
Computing Conditional Feature Covariance in

Non-Projective Tree Conditional Random Fields

University of Massachusetts Technical Report # UM-CS-2009-060

Gregory Druck
gdruck@cs.umass.edu

David A. Smith
dasmith@cs.umass.edu

Abstract

We present an O(N4) time algorithm for computing conditional feature covariance in edge-factored
conditional random fields (CRFs) over non-projective dependency trees. Applications of this algorithm
include more efficient Generalized Expectation (GE) parameter estimation.

1 Introduction

In this technical report we present an O(N4) time algorithm for computing conditional feature covariance
in edge-factored conditional random fields (CRFs) over non-projective dependency trees. We derive the
algorithm by computing the second derivative of the log-likelihood function of the CRF. This algorithm is
applicable to Generalized Expectation (GE) parameter estimation, parameter estimation by minimizing
the expectation of some edge-factored loss function, and entropy regularization.

1.1 Applications to GE Parameter Estimation

In previous work, Druck et al. use Generalized Expectation Criteria to estimate parameters of condi-
tional random fields (CRFs) over non-projective dependency trees [1]. GE criteria express preferences
on the value of a model expectation of a constraint feature function g(x,y). For example, a GE cri-
terion G(θ) term may specify that the distance from some target expectation ĝ should be minimized
G(θ) = (ĝ−Ep̃(x)[Ep(y|x;θ)[g(x,y)]])2, where x and y are input and output variables, θ are model param-
eters, and p̃ is an empirical distribution. Computing the gradient of a GE term with respect to the model
parameters requires computing the model predicted covariance between model and constraint features.
For edge-factored constraint features, this requires computing marginal distributions over pairs of edges
p(yi = j, yk = `|x; θ). Druck et al. [1] propose an O(N5) algorithm for computing two edge marginals,
where N is the length of the sentence. In words, the algorithm first modifies the model’s edge scores to
require the edge j → i to be in the tree. Then, it uses the O(N3) algorithm of Smith and Smith [4] to
compute the probabilities of all possible second edges `→ k conditioned on the presence of the first edge
j → i, p(yk = `|yi= j,x; θ). Finally, the conditional probabilities of ` → k given j → i are multiplied by
the marginal probabilities of j → i, yielding the desired two edge marginal. For more details, readers are
referred to [1] and [4].

The covariance computation described in Section 2 only requires one O(N3) matrix operation per sen-
tence, which reduces the time complexity from O(N5) to O(N4).

1.2 Applications to Minimum Expected Loss Parameter Estimation

Suppose we have some loss function L that factors over edges L(y) =
PN
i=1 l(yi), and we want to minimize

its expectation under an empirical distribution p̃ over x and the model distribution of y given x, p(y|x; θ).
Computing the gradient ∇θ Ep̃(x)[Ep(y|x;θ)[

PN
i=1 l(yi)]] requires ∇θ p(yi|x; θ), which can computed with

algorithm presented in Section 2.

1

For example, in a supervised setting, L could be the number of incorrect edges,
PN
i=1 1− I(yi = y∗i),

where y∗ is the gold standard parse. To estimate parameters that minimize the expected number of
incorrect edges, we need to compute ∇θ p(y∗i |x; θ).

1.3 Applications to Entropy Regularization

Entropy regularization [2] is a semi-supervised learning method that aims to minimize the entropy of
model predictions on unlabeled data. If the model is a CRF and the regularizer uses the Shannon
entropy1,

P
y p(y|x; θ) log p(y|x; θ), it can be shown that the gradient with respect to θm is

Ep̃(x)

hX
n

θn
“

Ep(y|x;θ)[fn(x,y)fm(x,y)]− Ep(y|x;θ)[fn(x,y)]Ep(y|x;θ)[fm(x,y]
”i
.

Note that this expression contains the covariance between fn and fm, which can be computed with the
algorithm presented in Section 2.

2 O(N 4) Time Feature Covariance Computation

Because CRFs are exponential family models, the second derivative of the log-likelihood function with
respect to the model parameters is equal to the covariance between model feature functions. We will use
this fact to derive an O(N4) algorithm for computing the covariance2. We start by reviewing the first
partial derivative of the partition function Zx,θ. Smith and Smith [4] (Equation 13) show that

∂ logZx,θ

∂θm
=

NX
i=1

NX
j=0

sx,θ(i, j)fm(x, xi, xj)
`
[K−1

x,θ]i,i − [K−1
x,θ]i,j

´
,

where x is the input sentence, N is the length of the sentence, fm is a feature function that considers
the entire input and the edge j → i, θ are model parameters, sx,θ(i, j) = exp(θ · ~f(x, xi, xj)) is the score
of edge j → i, and Kx,θ ∈ RN×N is the Kirchoff matrix:

[Kx,θ]j,i =

 P
k∈{0,...,n}:k 6=i sx,θ(i, k) : i = j

−sx,θ(i, j) : i 6= j

In general we use the notation [A]i,j to denote the value at row i and column j in matrix A. We assume
sx,θ(i, i) = 0. Note that index 0 corresponds to the root.

The second partial derivative of the partition function (other terms in the first partial derivative of the
log-likelihood are constant) with respect to θm and θn (the parameter for feature function fn) is

∂2 logZx,θ

∂θm∂θn
=

NX
k=1

NX
`=0

∂2 logZx,θ

∂θm∂sx,θ(k, `)

∂sx,θ(k, `)

∂θn

=

NX
k=1

NX
`=0

sx,θ(k, `)fn(x, xk, x`)
∂2 logZx,θ

∂θm∂sx,θ(k, `)
. (1)

If j → i and `→ k are not the same edge, i 6= k ∨ j 6= `, then

∂2 logZx,θ

∂θm∂sx,θ(k, `)
=

NX
i=1

NX
j=0

sx,θ(i, j)fm(x, xi, xj)
∂

∂sx,θ(k, `)

`
[K−1

x,θ]i,i − [K−1
x,θ]i,j

´
.

1Smith and Eisner [3] previously applied Renyi entropy regularization to dependency parsing.
2Note that although we derive the covariance between features that appear in the model, the resulting expression can also

be used to compute the model predicted covariance between two arbitrary edge-factored features (that may or may not be in
the model), we only need to compute the inverse of one matrix per sentence to compute the GE gradient. This is important
because GE does not require constraint features to be model features.

2

For an arbitrary matrix A, the derivative with respect to t of its inverse A−1 is

∂A−1

∂t
= −A−1 ∂A

∂t
A−1.

The derivative of A with respect to a single cell in [A]k,l is a matrix with a 1 at k, ` and zeros elsewhere.
Therefore, the derivative of a cell in the inverse [A−1]i,j with respect to cell [A]k,` is the product of two
cells in the inverse.

∂[A−1]i,j
∂[A]k,`

= −[A−1]i,k[A−1]`,j .

Using this fact, we have

[K−1
x,θ]i,i

∂sx,θ(k, `)
= [K−1

x,θ]i,`[K
−1
x,θ]k,i − [K−1

x,θ]i,k[K−1
x,θ]k,i,

[K−1
x,θ]i,j

∂sx,θ(k, `)
= [K−1

x,θ]i,`[K
−1
x,θ]k,j − [K−1

x,θ]i,k[K−1
x,θ]k,j .

Putting these terms together, we have (when i 6= k ∨ j 6= `)

∂

∂sx,θ(k, `)

`
[K−1

x,θ]i,i − [K−1
x,θ]i,j

´
=[K−1

x,θ]i,`[K
−1
x,θ]k,i − [K−1

x,θ]i,k[K−1
x,θ]k,i

−[K−1
x,θ]i,`[K

−1
x,θ]k,j + [K−1

x,θ]i,k[K−1
x,θ]k,j .

∂2 logZx,θ

∂θm∂sx,θ(k, `)
=

NX
i=1

NX
j=0

sx,θ(i, j)fm(x, xi, xj)
“

[K−1
x,θ]i,`[K

−1
x,θ]k,i − [K−1

x,θ]i,k[K−1
x,θ]k,i

−[K−1
x,θ]i,`[K

−1
x,θ]k,j + [K−1

x,θ]i,k[K−1
x,θ]k,j

”
.

If j → i and `→ k are the same edge, i = k ∧ j = `, then

∂2 logZx,θ

∂θm∂sx,θ(i, j)
=

NX
i=1

NX
j=0

`
[K−1

x,θ]i,i − [K−1
x,θ]i,j

´ ∂

∂sx,θ(i, j)
sx,θ(i, j)fm(x, xi, xj)

+sx,θ(i, j)fm(x, xi, xj)
∂

∂sx,θ(i, j)

`
[K−1

x,θ]i,i − [K−1
x,θ]i,j

´
.

=

NX
i=1

NX
j=0

fm(x, xi, xj)
`
[K−1

x,θ]i,i − [K−1
x,θ]i,j

´
−sx,θ(i, j)fm(x, xi, xj)([K

−1
x,θ]i,i − [K−1

x,θ]i,j)
2

Substituting back into Equation 1 gives us the covariance

∂2 logZx,θ

∂θm∂θn
=

NX
k=1

NX
`=0

NX
i=1

NX
j=0

sx,θ(k, `)fn(x, xk, x`)sx,θ(i, j)fm(x, xi, xj)×“
[K−1

x,θ]i,`[K
−1
x,θ]k,i − [K−1

x,θ]i,k[K−1
x,θ]k,i − [K−1

x,θ]i,`[K
−1
x,θ]k,j + [K−1

x,θ]i,k[K−1
x,θ]k,j

”
+

NX
i=1

NX
j=0

sx,θ(i, j)fn(x, xi, xj)fm(x, xi, xj)
`
[K−1

x,θ]i,i − [K−1
x,θ]i,j

´
, (2)

where the last line accounts for the extra term introduced when i = k ∧ j = `.

Equation 2 computes the covariance between two edge-factored feature functions fm and fn. Notice that
this computation only requires cells from the inverse Kirchoff matrix. Computing the inverse Kirchoff

3

matrix takes O(N3) time for each sentence. The time required to compute the complete covariance is
then O(N4), the time required to consider all possible pairs of edges.

Finally, we provide an expression for computing the two edge marginal itself. The covariance can also
be written as

Ep̃(x)[Ep(yi=j,yk=`|x;θ)[fm(x, xi, xj)fn(x, xk, x`)]− Ep(yi=j|x;θ)[fm(x, xi, xj)]Ep(yk=`|x;θ)[fn(x, xk, x`)]].

Therefore, it can be shown that the two edge marginal is

p(yi=j, yk=`|x, θ) =[K−1
x,θ]i,`[K

−1
x,θ]k,i − [K−1

x,θ]i,k[K−1
x,θ]k,i − [K−1

x,θ]i,`[K
−1
x,θ]k,j + [K−1

x,θ]i,k[K−1
x,θ]k,j

+[K−1
x,θ]i,i[K

−1
x,θ]k,k − [K−1

x,θ]i,i[K
−1
x,θ]k,` − [K−1

x,θ]i,j [K
−1
x,θ]k,k + [K−1

x,θ]i,j [K
−1
x,θ]k,`. (3)

References

[1] G. Druck, G. Mann, and A. McCallum. Semi-supervised learning of dependency parsers using gen-
eralized expectation criteria. In ACL-IJCNLP, pages 360–368, 2009.

[2] Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. In Advances in
Neural Information Processing Systems 17, pages 529–536. MIT Press, 2005.

[3] D. A. Smith and J. Eisner. Bootstrapping feature-rich dependency parsers with entropic priors. In
EMNLP-CoNLL, pages 667–677, 2007.

[4] D. A. Smith and N. A. Smith. Probabilistic models of nonprojective dependency trees. In EMNLP-
CoNLL, pages 132–140, 2007.

4

