

on the other hand, breaks the data unit into several pieces and dispatches each piece along a different path, which

completes the transmission when all the pieces arrive at the destination successfully.

We aim to answer the following three questions: (I) Can redundant or split transmission eliminate power laws in

transmission delays, and how can the performance gain from multipath transmission be characterized? (II) Is split

transmission or redundant transmission more beneficial in mitigating power law delays? and (III) What is the optimal

strategy to split packets and dispatch those fragmented pieces to the appropriate paths.

To address the above questions, we generalize the singlechannelmodel introduced in [8] to a multipath channel

model. First note that a channel can be viewed as a medium over which faults can occur causing jobs to be interrupted

and retransmitted. In the context of communication networks, this corresponds to a wireless communication channel

as in [8], in the context of grid computing the channel may correspond to the processor over which the computations

are completed, etc. Henceforth, we will focus on communication networks and consider the notion of a channel in that

context. Specifically, consider a communication network where there areK paths between a source and destination.

The channel dynamics of pathj, 1 ≤ j ≤ K, are modeled as an on-off process{(Aj
i , U

j
i )}i≥1 that alternates between

available period,Aj
i , and unavailable period,U j

i . Only in each time periodAj
i when the channel becomes available, can

a packet start its transmission over the path. If the length ofAj
i is longer than the length of the packet, the transmission

is considered successful over pathj; otherwise, we wait until the beginning of the next available periodAj
i+1 and

retransmit the packet from the beginning. The above model can be viewed as a first order approximation to channels

that may fail. Channel failures can happen due to many reasons. For instance, in a wireless network environment,

failures occur due to channel fading, interference and contention with other nodes, multipath effects, obstructions, and

node mobility [11]. As a consequence, the signal to noise ratio (SINR) may vary in different time scales. The on

periods{Aj
i} in our model correspond to the situation when SINR is high, while the off periods{U j

i } correspond to

the situation when SINR is low.

Our main contributions in this paper can be summarized as follows:

• We show that, when all packets are of the same size, redundant transmission can greatly reduce the transmission

delay in the sense that the ratio of the delay distribution tail with and without redundant transmission tends to zero

(see Proposition III.1). However, in reality, packet sizes are usually variable due to many other considerations,

e.g., reducing communication costs and extra overhead induced from encapsulation. We prove that, when packet
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sizes are random variables that satisfylogP[L > x] ≈ α∗ logP[Aj > x], redundant transmission does not change

the order of the probability tail of the transmission delays (see Theorem 2), and can only improve the system

performance by a constant factor (see Theorem 3).

• We show that split transmission is effective in mitigating power delays if the absolute value of the logarithm

of the packet size probability tail is regularly varying with positive index, and becomes ineffective if the above

quantity is slowly varying (see Theorems 4 and 5). To illustrate the point, we calculate the effectiveness of split

transmission for different packet size distributions. Furthermore, we provide a solution for optimal split when we

have heterogeneous paths, and show that this optimal strategy always outperforms redundant transmission (see

Theorem 6). To refine the result, we also derive an exact asymptotic for packet delivery time under optimal split

transmission (see Theorem 7).

In terms of related work, it was observed in [12] that power law processing times can arise in a system where jobs

need to restart once a failure occurs. This observation was rigorously addressed in [8], [2], [7], [9] for a single channel

model. The result reveals that, when the probability of packet errors is a function of the packet length, retransmission-

based protocols could cause heavy-tailed (specifically, power law) transmission durations, even when the data units

and channel characteristics are light-tailed. Our study generalizes the single channel model to the one with multiple

paths. Multipath transmissions have also been studied in [1] using Extreme Value theory, but only when the number

of paths goes to infinity. In this work, we focus on the context of multipath transmissions in computer networks with

a fixed (possibly small) number of paths, where multipath transmission has long been used to improve reliability and

efficiency (e.g., [10], [4], [5]).

Note that the specific investigation conducted in this paper has been in the context of data transmission in wireless

communication networks. However, the mathematical setting described in Section 2 is quite general, and the results

can be extended to many other applications that involve parallelism and job failures, such as computing jobs in grid

computing, file downloading in peer to peer networks, parallel experiment planning, and parallel scheduling.

The rest of the paper is organized as follows. Section 2 presents the model description and some results on single

path transmission. Redundant transmission and split transmission are investigated in Sections 3 and 4, respectively.

Finally, Section 5 concludes the paper.

II. M ODEL DESCRIPTION AND PRELIMINARY RESULTS

Let L be a random variable that denotes the length of a packet. Assume that there areK ≥ 1 paths between the

source and destination, as shown in Figure 1. The channel dynamics of pathj, 1 ≤ j ≤ K are modeled as an on-off

process{(Aj
i , U

j
i )}i≥1 that alternates between availableAj

i and unavailableU j
i periods, respectively.

Packet transmission can only be initiated at the start of an available period. For a packet transmission started at

the beginning ofAj
i , if Aj

i > L, the transmission is considered successful over pathj; otherwise, we wait until the

beginning of the next available periodAj
i+1 and retransmit the packet from the beginning.

We study two multipath transmission schemes, namely, redundant transmission and split transmission. Under re-

dundant transmission, the same packet is transmitted over allK paths, and the transmission is successful as soon as

one of theK duplicates arrives at the destination. Split transmission represents the strategy where a packet is split into
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K pieces and each piece is sent over a different path. The transmission is complete once all theK pieces arrive at the

destination successfully.

Definition II.1. The number of (re)transmissions of a packet of lengthL over pathj, 1 ≤ j ≤ K, is defined as

Nj , inf{i : Aj
i > L},

and, the corresponding transmission time over this path is defined as

Tj ,
Nj−1∑

i=1

(Aj
i + U j

i ) + L.

• Redundant transmission: the transmission completes when the first packet is successfully transmitted over one of

theK paths. Therefore, the total transmission timeTr for this scheme satisfies

Tr , min
1≤j≤K

Tj .

• Split transmission: the transmission completes when allK pieces of the packet are successfully transmitted.

Therefore, the total transmission timeTs for this scheme satisfies

Ts , max
1≤j≤K

Tj ,

and the total number of retransmissions overK paths is

N ,
K∑

j=1

Nj .

In this paper, we assume that{U j , U j
i }j≥1 and{Aj , Aj

i}j≥1, 1 ≤ j ≤ K are mutually independent i.i.d. sequences

of random variables, which are also independent of the packet sizeL. A sketch of the model depicting the system is

shown in Figure 1.

We use the following notation to denote the complementary cumulative distribution functions forAj , 1 ≤ j ≤ K

andL,

Ḡj(x) , P[Aj > x],

and

F̄ (x) , P[L > x].

We sayK paths arehomogeneousif Aj d= A andU j d= U for 1 ≤ j ≤ K, where “
d=” denotes equal in distribution.

Accordingly, we usēG(x) , P[A > x]. In general,{Aj}1≤j≤K (and{U j}1≤j≤K) need not be identically distributed,

which represents the case ofheterogenouspaths.

Throughout this paper, a positive measurable functionf is called regularly varying (at infinity) with indexρ if

lim
x→∞ f(λx)/f(x) = λρ
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for all λ > 0. It is called slowly varying ifρ = 0 [3]. Additionally, for any two real functionsf(t) andg(t), we use

f(t) ∼ g(t) to denotelimt→∞ f(t)/g(t) = 1. Similarly, we say thatf(t) & g(t) if limt→∞ f(t)/g(t) ≥ 1 andf(t) .

g(t) if limt→∞ f(t)/g(t) ≤ 1. Furthermore, we say thatf(t) = o(g(t)) if limt→∞ f(t)/g(t) = 0 andf(t) = O(g(t))

if limt→∞ f(t)/g(t) < ∞. Also, we use the standard definition of an inverse functionf←(x) , inf{y : f(y) > x}
for a non-decreasing functionf(x); note that the notationf(x)−1 represents1/f(x). We use∨ to denotemax, i.e.,

x ∨ y ≡ max{x, y}, and∧ to denotemin, i.e.,x ∧ y ≡ min{x, y}.

j
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Fig. 1. Multipath transmission overK channels with failures

A. Single path transmission

For the caseK = 1, there is only a single transmission path in the system, hence we letA1 ≡ A. The total number

of transmissionsN and transmission timeT = Tr = Ts has been studied in [8], [9], [2].

Below we quote Propositions II.1 and II.2 from [8], [9], which show that bothN andT can follow power law

distributions regardless of how heavy or light the tails ofA andL might be.

Proposition II.1. If there existsα > 0 such that

lim
x→∞

logP[L > x]
logP[A > x]

= α,

then,

lim
n→∞

logP[N > n]
log n

= −α. (1)

Additionally, ifE
[
U (α∨1)+θ

]
< ∞, E

[
A1+θ

]
< ∞ andE

[
Lα+θ

]
< ∞ for someθ > 0, then,

lim
t→∞

logP[T > t]
log t

= −α. (2)

Proposition II.2. If

P[L > x]−1 ∼ Φ
(
P[A > x]−1

)

whereΦ(·) is regularly varying with indexα > 0, then, asn →∞,

P[N > n] ∼
Γ(α + 1)

Φ (n)
, (3)
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and, under the same conditions as in Proposition II.1, ast →∞,

P[T > t] ∼
Γ(α + 1)(E[U + A])α

Φ(t)
. (4)

Remark.Proposition II.2 provides more refined results than Proposition II.1 under more restrictive conditions. One

can easily check that (3) and (4) imply (1) and (2) by taking logarithms.

III. R EDUNDANT TRANSMISSION

In this section we study redundant transmissions. We begin withK homogeneous paths, which is followed by the

study of the general case of heterogenous paths. We investigate whether sending packets overK paths can mitigate

the power law suffered from single path transmission.

A. Homogeneous paths

In this part, we present results for homogeneous paths. We first consider packets of the same size, and then study

the more realistic case where packet sizes can be variable.

Proposition III.1. If all packets are of constant sizeL ≡ l andU ≡ 0, then,

lim
t→∞

logP[Tr > t]
t

= −Kγ,

whereγ is the solution of
∫ l
0 eγxdP[A ≤ x] = 1.

This result can be easily derived using Corollary 3.2 in [2]. From this result, we see that using redundant transmission

for equal size packets greatly improves performance, since the decay rate of the delay distribution increases asK

increases, and thus in this case we obtain order improvements in delay performance when using redundant routing.

In reality, however, packets are not of equal size. We next present a theorem for the case where the packet size is a

random variable.

Theorem1. If

lim
x→∞

log F̄ (x)
log Ḡ(x)

= α,

E[Lα+θ] < ∞, E
[
U (1∨α)+θ

]
< ∞ andE

[
A1+θ

]
< ∞ for someθ > 0, then,

lim
t→∞

logP[Tr > t]
log t

= −α.

Remark.Comparing the above theorem and Proposition II.1, we observe that, the power law exponent of the total trans-

mission time under redundant transmission is the same as that under single path transmission. Informally speaking,

this is becauseT1, T2, . . . , TK are not independent, since packets sent over these paths are of the same size.

This theorem is a direct consequence of Theorem 2, which investigates a more general scenario.
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B. Heterogenous paths

For heterogenous paths, we have the following result when using redundant transmission.

Theorem2. If

lim
x→∞

log F̄ (x)
log Ḡj(x)

= αj (5)

for 1 ≤ j ≤ K, andα∗ , max1≤j≤K αj > 0, then, under the following three conditions I)-III), for someθ > 0,

I) E[Lα+θ] < ∞,

II) max1≤j≤K E
[(

U j
)(1∨α)+θ

]
< ∞, and

III) max1≤j≤K E
[(

Aj
)1+θ

]
< ∞,

we have

lim
t→∞

logP[Tr > t]
log t

= −α∗. (6)

Remark.The above theorem implies that the tail behavior of the delay distribution under redundant transmission is

determined by the best paths (i.e., the paths with the largestαj).

of Theorem 2.First, we establish a lower bound by constructing a new system that has longer available periods than

those found on all of theK paths. The construction is as follows. The new system has an on-off channel characterized

by alternating i.i.d. sequences{Āi} and{Ūi}, where

Āi = max
1≤j≤K

Aj
i

andŪi = 0. Denote byN the number of transmissions of a packet of lengthL over this newly constructed channel.

Now, sinceAj
i , 1 ≤ j ≤ K are independent, we obtain

P[Āi > x] = 1−
K∏

j=1

P[Aj
i ≤ x].

Therefore,

lim
x→∞

P[Āi > x]∑K
i=1 Ḡj(x)

= 1,

coupled with (5), yields

lim
x→∞

logP[L > x]
logP[Āi > x]

= α∗,

which, by Proposition II.1, yields

lim
n→∞

logP[N > n]
log n

= −α∗. (7)
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DefineAi = min1≤j≤K Aj
i andXi , Ai1(x1 < Ai < x2). Choosingx1, x2 such thatE[Xi] > 0, we obtain

Tr ≥
N−1∑

i=1

Xi + L. (8)

Therefore,

P
[
Tr >

t

log t

]
≥ P




N−1∑

i=1

Xi >
t

log t




≥ P



N−1∑

i=1

Xi >
t

log t
,N > t




≥ P [N > t]− P



N−1∑

i=1

Xi ≤ t

log t
, N > t




≥ P [N > t]− P


btc∑

i=1

Xi ≤ t

log t


 . (9)

SinceE[eθXi ] < ∞ for someθ > 0, we obtain, by a Chernoff bound, for someη > 0,

P



dte∑

i=1

Xi ≤ t/ log t




≤ P


dte∑

i=1

(E[Xi]−Xi) ≥
(
E[Xi]− 1

log t

)
t




≤ O
(
e−ηt

)
, (10)

which, in combination with (7) and (9), implies

lim
t→∞

logP[Tr > t]
log t

≥ −α∗. (11)

Next, we prove the upper bound. Sinceα∗ , max1≤j≤K αi > 0, there exists1 ≤ j ≤ K such thatαj = α∗. For the

jth path, we haveTr ≤ Tj sinceTr = min{T1, T2, · · · , TK}. Using Proposition II.1, we obtain

lim
t→∞

logP[Tr > t]
log t

≤ lim
t→∞

logP[Tj > t]
log t

= −α∗. (12)

By combining (11) and (12), we complete the proof.

Our preceding result characterizes the performance in terms of the ”logarithmic asymptotics”. Basically, it only

contains information about the power law exponent, but yields no information about the pre-factor before the power law
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term. As a consequence, this result cannot distinguish between redundant transmission and single path transmission.

In order to investigate the performance improvement for redundant transmission, we need a more refined asymptotic

result. For a set of regularly varying functionsΦj(·), 1 ≤ j ≤ K, we can compute the exact asymptotic tail of the

distribution ofTr.

Theorem3. If F̄ (x)−1 ∼ Φj

(
Ḡj(x)−1

)
and

lim
x→∞

Φj(x)
Φ(x)

= ζj > 0, (13)

whereΦ(·) is regularly varying with indexα > 0, then, under the conditions I)-III) in Theorem 2, ast →∞,

P[Tr > t] ∼
Γ(α + 1)(∑K

j=1 (E[Aj + U j ])−1 ζ
1/α
j

)α
1

Φ(t)
. (14)

Remark.From the preceding result, we see that, redundant transmission improves the system performance by reducing

the tail of the distribution by a constant factor. If theseK channels are i.i.d., this constant is equal toKα.

In order to prove the theorem, we need the following lemma.

Lemma1. Forηj > 0, 1 ≤ j ≤ K,

P[N1 > η1t,N2 > η2t, · · · , NK > ηKt]

∼ Γ(α + 1)(∑K
j=1 ηjζ

1/α
j

)α
1

Φ(t)
. (15)

Proof. Observe that

P[N1 > η1t,N2 > η2t, · · · , NK > ηKt]

= E




K∏

j=1

(
1− Ḡj(L)

)bηjtc

 . (16)

We can assume thatΦ(x), 1 ≤ j ≤ K is absolutely continuous and strictly monotone since, by Proposition 1.5.8 of

[3], one can always find an absolutely continuous and strictly monotone function, forc large enough,

Φ∗(x) = α

∫ x

c
Φ(s)s−1ds, x ≥ c, (17)

which satisfies

F̄ (x)−1 ∼ Φj

(
(Ḡj(x))−1

)
∼ ζjΦ∗

(
(Ḡj(x))−1

)
.

SinceΦ(x) is eventually non-decreasing, there existsx0 such that for allx > x0, Φ(x) has an inverse functionΦ←(x).

The condition (13) implies that, for0 < ε < 1, there existsxε, such that forx > xε and1 ≤ j ≤ K,

(1− ε)F̄ (x)−1 ≤ ζjΦ((Ḡj(x))−1) ≤ (1 + ε)F̄ (x)−1,
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and thus, by choosingxε > x0, we obtain

Φ←
(
(1− ε)F̄ (x)−1/ζj

) ≤ (Ḡj(x))−1

≤ Φ←
(
(1 + ε)F̄ (x)−1/ζj

)
. (18)

First, we prove the lower bound. Forc > 0 andxε selected in (18), choosingxt > xε with Φ←
(
F̄ (xt)

)
= t/c, we

obtain

P[N1 > η1t,N2 > η2t, · · · , NK > ηKt]

≥ E



K∏

j=1

(
1− Ḡj(L)

)ηjt 1(L > xt)




≥ E
[

K∏

j=1

(
1− 1

Φ←
(
(1− ε)F̄ (L)−1/ζj

)
)ηjt

· 1(F̄ (L) < F̄ (xt))

]
,

which, by noting that̄F (L) ≡ V is a uniform random variable on[0, 1], yields

P[N1 > η1t,N2 > η2t, · · · , NK > ηKt]

≥ E



K∏

j=1

(
1− 1

Φ← ((1− ε)V −1/ζj)

)ηjt

1(V < F̄ (xt))


 . (19)

Using Theorem 1.5.12 of [3], we know thatΦ←(·) is also regularly varying with index1/α, which implies, forζ > 0,

lim
x→∞

Φ← (ζx)
Φ← (x)

= ζ1/α,

and therefore, forxt large enough andV < F̄ (xt),

(1− ε)1+1/α

ζ
1/α
j

Φ←
(
V −1

) ≤ Φ←
(
(1− ε)V −1/ζj

)

(1 + ε)1+1/α

ζ
1/α
j

Φ←
(
V −1

) ≥ Φ←
(
(1 + ε)V −1/ζj

)
. (20)
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Lettingz = t/Φ←
(
V −1

)
and using (19), we obtain

P[N1 > η1t,N2 > η2t, · · · , NK > ηKt]

≥ E



K∏

j=1

(
1− ζ

1/α
j

(1− ε)1+1/α

1
Φ← (V −1)

)ηjt

1(V < F̄ (xt))




≥
∫ c

0

K∏

j=1

(
1− ζ

1/α
j

(1− ε)1+1/α

z

t

)ηjt

1
Φ (t/z)

Φ′ (t/z)
Φ (t/z)

t

z2
dz. (21)

SinceΦ(t) is regularly varying, by Theorem 1.4.1 and Theorem 1.2.1 of [3], it is easy to obtain uniformly for0 ≤ z ≤
c, ast →∞,

Φ(t)
Φ (t/z)

∼ zα

and, recalling (17),

Φ′ (t/z)
Φ (t/z)

=
zα

t
.

From the preceding results and (21), we obtain, ast →∞,

P[N1 > η1t,N2 > η2t, · · · , NK > ηKt]Φ(t)

∼
∫ c

0
αe

−z
�PK

i=1 ηjζ
1/α
j

�
(1−ε)−1−1/α

zα−1dz

=
(1− ε)α+1

(∑K
j=1 ηjζ

1/α
j

)α α

∫ c

 PK
j=1 ηjζ

1/α
j

(1−ε)1+1/α

!
0

e−xxα−1dx,

which, by passingc →∞ andε → 0, yields

P[N1 > η1t,N2 > η2t, · · · , NK > ηKt]Φ(t)

& 1(∑K
j=1 ηjζ

1/α
j

)α

∫ ∞

0
αe−xxα−1dx

=
Γ(α + 1)(∑K
j=1 ηjζ

1/α
j

)α . (22)

Next, we prove the upper bound. Observe that

P[N1 > η1t + 1, N2 > η2t + 1, · · · , NK > ηKt + 1]

≤ E



K∏

j=1

(
1− Ḡj(L)

)ηjt 1(L > xt)




+ E[
(
1− Ḡ1(L)

)η1t 1(L < xt)],
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which, by recalling (20) and using1− x ≤ ex, yields

P[N1 > η1t + 1, N2 > η2t + 1, · · · , NK > ηKt + 1]

≤ E



K∏

j=1

(
1− ζ

1/α
j

(1 + ε)1+1/α

1
Φ← (V −1)

)ηjt

1(V < F̄ (xt))




+ o

(
1

tα+ε

)

≤ E


e

−
 PK

j=1 ηjζ
1/α
j

(1+ε)1+1/α

!
t

Φ←(V−1)


 + o

(
1

Φ(t)

)
.

For a constant integerc > 0, ζ ,
∑K

j=1 ηjζ
1/α
j andz = ζt/

(
(1 + ε)1+1/αΦ

← (
V −1

))
, the preceding upper bound is

no larger than

E
[
e
− ζ

(1+ε)1+1/α
t

Φ
← (V−1)1

(
ζ

(1 + ε)1+1/α

t

Φ← (V −1)
≤ c

)]

+
∞∑

m=c

e−mP
[
m ≤ ζ

(1 + ε)1+1/α

t

Φ← (V −1)
≤ m + 1

]

+ o

(
1

Φ(t)

)

≤
∫ c

0
e−z

(
Φ′

(
ζt/((1 + ε)1+1/αz)

)

Φ2
(
ζt/

(
(1 + ε)1+1/αz

)) ζt

z2(1 + ε)1+1/α

)
dz

+
∞∑

m=c

e−m 1

Φ
(

ζt
(m+1)(1+ε)1+1/α

) + o

(
1

Φ(t)

)
.

SinceΦ(x) is regularly varying with indexα > 0, we can choosec large enough, such that

Φ(t)

Φ
(

ζt
(m+1)(1+ε)1+1/α

) ≤ (1 + ε)α+2

(
m + 1

ζ

)α
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for all m > c. Therefore, ast →∞, we obtain

P[N1 > η1t + 1, N2 > η2t + 1, · · · , NK > ηKt + 1]Φ(t)

≤
∫ c

0
e−z

(
Φ(t)Φ′

(
ζt/((1 + ε)1+1/αz)

)

Φ2
(
ζt/

(
(1 + ε)1+1/αz

)) ζt

z2(1 + ε)1+1/α

)
dz

+ (1 + ε)α+2
∞∑

m=c

e−m

(
m + 1

ζ

)α

+ o (1)

. (1 + ε)α+1

ζα

∫ c

0
αe−zzα−1dz

+ (1 + ε)α+2
∞∑

m=c

e−m

(
m + 1

ζ

)α

,

which, by passingε → 0 andc →∞, yields

P[N1 > η1t + 1, N2 > η2t + 1, · · · , NK > ηKt + 1]Φ(t)

. 1(∑K
j=1 ηjζ

1/α
j

)α

∫ ∞

0
αe−xxα−1dx

=
Γ(α + 1)(∑K
j=1 ηjζ

1/α
j

)α . (23)

Combining (20) and (23) finishes the proof.

of Theorem 3.We begin with the upper bound. For0 < ε < 1 andηj = 1/E[Aj + U j ], we obtain,

P[Tr > (1 + 2ε)t] = P




K⋂

j=1

{Tj > (1 + 2ε)t}



= P




K⋂

j=1





Nj−1∑

i=1

(
Aj

i + U j
i

)
+ L > (1 + 2ε)t








≤ P



K⋂

j=1





Nj∑

i=1

(
Aj

i + E[U j ]
)

> t








+ P




K⋃

j=1





Nj∑

i=1

(
U j

i − E[U j ]
)

> εt








+ P[L > εt]. (24)
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Then, using union bound, we derive

P[Tr > (1 + 2ε)t] ≤

P




K⋂

j=1





Nj∑

i=1

(
Aj

i + E[U j ]
)

> t,Nj > (1− ε)
t

E[Aj + U j ]








+
K∑

j=1

P




Nj∑

i=1

(
Aj

i + E[U j ]
)

> t, Nj ≤ (1− ε)
t

E[Aj + U j ]




+
K∑

j=1

P








Nj∑

i=1

(
U j

i − E[U j ]
)

> εt








+ P[L > εt]

≤ P



K⋂

j=1

{Nj > (1− ε)ηjt}



+
K∑

j=1

P




(1−ε)ηjt∑

i=1

(
Aj

i ∧ L + E[U j ]
)

> t




+
K∑

j=1

P








Nj∑

i=1

(
U j

i − E[U j ]
)

> εt








+ P[L > εt]

, I1 + I2 + I3 + I4. (25)

Using the result (4.20) in [9], we knowI2 + I3 + I4 = o (1/Φ(t)), which, in view of Lemma 1, yields

P[Tr > t] . Γ(α + 1)(∑K
j=1 (E[Aj + U j ])−1 ζ

1/α
j

)α
1

Φ(t)
. (26)

Next, we proceed with proving the lower bound.

P[Tr > t] ≥ P



K⋂

j=1





Nj−1∑

i=1

(
Aj

i + U j
i

)
> t
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≥ P



K⋂

j=1

{
Nj > (1− ε)

t

E[Aj + U j ]

}


−
K∑

j=1

P




Nj−1∑

i=1

(
Aj

i + U j
i

)
> t, Nj ≤ (1− ε)

t

E[Aj + U j ]




, I1 − I2. (27)

Using the same approach in deriving (4.30) in [9], we can prove thatI2 = o (1/Φ(t)). Therefore, by Lemma 1, we

obtain

P[Tr > t] & Γ(α + 1)(∑K
j=1 (E[Aj + U j ])−1 ζ

1/α
j

)α
1

Φ(t)
,

which, in combination with (26), finishes the proof.

IV. SPLIT TRANSMISSION

Next, we study the case when a packet is split into several pieces and sent overK independent paths. Since each path

has to successfully transmit a fragment of the original packet, we are interested in the total number of retransmissions

N =
∑K

j=1 Nj and the transmission timeTs , max1≤j≤K Tj . Using the derived results, we will determine which of

the two strategies, split transmission or redundant transmission, results in a lighter distribution tail.

We begin with homogeneous paths, and then investigate heterogenous paths. A fractionγj of the packetL is sent

over pathj,
∑K

j=1 γj = 1, 0 ≤ γj ≤ 1, 1 ≤ j ≤ K. We derive the optimal splitting strategy that minimizes the

exponent of the transmission time tail.

A. Homogeneous paths

We have the following theorem for split transmission over homogenous paths, where each packet is evenly split into

K pieces. Its proof is a special case of that for heterogeneous paths (see Theorem 5), and hence is omitted.

Theorem4. Under the same conditions in Theorem 1, if there existsβ > 0, such that

lim
x→∞

log F̄ (Kx)
log F̄ (x)

= β, (28)

then,

lim
t→∞

log P (Ts > t)
log t

= −βα.

Remark.Sinceβ ≥ 1, comparing the results in Proposition II.1 and Theorem 1, we see that, for homogeneous paths,

split transmission is no worse than redundant transmission when packets are split evenly.

To provide some concrete examples, we next consider several typical distributions, and compute the power law

exponent for these distributions.
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1) Examples for typical distributions:Theorem 4 indicates that the effectiveness of split transmission is closely

related to the packet size distribution, as characterized by (28). We next apply this result to several families of distri-

butions to further illustrate this point. For each distribution, we calculateα andβ, and the power law tail exponent is

equal to−βα.

• Exponential distribution. Consider the case where the size of the packet,L, follows an exponential distribution

with parameterλ and the available time period,A, follows an exponential distribution with parameterµ, i.e.,

F̄ (x) = P (L > x) = e−λx,

Ḡ(x) = P (A > x) = e−µx.

Then,

α =
log F̄ (x)
log Ḡ(x)

=
log (e−λx)
log (e−µx)

=
λ

µ
,

β =
log F̄ (Kx)
log F̄ (x)

=
log (e−λKx)
log (e−λx)

=
λK

λ
= K.

• Weibull distribution. Consider

F̄ (x) = P (L > x) = e−(λx)b
,

Ḡ(x) = P (A > x) = e−(µx)b
,

whereλ > 0, µ > 0, andb > 0. Then,

α =
log F̄ (x)
log Ḡ(x)

=
log e−(λx)b

log e−(µx)b =
−(λx)b

−(µx)b
=

(
λ

µ

)b

,

β =
log F̄ (Kx)
log F̄ (x)

=
log (e−(λKx)b

)
log (e−(λx)b)

=
(λK)b

(λ)b
= Kb.

• Pareto distribution. Consider

F̄ (x) =
{

(b1/x)λ, x ≥ b1

1, x < b1,

Ḡ(x) =
{

(b2/x)µ, x ≥ b2

1, x < b2

whereλ > 0, µ > 0, andb1, b2 > 0. Then,

α = lim
x→∞

λ(log b1 − log x)
µ(log b2 − log x)

=
λ

µ
,

β = lim
x→∞

λ(log b1 − log K − log x)
λ(log b1 − log x)

= 1.
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Remark.Observe thatβ = 1 when bothF andG follow Pareto distributions. In that case, split transmission has the

same power law exponent as the single path transmission and redundant transmission. Furthermore, Pareto distribution

is not the only type of distribution under which split transmission is not beneficial. We illustrate this point in the next

subsection.

2) When is split transmission not beneficial?:We next show another family of distributions under which split

transmission is not beneficial. Consider the following distribution

F̄ (x; η, ξ) =

{
1, x ∈ (−∞, 1]
e−η(log x)ξ

, x ∈ [1,+∞)

whereη > 0, ξ > 0. Then

log F̄ (Kx)
log F̄ (x)

=
(

1 +
log K

log x

)ξ

→ 1, asx →∞.

Compute thep-th moment ofF̄ (x) (p > 0),

mp(η, ξ) = −
∫

xpdF̄ (x; η, ξ)

= −
∫ ∞

1
xpde−η(log x)ξ

= −
∫ ∞

0
epyde−ηyξ

= ηξ

∫ ∞

0
yξ−1epy−ηyξ

dy.

There are three regions for parameterξ,

• ξ = 1. F̄ (x; η, ξ) is a Pareto distribution andmp exists iffp < η.

• ξ < 1. F̄ (x; η, ξ) has a heavier tail than any power law, andmp does not exists for anyp.

• ξ > 1. F̄ (x; η, ξ) has a lighter tail than any power law, andmp exists for allp > 0.

Note that for largeξ, the probability tail can decay fast, albeit slower than exponential. In this case, we still do not

have a gain using split transmission in terms of increasing the power law exponent.

The above discussion indicates that the Pareto distribution is not the only type of distribution under which split

transmission leads to no benefits in mitigating power law delays. In fact, distributions that do not benefit from split

transmission can have either heavier or lighter tails than Pareto distributions. Split transmission is not beneficial as

long asβ = 1 in (28), e.g., whenlog
(
1/F̄ (x)

)
is slowly varying.

B. Heterogenous paths

For heterogenous paths, a packet of sizeL is split intoK smaller fragments of sizesγ1L, γ2L, . . . , γKL, respec-

tively, where
∑K

j=1 γj = 1, 0 ≤ γj ≤ 1, 1 ≤ j ≤ K. We have the following result on packet transmission delay.
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Theorem5. If there existαj , βj , j = 1, 2, . . . , K such that

lim
x→∞

log F̄ (x)
log Ḡj(x)

= αj , (29)

lim
x→∞

log F̄ (x)
log F̄ (γjx)

= βj , (30)

with α◦ , min1≤j≤K βjαj > 0, then,

lim
n→∞

logP[N > n]
log n

= −α◦,

and, under the conditions I)-III) in Theorem 2,

lim
t→∞

logP[Ts > t]
log t

= −α◦.

Remark.When paths are heterogeneous, the packet transmission delay is determined by the best paths under redun-

dant transmission and by the worst paths under split transmission. On the other hand, split transmission only sends a

fraction of the packet on each path. Comparing this to Theorem 2, we see that, ifmin1≤j≤K βjαj > max1≤j≤K αj ,

split transmission is more beneficial than redundant transmission in minimizing the tail behavior; otherwise, redun-

dant transmission is more beneficial. We will show later that, by carefully choosing the way to split packets, split

transmission can always result in tail performance that is no worse than redundant transmission.

of Theorem 5.We begin with proving the result forTs. Since

Ts = max
1≤j≤K

Tj ,

we obtain, using a union bound,

max
1≤j≤K

P[Tj > t] ≤ P [Ts > t] ≤
K∑

j=1

P[Tj > t], (31)

Next, using (29) and (30), we derive

lim
x→∞

log P (γjL > x)
log P (Aj > x)

= lim
x→∞

βk log F̄ (x)
log Ḡk(x)

= βjαj ,

which, by Proposition II.1, yields

lim
t→∞

log P (Tj > t)
log t

= −βjαj .

Thus, forε > 0, there existst0 > 0 such that for allt > t0,

−βjαj − ε <
logP[Tj > t]

log t
< −βjαj + ε.
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Hence, fort > t0, we have

max
1≤j≤K

P[Tj > t] > t−α◦−ε

and

K∑

j=1

P[Tj > t] < Kt−α◦+ε,

which, combined with (31) and passingε → 0, yields

lim
t→∞

log P (Ts > t)
log t

= − min
1≤j≤K

{βjαj} = −α◦.

Now, we derive the result forN . Since

Ns =
K∑

j=1

Nj ,

we have

max
1≤j≤K

P[Nj > n] ≤ P [N > n] ≤
K∑

j=1

P
[
Nj >

n

K

]
. (32)

Proposition II.1 implies

lim
n→∞

logP[Nj > n/K]
log n

= −βjαj ,

which, combined with (32) and using a similar argument as in proving the result forTs, yields

lim
n→∞

logP[N > n]
log n

= −α◦.

1) Optimal split transmission:From Theorem 5, we can see that in order to optimize the power law delay tail, we

need to chooseγ1, γ2, . . . , γK so thatmin1≤j≤K βjαj is maximized. To achieve this, we may speculate that we need

to chooseγ1, γ2, . . . , γK so thatβ1α1 = β2α2 = · · · = βKαK . The following theorem confirms that this is true when

log
(
1/F̄ (x)

)
is not slowly varying.

Theorem6. Suppose we use split transmission overK heterogeneous paths, each satisfying (29). If the limit

β(γ) = lim
x→∞

log F̄ (x)
log F̄ (γx)
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exists for all0 < γ < 1, then (i) there exists a unique constantρ ≥ 0 suchβ(γ) = γ−ρ; and (ii) the optimal splitting

scheme that minimizes the power law exponent ofP[Ts > t] satisfies:

a) If ρ > 0, then

γ∗j =
α

1/ρ
j∑K

i=1 α
1/ρ
i

. (33)

b) If ρ = 0, then letγj = 0 for αj 6= max1≤j≤K αj and the otherγj can take arbitrary values.

The corresponding optimal power law exponent forP[Ts > t] is−αρ, where

αρ =





(
K∑

i=1

α
1/ρ
i

)ρ

, ρ > 0,

max
1≤j≤K

αj , ρ = 0.

(34)

Remark.In the preceding result, we only minimize the power law exponent. Whenρ = 0, we haveβ(γ) = 1, and

log
(
1/F̄ (x)

)
is a slowly varying function. In this case, we should only use the best paths, and the scheme in (33)

is to split arbitrarily among the best paths. For this case, we need a more refined asymptotic result that accounts for

not only the power law exponent but also the exact pre-factors to derive the optimal split strategy. Due to limited

space, we do not study this problem. Whenρ > 0, all the channels are utilized, and the optimal fraction on each

path is specified by (33). In this case, one can easily check that the optimal tail exponent is indeed achieved when

β1α1 = β2α2 = · · · = βKαK .

Remark.Note thatαρ =
(∑K

i=1 α
1/ρ
i

)ρ
≥ α∗ with equality if and only ifρ = 0, whereα∗ = max1≤j≤K αj > 0, as

defined in Theorem 2. Thus, under the assumption of Theorem 5, split transmission achieves a better exponent than

redundant transmission ifρ > 0.

of Theorem 6.(i) Note thatβ(γ) ≥ 1 on (0, 1). If β(γ) = 1 for all γ ∈ (0, 1), thenβ(γ) = γ−ρ for ρ = 0. Now

assumeβ0 = β(γ0) > 1 for someγ0 ∈ (0, 1). Observe thatβ(γ1γ2) = β(γ1)β(γ2) for anyγ1, γ2 ∈ (0, 1). Thus, for

any positive integerm,n,

β(γm/n
0 ) =

(
β(γ1/n

0 )
)n×m/n

=
(
β

(
(γ1/n

0 )n
))m/n

= β
m/n
0 .

Sinceβ is monotonically decreasing and the positive rationals are dense inR+,

β(γr
0) = βr

0, r ∈ R+

or, equivalently,

β(γ) = γlog β0/ log γ0 = γ−ρ, γ ∈ (0, 1)

whereρ = − log β0/ log γ0 > 0. It is clear thatρ is unique.

(ii) Let {γ∗j } be an optimal split scheme and−αρ the corresponding optimal exponent. By Theorem 5,

αρ = min
j:γj>0

αj(γ∗j )−ρ. (35)
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If ρ = 0, then

αρ = min
j:γj>0

αj ≤ max
1≤j≤K

αj = α∗

with equality if and only ifγj = 0 wheneverαj 6= α∗.

If ρ > 0, then (35) gives

γ∗j (αρ)1/ρ ≤ α
1/ρ
j , j = 1, 2, . . . , K.

Summing overj and noting
∑

j γ∗j = 1, we have

(α∗)1/ρ ≤
K∑

j=1

α
1/ρ
j

with equality ifγ∗j is given by (33).

2) Optimal split transmission examples:To illustrate the results obtained in the preceding section, we compute the

optimal split transmission scheme for some typical distributions.

• Exponential distribution. Consider the case where the size of the packet,L, follows an exponential distribution

with parameterλ and the available time period on pathj, Aj , follows an exponential distribution with parameter

µj , i.e.,

F̄ (x) = P (L > x) = e−λx,

Ḡj(x) = P (Aj > x) = e−µjx.

Then,

αj =
log F̄ (x)
log Ḡj(x)

=
λ

µj

β(γ) =
log F̄ (x)
log F̄ (γx)

=
1
γ

,

and

ρ = − log β(γ)/ log γ = 1.

Therefore, the optimal split is

γj =
λ
µj∑K

i=1
λ
µi

=
1
µj∑K

i=1
1
µi

, j = 1, . . . ,K.

• Weibull distribution. Consider the case where the size of the packet,L, and the available time period on pathj,
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Aj , follow Weibull distributions, i.e.,

F̄ (x) = P (L > x) = e−(λx)b
,

Ḡj(x) = P (Aj > x) = e−(µjx)b
,

whereλ > 0, µj > 0, andb > 0. Then,

αj =
log F̄ (x)
log Ḡj(x)

=
−(λx)b

−(µjx)b
=

(
λ

µj

)b

,

β(γ) =
log F̄ (x)
log F̄ (γx)

=
1
γb

,

and

ρ = − log β(γ)/ log γ = b.

Therefore, the optimal split is

γj =
λ
µj∑K

i=1
λ
µi

=
1
µj∑K

i=1
1
µi

, j = 1, . . . ,K.

• Pareto distribution. Consider the case where the size of the packet,L, and the available time period on pathj,

Aj , follow Pareto distributions. In this case, we haveβ(γ) = 1. The optimal split transmission strategy is to split

among the best paths.

3) Exact asymptotic result for optimal split transmission:Our proposed optimal split transmission minimizes the

power law exponent ofP[Ts > t]. In other words, Theorem 6 only characterizes the tail behavior in the logarithmic

scale. Next, to refine the result, we present a theorem on the exact asymptotic result for optimal split transmission.

Theorem7. If log(F̄ (x)−1) = xρl(x) whereρ > 0 andl(x) is slowly varying with

el(x) ∼ el(γx) (36)

for γ > 0, and

F̄ (x)−1 ∼ ζj

(
Φ

(
Ḡj(x)−1

))αj/α
, (37)

whereαj , ζj > 0 andΦ(·) is regularly varying with indexα > 0, then, under the conditions I)-III) in Theorem 2, as

t →∞,

P[Ts > t] ∼

K∑

l=1

(−1)l+1
∑

{j1,··· ,jl}⊆{1,··· ,K}

Γ(αρ + 1)(∑l
s=1 ηjsζ

1
αjs
js

)αρ

1

Φ(t)
αρ
α

, (38)
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whereηj , 1/E[Aj + U j ], αρ ,
(∑K

j=1 α
1/ρ
j

)ρ
.

In order to prove the theorem, we need the following lemma.

Lemma2. Forηj > 0, 1 ≤ j ≤ K,

1− P[N1 < η1t,N2 < η2t, · · · , NK < ηKt]

∼
K∑

l=1

(−1)l+1
∑

{j1,··· ,jl}⊆{1,··· ,K}

Γ(αρ + 1)(∑l
s=1 ηjsζ

1
αjs
js

)αρ

1

Φ(t)
αρ
α

. (39)

Proof. Observe that

1− P[N1 < η1t,N2 < η2t, · · · , NK < ηKt]

= 1− E



K∏

j=1

(
1− (

1− Ḡj(γjL)
)bηjtc)




=
K∑

l=1

(−1)l+1
∑

1≤j1<···<jl≤K

E

[
l∏

s=1

(
1− Ḡjs(γjsL)

)bηjs tc
]

,

(40)

and therefore, we only need to compute, forl ≥ 1 and{j1, · · · , jl} ⊆ {1, · · · ,K},

E

[
l∏

s=1

(
1− Ḡjs(γjsL)

)bηjs tc
]

.

Similar to the proof of Lemma 1, we can assume thatΦ(x), 1 ≤ j ≤ K is absolutely continuous and strictly monotone.

The conditions (36) and (37) imply that, for0 < ε < 1, γ > 0, there existsxε, such that forx > xε and1 ≤ j ≤ K,

(1− ε)
(
F̄ (x)

)−γρ ≤ ζj

(
Φ(Ḡj(γx)−1)

)αj
α ≤ (1 + ε)

(
F̄ (x)

)−γρ

,

and thus, by choosingxε > x0, we obtain

Φ←
((

(1− ε)
ζj

)α/αj

F̄ (x)−αγρ/αj

)
≤ Ḡj(γx)−1

≤ Φ←
((

(1 + ε)
ζj

)α/αj

F̄ (x)−αγρ/αj

)
. (41)
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Using (41) and the same approach in deriving (19), we obtain,

E

[
l∏

s=1

(
1− Ḡjs(γjsL)

)bηjs tc
]

≥ E
[

l∏

s=1

(
1− Ḡjs(γjsL)

)ηjs t 1(L > xt)

]

≥ E
[

l∏

s=1


1− 1

Φ←
(
((1− ε)/ζjs)

α/αjs V −αγρ
js

/αjs

)



ηjs t

· 1(V < F̄ (xt))

]
,

which, by definingη(x) , Φ(x)αρ/α and noting thatγρ
js

/αjs = 1/αρ, yields

E

[
l∏

s=1

(
1− Ḡjs(γjsL)

)bηjs tc
]

≥ E
[

l∏

s=1


1− 1

η←
(
((1− ε)/ζjs)

αρ/αjs V −1
)




ηjs t

· 1(V < F̄ (xt))

]
.

Following the same procedure in computing (21), we obtain

E

[
l∏

s=1

(
1− Ḡjs(γjsL)

)bηjs tc
]

& Γ(αρ + 1)(∑l
s=1 ηjsζ

1/αjs
js

)αρ

1
Φ(t)αρ/α

. (42)

Repeating a similar procedure in deriving the upper bound for Lemma 1, we can prove

E

[
l∏

s=1

(
1− Ḡjs(γjsL)

)bηjs tc
]

. Γ(αρ + 1)(∑l
s=1 ηjsζ

1/αjs
js

)αρ

1
Φ(t)αρ/α

, (43)

which, in combination with (42), finishes the proof of the lemma.
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of Theorem 7.We begin with the upper bound. For0 < ε < 1 andηj = 1/E[Aj + U j ], we obtain,

P[Ts > (1 + 2ε)t] = P




K⋃

j=1

{Tj > (1 + 2ε)t}



≤ P



K⋃

j=1





Nj∑

i=1

(
Aj

i + E[U j ]
)

> t








+ P




K⋃

j=1





Nj∑

i=1

(
U j

i − E[U j ]
)

> εt








+ P[L > εt]. (44)

Then, using union bound, we derive

P




K⋃

j=1





Nj∑

i=1

(
Aj

i + E[U j ]
)

> t








≤ P



K⋃

j=1

{Nj > (1− ε)ηjt}



+
K∑

j=1

P




(1−ε)ηjt∑

i=1

(
Aj

i ∧ L + E[U j ]
)

> t


 . (45)

Combining (44), (45) and using the results in deriving (26), we obtain, by Lemma 2,

P[Ts > t] . P




K⋃

j=1

{Nj > ηjt}



∼
K∑

l=1

(−1)l+1
∑

{j1,··· ,jl}⊆{1,··· ,K}

Γ(αρ + 1)(∑l
s=1 ηjsζ

1
αjs
js

)αρ

1

Φ(t)
αρ
α

.

Using a similar approach as in deriving the lower bound for Theorem 3, we can derive a lower bound that coincides

with the upper bound for this theorem, which completes the proof.

V. CONCLUSION

Parallelism is a common approach to improve reliability and efficiency in practice. In this paper, we investigate

whether and how parallelism can be used to improve network performance. Specifically, we study whether and how

multipath transmission can mitigate power law delays. We show that, when all packets are of the same size, redundant

transmission can greatly reduce the transmission delay in the sense that the ratio of the delay distribution tail with and
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without redundant transmission tends to zero. However, when packet sizes are random variables such thatlogP[L >

x] ≈ α∗ logP[Aj > x], we prove that, maybe counter intuitively, redundant transmission cannot change the order of

the probability tail of the transmission delays, and can only improve the system performance by a constant factor. We

also show that split transmission is effective in mitigating power delays if the absolute value of the logarithm of the

packet size probability tail is regularly varying with positive index, and becomes ineffective if the above quantity is

slowly varying. Last, we provide an optimal split transmission strategy when the paths are heterogeneous, and further

derive an exact asymptotic result for packet delivery time under this scheme. Our results can be extended to many other

applications that involve parallelism and job failures, such as computing jobs in grid computing, file downloading in

peer to peer networks, parallel experiment planning, and parallel scheduling.
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