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Abstract

We investigate if WiFi access can be used to aug-
ment 3G capacity. To understand the feasibility
of 3G augmentation, we conduct a detailed study
of 3G and WiFi access from moving vehicles, in
three different cities. We find that the average 3G
and WiFi availability across the testbeds is 87%
and 11%, respectively. We also find that, unlike
stationary environments, WiFi throughput is lower
than 3G throughput in mobile environments, and
WiFi loss rates are higher. We then design a system,
called Wiffler, that uses two key ideas—Ileveraging
delay tolerance and fast switching. For delay toler-
ant applications, Wiffler uses a simple model of the
environment to predict WiFi connectivity, and de-
lays applications to offload more data on WiFi. But
Wiffler delays applications only if it results in 3G sav-
ings. For applications that are extremely sensitive
to delay or loss (e.g., VoIP), Wiffler quickly switches
to 3G if WiFi is unable to successfully transmit the
packet within a small time window. We implement
and deploy Wiffler in our vehicular testbed. Both
our implementation and trace-driven experiments
show that Wiffler significantly increases 3G savings.
For example, for a realistic workload, Wiffler reduces
3G usage by 40% for a delay tolerance of 60 seconds.

1. INTRODUCTION

Mobile Internet access today is suffering the curse
of popularity. The ubiquitous deployment of cel-
lular data networks has drawn millions of users to
these networks, which is in turn creating immense
pressure on the limited spectrum of these networks.
Subscribers, especially in big cities, are experienc-
ing deteriorating 3G quality because the network
cannot cope with the high demand [28]. Our own
measurements too (§2.4) indicate that limited 3G
spectrum today is hurting performance.

In response to this pressure, wireless providers are
using methods such as imposing a limit of 5GB per
month [24] and “educating” their users on “respon-

sible” access [26]. We believe that such methods
are in the end ineffective or at least insufficient.
They are against the tide of users’ desire for greater
consumption.

We investigate the feasibility of a different method
— augmenting 3G using WiFi. At least one wireless
provider is offering incentives to its subscribers to re-
duce their 3G usage by switching to WiFi at home [1].
In addition to reducing pressure on 3G spectrum,
such as augmentation also reduces the per-byte cost
of data transfers, by 70% per one estimate [2].

In this paper, we focus on vehicular Internet ac-
cess, a particularly challenging case for mobile con-
nectivity. An increasing number of users today ac-
cess the Internet from moving vehicles, either di-
rectly through their personal devices or through
proxies inside transit vehicles [6,14]. A range of
other devices, such as navigation units, also need
such connectivity.

However, using WiFi networks from moving ve-
hicles is challenging. WiFi APs have a short range
and are generally not deployed to provide coverage
to roads. Even when APs are in range, the quality of
connectity may be poor [12,15]. Thus, it is unclear if
WiFi can usefully augment 3G, while providing the
ubiquity and reliability that 3G subscribers expect.

To understand feasibility, we conduct a detailed
study of joint 3G and WiFi access from moving
vehicles, in three different cities. We find that on
average 3G access is available 87% of the time, while
WiFi access (through open APs) is available only
11% of the time. Interestingly, we find that their mu-
tual availability is negatively correlated. In places
where 3G is unavailable, WiFi is available roughly
half the time. Thus, the combination is more avail-
able than if the two had independent availabilities.
However, we also find that in half of the locations
where WiFi is available, its throughput is much less
than 3G. WiFi also experiences a much higher loss
rate than 3G. To our knowledge, our study is the
first joint characterization of 3G and WiFi; prior



work has measured the performance of one or the
other [12,17].

In summary, our study suggests that straightfor-
ward methods to combine the two will reduce 3G
load by at most 11%, and even that will come at
the expense of poor application performance.

We design a system called Wiffler to overcome
these availability and performance challenges. Its
two key ideas are leveraging delay tolerance and fast
switching to 3G. Our starting point is the observa-
tion that many applications such as email or file
transfer can afford to delay data transfers without
significantly hurting user experience. Wiffler lever-
ages this observation to trade-off application latency
for 3G usage. Instead of transmitting data imme-
diately, it waits for WiFi to become available. But
by using a simple method to predict WiFi future
throughput, it delays data only if 3G savings are
expected. Additionally, so that the performance
of delay and loss sensitive applications is not hurt,
Wiffler quickly switches to 3G if WiFi is unable to
successfully transmit the packet within a small time
window.

We implement and deploy Wiffler on a vehicular
testbed. We evaluate its Wiffler using this deploy-
ment and trace-driven simulations. In our deploy-
ment, we observed that for transfers of size 5SMB
that can be delayed by at most 60 seconds, Wiffler
reduces 3G usage by 30%. In simulation using realis-
tic workloads, we find that Wiffler reduces 3G usage
by over 40% for a 60 second delay tolerance. Be-
cause of it’s wait-only-if-it-helps strategy, the actual
transfer latency is increased by only 7 seconds on av-
erage. For a VoIP application, we find that the fast
switching mechanism in Wiffler increases the time
periods with good VoIP quality by 42%, compared
to a system that switches to WiF1i irrespective of its
quality. More importantly, the increase in quality
is achieved even when 40% of the VoIP traffic was
sent over WiFi.

2. MEASUREMENT

The goal of this work is to augment 3G networks
using opportunistic WiFi. As a first step, we conduct
a measurement study to jointly study the 3G and
WiFi network characteristics. Specifically, we seek
to answer the following questions: (i) What is the
availability of 3G and WiFi networks as seen by a
vehicular user? and (%) What are the performance
characteristics of these two networks?

We conducted measurements in three geographi-
cally separate outdoor testbeds that include effects
present in real vehicular settings, such as noise, fad-
ing, interference, occlusions, and traffic patterns.

In this paper, we refer to the three testbeds as—
Amherst, Seattle and Sfo.

2.1 Testbeds and methodology

Ambherst is located in Ambherst, MA, a college
town and consists of 20 public transit vehicles that
are equipped with a computer, an 802.11 radio, a 3G
data modem, and a GPS unit. The 3G modem has
HSDPA-based service via AT&T. Each vehicle runs
two main programs. The first program scans the
WiFi and 3G channels simultaneously and obtains an
IP address whenever a connection is available. Con-
nection availability is verified by pinging a known
server. The vehicles in Amherst encounter more
than 100 unique open WiFi APs each day. Once a
connection is established, the second program sends
and receives data. Both our server and the vehicle’s
computer log the characteristics of the duplex data
transfer on the WiFi and the 3G interfaces.

The vehicles visit the same location multiple times
each day. This set up allows us to analyze the sta-
tionarity of WiFi or 3G availability with respect to
location and time of day. We collected more than
3000 hours of measurement data from Amherst over
12 days. In all, over 500 GB of data was trans-
fered over WiFi and 3G during the course of the
experiment.

Seattle and Sfo are located in Seattle, Washington
and San Francisco, California respectively. Both
testbeds consist of one vehicle that is equipped with
the exact hardware and software as the vehicles in
Ambherst. Measurements on Seattle include large
portions of highway driving and we present results
for data collected over 6 days. From the single
vehicle, about 5GB of data was sent and received
over the course of the experiment. Sfo is located
in a metropolitan environment and we conduct a
smaller scale measurement study in Sfo, and collect
data for 3 days.

2.2 Availability

To measure availability, the vehicle and the server
periodically send data to each other over UDP. Avail-
ability is measured over 1 second intervals. In each
interval, an interface (WiFi or 3G) is considered
available if at least one packet was received in the
interval. Availability is defined as the number of
intervals when the interface was available divided
by the total number of intervals.

2.2.1 Availability in the three testbeds

Fig. 1 shows that in Amherst, availability of 3G
is 90% and that of WiF1i is 12%. Interestingly, the
percentage of time neither 3G or WiFi is available
is only 5%. In other words, when only 3G network
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2: 3G and WiFi availability in Amherst at longer time
intervals. The data are averaged all 8 days. Vertical
bars show the 95% confidence interval.

is considered, the network is unavailable 10% of the
time. But by combining WiFi and 3G, network un-
availability is reduced to 5%, providing a reduction
of over 50% in unavailability.

The combination of WiFi and 3G reduces unavail-
ability significantly because of a negative correla-
tion between the availability of 3G and WiFi. In
Ambherst, WiFi availability is 12%, out of which 5%
of the time WiFi is available when 3G is not avail-
able. Note that if WiFi and 3G availability were
completely independent, the overall unavailability
even when both 3G and WiFi are combined would
be (1 —0.90)(1 — 0.12) = 9%.

Fig. 1 shows that the negative correlation between
3G and WiFi is not specific to Amherst, but can
be observed both in Seattle and Sfo. In Seattle,
3G availability is only 82%, and the average WiFi
availability is 10%. When 3G and WiFi are both
considered, network unavailability is 11%. Again,
if only the 3G interface is used, the unavailability
would be 18%. Similarly, in Sfo, 3G availability is
89% leading to an unavailability of 11%. But when
combined with WiFi, the total unavailability reduces
to 5%. In summary, in all three testbeds, network
unavailability is reduced by over 50% by combining
WiFi and 3G compared to using 3G alone.

For less-demanding applications, such as email or
file transfer, intervals longer than 1 second are more
appropriate for measuring availability. Fig. 2 shows
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3: Comparing the total data sent over WiFi versus 3G in
each grid location. The grid size is 0.5 miles x 0.5 miles.
Results are averaged over all data collected in Amherst.

the availability of 3G and WiFi for the moving vehi-
cles over larger time intervals, from 5 to 60 seconds.
The results are based on Amherst measurements.
3G is available (i.e., at least one packet is received in
an interval) close to 98% of the time with 60-second
intervals. The availability of WiF1i also increases to
30% with 60-second intervals. We observed qualita-
tively similar effects in Seattle and Sfo (not shown
in Figure).

2.2.2  Spatial distribution of 3G/WiFi availability

Using data collected in Amherst, we study the
geographical distribution of 3G and WiFi availability.
The goal of this study is to characterize the locations
where WiFi can augment 3G connectivity. We divide
the geographical area into grids and compute the
total data transfered over the 3G and WiFi per unit
time spent in the grid, averaged over a day.

Fig. 3 compares the performance of 3G and WiFi
at different grid locations. In all, there were 120
grid locations in which packets were received on
either WiFi or 3G at least once. In 47% of the grid
locations, the total data sent on WiF1i is insignificant
compared to the data sent over 3G. In the remaining
53% of the grid locations, at least 20% of the 3G
data could be shifted to WiFi. In 9% of the grid
locations, equal or more data was sent over WiFi
than 3G, i.e., all 3G traffic could be offloaded to
WiFi.

2.3 Performance

We measure three performance characteristics—
capacity, loss rate and TCP throughput. To measure
the upstream and downstream capacity, the vehicle
and server each send 10 back-to-back 1500-byte pack-
ets every 20 ms. We measure capacity in all three
testbeds. To measure the upstream and downstream
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4: 3G and WiFi capacity and throughput measurements.

loss rates, the vehicle and server each send a 20-byte
packet every 100 milliseconds. To measure TCP
throughput, the vehicle and the server each create a
TCP connection and send 100KB data to each other
repeatedly. At the end of a 100KB transfer, the
TCP connection is closed and a new connection is
created. We measure loss rate and TCP throughput
only in Amherst. All performance results are based
on at least 3 days of measurement data.

2.3.1 Capacity

Figure 4 shows the 3G and WiFi upstream and
downstream capacity. All CDFs are generated us-
ing capacity measurements over 1-second intervals.
They include points only for intervals with non-zero
throughput, and so the 3G lines have almost 10
times as many points as the WiFi lines.

In the upstream direction, 3G and WiFi achieve a
median capacity of 850 Kbps and 400 Kbps respec-
tively in Amherst (Fig. 4a). The median upstream
capacity is similar in Seattle. In both testbeds the
median WiFi capacity is about half of the median
3G capacity, but the top 20th percentile of WiFi
outperforms 3G.

In the downstream direction, shown in Figures. 4(c)
4(d), the median 3G capacity is again about 2 times
the WiF1i capacity. For example, in Amherst, we ob-
serve a median 3G capacity of 1Mbps and a median
WiFi capacity of 500Kbps.

2.3.2 TCP Throughput

Figures 4(e) and 4(f) compare the upstream and
downstream TCP throughput of 3G and WiFi in
Ambherst. In the upstream direction, the median
values of 3G and WiFi throughput are 500 Kbps and
200 Kbps, respectively. In the downstream direction,
the median values of 3G and WiFi throughput are
600 Kbps and 280 Kbps, respectively. We note that
the median TCP throughput is only about half of the
median capacity of both the 3G and WiFi networks.
However the relative TCP performance of 3G versus
WiFi is similar to the relative capacity performance.

Taken together with the capacity measurement,
the results above suggest that the throughput per-
formance of WiFi in mobile outdoor environment is
poorer than 3G. The result points to an important
difference between stationary and mobile environ-
ments. In typical stationary settings, WiFi through-
put is significantly higher than 3G throughput.

2.3.3 Loss rate

Figs. 5 shows the loss rates over 1-second intervals
for 3G and WiFi in Amherst. We see that 3G loses
no packets in 93% of the interval. WiFi has no packet
loss in 78% of the interval but loses all packets in
12% of the intervals. In other words, in 90% of the
intervals WiFi delivers no packet or delivers all of
them. This behavior is consistent with prior studies
that have shown that WiF1i losses are bursty in both
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indoor and vehicular settings [3,25]. These bursty
losses make it challenging to offload to WiFi data
from applications with QoS requirements such as
VoIP or video conferencing.

2.4 Spectrum pressure in 3G

Using measurements from Amherst and Seattle,
we present evidence to show that 3G spectrum is
limited and the performance of 3G networks suffer
during periods of high spectrum use. We conduct a
simple experiment where we study 3G availability
with respect to time of day. In particular, we study
the availability during peak and off-peak periods. We
define peak periods to be between 8.00 am and 9.00
pm and off-peak periods to be 9.00 pm to 8.00 am.

The vehicles in Amherst are operational during
both peak and off-peak hours, but the vehicles are
scheduled to operate in a smaller set of locations
during off-peak hours. For a fair comparison, we
only consider locations where the vehicle operates
both during the peak hours and off-peak hours. We
perform the experiment using 4 days of data when
the vehicles was operational both during peak and
off-peak hours for at least 30 minutes. In Seattle,
we present the average availability during peak and
off-peak for 2 days. Again, the 2 days represent days
when the vehicle was operational both during peak
and off-peak hours for at least 30 minutes.

Figure 6 shows the 3G availability during peak
and off-peak hours in Amherst and Seattle. 3G
availability during off-peak hours in Amherst is 9%
more than the availability during peak hours. The
number of users accessing the 3G network is likely
to be significantly higher during the peak periods
compared to the off-peak periods. Figure 6 shows
that the difference in availability between peak and
off-peak hours extends to Seattle as well and the
availability during off-peak hours is 6% more than
the availability during peak-hours.

2.5 Summary

In summary, the measurement study shows that
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6: Comparing 3G and WiFi availability during peak and
off-peak hours in Amherst and Seattle.

e A non-trivial amount of WiFi is available, but
the availability is an order of magnitude poorer
than 3G.

e Unlike stationary environments, WiFi through-
put is much lower than 3G throughput. The
WiFi loss rate performance is also poorer com-
pared to 3G. Therefore, leveraging WiFi to
augment 3G may incur performance penalties.

e The availability of 3G is lower during certain
times of the day when the number of users in
the network is likely to be high, that indicates
that limited 3G spectrum today is hurting net-
work performance.

Finally, our measurement results are consistent
across three geographically diverse environments.

3. Wiffler: AUGMENTING 3G USING WIFI

The goal of Wiffler is to reduce 3G usage by lever-
aging opportunistic WiFi, but to do so without af-
fecting application performance. The simplest policy
for using WiF1i is to send data on the WiFi network
when available and switch to the 3G network when
WiFi is unavailable.

Results from our measurement study show that
this simple policy does not work well in practice
because of two key challenges. First, the average
availability of WiFi in our measurement is only 11%,
and therefore at most 11% of the data can be of-
floaded to WiFi. Second, WiF1i loss rate is higher
than 3G. For applications that are sensitive to losses,
such as VoIP, using WiF1i irrespective of its loss char-
acteristics will degrade application quality.

Wiffler uses two ideas to address these two chal-
lenges: Leveraging delay tolerance and Fast switching
to 3G. The key insight in leveraging delay tolerance is
that delay tolerance allows applications to trade-off
completion time for 3G usage. A user may be willing
to tolerate a few seconds delay to send their email
or complete a file transfer if it results in 3G savings.
Wiffler leverages delay tolerance to reduce 3G usage,
but only delays an application if the added delay



results in 3G savings. Today, commodity phones
such as IPhones provide an interface to specify appli-
cation delay tolerance, but for energy benefits. For
example, an IPhone user can set a delay tolerance
threshold of 15 minutes, and new emails will begin
downloading within a delay of up to 15 minutes.

For applications with strict quality of service re-
quirements, Wiffler uses the fast switching mech-
anism. Wiffler uses 3G whenever WiFi is unavail-
able; when using WiFi connectivity, Wiffler promptly
switches the packet over to 3G if WiFi fails to deliver
it in a certain time period.

API Wiffler takes as input application data,
which is characterized using S, the size of the trans-
fer, D, the delay tolerance and an application-specified
QoS metric. Based on these characteristics and those
of the operating environment, it decides how to dis-
tribute the data across 3G and WiFi.

Our characterization of application data is flexible
as a wide range of applications can be mapped to
it. For example, a VoIP application might request
(every 20 ms) for transferring a packet of 20 bytes
with a delay tolerance threshold of 0 and a strict
QoS requirement. A Web transfer might be 100 KB
with a delay tolerance threshold of 20 seconds and
no QoS requirement.

3.1 Leveraging delay tolerance

For applications that can tolerate small delays,
the goal of Wiffler is to offload as much data to the
WiFi interface as possible. The simplest solution
is to wait until the delay tolerance threshold to
opportunistically transfer data on the WiFi when
available, and to transfer the remaining data on
3G. However, this simple solution may significantly
increase the completion time even when there is
no 3G savings. For example, consider a scenario
when there are no WiFi APs available until the
delay tolerance threshold. The application will wait
until the delay tolerance threshold for a WiFi offload
opportunity even though delaying the transfer does
not provide any 3G savings.

Wiffler uses WiFi throughput prediction to decide
if data transfer should be delayed. Wiffler delays
transfers only if the prediction indicates that de-
laying transfer will result in 3G savings. Wiffler’s
prediction method is described in Section 3.3. For
now, assume that we have a predictor that yields
a (possibly erroneous at times) estimate of WiFi
throughput until a future time.

Wiffler uses the predictor to estimate offload ca-
pacity of the WiFi network until the delay tolerance
threshold. The decision to either wait for a potential
WiF1i offload opportunity or to send immediately on

D: earliest deadline among queued transfers
S: size in bytes to be transferred by D
W: estimated WiFi transfer size

if (WiF1i is available):

e send data on WiFi and update S
if (W < S-cand 3G is available):

e send data on 3G and update S

7: Wiffler's prediction-based offloading.

3G is made based on the predicted WiFi capacity
and the application workload. For example, one
possible strategy is to wait for WiFi only if all of the
application data can be transfered over WiF1i before
the delay tolerance threshold. Since the estimate can
be wrong, an alternative, more conservative strategy
is to wait for WiFi only if the predictor estimates
that twice the application data can be transfered
over WiF1i before the delay tolerance threshold. The
completion time versus 3G savings trade-off for these
two strategies are clearly different.

To capture this trade-off, we introduce a tuning
parameter called the conservative quotient. The
conservative quotient is a number between 0 and
Infinity and for a given conservative quotient ¢, the
Wiffler offloading algorithm is shown in Figure 7.
The algorithm considers the total data S that needs
to be transfered within the earliest delay tolerance
threshold, and the total data the node can transfer
on WiFi, W. The next two steps are done in parallel.
If WiFi is available, we use it immediately to transfer
data. 3G connectivity is used only if we estimate
that W <85 -c.

If ¢ < 1, Wiffler will wait for WiFi offload oppor-
tunity even if only a fraction ¢ of the total applica-
tion data can be transfered on WiFi in expectation.
Therefore, this strategy will ofload more data on
WiFi at the expense of completion time. On the
other hand, if ¢ > 1, Wiffler waits for WiFi only if
the WiFi capacity is substantially more than the
load. Therefore, the completion time of the strat-
egy is likely to be lower, but it also has a lower
offload potential. Unless stated, we set ¢ =1 in our
experiments.

The conservative quotient can be set not only by
the system or the application but also by the 3G
provider. For example, during peak times when 3G
spectrum pressure is high, the provider may decide
to offload more data on WiFi at the expense of
application latency and set ¢ to a small value. But
during the off-peak times, ¢ can be set to a large
value to improve application latency.

3.2 Fast switching to 3G



Applications such as video streaming and VoIP
are sensitive to even small delays and losses. Because
of a higher chance of loss, using WiFi to transfer
such data can hurt application performance. Thus,
if WiFi is losing or delaying such packets, we should
send them on 3G as soon as possible.

Wiffler uses low-level, link-layer information to
enable fast switching to 3G in the face of poor WiFi
conditions. Link layer information is needed because
the WiFi NIC frequently takes a long time to com-
plete retransmission attempts. For instance, the
driver that we use in our testbed (Madwifi) retries
packets 11 times, which even if we ignore medium ac-
cess delays takes more than 120 milliseconds with the
default 802.11b specification. This delay can affect
performance of applications such as VoIP. Chang-
ing the default retransmission limit is not desirable
either since other applications may actually desire
retransmissions. Additionally, because of variable
medium access delays, a low retransmission limit
does not guarantee that WiFi would deliver the
packet or declare failure in a timely manner.

Our fast switching mechanism is simple: it sends
the packet on 3G if the WiFi link-layer fails to
deliver the packet within a delay threshold. The
motivation for this algorithm is that waiting for
WiFi link-layer retransmissions incurs delays. In
addition, when a packet is lost, there is a high chance
that the retransmission will fail, since losses are
bursty in the vehicular environment [3,25]. Thus,
it is better to send time-sensitive packets on 3G
rather than waiting for likely more failures on WiFi.
Choosing the delay threshold involves a trade-off
between better application performance and sending
less data over the 3G network. In Section 6, we
analyze this trade-off in more detail.

3.3 WiFi throughput prediction

Our WiFi throughput prediction is based on an
estimate of the average throughput offered by an AP
and a prediction of when APs will be encountered.
The former is learned based on historical values
observed.

Our prediction of AP encounters is based on the
observation that AP meetings occur in bursts. That
is, if the mobile node meets APs frequently (e.g.,
because it is in a dense urban area with many APs),
then the node is likely to meet the next AP within
a short time interval. Similarly, if the mobile node
hasnt met an AP for a long period of time (e.g.,
because it is on a highway), then the node is unlikely
to meet an AP within a short time interval. An
analysis of our measurement data shows that AP
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predicted by the model and the number of AP meetings
observed in the measurement. Based on measurements
collected from Amherst and Seattle. Vertical bars shows
the 95% confidence interval around the mean.

meetings in reality indeed have this property.

Based on this observation, we use a simple pre-
diction method based on history. The mobile node
keeps track of the last n AP encounters and com-
putes the average time between the encounters. The
model predicts the expected time to meet the next
AP as the average inter-meeting time of the past
encounters.

We study the accuracy of the model using the
traces we gathered from our testbeds. Figure 8
shows the AP meeting prediction error for different
values of n as a function of the prediction interval.
We compute the actual number of AP meetings from
the measurement data by averaging, over sliding
windows of size 10 seconds, the number of APs that
a vehicle meets within a specified time interval.

Figure 8(a) shows that if the prediction is based
on only one previous AP meeting, (n = 1 in the fig-
ure), the prediction accuracy is low. The prediction
error is close to 20% even for predicting AP meetings
for small future interval of 20 seconds. On the other
hand, when prediction is based on the previous 4 or
8 AP encounters, the prediction error is less than 5%
up to a prediction interval of 50 seconds. The predic-
tion error increases to 20% for a 100 second interval.
Figure 8(b) shows that the model extends to the
Seattle testbed as well. We find that the accuracy of



prediction based on 8 previous meetings is similar
to 4 previous AP meetings. In our experiments we
predict based on 4 previous AP meetings.

Our simple prediction model allows us to estimate
the WiFi offload capacity with no pre-programmed
knowledge about the environment. More compli-
cated prediction models that use additional informa-
tion about the environment exist in the literature.
For example, if the AP locations are available a
priori, then the WiFi offload capacity can be pre-
dicted by predicting user mobility, instead of AP
prediction [10,19]. In Section 6, we show that the
marginal improvement in performance obtained by
using AP location information is small.

4. Wiffler IMPLEMENTATION

We implemented Wiffler on the same platform that
we use in our measurement study.

4.1 Prediction-based offloading

We implemented the offloading protocol described
in Figure 7 that uses history-based prediction to
predict WiFi throughput. Given pending data, at a
1-second interval, the vehicle runs the Wiffler offload
algorithm to determine if data is to be sent /received
over WiFi or over 3G. The vehicle and the server
log delivery information. The destination server
also acts as a proxy to manage data coming from
different IP addresses. We note that proxy support
is not needed for some applications. For instance, for
HTTP, the client can use range requests to control
when and how much data arrives on each interface
using two separate connections.

4.2 Fast switching

To implement Wiffler fast switching, we added
a signaling mechanism in the mobile node’s driver
that signals the application when the wireless card
receives a link layer acknowledgement. The signal
contains the ID of the acknowledged packet. The
application matches the acknowledgement with its
outstanding packets. If the application does not
receive a link layer acknowledgement for a packet
before a delay threshold, it sends the packet on the
3G interface. We set the delay threshold to 50 ms.

Implementing fast switching in the downstream di-
rection is challenging because it needs either support
from APs and/or detailed information on current
WiFi conditions at the proxy. Conveying current
WiFi conditions from the mobile to the proxy can
be time consuming. In this paper, we only imple-
ment fast switching in the upstream direction. In
our trace-driven evaluation, however, we study the

Completion | % offloaded
time to WiFi
Wiffler ofloading 45 sec 30%

1: Performance of Wiffler's prediction-based offloading in
our deployment

benefit of fast switching in the downstream direction
as well.

S. DEPLOYMENT RESULTS

We deployed the Wiffler implementation in our
Amherst testbed. In this section, we present results
from experiments conducted using that deployment.

5.1 Prediction-based offloading

This experiment uses a deployment of Wiffler on
20 nodes over a period of 2 days. Each node gener-
ated b5Mb of application data, uniformly at random,
and the mean generation interval was set to 100 sec-
onds. We set the delay tolerance threshold for data
delivery to be 60 seconds. All data is destined to a
known server that we control. The vehicle generates
application data requests for both uploading and
downloading. For downloads, the vehicle sends the
request to the server which then transfers data to
the vehicle.

Table 1 shows the results. For 5Mb transfers and
a deadline of 60 seconds, Wiffler reduces 3G usage
by 30%, even though the WiFi availability is only
12% (Section 2.2).

5.2 Fast switching

We evaluate fast switching in the context of VoIP.
Although VoIP is a low-bandwidth application for
which saving 3G usage may be less important, we
chose it as an application representative of others
such as video conferencing, real-time streaming, gam-
ing, etc. Unlike the mean-opinion-score (MOS) for
VoIP, there is not a simple measure of video quality
based on the loss and delay characteristics of the
underlying channel.

We assume that the VoIP application uses the
popular G.729 codec and generates 20-byte packets
every 20 ms. We calculate VoIP quality by using
the standard MOS metric that ranges between 1
(unacceptable) and 5 (best). To evaluate VoIP per-
formance in a quickly changing environment, we use
the methodology we used in our previous work [3].
We estimate the MOS value for 3-second intervals.
The overall quality is measured as the fraction of
intervals where the MOS value was more than 3.0.

Table 2 shows the results using one vehicle in our
deployment that operated in an area with high WiFi
availability. Fast switching maintains good voice



% time voice | % offloaded
quality good to WiFi
Fast switching 68% 34%
WiFi when available 42% 40%

2: Performance of VolP using Wiffler's fast switching in
our deployment

quality for over 68% of the time and reduces 3G
usage by 34% . Instead, if we used WiFi whenever
available, without switching to 3G during periods
of bad WiFi quality, voice quality is maintained
only 42% of the time, even though the 3G savings
marginally increases from 34% to 40%.

6. TRACE-DRIVEN EVALUATION

In this section, we present a trace-driven evalua-
tion of Wiffler’s prediction-based offloading and fast
switching.

6.1 Prediction-based offloading

To evaluate Wiffler’s prediction-based offloading,
we use the throughput traces collected during our
measurement. The traces provide information about
data sent or received on 3G and WiFi at 1-second
intervals.

We compare the performance of Wiffler with al-
ternate offloading algorithms. We characterize the
behavior of the offloading algorithms using two met-
rics: (i) the fraction of data sent over WiFi, or the
reduction in 3G usage; (i¢) the average completion
time. The goal of our evaluation is to compare the
different offloading algorithms and quantify the:

e fraction of data that can be offloaded to WiFi
for varying delay tolerance.

e fraction of data that can be offloaded to WiFi
under different environmental condictions

o trade-off between completion time and 3G sav-
ings.

First, we validate the trace-driven simulation us-

ing the deployment results.

6.1.1 Validating trace-driven simulation

To validate the simulator, we collect throughput
data during the deployment. To this end, during
deployment periods when there is no application
data to be sent or received, the vehicle transfers
100KDb of random data to the server both over WiFi
and 3G and logs details of this transfer. As a result,
the logs contain the throughput trace for the entire
deployment duration. We conduct a trace-driven
evaluation of Wiffler using the throughput trace us-
ing the same packet generation parameters as the
deployment. The simulation results are averaged
over 10 runs with different seeds.

Deployment i
Trace-driven simulation ===

0 0
(b) Percentage data of-
floaded to WiFi

Deployment
Trace-driven simulation ===1

Completion Time (seconds)
Percentage offloaded to WiFi

(a) Completion time

9: Comparing the deployment versus simulation results.

Figure 9 shows the performance of Wiffler observed
in the deployment and in the simulator. Error bars
show the 90% confidence interval. The deployment
results match well with the simulation results both
in terms of completion time and percentage of data
offloaded to WiFi.

6.1.2 Workload

We conduct our experiments based on two work-
loads: real application workload and synthetic work-
load. The real workload were obtained from two
corporate commuter buses that provide Internet ac-
cess to the passengers. We sniffed the intra-bus
WiFi network to capture packets that are sent and
received by the riders. We use data collected from 4
days.

In order to experiment a wider range of workload
parameters, we generate a synthetic workload where
a mobile node generates application data of size
5Mb uniformly at random. The mean generation
interval is set to 100 seconds. Similarly, a remote
server generates transfers for each client at the same
rate. Each experimental setting is run 10 times with
different seeds.

6.1.3 Alternate offloading strategies

We compare Wiffler against three other classes of
algorithms as described below.

Algorithms without prediction:

To understand the value of prediction, we evaluate
two algorithms that do not use prediction. The
Impatient algorithm uses a very simple policy: use
3G whenever WiF1i is unavailable; else use WiFi. The
Patient waits until the delay tolerance threshold to
use 3G. Uses WiFi until the threshold. Patient and
Impatient present the two extreme points in the
design space.

Algorithms based on forecasting:

To understand the accuracy versus complexity
trade-off, we compare Wiffler’'s simple prediction
scheme against a more sophisticated prediction model,
we call Location+mobility. Location+mobility is sim-
ilar to the Breadcrumbs system [19]. At each loca-
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10: Ambherst: Real application workload

tion grid, it learns the available WiFi bandwidth and
the probability of the client moving to an adjacent
grid. It forecasts WiFi transfer sizes by taking the
weighted average of expected transfers at each future
grid. We use grid sizes of 0.2 miles x 0.2 miles and
the learning phase uses the previous day of data.

Algorithm with future knowledge:

To quantify the remaining room for improvement,
we also consider an (impractical) algorithm with
perfect future knowledge that we call Oracle. Oracle
knows the exact amount of data that can be trans-
fered using WiFi within the deadline, and uses this
knowledge to make a decision about when to use
the 3G network. It provides a lower bound on the
lowest achievable completion time while minimizing
3G usage.

6.1.4 Wiffler performance in Amherst

Real workload:

Figures 10 shows the performance of the differ-
ent offload algorithms for varying delay tolerance
threshold; the workload is obtained from the real
application traces. The average workload size in the
trace is 14 KB upstream and 8 KB downstream.

Wiffler offloads a significant fraction of data to
WiFi; the offload fraction increases with longer delay
tolerance. For example, if users are willing to wait
60 seconds, they can reduce 3G usage by 45%.

The Patient protocol reduces 3G usage by the
most, because Patient sends data on WiFi oppor-
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tunistically until the delay tolerance threshold. How-
ever, as a result, Figure 10 (a) shows that the com-
pletion time using Patient is significantly higher
than all the other protocols. In terms of completion
time, the Impatient protocol is the best perform-
ing since the protocol sends data on both 3G and
WiFi and does not leverage delay tolerance. And as
a result, Impatient only reduces 3G usage by 23%
compared to nearly 45% 3G savings achieved by
other protocols, for a delay tolerance of 100 seconds.

Oracle, with complete future knowledge achieves
the optimal balance between reducing 3G usage and
decreasing completion time. Wiffler performs within
5% of both Oracle and Patient in terms of 3G savings,
and is within 7 seconds of Oracle with respect to
completion time. In contrast, the Patient scheme
that uses no prediction has a completion time that
is on an average, 25 seconds more than Oracle.

Figures 10 shows that Location+mobility performs
similar to Wiffler both in terms of completion time
and 3G savings even though Location+mobility uses
a more sophisticated prediction algorithm that learns
WiFi performance in each location.

Synthetic workload:

We repeated the above experiments, but for a
synthetic workload of 5Mb file transfers. The goal
of this experiment is to understand the performance
of the different protocols when the transfer sizes
are much larger. Figures 11 shows the performance
results. For large file transfers, we observe that less
than 22% of data is offloaded to WiFi for small
delay tolerance threshold. But for a delay tolerance
of 100 seconds, Wiffler offloads 40% of data over
WiFi.

Not surprisingly, Figure 11 (a) shows that the
completion time for the synthetic workload is higher
than the completion time for the real workload, be-
cause of the larger data sizes. The difference in
completion time between Wiffler and Oracle is about
35 seconds compared to only 5 seconds for smaller
data transfers (Figures 10(a)). We also note that
the completion time of Patient is nearly 75 seconds
more than Oracle. As the data size increases, it is
more likely that all of the data cannot be delivered
using WiFi because of the lower throughput on WiFi
and lower availability. As a result, in Patient, most
transfers are completed only after the delay toler-
ance threshold, significantly inflating its completion
time.

6.1.5 Wiffler performance in Seattle

Figures 12 shows the performance of the different
offload protocols for Seattle data for the synthetic
workload. Since we did not collect TCP throughput
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11: Ambherst: Synthetic workload

traces in Seattle, we use the capacity traces for this
experiment. Similar to the Amherst results, Wiffler
provides about the same amount of 3G savings as
Oracle. The completion time of Wiffler is within
20 seconds of Oracle. For real application workloads,
we find that the performance of the different proto-
cols over Seattle data is quantitatively similar to the
performance over Amherst data (not shown).

6.1.6 WiFi offload in dense AP regions

3G cell towers are carefully placed to achieve near-
complete coverage, but WiFi AP placement tends
to be organic. In Amherst, certain areas have high
AP density, but other areas have moderate to low
AP density. As AP density is high typically in
crowded downtown areas, where augmenting 3G
capacity with WiF1i is especially useful, we created
a second data set. The filtered data set includes
only measurements from a 15 sq. mile area with a
higher WiFi density. The availability of WiFi in this
filtered data set is 24%, compared to 12% in the
entire data.

Figures 13 show the performance of Wiffler in
the total and the filtered data. In this experiment
we used the real application workload. In areas
with higher WiFi availability, 3G usage is reduced
by 75% for a deadline of 100 seconds compared
to a 45% reduction in 3G usage in regions with
lower WiFi availability. The figure shows that even
though the difference in WiFi availability in only
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under different AP availability.

12%, the corresponding increasing in 3G savings is
much higher. However, this is true only for large
deadline. For a lower delay tolerance threshold of
20 seconds, the difference in 3G savings between the
two areas is only 9%.

6.1.7 Wiffler Trade-off

Wiffler uses prediction to trade-off completion time
and 3G savings. As a result, the performance of
Wiffler lies in between Patient and Impatient, the
two extreme offloading strategies. In Section 3.1
we described an additional parameter called the
conservation quotient that allows Wiffler to achieve
different trade-offs between completion time and 3G
savings. We evaluate the performance of Wiffler for
different values of the conservative quotient.



120 )
> Patient ——
S 100t c=0.2 —%—
S C=1 —w—
& 80 c=2
@ c=5 —m—
E 60 c=10 —o—
s Impatient
= 40 -
@
o
g 20 + %
o
0 I I I I
(o] 20 40 60 80 100
Delay Tolerance (seconds)
(a) Completion time
1
Patient —+—
Z os! | e=02
= c=1 —w%—
= c=2
S 06 s c=5 —m—
© - c=10 —e—
o .
= 0.4 | Impatient
=}
g
T 0.2 +
O It It It It
0] 20 40 60 80 100
Delay Tolerance (seconds)
(b) Fraction data offloaded to WiFi
14: Ambherst: Trade-offs between application latency

time and 3G usage by varying the conservative quotient

Figures 14 shows the completion time and 3G
savings for different values of the conservative quo-
tient, starting from ¢ = 0.2 to ¢ = 10. Recall that,
Wiffler waits for WiFi only if the predicted WiFi
capacity is ¢ times the workload size. As the value
of ¢ increases, Wiffler starts sending data on the 3G
interface much earlier instead of waiting for WiFi,
and as a result has lower completion time. However,
the total data offloaded to WiFi when ¢ = 10 is sig-
nificantly lower. On the other hand, when ¢ = 0.2,
the total data offloaded to WiFi is 40% for a 100
seconds delay tolerance and the performance is close
to the Patient protocol. However, the strategy has
poor performance in terms of completion time.

The conservative quotient is an additional param-
eter that can be tuned to achieve different trade-offs.
However, we find that setting ¢ = 1 offers a good
trade-off between completion time and 3G savings.

6.2 Evaluating fast switching

Similar to the deployment experiments, we eval-
uate Wiffler’s fast switching in the context of VoIP.
We evaluate based on two metrics — (i) Fraction
of time the Voice quality metric (MOS) is good.
and (i) Fraction of data offloaded to WiF4i, or the
3G savings. Similar to the deployment experiments
we estimate the MOS value for 3-second intervals.
The overall quality is measured as the fraction of
intervals the MOS value was more than 3.0.

The goal of the evaluation is to understand the
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15: The performance of VolP for varying switching time

trade-off between VoIP quality and 3G savings for
different values of delay threshold. Recall that Wiffler
waits for a short period of time for a packet to be
delivered over WiFi; if the packet is not delivered,
Wiffler sends the packet over 3G. Clearly, a higher
delay threshold increases 3G savings because there is
a higher probability that the packet will be delivered
within the threshold. However, the VoIP quality
may be affected. Similarly, a lower delay threshold
improves VoIP quality but may reduce 3G savings.

6.2.1 Workload

For this trace-driven evaluation, we collected traces
on Amherst by instrumenting one vehicle to send
20 byte packets every 20 ms to a server over both
WiFi and 3G. Unlike the implementation, packets
are sent both in the upstream and downstream di-
rection. We evaluate the fraction of time the voice
quality is good in both directions. The traces are
1-hour long and the traces were collected from an
area in Amherst with dense AP deployment.

6.2.2 Alternate strategies

We compare the performance of Wiffler to four
other system. The Only 3G system supports VolP
using only 3G. The WiFisystem that does not switch
away from WiFi for as long as it remains available.
Oracle knows ahead of time if the packet will be
lost on WiFi and, only in those cases, opts to send
it on 3G. We evaluate Wiffler for different delay



thresholds.

6.2.3 Performance characteristics

Figure 15 shows VoIP performance as a function
of switching threshold. We see that for thresholds
below 60 ms, Wiffler is as good as the Oracle. It does
not hurt VoIP quality if we can discover within that
time that WiFi will lose or delay the packet. Of the
four systems, using WiF1i alone performs the worst
because of high loss rates. Wiffler does better than
using only 3G because 3G frequently experiences
high delays [17]. By dynamically deciding when to
switch from WiFi to 3G, Wiffler combines the best of
both worlds: low delays of WiFi and high reliability
of 3G.

This advantage does come at the cost of a modest
increase in 3G usage. We find that, compared to
the WiFi-only system, the increase in 3G usage is
10% if the switching threshold is 60 ms and 20% if
it is 20 ms. Given the benefits of fast switching to
application quality, we consider this increase to be
a worthwhile trade-off.

7. RELATED WORK

Our work builds on previous research related to
the use of multiple interfaces, predicting future con-
nectivity, and characterizing connectivity from mov-
ing vehicles.

Using multiple interfaces. Many previous
works propose mobile systems that leverage multiple
interfaces. One thread of existing work optimizes
for energy and exploits the differences in power con-
sumed by different interfaces. For example, one
method is to select the interface with low idle power
consumption to wake up another interface [5,23].
Zhong et al. [21] estimate the power consumption
of different interfaces for various network activities.
They use these estimates to switch between inter-
faces to save energy.

Other works use multiple interfaces to optimize
performance. For example, vertical handoff tech-
niques select the interface that currently offers the
best performance [7]. Striping techniques multiplex
data across different interfaces to balance load and
improve performance [22].

In contrast to these works, our primary goal is
not to optimize power consumption or performance.
In our setting, a more expensive interface (3G) pro-
vides almost ubiquitous connectivity, but a cheaper
interface (WiF1i) is available intermittently. Our goal
is to offload as many bytes on the second interface
as possible, while satisfying a minimum application-
specific performance requirement. Thus, instead
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of responding purely to current conditions, we also
base decisions on predictions of future conditions.
Predicting future connectivity. Bread-
crumbs predicts future WiFi connectivity based on
a model of the environment [19]. Similarly, Desh-
pande et al. [10] use WiFi prediction to improve
mobile access. Both of these schemes rely on RF
fingerprinting or an AP database for prediction. In
addition, breadcrumbs uses client location informa-
tion as part of its model, which means that clients
must estimate the bandwidth available in different
location grids and the transition probabilities be-
tween the adjacent grids. In contrast, our model
does not require an external database or learning,
and predicts based only on a short meeting history.
Characterizations of vehicular connectivity.
Several studies have characterized WiFi and 3G con-
nectivity in isolation for vehicular settings. For WiFi,
the CarTel study quantifies the frequency of AP en-
counters and the throughput that can be achieved
using the open APs [15]. Various researchers have
since studied link layer characteristics [3,18], TCP
throughput [13], as well the performance of a spe-
cific application (e.g., web search [4]) and handoff
policies [11]. Similarly, for 3G, several recent works
have studied characteristics such as signal strength,
loss rate, latency, and TCP throughput in vehicu-
lar [17,20] as well as stationary [8,9,16,27] settings.
In contrast, our measurement study enables a joint
characterization and a head-to-head comparison of
3G and WiFi. For any one technology, our results are
qualitatively consistent with the studies above, but
our joint characterization is crucial to understand
and leverage their combined power. For instance,
we uncovered a surprising finding that 3G and WiFi
availability are negatively correlated, so WiFi can
mitigate more issues for 3G than nominally expected.

8. CONCLUSIONS

Our field measurements and system evaluation
have demonstrated that systematically offloading
data from 3G to WiFi can reduce demand on 3G
networks without hurting application performance.
Our measurement study jointly characterizes 3G and
WiFi for two testbeds, finding that WiFi is available
for a non-trivial amount of time, but has poorer qual-
ity in terms of loss rate and throughput. We present
Wiffler, that uses WiF1i to augment 3G using two key
ideas: leveraging delay tolerance and fast switching.
For applications that can tolerate a small delay, Wif-
fler waits for WiFi offload opportunities to reduce
3G usage. However, Wiffler only delays applications
if it will result is 3G savings. For delay- and loss-
sensitive applications, Wiffler switches proactively



to 3G without incurring the high delay penalty for
WiFi to reach its retransmission limit. We imple-
ment and deploy Wiffler in our vehicular testbed.
Both our implementation and trace-driven exper-
iments show that Wiffler significantly reduces 3G
usage. For example, for a realistic workload, Wiffler
reduces 3G usage by 40% for a delay tolerance of
60 seconds.
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