Reflectance Filtering for Interactive Global lllumination in Semi-Glossy Scenes

David Maletz

John Bowers

Rui Wang

University of Massachusetts Amherst

Abstract

We introduce a method using reflectance filtering to simulate inter-
active global illumination in scenes that contain semi-glossy ma-
terials. We adopt a many-light approach to sample illumination
onto a set of VPLs spread over the scene. We build a kd-tree of
the VPLs, allowing for fast hierarchical integration of unshadowed
indirect lighting at a shading point. Unlike previous approaches
which assume the VPLs to be diffuse, we explicitly model the di-
rectional radiance of each VPL. We then use reflectance filtering to
update the directional contributions of all nodes in the kd-tree. This
allows for efficient handling of glossy to glossy reflection paths in
semi-glossy scenes. We also propose using min-max tree cuts to
further improve the efficiency of a many-light approach. To reduce
spatial sampling cost, we introduce a new hierarchical image-space
adaptive method, which combines level-independent sampling with
bilateral interpolation to robustly preserve fine details as well as
sharp edges. Our method performs entirely on the GPU, and thus is
suitable for fully dynamic scenes.

Keywords: Interactive global illumination, glossy BRDFs, reflec-
tion filtering, many lights, spatial adaptive sampling, GPU

1 Introduction and Related Work

Interactive simulation of global illumination with complex reflec-
tion effects has been a long-standing challenge in computer graph-
ics research. As described by the rendering equation [Kajiya 1986],
the reflected light from any surface point potentially contributes il-
lumination to all other surface points, leading to expensive com-
putation. With the rapid progress in the GPU’s computation power
over the past several years, it is now possible to render multi-bounce
diffuse and perfectly specular reflections at interactive rates [Wang
et al. 2009]. However, existing techniques are largely focused on
diffuse indirect lighting, and it remains a challenge to efficiently
simulate scenes that contain many glossy materials. While we could
use Monte Carlo path tracing or photon mapping to achieve an ac-
curate solution, these methods require a long time to eliminate noise
if glossy materials are present in the scene.

A large body of recent work in interactive global illumination
adopts the idea of gathering from many lights [Walter et al. 2005;
HaSan et al. 2007; Ritschel et al. 2009]. They first sample the
scene’s indirect illumination as many point lights called virtual
point lights (VPLs); they then approximate indirect lighting by es-
timating the contributions from all VPLs to each shading point.
These approaches are fast and suitable for parallel computation on
the GPU. However, the VPLs are typically assumed to be diffuse
in order to avoid keeping track of their directional radiance. While
this still allows for glossy reflections in the final bounce, it cannot
model glossy-to-glossy interreflection paths. A recent technique
proposed by [HaSan et al. 2009] uses virtual spherical lights (VSLs)
to overcome this limitation. It exploits GPU shadow mapping and
provides high-quality rendering for glossy scenes; unfortunately,
rendering requires a few minutes per frame.

In this paper we propose a new method to simulate global illu-
mination in scenes that contain semi-glossy materials. We adopt
a many-light approach to sample illumination onto a set of VPLs
spread over the scene. We then build a kd-tree of the VPLs that
represents clusters of lights. This allows for fast hierarchical in-

Figure 1: A screenshot captured at 7 fps with 768 x 512 res., glossy
materials, 2 bounces of indirect lighting, and 2 X2 supersampling.

tegration of unshadowed indirect lighting at a shading point. Our
main contribution is that we explicitly model the directional radi-
ance of each point light with a single reflectance lobe. This is in
contrast to previous work which assumes diffuse points lights. We
then aggregate the directional radiance to interior nodes of the tree
using reflectance filtering. This is computed via a simple convo-
lution method [Toksvig 2005]. As a result, every node in the tree
stores both a diffuse and a glossy radiance component. This al-
lows us to easily extend standard many-light approaches to handle
glossy-to-glossy reflection paths with little additional overhead.

To compute indirect lighting at a shading point, we traverse the light
tree in depth-first order and accumulate illumination hierarchically
using a solid angle criterion. We follow a fixed traversal order to
avoid maintaining a stack on the GPU. The standard traversal can
be quite wasteful at the top levels of the tree, as these levels are
almost always subdivided given their potentially large solid angles.
We solve this problem by computing a min cut of the tree based
on illumination importance. This enforces the traversal to begin on
the min cut, skipping nodes above the min cut. Similarly we also
compute a max cut of the tree to prevent the traversal from going
arbitrarily deep into the tree. As our results show, the min-max
cuts approach can greatly reduce thread divergence, improving the
computation speed with minimal loss in rendering quality.

Finally, to avoid computing indirect lighting for every shading
point, we introduce a new image-space adaptive method to reduce
spatial sampling cost. We perform image subdivision in a top-down
manner. Unlike traditional approaches, we check coherence at each
level independently, and incorporate bilateral method [Sloan et al.
2007] to robustly preserve fine details as well as sharp edges. This
approach also allows for efficient anti-aliasing without significantly
increasing spatial sampling cost.

Our method is implemented entirely on the GPU using CUDA.
Figure 1 shows an example of our rendering simulated at 7 fps.
As no precomputation is required, our method is suitable for dy-
namic scenes. We currently ignore visibility in indirect lighting,
but it’s possible to incorporate a fast visibility approximation such
as [Ritschel et al. 2008, 2009] to enable shadowed indirect lighting.

1.1 Related Work

Researchers have studied global illumination algorithms based on
the rendering equation [Kajiya 1986] for decades. An overview
of offline rendering techniques can be found in standard textbooks
such as [Dutré et al. 2006].

Many-light Rendering. To achieve interactive global illumina-
tion, one common idea is to use a many-light formulation, which
generates a large number of virtual point lights (VPLs) to sample
indirect illumination, and shade visible surface points from these
lights. Instant radiosity [Keller 1997] is the first method that intro-
duced this idea, but its cost is linear to the number of VPLs as well
as shading points. Many improvements have been studied since
then. Lightcuts [Walter et al. 2005] use hierarchical summation and
spatial adaptive sampling to improve the computation to sublinear
cost. Matrix row-column sampling [Hasan et al. 2007] sparsely
samples a large matrix representing the contribution from each VPL
to every shading point. It exploits the low-rank property of such
a matrix. Imperfect shadow maps [Ritschel et al. 2008] uses ap-
proximate visibility to accelerate rendering, and a recent improve-
ment [Ritschel et al. 2009] uses micro rasterization buffer warped
by BRDF importance to more accurately account for glossy reflec-
tions in the final bounce, while still maintaining interactive speed.

Existing many-light methods naturally fit the GPU rasterization
model to achieve impressive rendering speed and quality. How-
ever, they typically assume VPLs to be diffuse, thus cannot model
glossy-to-glossy interreflection paths. Consequently, if the scene
materials have largely no diffuse components, the estimated indi-
rect lighting will be extremely dark, leading to substantial energy
loss. This is the case even if the materials have strong semi-glossy
components, such as shown by Figure 1. A recent technique pro-
posed by [Hasan et al. 2009] uses virtual spherical lights (VSLs)
to overcome this limitation, by keeping track of photons instead of
diffuse point lights. It provides high-quality rendering for glossy
scenes, but is aimed for offline simulation where rendering takes a
few minutes per frame.

A related work is the reflective shadow maps [Dachsbacher and
Stamminger 2005], which treat shadow map pixels projected from
a single primary light as VPLs. Using image-space gathering, this
method enables fast one-bounce indirect lighting. However, it is
still limited to diffuse materials, and using shadow maps to param-
eterize VPLs makes it difficult to handle multiple primary lights.

In contrast to existing methods, we explicitly model the directional
radiance of each VPL as a single reflectance lobe, and we use re-
flectance filtering to aggregate the directional radiance to clusters of
lights. This allows us to efficiently handle glossy-to-glossy reflec-
tion paths, and more accurately simulate scenes where the materials
have small diffuse components. The principle of this idea is simi-
lar to [Sillion et al. 1991] which uses spherical harmonics (SH) to
model the emitted directional radiance. Although SH makes filter-
ing easier due to its linearity, it requires many terms to model even
moderately glossy materials.

GPU-based Photon Mapping. Photon mapping [Jensen 2001]
simulates accurate multi-bounce indirect lighting, but its efficiency
can degrade quickly when glossy materials are present. The first
GPU-based photon mapping algorithm was introduced by [Purcell
et al. 2003] using grid acceleration structures. [Zhou et al. 2008]
implemented an efficient GPU-based kd-tree for interactive photon
mapping; [Wyman and Nichols 2009] adaptively sample caustics
photons to simulate high-quality caustics; [Wang et al. 2009] com-
bine photon mapping with sparse irradiance sampling for global
illumination on the GPU; [McGuire and Luebke 2009] propose an
image-space photon mapping algorithm for fast global illumination

by exploiting both the GPU and CPU. These methods achieve im-
pressive results, but are not efficient for glossy scenes.

Caching and Splatting. Indirect lighting is typically smooth
and thus makes a good candidate for adaptive caching. Irradi-
ance caching (IC) [Ward et al. 1988] is a well-known technique
that progressively caches diffuse irradiance samples and reuses
them along the computation. Radiance caching [Gassenbauer et al.
2009] extends IC by caching directional as well as spatial radiance.
These methods typically require sequential insertion of caching
points, a step that’s not yet suitable for the GPU. [Gautron et al.
2005] propose a GPU-friendly method by splatting radiance sam-
ples in image-space; but this method requires iterative refinement
of caching samples and is not yet interactive. [Wang et al. 2009]
compute irradiance samples in an independent pass to avoid iter-
ations, but they only model diffuse-to-glossy reflections similar to
most many-light methods.

Many techniques exploit image-space coherence by performing
computation only on a subset of pixels selected via subdivision.
Standard top-down subdivision stops whenever a coarser level
patch is found coherent. This can easily miss small geometric
details that pass coarser level tests but not finer level tests. In-
stead, [Nichols et al. 2009] introduced a more effective method
where they simultaneously check every two levels in a single pass
and store the results in an OpenGL stencil buffer. Our method dif-
fers in that we check each resolution level independently. Therefore
ours is more robust in cases where two or more consecutive levels
must all be subdivided. In addition, we use CUDA to avoid relying
on the stencil buffer, allowing for better GPU utilization through
thread compaction.

To reconstruct from sparse samples, linear interpolation does not
work well around sharp edges. Bilateral sampling [Sloan et al.
2007] provides efficient non-linear interpolation by contributing a
sample to its neighbors based on their geometric similarities. While
this preserves sharp edges, current implementations use straightfor-
ward image subsampling (e.g. 4x4) without adaptation [Ritschel
et al. 2009], which can easily lead to missing fine details. Our
method combines bilateral methods with adaptive sampling to more
robustly preserve both fine details and sharp edges.

Multi-resolution Filtering. The idea of multi-resolution filtering
has been frequently used in graphics to reduce sampling noise or
eliminate aliasing artifacts. [Krivanek and Colbert 2008] and [Yu
et al. 2008] both exploit radiance filtering in the illumination to re-
duce Monte Carlo sampling noise. These methods filter diffuse illu-
mination radiance. [Tan et al. 2005] create resolution dependent re-
flectance models for level-of-details (LOD) rendering. They model
directional reflectance as Gaussian mixtures and store the results in
mipmaps. [Han et al. 2007] introduced a frequency space filtering
method for LOD rendering of normal maps. They model normal
distribution functions as mixtures of vMF distributions, and com-
pute reflectance as a convolution. We exploit the principle of re-
flectance filtering, but apply it in many-light problems to model di-
rectional radiance from a cluster of lights. For simplicity, we model
filtered radiance as a single Phong lobe [Toksvig 2005], while it is
possible to incorporate mixtures of lobes in future work.

2 Algorithms and Implementation

As in many-light rendering, we assume indirect illumination comes
from a large set of VPLs denoted as S. Each VPL in the set is
associated with a position, a delta surface area, a normal, and ma-
terial properties. A VPL can be infinitely far away, in which case it
models a directional light with a delta solid angle. We focus on ap-
proximating unshadowed indirect lighting at a shading point caused
by all VPLs S. We assume the direct lighting comes from a few

1t

Primary source

Cluster of lights Filtered directional
radiance

(b)

Figure 2: (a) shows an diagram with our notation. The emitted
radiance from a VPL s; has both a diffuse and a directional com-
ponents. (b) shows the filtered directional radiance.

primary point lights, and is computed directly using GPU shadow
mapping. All our scene materials use Phong BRDFs.

We model the directional (specular) radiance emitted at a VPL s;
as a single Phong distribution:

k+1 R
La(siw) = 1 "= (- di))
where d; is the center direction of the lobe, [, is the magnitude, s
is the Phong exponent, w is an arbitrary direction, and "Q—trl is a nor-
malization factor for Phong. For efficiency, we model the diffuse
radiance of the VPL separately as Ly = [4. So the total emitted
radiance is simply L. = Ls + Lgq.

Ignoring visibility, the reflected radiance at a shading point p in
view direction w, due to illumination from S is computed by:

Lo(p,wo) = Le(si, —wi) fr(wi,wo) (wirmp) Awi (2)
s; €S

where w; = p — s; is the direction from the shading point p to
VPL s;, fr is the shading point’s BRDF, n,, is the normal, and Aw;
is the delta solid angle of s; observed at p. See Figure 2(a) for an
illustration of the notation.

Directly evaluating Eq. 2 is impractical as the number of VPLs can
be very large. Instead, we apply hierarchical summation to reduce
the computation to sublinear cost. Specifically we build a kd-tree
of the VPLs such that the leaf nodes represent individual VPL and
interior nodes represent clusters of VPLs. We use iterative k-means
to create the tree, and our clustering accounts for both position and
normal coherence of the points. For rendering, we traverse the tree
from the root node, estimating the solid angle subtended by each
node and check it against a given threshold. This determines if the
contribution from the current node will be added as a whole and the
traversal continues to the next node, or it needs to be subdivided
and evaluated recursively.

The idea of using point-based illumination and hierarchical summa-
tion has been explored in numerous previous papers such as [Walter
et al. 2005; Ritschel et al. 2009]. If the VPLs are assumed diffuse,
as in much of previous work, each node of the tree only needs to
store a diffuse radiance sum of its children. In our case, however,
each node needs to store an additional directional radiance sum.
therefore we need a fast way of aggregating directional radiance
from the bottom of the tree all the way to the top. To achieve this,
we use an efficient reflectance filtering method described below.

2.1 Reflectance Filtering

Overview. For simplicity, we model the total directional radiance
of a cluster of VPLs as a single Phong distribution. This works well

for semi-glossy materials, which contain no strong high frequen-
cies. For materials with high specularities, it is necessary to use a
mixture of Phong distributions instead. While this is a straightfor-
ward extension, we leave it for future work.

Figure 2(b) shows an example of reflectance filtering. Each VPL in
the cluster contains a radiance lobe centered around a particular di-
rection d;. When a shading point is sufficiently far away, the cluster
can be treated as a single VPL, and the total directional radiance is
simply the sum of each individual lobe. This can be thought of as a
filtering of the individual lobes. Intuitively, the filtered radiance is
now a single lobe with a wider angular spread than any individual
lobe. We need to find out how to compute the filtered lobe.

When the individual lobes are uniform (i.e. with identical magni-
tude and exponent), computing the filtered lobe can be formulated
as a convolution problem. This is similar to the idea of normal map
filtering as introduced in [Toksvig 2005; Han et al. 2007]. Specif-
ically, we model the distribution of lobe center directions d; as a
reflection distribution function (RDF). The RDF describes the dis-
tribution density of the lobe centers, and we use R (w) to denote it.
As an example, if all the lobes are pointing to the same direction,
the RDF will be a delta function. On the other hand, if the lobes
are distributed uniformly randomly, the RDF will be a constant.
Given the RDF, we can compute the filtered lobe as a convolution:
Lg(w) * R(w). Here L denotes the individual lobe (Eq. 1).

To estimate the RDF, we use a method presented in [Toksvig
2005], which approximates the RDF as a spherical Gaussian. As-
sume that a cluster contains M lobes, each with a center direc-
tion d,;. We first compute the unnormalized average of all d;’s as:

d=+; Zj\il d;. The length of this average vector |d| provides an
idea of how widely distributed d;’s are. Specifically, we estimate

the RDF as a spherical Gaussian with the following variance:

2_ 1—1d|
|d|

3

Note that when all d;’s are identical, |(_1| = 1, hence o2 = 0. This
gives a delta function which conforms with our observation before.

With this RDF definition, computing the filtered lobe becomes es-
timating the convolution of a Phong lobe with a spherical Gaussian
distribution. As shown by [Toksvig 2005], a Phong distribution
with exponent & is actually closely approximated by a Gaussian
with variance equal to % Note also that the convolution of two
Gaussians is another Gaussian (whose variance is the sum of the
two input variances), and resulting Gaussian can then be converted
back to a Phong distribution. Putting everything together, the fil-

tered lobe is a new Phong distribution with exponent f:- x, where

1 d|

= = 4
1+kKo2 @

e T <0)

is called a "Toksvig factor’. This factor scales down the original
Phong exponent «, creating a more diffuse lobe (Figure 2(b)).

Nonuniform Lobes. Note that the individual lobes within a clus-
ter are not completely uniform: they differ in their magnitudes and
Phong exponents. Some lobes may also have zero contributions be-
cause they represent VPLs that do not contain specular radiance.
Ideally we should use a mixture of Phong distributions to model
nonuniform lobes. In practice, however, because we assume semi-
glossy materials whose BRDFs are relatively smooth, the difference
in their exponents does not significantly affect the result of convo-
lution. Therefore we filter nonuniform lobes by treating them as

. . - _ 1 M
uniform. First, we compute the average exponent K = b Zi:l Ki

and the average magnitude ls = ﬁ ZZI li. of all non-zero lobes.

(a) (b)

Figure 3: (a) shows the traversal links. Red arrow indicates a skip
link. (b) shows the change of skip links after applying a min cut.

Second, to cope with lobes with different magnitudes, we compute
d as the average of lobe centers, but weighted by each lobe’s magni-
tude (excluding zero lobes). This way, small lobes do not contribute
much to the average lobe direction. Finally, we substitute < and [
in Eq. 1 to define a uniform lobe, and substitute < and d in Eq. 4 to
compute the filtered lobe. This turns out to work well in practice.

Illumination Sampling. We generate VPLs by spreading sample
points uniformly on the scene surfaces; we then build a kd-tree of
the VPLs to form hierarchical clusters. For radiance sampling, we
first sample direct illumination radiance at each VPL (leaf nodes).
Because we use a Phong BRDF to model all materials in the scene,
we can easily compute each VPL’s diffuse and specular radiance
due to direct lighting from the primary lights. We store the exponent
and magnitude of each VPL’s specular radiance lobe, and use GPU
shadow mapping to account for occlusion in direct lighting.

Next, using the reflectance filtering algorithm described above, we
update the filtered radiance at each interior node in the light tree.
The diffuse radiance is simply the average diffuse radiance of all
VPLs belonging to the cluster. For specular radiance, we compute
the VPLs’ average Phong exponent &, magnitude [, and weighted
average of their center directions d, then use Eq. 4 and 1 to estimate
the filtered specular lobe. This process is analogous to building a
mipmap of the illumination.

2.2 lllumination Gathering

To compute the indirect lighting at a shading point, we traverse the
light tree to gather illumination. To avoid maintaining a stack on
the GPU, we use a fixed-order traversal link similar to the method
in [Carr et al. 2006]. Specifically, we lay out the tree nodes in a
1D array by following depth-first traversal order. At each node we
compute and store a skip link which indicates where the traversal
should continue to if the current node passes a solid angle test.

Figure 3(a) shows an illustration. A green arrow indicates the next
node to visit if the solid angle test of the current node fails, thus the
traversal needs to subdivide and visit the children nodes. This fol-
lows the natural layout order of the 1D array. A red arrow indicates
the next node to visit if the solid angle test succeeds (therefore no
need to subdivide). A cross indicates that the traversal is completed.
The traversal links can be easily computed on the fly.

When the solid angle test succeeds at a node, we accumulate the
illumination from the node by treating the whole cluster as a single
VPL. We substitute the average position of the VPLs, the filtered
diffuse radiance as well as specular radiance of the cluster to Eq. 2
to estimate the illumination contribution. We repeat this until the
traversal of the tree is completed.

Multi-Bounce Indirect Lighting. To compute multi-bounce indi-
rect lighting, we use the current set of VPLs to sample illumination;
we then gather illumination at each VPL as a gather point instead of
at every shading point. We use the same hierarchical accumulation
as above. Note that we need to update the specular radiance lobe of

each VPL due to multi-bounce lighting. This can be done by using
the same reflectance filtering algorithms as before.

In the figure on the right, consider that
at a gather point, each VPL cluster in
the tree results in a reflected specular
lobe centered around a different direc-
tion. We can merge these specular lobes
into a single lobe using filtering. To
do so, we compute the unnormalized
weighted average of all reflected direc-
tions, and use Eq. 4 to compute the scale
factor for the exponent. Note that each input lobe has the same ex-
ponent because they are reflected at the same point. We perform
this computation for a number of iterations to include multi-bounce
lighting at the VPLs. Finally, we perform a gathering at every shad-
ing point to simulate the total indirect lighting.

Gather point

Min-Max Cuts. Our tree traversal results in different subdivisions
for different shading points. While this adaptivity is excellent for
accuracy, it also creates several efficiency problems. One is that the
top several levels of the tree are almost always subdivided, given
their potentially large solid angles. Thus, this portion of the traver-
sal is quite wasteful. The second problem is divergent computation
— some shading points only require visiting a few hundred nodes,
while others require very deep subdivisions into the tree. This is
true even for spatially coherent shading points. This divergent com-
putation is ill-suited for the GPU. One solution to eliminate the di-
vergence is to compute a global cut of the tree, forcing every shad-
ing point to use the same set of nodes. However, this solution loses
the adaptivity and produces significant bias in rendering.

Our solution is to compute min-max cuts of the tree to reduce di-
vergent computation while still preserving the ability for adaptive
subdivision. We compute the cuts based on the normal variance of
VPLs in a cluster. For example, every node on the min cut has a
normal variance equal or below a specified threshold o1 ; the same
is true for the max cut but with a different threshold 2. To imple-
ment the min-max cuts in parallel, we compute each node’s normal
variance while building the light tree; we then mark each node as
valid if its normal variance is between o1 and o2, and invalid oth-
erwise. Next we compact the tree to keep only valid nodes and
discard invalid ones. For each valid node, we update its skip link to
point to the next valid node that succeeds the current node in depth-
first order. Figure 3(b) shows an example. To perform the update,
we look at the original skip link: if it points to a valid node, then no
change is made; otherwise, we follow its children nodes in standard
depth-first order (the natural layout of the tree) until we find a valid
node, and change the skip link to that node.

Note that the above parallel algorithm computes the min-max cuts
implicitly: it essentially constructs a forest composed of min-cut
parents and max-cut leaf nodes, and we never have to build the cuts
explicitly. It runs very efficiently on the GPU since every node is
processed in parallel.

2.3 Image Adaptive Sampling

Even with hierarchical summation, computing indirect lighting at
every shading point is still very expensive. Fortunately the indi-
rect lighting in most scenes tends to be smooth, so we can exploit
the spatial coherence by computing indirect lighting at only a sub-
set of screen pixels, reducing the overall computation cost. The
sparsely sampled pixels are then used to reconstruct the remain-
ing pixels using bilateral upsampling [Sloan et al. 2007]. Note that
although the bilateral approach has been used in a number of in-
teractive global illumination papers, these methods typically use
straightforward coarse sampling, such as 4 x4 sampling grids. As

Figure 4: Adaptive sampling. Green dots: sampled pixels; orange
dots: reconstructed pixels using bilateral interpolation.

a result, they can easily miss fine details that fall below or close to
the coarse sampling resolution.

We propose to use adaptive spatial sampling instead. To begin, we
rasterize a deferred shading buffer, storing each shading pixel’s po-
sition p; and normal n;. We use a top-down subdivision of the
image, and start with pixels on a coarse sampling grid, typically
16 16. Once these pixels are shaded, we then subdivide the image
and examine 8 x8 grids: for every pixel on this grid, we evaluate
the following coherence error:

o (Pl 4 /= 30n) 3 et L o)

1
Jk

where ¢ loops over the four nearby grid pixels, p. and n. are the
position and normal of the current (center) pixel, and d is length
of the scene’s bounding box diagonal. Here j and k are pairs of
two out of the four corner pixels on the parent (16x16) grid, and
L, is the luminance of the indirect lighting radiance computed at
the parent pixels. In Figure 4, the red dotted line circles the current
pixel being checked, the black circles its four nearby pixels at the
same level, and the blue circles the four parent pixels.

Intuitively the first term (max;) gives a conservative error estimate
for the position and normal, and the second term gives the error in
sampled radiance from the parent level. A is a normalization factor
that determines the relative importance of the two terms. We found
A = 16 to work well in all our examples. If the coherence error is
above a given threshold (¢ = 0.3 by default), the current pixel has
to be sampled; otherwise the current pixel will be interpolated from
the parent later. After this checking, we collect all pixels that re-
quire sampling by using a parallel list compaction. We then launch
CUDA threads on these pixels to compute indirect lighting. This
allows for better utilization of the GPU since no thread will be idle.

We repeat the above process for the remaining grid levels (4 x4,
2x2, and 1x1). We scale the coherence error threshold € by 2
every time we go down one level. Note that the first term in the
above equation is important for preserving small geometric details.
This is because even if the parent level reports coherent color, this
term can still enforce additional sampling if there are significant
geometric changes detected at a lower level.

Reconstruction. Once the adaptive sampling step is completed,
we reconstruct the image by filling in remaining pixels using bilat-
eral interpolation [Sloan et al. 2007]. Standard bilinear interpola-
tion simply interpolates pixels from samples using bilinear weights.
This is problematic around sharp edges. Bilateral interpolation
computes the contribution of a sample to a point by additionally
considering the geometric similarity between the two. This pre-
vents the interpolation across sharp boundaries.

Our reconstruction algorithm works level by level, starting from the
coarsest level. At each level, we fill in pixels at the current level that
do not already have a sampled value. This is done using interpola-
tion from the four parents in the higher level grid (note that a pixel
that falls on the edge of a higher level grid will only be interpolated

from two parent pixels). To interpolate, we use the bilateral up-
sampling formula from [Sloan et al. 2007], where the weight for a
contributing pixel is computed as the product of the standard bilin-
ear weight, the positional weight, and the normal weight. Because
we perform interpolation top-down, at each level the parent pixels
must all exist, whether they were sampled or interpolated.

2.4 Implementation Details

Generating VPLs. We generate 16K VPLs by directly spreading
sample points on the scene surfaces, and use a CPU-based point re-
pulsion algorithm to uniformly distribute the point. This step is
similar to [Cheslack-Postava et al. 2008]. While we could also
use reflective shadow maps [Dachsbacher and Stamminger 2005]
to generate VPLs, directly sampling the scene makes it convenient
to handle multi-bounce indirect lighting and multiple primary light
sources.

For each VPL we store its position, normal, delta surface area, and
material properties. In addition, we store the triangle it exists on and
the barycentric coords. When an object is dynamically transformed
during rendering, we can use the barycentric coords to quickly re-
compute the associated data of each VPL. Therefore we do not need
to re-sample VPLs on the fly. This works well for rigid body motion
and moderate deformations.

Building the KD-tree. Once the VPLs are generated, we build a
kd-tree by by iteratively splitting the entire set of VPLs into subsets.
We start from the root node, representing the entire set of VPLs, and
split it into two equally sized subsets. We achieve the splitting using
k-means with two clusters and the following distance metric:

i — Pe 2 —2(n; ne
Ip ler ()

dist(i,c) = a2 7

)

which calculates the position and normal differences between a
point ¢ and a cluster center c. We initialize two random cluster
centers ¢; and cg; the for every point we compute dist(i,c1) —
dist(i, c2), and sort the results. The sorting moves points that are
closer to c; to the front of the array and points that are closer to c2
to the back. We then divide the array in the middle, re-calculate the
two cluster centers, and repeat the process for a few iterations to let
the cluster centers converge. Finally, the first and second halves of
the array become the children of the current node, and we repeat the
same process on the subsets until it gets to individual leaf nodes.

Note that because the clustering considers the normal coherence,
VPLs with different normals are likely to be split into different
clusters in the upper levels of the tree. This benefits the reflectance
filtering algorithm because VPLs with coherent normals are likely
to have coherent specular radiance lobes. We implement the tree
building entirely on the GPU. Most steps use mipmap style parallel
reduction; the sorting is performed using a GPU global sort, but we
add a large enough per-cluster offset to make sure that the sorting
of each cluster does not mix with other clusters.

Sample Direct Lighting. We sample shadowed direct lighting on
all VPLs using GPU shadow maps. For each VPL we compute a
diffuse radiance and a specular radiance lobe using the VPL’s mate-
rial property. For scenes that contain multiple primary lights, there
will be multiple specular lobes. In this case, we immediately ap-
ply a reflectance filtering step to merge all lobes into a single lobe.
Next, we follow the tree structure to compute the filtered diffuse
values and specular lobes. These values are recomputed every time
the lighting changes or an object moves in the scene. Finally, we
also compute the normal variance at each cluster in order to create
min-max cuts as described in Section 2.2. This step only needs to
be recomputed every time an object moves.

With 1-bounce indirect

Direct illumination

With 2-bounce indirect Without glossy lobes

Figure 5: Comparison between direct lighting, 1 and 2 bounces of indirect lighting, and without storing glossy lobes. The materials in the
teapot scene have no diffuse components, therefore the indirect lighting comes entirely from glossy-to-glossy reflections.

Scene Adaptive Sampling | Bilateral Sampling Full Sampling Min-max Cuts Full Tree All Leaf Nodes

FPS #Samples | FPS #Samples | FPS #Samples FPS Min Max Avg | FPS Min Max Avg | FPS #Nodes
Kitchen 9 38012 12 49152 1 786432 9 690 994 843 1 1839 8191 6379 0.5 16384
Dining Room 16 18909 14 49152 1 786432 16 522 1020 870 2 835 7694 4981 0.5 16384
Teapot Torus 16 11472 14 49152 1 786432 16 528 1023 906 3 498 8178 4697 0.5 16384
Apartment 12 34362 14 49152 1 786432 12 544 948 784 1 2326 8270 5977 0.5 16384
Piano 17 9475 13 49152 1 786432 16 521 1022 821 3 283 8263 4921 0.5 16384
Motorbike 14 18437 14 49152 1 786432 15 512 981 685 3 170 7901 3107 0.5 16384

Table 1: From left to right: fps and # of samples for adaptive sampling, straightforward bilateral sampling, and full sampling (at every pixel);
Jps and min/max/avg cut size when enabling min-max cuts, disabling min-max cuts (full tree), and brute force with all VPLs (leaf nodes).

Compute Indirect Lighting. We apply our adaptive image sam-
pling algorithm as described in Section 2.3. At each sampling level,
we collect all pixels that need to be computed, and launch CUDA
threads to compute indirect lighting. Due to the use of min-max
cuts, we only need to traverse the portion of the light tree marked as
valid. This allows us to skip many upper level tree nodes since they
are likely to be subdivided anyways; it also prevents the traversal to
go arbitrarily deep into the tree, thus reducing thread divergence.

For all tests we use a default solid angle threshold of 0.02. We
estimate the solid angle of a cluster by treating it as a distant patch
with an area equal to the total surface area of all VPLs in the cluster.
If the cluster is very close to a shading point, we instead treat the
cluster as a disc and look up in a precomputed 2D texture to obtain
an accurate disc-to-point solid angle. We can straightforwardly add
multi-bounce indirect lighting by gathering illumination at VPLs
for one or two bounces, before gathering them at the shading points.

3 Results and Discussions

All timings are reported on an Intel 1.86 Ghz CPU with an NVIDIA
GeForce 280 GTX GPU. We implement our algorithms using
NVIDIA’s CUDA 2.2. All screenshots and videos were captured
at 1024 x 768 resolution, unless specified otherwise. We achieve in-
teractive rates for all test scenes (see Table 1). By default we enable
min-max cuts and image adaptive sampling. Table 1 lists the ren-
dering performance, statistics and comparisons. We typically use
0.02 as the solid angle threshold for tree traversal, and 0.3 as the
coherence error threshold for image adaptive sampling. The nor-
mal variances we apply to compute min-max cuts are: o1 = 40.0
and o2 = 9.0. We generate N = 16K VPLs for all examples. All
materials consist of a diffuse BRDF and a specular Phong BRDF
with exponent between [5,60].

As our rendering algorithm runs entirely on the GPU with no pre-
computation, the user is allowed to make flexible changes while
navigating around the scene. These changes include manipulating
the primary light sources, scene materials, and scene geometry. See
our attached video for demonstration.

Glossy Interreflections. In Figure 5 we compare renderings with
direct lighting, direct plus one and two bounces of indirect light-
ing, and without storing glossy lobes at each tree node. The teapot
scene consists of materials that have no diffuse BRDFs, hence the
indirect lighting comes entirely from glossy-to-glossy reflections.
If we were to model each VPL as a diffuse point light, we would
have lost the indirect lighting completely. The motorbike scene also
demonstrates the effects of preserving glossy lobes of VPLs.

Image Adaptive Sampling. Figure 6 compares our adaptive sam-
pling method vs. standard bilateral sampling (i.e. 4 x4 uniform
subsampling). Note that at about the same performance, adap-
tive sampling produces noticeably better results on both geometry
edges (the motorbike scene) and specular reflections (the kitchen
and apartment scenes). Figure 6 also visualizes the adaptive sample
points computed for these images. Our results have comparable im-
age quality with full sampling, which performs sampling at every
pixel but is significantly slower (1 fps). In contrast, standard bilat-
eral sampling is visibly worse. Note that despite the fact that adap-
tive sampling uses fewer sample points, it can have a higher compu-
tation cost, due to the adaptive sampling overhead. Nonetheless, as
the image resolution increases, the benefit of adaptive sampling be-
comes more obvious, as the cost typically grows sublinearly. This
makes it more efficient for anti-aliasing.

Min-max Cuts. For tree traversal, our min-max cuts can greatly
reduce thread divergence and eliminate wasteful traversals at the
top levels of the tree. When disabling the min-max cuts (i.e. us-

Standard bilateral sampling, 12 fps

Adaptive sampling, 12 fps

Adaptive sampling, 14 fps

Standard bilateral sampling, 15 fps

Standard bilateral sampling, 14 fps

Full sampling, 1 fps Adaptive sample points

Full sampling, 1 fps

Adaptive sample points

Full sampling, 1 fps

Adaptive sample points

Figure 6: Comparing adaptive sampling vs. straightforward bilateral sampling and full sampling at every shading point.

ing the full tree), we found that most threads only need to visit a
few hundred nodes, but some threads require visiting 6000~8000
nodes. This divergence can significantly decrease the performance
of the GPU, to a point where we would rather do brute force sum-
mation over all individual VPLs. Table 1 shows the performance
comparisons. For the min-max cuts method, we also list the mini-
mum/maximum/average number of nodes visited per shading point.

We observe that when the BRDFs are smooth, the min-max cuts
method provides comparable image quality with the brute force
method that sums over all individual VPLs. On the other hand,
when the BRDFs are sharp, the min-max cuts method can lose de-
tails in specular highlights, due to clamping of tree traversal at the
max cut. This can be seen in the first row of Figure 7, where we
compare the min-max cuts with the brute force method. Note the
specular reflections on the metal bowl in the kitchen scene, and the
reflections of the keys in the piano scene. These specular highlights
are largely missing with our method. In addition, as can be seen
around the spotty reflections in the brute force images, 16K VPLs
(drawn in the brute force images) are often insufficient for highly
specular BRDFs. This causes artifacts where we can see reflec-
tions of individual VPLs. This could be improved by increasing the
number of VPLs or a better VPL distribution. However, for sur-
faces with semi-glossy specularity, our method provides renderings
that are overall very close in to the brute force method, but at 20
times the performance.

Multi-bounce Indirect Lighting. The second row of Figure 7
compares the differences between direct lighting only, with one,
two, and three bounces indirect lighting added. The room of the
scene has a specular BRDF component, therefore the indirect light-
ing on the piano exhibits noticeab glossy-to-glossy reflections.

Teaser Image. Figure 1 is an image of the kitchen scene rendered
at 7 fps with two bounces of indirect lighting. We apply 2 <2 super-
sampling to reduce aliasing artifacts on the image edges. This scene

is rendered at 15361024 resolution with adaptive sampling, then
downsampled to 768x512 resolution. Due to the adaptive sam-
pling, the increase in sampling resolution does not significantly de-
crease the frame rates.

4 Conclusions and Future Work

In this paper, we present an efficient method using reflectance filter-
ing to simulate interactive global illumination in scenes that contain
semi-glossy materials. Unlike previous approaches, we explicitly
model the directional radiance of each VPL using a single Phong
lobe, then use reflectance filtering to update the directional radiance
of a cluster of VPLs. We also propose using min-max tree cuts to
further improve the efficiency of standard tree traversal. To reduce
spatial sampling cost, we introduce a new hierarchical image-space
adaptive method, which combines level-independent sampling with
bilateral interpolation to robustly preserve fine details as well as
sharp edges. Our method is implemented entirely on the GPU us-
ing NVIDIA’s CUDA, thus is suitable for dynamic scenes.

In future work, we plan to extend our approach to model the direc-
tional radiance with a mixture of Phong lobes, thereby improving
the accuracy of our method in case of highly glossy materials. We
would also like to incorporate fast visibility approximation to com-
pute shadowed indirect lighting. Finally, we would like to improve
the quality of our renderings by using a more efficient anti-aliasing
method other than straightforward supersampling.

References

CARR, N. A., HOBEROCK, J., CRANE, K., AND HART, J. C.
2006. Fast gpu ray tracing of dynamic meshes using geometry
images. In Proc. of GI 06, 203-209.

1-bounce indirect

Direct illumination

2-bounce indirect 3-bounce indirect

Figure 7: First row: comparison of min-max cuts with a brute force method that sums over all individual VPLs; second row: comparison of
direct lighting with one, two, and three bounces of indirect lighting added.

CHESLACK-POSTAVA, E., WANG, R., AKERLUND, O., AND
PELLACINI, F. 2008. Fast, realistic lighting and material de-

sign using nonlinear cut approximation. ACM Trans. Graph. 27,
5, 1-10.

DACHSBACHER, C., AND STAMMINGER, M. 2005. Reflective
shadow maps. In Proc. of I3D °05, 203-231.

DUTRE, P., BALA, K., AND BEKAERT, P. 2006. Advanced Global
Illumination, second edition. A. K. Peters, Ltd.

GASSENBAUER, V., KRIVANEK, J., AND BOUATOUCH, K. 2009.
Spatial directional radiance caching. Comput. Graph. Forum 28,
4, 1189-1198.

GAUTRON, P., KRIVANEK, J., BouaTOUCH, K., AND PAT-
TANAIK, S. N. 2005. Radiance cache splatting: A gpu-friendly
global illumination algorithm. In Rendering Techniques, 55-64.

HAN, C., SUN, B., RAMAMOORTHI, R., AND GRINSPUN, E.
2007. Frequency domain normal map filtering. ACM Trans.
Graph. 26, 3, 28.

HASAN, M., PELLACINI, F., AND BALA, K. 2007. Matrix
row-column sampling for the many-light problem. ACM Trans.
Graph. 26, 3, 26.

HASAN, M., KRIVANEK, J., WALTER, B., AND BaLA, K.
2009. Virtual spherical lights for many-light rendering of glossy
scenes. ACM Trans. Graph. 28, 5, to appear.

JENSEN, H. W. 2001. Realistic image synthesis using photon map-
ping. A. K. Peters, Ltd.

KAJrya, J. T. 1986. The rendering equation. In Proceedings of
SIGGRAPH ’86, 143-150.

KELLER, A. 1997. Instant radiosity. In Prof. of SIGGRAPH ’97,
49-56.

KRIVANEK, J., AND COLBERT, M. 2008. Real-time shading with
filtered importance sampling. Computer Graphics Forum 27, 4.

MCGUIRE, M., AND LUEBKE, D. 2009. Hardware-accelerated

global illumination by image space photon mapping. In Proc. of
HPG 09, T7-89.

NICHOLS, G., SHOPF, J., AND WYMAN, C. 2009. Hierarchical
image-space radiosity for interactive global illumination. Com-
put. Graph. Forum 28, 4, 1141-1149.

PURCELL, T. J., DONNER, C., CAMMARANO, M., JENSEN,
H. W., AND HANRAHAN, P. 2003. Photon mapping on pro-
grammable graphics hardware. In Proc. of Graphics Hardware,
41-50.

RiTSCHEL, T., GrRoscH, T., KimMm, M. H., SEIDEL, H.-P.,
DACHSBACHER, C., AND KAUTZ, J. 2008. Imperfect shadow
maps for efficient computation of indirect illumination. ACM
Trans. Graph. 27,5, 1-8.

RITSCHEL, T., ENGELHARDT, T., GROSCH, T., SEIDEL, H.-P.,
KAUTZ, J., AND DACHSBACHER, C. 2009. Micro-rendering
for scalable, parallel final gathering. ACM Trans. Graph. 28, 5,
to appear.

SILLION, F. X., ARvO, J. R., WESTIN, S. H., AND GREEN-
BERG, D. P. 1991. A global illumination solution for general
reflectance distributions. In Proc. of SSIGGRAPH 91, 187-196.

SLOAN, P.-P., GOVINDARAJU, N. K., NOWROUZEZAHRAI, D.,
AND SNYDER, J. 2007. Image-based proxy accumulation for
real-time soft global illumination. In Proc. of Pacific Graphics
07,97-105.

TAaN, P., LIN, S., QUAN, L., GUo, B., AND SHUM, H.-Y. 2005.
Multiresolution reflectance filtering. In Rendering Techniques,
111-116.

ToksViIG, M. 2005. Mipmapping normal maps. Journal of Graph-
ics Tools 10, 3, 65-71.

WALTER, B., FERNANDEZ, S., ARBREE, A., BALA, K.,
DONIKIAN, M., AND GREENBERG, D. P. 2005. Lightcuts:
a scalable approach to illumination. ACM Trans. Graph. 24, 3,
1098-1107.

WANG, R., WANG, R., ZHOU, K., PAN, M., AND Bao, H. 20009.

An efficient gpu-based approach for interactive global illumina-
tion. ACM Trans. Graph. 28, 3, 1-8.

WARD, G. J., RUBINSTEIN, F. M., AND CLEAR, R. D. 1988.
A ray tracing solution for diffuse interreflection. In Proc. SIG-
GRAPH 88, 85-92.

WYMAN, C., AND NICHOLS, G. 2009. Adaptive caustic maps
using deferred shading. Comput. Graph. Forum 28, 2, 309-318.

Yu, X., WANG, R., AND YU, J. 2008. Interactive glossy reflec-
tions using gpu-based ray tracing with adaptive lod. Comput.
Graph. Forum 27,7, 1987-1996.

ZHOU, K., Hou, Q., WANG, R., AND GUO, B. 2008. Real-time
kd-tree construction on graphics hardware. ACM Trans. Graph.
27,5, 1-11.

