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ABSTRACT

AGENT INTERACTIONS IN
DECENTRALIZED ENVIRONMENTS

FEBRUARY 2009

MARTIN WILLIAM ALLEN

B.A. (Hon.), SIMON FRASER UNIVERSITY

M.A., UNIVERSITY OF PITTSBURGH

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Shlomo Zilberstein

The decentralized Markov decision process (Dec-POMDP) is a powerful formal

model for studying multiagent problems where cooperative, coordinated action is

optimal, but each agent acts based on local data alone. Unfortunately, it is known

that Dec-POMDPs are fundamentally intractable: they are NEXP-complete in the

worst case, and have been empirically observed to be beyond feasible optimal solution.

To get around these obstacles, researchers have focused on special classes of the

general Dec-POMDP problem, restricting the degree to which agent actions can inter-

act with one another. In some cases, it has been proven that these sorts of structured

forms of interaction can in fact reduce worst-case complexity. Where formal proofs

have been lacking, empirical observations suggest that this may also be true for other

cases, although less is known precisely.
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This thesis unifies a range of this existing work, extending analysis to establish

novel complexity results for some popular restricted-interaction models. We also

establish some new results concerning cases for which reduced complexity has been

proven, showing correspondences between basic structural features and the potential

for dimensionality reduction when employing mathematical programming techniques.

As our new complexity results establish that worst-case intractability is more wide-

spread than previously known, we look to new ways of analyzing the potential average-

case difficulty of Dec-POMDP instances. As this would be extremely difficult using

the tools of traditional complexity theory, we take a more empirical approach. In so

doing, we identify new analytical measures that apply to all Dec-POMDPs, whatever

their structure. These measures allow us to identify problems that are potentially

easier to solve on average, and validate this claim empirically. As we show, the

performance of well-known optimal dynamic programming methods correlates with

our new measure of difficulty. Finally, we explore the approximate case, showing that

our measure works well as a predictor of difficulty there, too, and provides a means

of setting algorithm parameters to achieve far more efficient performance.
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CHAPTER 1

INTRODUCTION

Multiagent environments pose some of the most significant challenges to success-

ful planning and action. In order to make intelligent decisions about what to do,

individuals must not only factor in what is known about the world around them,

but also take account of the actions of others. While the world may be modeled in

terms of its dynamics—the certainties and probabilities governing how it evolves—

other agents must be taken into account in different terms. After all, they too will be

trying to make their choices intelligently, based in large part upon what they think

we will choose to do. Thus, if we do one thing, they may do another in response, and

if they do that, then perhaps it would have been smarter to have chosen something

else altogether, since now the world is going to behave quite differently. These sorts

of agent interactions and influences are central to solving decentralized multiagent

decision problems, and form the basis of our work here.

1.1 Decentralized Problem Solving

Cooperative multiagent planning is the problem of computing a set of behaviors

for a group of agents that act in the same environment, and that seek to maximize

some joint objective. Such planning problems are decentralized when each agent

must act towards the global goal based upon a local policy. That is, the agent has to

choose actions based solely upon its own private information, which in general only

illuminates some incomplete sub-part of the current state of the environment, and

does not usually tell the agent what others are doing, or are planning to do in future.
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Decentralized multiagent problems of this sort arise in many real-world domains.

Even tightly coordinated groups of problem-solvers, with circumscribed ends in mind,

cannot always count on being able to share all relevant information about their world

in a global fashion. As an example, teams of athletes—whether they be human

beings, or the sorts of artificial agents involved in something like the well-known

Robocup competition—play certain specific roles, and share a limited number of

simple goals, such as scoring points or preventing them from being scored. During

actual game-play, however, each agent will generally only have a limited view of the

field of play, focussing on the nearby conditions, or on the opposing player currently

being defended. In addition, the immediate decisions of other team members cannot

always be known exactly, even in the presence of a general team strategy agreed to

ahead of time. This in-the-moment lack of access to global conditions and actions can

lead to considerable uncertainty about the wisest immediate course of action, since

outcomes can be very different depending upon what others are seeing and doing.

Given their ubiquity and their complexity, these sorts of problems are of central

concern in modern artificial intelligence research.

Decentralized Markov decision processes (Dec-POMDPs) provide us with a power-

ful mathematical model of such problems. They are at once generally applicable, while

at the same time giving a precise characterization of the intrinsic computational prop-

erties of the domains of interest. Unfortunately, it is known that such decentralized

multiagent problems have significantly higher worst-case complexity than their single-

agent or centralized counterparts. Practical experience with solution algorithms has

shown, furthermore, that worst-case complexity is a reliable indicator of general prob-

lem difficulty, since most truly decentralized problems are genuinely intractable, and

do not succumb to reasonably computable optimal (or bounded-optimal) solution.

One of the main sources of this difficulty is the fact that each individual decision-

maker lacks information about the states and actions of its fellows when deciding

2



whether or not to take a particular action at the present time. Even centralized

offline planning methods, which can take the entire problem specification as input,

must therefore still produce plans that can be executed in a decentralized manner.

This planning then becomes very complex, since it must take into account all possible

beliefs that an agent might end up having about the present state of the environment.

These beliefs—if they are to serve as the basis for intelligent plans—must be based

upon all the ways in which the various agents and their actions can interact, affecting

either the outcomes of others’ actions, the rewards that are gained at any instance,

or the various observations of the shared environment.

Allowing agents to share information, either explicitly or implicitly, may reduce

uncertainty about these global interactions. In extreme cases, when communication is

free, instantaneous, and mutually understood, decentralized planning becomes equiv-

alent to single-agent planning, since all agents share a unified perspective. In practice,

however, communication has some cost, whether it be the actual bandwidth used by a

transmission, or some other function of resources required, and it has been shown that

computing policies involving costly communication can be just as hard as computing

optimal solutions without communication. Consequently, there is no simple solution

to such a general decentralized control problem, and researchers have concentrated

on restricting the model in various ways. Since much complexity seems to arise from

interacting effects of various agent actions, various special models have been proposed

that limit those effects.

Our work develops on this theme, and extends it in yet more general directions.

On the one hand, we consider a variety of these simplified and restricted models,

examining their properties and interrelations between them. At the same time, we also

broaden the focus, moving beyond the specification of distinct special cases in order

to consider general models of interactions and influence. We examine different ways of

doing so, providing and analyzing various means of quantifying otherwise potentially
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vague notions, such as the interaction between agents and the relative centralization

of control. We demonstrate that the general complexity of decentralized multiagent

problem-solving can be understood broadly through a focus on the structure of agent

interactions. The project extends the existing literature and provides new directions

for research in the field.

1.2 Summary of Contributions

This dissertation examines the relationship between agent interactions and prob-

lem complexity in decentralized problems. We establish the computational complexity

of some interesting existing models and formalize new measures that allow us to spec-

ify and quantify notions like agent influence. On the empirical side, we investigate

the performance profiles of some important solution algorithms, providing evidence

for the significance of the measures we define. The contained results unify and ex-

tend recent research in cooperative decentralized planning and control. We analyze

the effects of restricted interactions on problem complexity, putting precise bounds

on those effects. Further, we demonstrate how algorithms can exploit measurable

degrees of centralization, allowing us to generate high-quality solutions to decision

problems without using undue computational resources.

Overall, the thesis strengthens and generalizes existing knowledge about how re-

stricting the ways in which agents interact can or cannot simplify multiagent planning.

By using the precise formal framework of decentralized partially observable Markov

decision processes (Dec-POMDPs), we are able to gain real traction on the question

of how exactly interactions affect problem complexity. On their own, general Dec-

POMDPs are far too hard to solve, and known optimal algorithms are primarily of

theoretical interest, since they are generally infeasible for practical purposes. While

reduced complexity results are known for some special classes of Dec-POMDPs—

characterized by various probabilistic independence properties—there are a number
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of other special models for which less is known. Our work on these special models

produces some significant new formal complexity results, which provide much better

bounds than the weak lower or upper range results already known. As we will show,

reductions in fundamental worst-case complexity are relatively rare, as even some

quite restricted models of interaction have the same high level of difficulty as does

the general Dec-POMDP problem.

A unifying notion in many of these models is that of an event, which may be

thought of for the moment as the taking of some action, resulting in some change of

overall system state. Events have been used to model interactions in various ways,

including problems where agents interact only via a shared reward function, specified

in event-related terms. Such problems have proven amenable to interesting multilinear

programming methods. Our work shows how intrinsic features of the mathematical

programs relate to the event-based structure, which is used to specify the problems in

an intuitive and straightforward manner. These results demonstrate tight connections

between the two frameworks, showing how essential problem dimensionality is directly

related to the number of events necessary and sufficient to specify it.

Given that the worst-case difficulty of the general model applies also in many

more restricted cases, new techniques are needed to identify the average-case and em-

pirical difficulty of decentralized problems in general. We tackle this problem in our

last two chapters, providing overall measures of the degree to which agents interact,

and showing that they correlate with the practical difficulty of the associated deci-

sion problem. These measures are defined using information-theoretic relationships

between an agent’s actions and the dynamics of the underlying Dec-POMDP; the

most important of these, influence gap, measures the difference between the degrees

to which different agents can control the system. We define these relationships and

associated measures, and prove some interesting properties about them. Among other
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things, we show how they can be used to identify agents that are unimportant to the

system dynamics, and that can be ignored, making planning simpler.

Finally, we demonstrate some significant connections between the influence gap

measure and the performance of optimal and approximate dynamic programming al-

gorithms for Dec-POMDPs. In the exact case, an increasing gap—which we associate

with increased centralization—correlates with an increased ability to solve problems

optimally. In the approximate case, similar results apply: as influence gap increases,

the absolute value of possible solutions goes up dramatically, and the approximation

algorithms converge more quickly to near-maximal solutions. This latter result is

perhaps the most interesting, since it allows us to categorize problems in advance,

setting algorithm parameters to return high-value solutions much more efficiently.

1.3 Previous Work

Our work on agent interaction draws on a well-established and deep body of

artificial intelligence research over the last decades. Here, we outline some of this

history, and discuss relevant publications and results.

1.3.1 Centralized Markov Decision Models

The Markov decision process (MDP) framework has long proven useful in artificial

intelligence research. The MDP model allows an exact analysis of agent actions in

fully observable, stochastic problem environments. Furthermore, there are a number

of well-understood and well-developed solution algorithms, providing tractable meth-

ods for generating good solutions to such problems, in the form of policies, which are

mappings from domain states to agent actions; authoritative treatments can be found

in Puterman [103], or Russell and Norvig [111]. MDPs are also well-suited for the

application of a variety of learning algorithms. While extremely large problems are

still challenging, learning methods converge to near-optimal policies in an efficient
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manner for those with more reasonable state-spaces; see Sutton and Barto [123] for

a full account of such techniques.

MDPs have become central to research on planning for uncertain domains; for

an overview, see the survey of Boutilier, Dean, and Hanks [20]. Of course, there

are bounds on what traditional algorithms can achieve for very large MDPs, where

the state-space is so big that establishing and evaluating complete policy-mappings

is combinatorially daunting. However, there has been a great amount of progress

in exploiting domain structure to make solving larger problems more feasible, at

least in some cases. Examples include the use of Bayesian network representations

(Boutilier, Dearden, and Goldszmidt [21]), or algebraic decision diagrams (Feng and

Hansen [38]), and research on so-called weakly coupled problems (Meuleau et al. [83]).

Approximate solution methods for MDPs have also been studied, for example by

Guestrin et al. [50, 51, 52], employing the assumption that the reward function can

be decomposed into local reward functions, each of which depends upon only a small

subset of the overall state variables.

Another strain of research has involved problems with somewhat more complex

structure. In particular, interest in cases where an agent lacks complete information

about the current state of its environment led to the introduction of the partially

observable (POMDP) problem variant. In such problems, agents do not have access

to the actual state of the environment, but rather only to observations of that en-

vironment, which can only induce probabilistic belief-states about the current state.

For practical purposes, research on POMDPs dates to the 1960’s Operations Research

work of Aström [6], who showed that such problems could reduce to a special form of

belief-state MDP, and the work a decade later of Smallwood and Sondik [120], who

were able to establish optimal dynamic programming algorithms for such problems,

based on value iteration. Later work by Platzman [101] and Sondik [121] extended the
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range of dynamic programming methods, providing solution algorithms for problems

with infinite or indefinite time-horizons.

Since that earlier period, solution algorithms for POMDPs have been developed

in many different directions, and the model has since proven very popular in AI re-

search, being both relatively simple to specify and broadly applicable. The range

of work here is extremely wide, encompassing any number of distinct algorithmic

techniques. Many extended optimal methods have been developed, based on such

ideas as: best-first search (Lark [64]); Bayesian networks for compact representa-

tion (Boutilier and Poole [22]); incremental pruning techniques (Cassandra, Littman,

and Zhang [29]); factored state representations (Hansen and Feng [57]); hierarchical

finite-state controllers (Hansen and Zhou [60]); and structured pruning techniques

(Feng and Zilberstein [39, 40]). Learning techniques have been explored (Littman,

Cassandra, and Kaelbling [76]), as have approximate methods (Parr and Russell [96],

Hauskrecht [61], Poupart and Boutilier [102]). Most recently, work on point-based

approximations by Pineau, Gordon, and Thrun [100], and Ross et al. [110], has proven

very interesting.1 Given this profusion of advances, much recent AI work on single-

agent planning for stochastic domains has thus been based on MDPs and POMDPs,

as described in Dean et al. [36] and Kaelbling, Littman, and Cassandra [66].

The single-agent Markov models just outlined can be straightforwardly extended

to cases where multiple agents work together, with joint access to either the same

global system state or the same partial observation of that state. As Boutilier [19] has

pointed out, such centralized multiagent MDPs (MMDPs) are effectively equivalent

to single-agent problems, since the joint actions of multiple agents can be regarded

simply as factored actions of an individual central controller. Clearly, the same point

applies to centralized multiagent POMDPs as well, and in each case all the resources

1Useful surveys of algorithmic results from various eras can be found in the work of Cheng [32],
Lovejoy [78], Cassandra [27, 28], Hansen [58], Zhang [138], and Murphy [84].
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of existing work on single-agent problems can be exploited. Such models provide

some interesting challenges, and work has been done on both planning (Guestrin et

al. [51, 50, 53]) and learning methods (Claus and Boutilier [33], Kapetanakis and

Kudenko [68], Wang and Sandholm [133], Chalkiadakis and Boutilier [30, 31]).

1.3.2 Decentralized Problems and Models

In real-world domains, however, it is rare for all agents to possess the same sorts

of information, and we would argue that the centralized types of multiagent problems

hold somewhat less interest than their genuinely decentralized cousins, where agents

must act on the basis of local information, even as they seek to coordinate and

cooperate. Decentralized control problems abound in practice, and researchers have

considered many different examples over the years. Such problems include:

Autonomous space exploration vehicles. Projects like NASA’s Mars Rover pro-

gram involve multiple vehicles working together, pursuing science goals in highly

uncertain planetary environments. Such efforts would be much improved if ex-

ploration could proceed autonomously. Decentralized models for rover domains

have been proposed by Zilberstein et al. [143] and Becker et al. [12].

Distributed tracking networks. Many modern applications feature multiple sen-

sors or robotic agents that must track or identify such things as mobile targets

or weather phenomena. Given the limited range and efficacy of the individual

tracking agents or nodes, such domains often require decentralized control over

a widely dispersed network. Parker [94] proposes decentralized techniques for

mobile team robotic tracking of targets, while Horling et al. [62] and Nair et

al. [87] present methods for use in distributed sensor nets.

Disaster rescue and response. Recent advances in robotics have made the use

of semi-autonomous mechanized emergency response more feasible. To do so,

however, requires more sophisticated coordination techniques, especially given
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the chaotic and unpredictable environments in which rescue agents must oper-

ate. Casper, Micire, and Murphy [26] address robotic planning techniques for

such domains, while Thomas [127] addresses decentralized learning and plan-

ning methods for the coordination of firefighting response units.

Decentralized systems design. Many common task in modern computing sys-

tems, such as network routing and distributed information processing, now

proceed by way of networks of localized decision-makers. Coordination and

efficiency in such tasks requires new control schemes, distinct from the cen-

tralized operations of more traditional computing. Ooi and Wornell [89] first

formulated a decentralized multi-access broadcast channel problem, which has

been used since in much research on Dec-POMDPs. Cogill et al. [34] consider

the problem of load balancing for systems of decentralized queues.

In each of these cases, centralized decision models are inadequate, since agents cannot

share all their information among themselves (or incur direct costs for doing so). Even

if planners in such domains has access to a complete model of the problem dynamics,

and take a centralized viewpoint, the actual execution of plans is still decentralized,

as each agent acts based solely upon what it knows locally.

As we shall see, these kinds of problems are considerably more complex than

their single-agent or centralized cousins. The basic model here is the decentralized

POMDP (Dec-POMDP), which extends the basic single-agent POMDP to multiple

agents with local information (Bernstein et al. [18, 16, 15]). We provide much more

detail about this model in later chapters. Here, we note one important fact: Dec-

POMDPs are highly complex: in fact, they are NEXP-complete, a result that leads

to many difficulties, and which is a motivation behind much of our research. (Full

discussion of this result and its implications can be found in Section 2.2.)

There are also a number of other models of these sorts of decentralized problem

structures, including Goldman and Zilberstein’s Dec-POMDP with communication
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(Dec-POMDP-COM) [47], and the work of Pynadath and Tambe [105] on the multi-

agent team decision problem (MTDP), which also has a variant with communication

(MTDP-COM). Recently, Seuken and Zilberstein [113, 116] have shown that all of

these variants are equivalent to the basic Dec-POMDP. Another variant, the in-

teractive POMDP (I-POMDP) proposed by Gmytrasiewicz and Doshi [42], is more

expressive, but possesses even more daunting complexity. (For this reason, we will

not consider that model here, and will begin with the basic Dec-POMDP, before

considering special sub-cases.)

1.3.3 Algorithms for Dec-POMDPs

The first known exact solution algorithm for finite-horizon Dec-POMDPs extends

dynamic programming (DP) for single-agent POMDPs, as devised by Hansen [58].

The DP algorithm for Dec-POMDPs, introduced by Hansen, Bernstein, and Zil-

berstein [59], works bottom-up to generate finite-horizon policies, and then applies

iterated pruning techniques to eliminate dominated strategies, reducing the number

that must be considered to find an optimal solution. (We give full details of this

approach in Section 2.3). However, such improvements are not sufficient to make

the general problem tractable; even for a very simple problem, the method cannot

generate policies beyond a handful of time-steps. Similar results have been reported

with respect to top-down methods employing heuristic search. Again, as reported by

Szer, Charpillet, and Zilberstein [124, 126], only the smallest problems can be solved.

These sorts of practical limitations also apply to ε-optimal methods for infinite-horizon

problems, which develop bounded-memory finite state controllers for Dec-POMDPs,

as described in the work of Bernstein, Hansen, and Zilberstein [13]. An overview of

results on infinite-horizon techniques can be found in the thesis of Bernstein [15].

Due to complexity bounds, approximation of Dec-POMDPs is very difficult. Ra-

binovich, Goldman, and Rosenschein [107] have shown that ε-approximation of Dec-
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POMDPs is just as hard as optimal solution. As a result, approximation methods

are either impractical, or provide only rough guarantees of quality. Among the latter,

we find equilibrium-based methods for finite-horizon Dec-POMDPs, like the JESP

algorithm of Nair et al. [86]. Other such techniques include linear and nonlinear pro-

gramming methods for (Amato, Bernstein, and Zilberstein [3, 4], Aras, Dutech, and

Charpillet [5]), and point-based approximate algorithms (Szer and Charpillet [125]).

Of particular interest to us here are a pair of approximate algorithms that gener-

alize the optimal dynamic programming method, making it memory-bounded. First

devised by Seuken and Zilberstein [114, 116], and then extended by Carlin and Zil-

berstein [23], these techniques place hard caps on the number of trees retained per

agent at each DP backup step, using top-down heuristics to isolate those that seem

most useful. (Again, we will give full details of these algorithms in Section 2.4.) A

good overview of many of these results, and comparison with other algorithms can

be found in the review papers of Seuken and Zilberstein [113, 116].

1.3.4 Reduced Interaction Models

Given the difficulty of solving the general Dec-POMDP problem class, whether

optimally or approximately, there has been much interest in special cases, where

structure is simplified or restricted enough that some computational traction can be

gained. One obvious such subcase are those problems in which the various aspects

of the system dynamics are independent of one another, with respect to individual

agents. Becker et al. [7, 11, 12] consider models where state-transitions and obser-

vations are functionally independent, but rewards gained are not; in such cases, the

problems are of reduced complexity, and specialized algorithms can come into play.

A survey of many known complexity results for various problems with partially in-

dependent dynamics can be found in Goldman and Zilberstein [48]. An important

and interesting generalization, proposed by Becker, Lesser, and Zilberstein, involves
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event-based interactions, where only some small set of particular state-action transi-

tions in the Dec-POMDP create dependencies between state outcomes or rewards [9].

Such models will be considered in detail in later chapters, where we establish for the

first time that their worst-case complexity is identical to that of the general case.

Another possibility, found in the work of Guo and Lesser [55, 56], and the thesis

of Guo [54], is the state-based action-sets framework, which allows agents to interact

only by way of the set of possible actions available to them; one agent then influences

another in cases where they force a state-transition that alters the other’s available

choices. Again, we are able to prove that the complexity of these problems is as high

as for the general model.

1.3.5 Identifying Interactions and Their Effects

Shen, Becker, and Lesser [119] have suggested that the complexity of a decentral-

ized problem increases in proportion to the “degree of interaction” between agents,

a notion upon which our work here seeks to expand. In the game theory literature,

furthermore, Kearns and Mansour [69] have shown that bounding the influence that

any agent can have on overall reward simplifies the process of calculating equilibria

solutions. In the context of single-agent MDPs, Ratitch and Precup [109] demon-

strate that the performance of learning algorithms in MDPs is inversely proportional

to certain information-theoretic measures of the system dynamics. Our work com-

bines these ideas, examining how performance of solution techniques can be improved

in cases where we restrict the effect agents can have on the overall expected value of

joint policies, which in turn depend upon the probabilistic problem-dynamics.

Other general models of overall interaction have been proposed. For instance,

Carver and Lesser [24, 25] consider nearly monotonic problems in information pro-

cessing, where tasks are divided between multiple agents, and the final global solution

is composed out of local sub-solutions. Kim et al. [70] have examined local interactions
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in networked, distributed POMDP problems. Oliehoek, Spaan, et al. [88, 122] have

used factored Markov Game techniques to isolate problems with reduced interactions.

1.3.6 New Solution Techniques

In research on single-agent planning and learning, there has been much interest

in how Markov decision processes can be solved more efficiently, given structure in

the way the state-space is set up. One interesting line of work has been the literature

on weakly coupled MDPs, which are nearly decomposable into smaller sub-problems,

but contain a number of “bottleneck” states governing transitions between one sub-

process and another. In the presence of such states, various heuristic and learning

algorithms have been proposed that attempt to solve the separate problems and

compose the solutions into a global policy (Parr [95], Meuleau et al. [83], Bernstein

and Zilberstein [17]). Although a firm characterization of the difference is not yet

available, Littman [77] has suggested that such problems can be significantly easier

to solve than full-blown MDPs of the same size, particularly where the number of

bottleneck states is reasonably small.

Similar results have been established for some of the reduced-interaction models

already mentioned. For instance, in the event-based models just discussed, algorithm

performance is known to be a direct function of the number of event-based dependen-

cies. In addition, there has been work on various heuristic approaches to such prob-

lems. One example, given by Guo [54], solves problems with state-based actions using

policy pruning techniques that are guided by either optimistic or pessimistic assump-

tions about the extent to which action-sets will turn out to be restricted. Becker [10]

has examined the use of myopic heuristics in decentralized planning for communica-

tion problems. In this work, complex decisions about when and what information

to share between cooperating agents are simplified by restricting the time horizon

over which planning is performed. Rather than considering all possible down-stream
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effects of communication, that is, agents plan their actions and information-sharing

only a step or two ahead, making heuristic assumptions about future eventualities.

Another interesting candidate class of methods involve problem decompositions.

As the work in event-based interactions and weakly coupled problems has shown,

many decision problems consist of decomposable sub-problems that are very nearly

separate. Goldman and Zilberstein [46, 47, 49] present problems in which decomposi-

tions arise based on decisions about when otherwise decentralized agents should com-

municate in order to synchronize their local information-states. Xuan and Lesser [135]

examine methods for transforming centralized policies into more decentralized ones,

making trade-offs between communication and utility; this work provides some inter-

esting measures of solution quality, and helps us understand key interactions in terms

of their effect upon solution quality. Similarly, hierarchical agent-control models, such

as the TAEMS structure (Lesser et al. [74]), introduce various ways of identifying

agent influence and interaction. The work of Wagner and others [130, 131], on meth-

ods for scheduling and re-scheduling on the fly in the TAEMS architecture, highlights

interesting ways of decomposing decentralized problems, and the interactions therein,

in various hierarchical manners. The work of Zhang and others [139, 140, 141, 142]

also considers hierarchies, based on negotiations as the key form of interaction.

1.4 Outline

The body of this dissertation is structured as follows.

Chapter 2 gives necessary background, defining Dec-POMDPs and Dec-MDPs,

and outlining their associated solution concepts. We provide a sample Dec-POMDP,

with discussion, to illustrate the ideas behind the formal model. We also briefly

discuss the worst-case NEXP-complete theoretical complexity of the problems, and

its implications. Finally, we outline the state of the art in solution algorithms, with
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special attention paid to the exact and approximate variants of dynamic programming

that we later put to use in our empirical studies.

Chapter 3 contains our central complexity results, applied to some interesting

existing Dec-POMDP variants. These cases are distinguished by a concentration on

distinct, often limited, forms of agent interaction, in order to simplify the problem, or

to provide leverage for special-purpose algorithms. We detail these models, and es-

tablish their computational complexity for the first time. We review the fundamental

result of Bernstein, et al. [16], outlining the proof by reduction that Dec-POMDPs

are NEXP-hard. We are then able to extend these techniques to three other classes of

restricted-interaction problems, in each case showing that this high level of difficulty

is preserved, even when dynamics are apparently simplified. These new complex-

ity results reveal much about the limitations to what restricting interactions can do.

Rather than continuing to proliferate special-case models in hopes of finding generally

simpler cases, we therefore move on to a new approach, seeking to identify ways of

isolating the average-case difficulty of general Dec-POMDPs.

Before doing so, however, we show some new properties of one well-known sub-

model. Chapter 4 concentrates upon events—defined as state-action pairs—and out-

lines their use in specifying certain reduced-interaction Dec-POMDP sub-cases. We

establish an interesting connection between these events and the essential difficulty

of problem-instances. Specifically, we show that the essential dimensionality of a

problem, which factors significantly into the practical applicability of mathematical

programming methods, is tied directly to the event-structure of the domain.

Chapter 5 moves from specific sub-models to a general treatment of agent influence

and interaction. We provide a formal information-theoretic treatment of the effect an

agent has on the dynamics of a Dec-POMDP, defining a series of influence measures

that quantify this effect precisely. We then show that these measures correlate with

real features of Dec-POMDPs, demonstrating how agents that possess some influence
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must be taken into account while planning, while those that do not have influence

may be ignored. Agent influence is also tied to the event-based framework, exposing

further connections with existing work.

Chapter 6 examines agent influence empirically. Once influence has been quanti-

fied, interaction can be evaluated in a precise fashion. Our experiments then show

that the influence gap—measuring the difference in the degree to which different

agents affect the system, or its centralization—correlates with actual algorithm per-

formance. In the case of exact algorithms, increasing influence gap is shown to lead

to problems that are usually easier to solve. When using approximate algorithms, an

increase in the influence gap also leads to much better performance, as solutions are

much more valuable, and can be attained more efficiently.

Finally, Chapter 7 concludes, suggesting implications of the present work, and

indicating where we may want to go from here.
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CHAPTER 2

DECENTRALIZED CONTROL PROBLEMS:
FORMULATION, SOLUTION, AND COMPLEXITY

The material in this chapter provides needed background, presenting the basic for-

mal model of decentralized control problems that we employ throughout. We also dis-

cuss known solution techniques, optimal and approximate, outlining a set of dynamic

programming algorithms—in both exact and memory-bounded variants—that we will

use in empirical investigations of the effects of agent influence and centralization on

problem difficulty (Chapter 6). Further, we outline the fundamental difficulties and

limitations presented by practical and theoretical problem complexity.

2.1 Decentralized Markov Decision Processes

Our work is based upon decentralized partially observable Markov Decision Pro-

cesses (Dec-POMDPs), and their close relatives, jointly observable Dec-MDPs. In this

section, we outline the full formal model in detail, providing an example instance, and

identify the key solution concept that applies to them, namely joint policies.

2.1.1 The Formal Dec-POMDP and Dec-MDP Models

The decentralized partially observable Markov decision process (Dec-POMDP) is a

highly general and powerful framework, capable of representing a wide range of real-

world problem domains. It extends the basic POMDP to multiple agents, operating

in conjunction based on locally observed information about the world, and collecting

a single source of reward.
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Definition 2.1 (Dec-POMDP). A decentralized partially observable Markov decision

process (Dec-POMDP), D, is specified by a tuple:

M = 〈{αi}, S, {Ai}, P, {Ωi}, O, R, T 〉 (2.1)

with individual components as follows:

• Each αi is an agent.

• S is a finite set of world states with a distinguished initial state s0.

• Ai is a finite set of actions, ai, available to αi. A joint action is some tuple of

individual actions, 〈a1, . . . , an〉, one per agent.

• P is the Markovian state-action transition function. P (s, a1, . . . , an, s
′) is the

probability of going from state s to state s′, given joint action 〈a1, . . . , an〉.

• Ωi is a finite set of observations, oi, for αi.

• O is the joint observation function for the set of agents, given each state-

action transition. O(a1, . . . , an, s
′, o1, . . . , on) is the probability of observing

〈o1, . . . , on〉, if joint action 〈a1, . . . , an〉 causes a transition to global state s′.

• R is the global reward function. R(s, a1, . . . , an) is the reward obtained for

performing joint action 〈a1, . . . , an〉 when in global state s.

• T is the (finite or infinite) time-horizon of the problem.

A Dec-POMDP has three main salient features, which characterize the class and

contribute to its complexity. These are as follows:

Local observations lead to decentralization. Given any state-action transition,

the observation function, O, assigns each agent its own observations on a prob-

abilistic basis. While there may be probabilistic dependencies between the

observations of different agents, these are not necessarily very informative, and

in general each agent must act solely on the basis of its own local information.
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Shared rewards leads to cooperation. The reward function, R, is a global one,

and so agents who wish to maximize the objective will seek to coordinate.

Common state-space leads to interaction. There is a single environment under-

lying the system dynamics, with states that transition according to actions of all

agents together and that govern the various rewards and observations received.

Together with the extended time-horizon over which agents must act, these features

combine to create rich and complex problem-domains. The joint reward and necessity

to plan over time distinguishes the problem from one-step competitive games, and

means that intelligent planning methods must take multiple agents, and their joint

actions over time, into full account.

In a general Dec-POMDP, the joint observations of agents are related to the un-

derlying state in only a general probabilistic manner, and may provide little real

information about that state, even taking all agent observations together. For in-

stance, there is nothing in the definition that prevents all state-action transitions

from leading to exactly the same joint observation. That is, we can specify a Dec-

POMDP in which there exists some one observation-tuple, 〈o?1, . . . , o?n〉, such that for

any joint action, 〈a1, . . . , an〉, and state, s, O(a1, . . . , an, s, o
?
1, . . . , o

?
n) = 1, and is

zero (0) for all other combinations of observations.

In most cases, however, the joint observations provide more information than that

about the underlying state.1 The most important sub-instance of the Dec-POMDP

model is thus the decentralized MDP (Dec-MDP), where this information is perfect,

and knowing the joint observation tells us everything we need to know about the state

into which the system has just transitioned.

1This is not to say that individual observations are very informative. We can also create problems
for which the joint observations have strong probabilistic ties to the actual state, but some particular
agent’s own local information tells us next to nothing.
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Definition 2.2 (Dec-MDP). A decentralized Markov decision process (Dec-MDP)

is a Dec-POMDP that is jointly fully observable. That is, there exists a functional

mapping, J : Ω1 × · · · × Ωn → S, such that O(a1, . . . , an, s
′, o1, . . . , on) 6= 0 if and

only if J(o1, . . . , on) = s′.

In a Dec-MDP, then, the sum total of the individual agent observations provides

a complete picture of the state of the environment. It is important to note, however,

that this does not mean that any individual agent actually possesses this informa-

tion. Dec-MDPs are still fully decentralized in general, and individual agents, when

choosing actions, cannot count on access to the global state. This distinguishes these

problems from the multiagent MDP framework, in which agents work together in

states that each observe equally and completely [19]. As we shall see, Dec-MDPs are

considerably more interesting, and—somewhat unfortunately—far more complex.

2.1.2 An Example Instance

As we have discussed already, Dec-POMDPs have proven useful as models for a

wide range of multiagent problem domains (Section 1.3.2). The general framework

allows for many variations, given the wide range of possible relationships between

states, actions, observations, and rewards. A simple example illustrates the sorts of

decisions an agent may need to make in a decentralized environment, and how such

a problem can be presented as a Dec-POMDP.

Experiments with automated, unmanned systems for detection, pursuit and eva-

sion tasks [129] have generally allowed teams of those vehicles to share information

freely among themselves over the course of their search or escape routes, for purposes

of simplifying the problem. If such systems were deployed, however, security concerns

would generally dictate that communication be kept to a minimum, to avoid divulging

route and location details to the competing side. (Some work has attempted to create
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security through policy randomization [97]; for the purposes of this example, however,

we merely consider a traditional, non-random policy.)

Figure 2.1 shows an example of the sorts of decisions that might be necessary under

such constraints. In this framework, two automated agents, a Sensor and a Pursuer,

work together to track and capture a moving target. When the Sensor detects the

trajectory of the target, it can use radio signals to relay this information to the

Pursuer, who can then change course to intercept. However, there is a potential risk

to communicating: there is some chance that the target intercepts communications

between its pursuers and changes course, knowing that it is spotted. The question is

then two-fold: (1) whether or not the Sensor should communicate any information it

has gathered to the Pursuer; and (2) what the Pursuer ought to do given information

received (if there is any).

The diagram illustrates the situation as follows. Circular nodes contain possible

actions for the two tracking agents, taken in order of time from left to right. Square

nodes contain values of variables for the courses taken by the target (CT ) and the

Pursuer (CP ); we assume that these courses run either west (W ) or east (E). Both

agents begin in a starting state. At the second step, the Sensor detects the target

trajectory (CT = X), and at the third, it can choose whether or not to communicate

this fact to the Pursuer, as indicated by the dashed line connecting the agents.

The decision whether or not to communicate is complicated by the chance of

detection, which we can model as uncertain, probabilistic effects of that decision. In

order to determine whether communication is worthwhile, the decision-makers must

take these effects into account.2 The goal is to make the decision leading to the highest

value for the tracking system, where this value is measured in terms of whether or

2Other ways of modeling such communication decisions as separate, distinct types of actions can
be found in [85, 106]; trade-offs between communication and quality are also considered by Xuan,
Lesser, and Zilberstein [136, 137].
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Sensor

Start Detect Comm

Start Wait Receive

If Comm:  0,8
Else:          1.0

CP = W

CP = E

R(CP = CT): 10
R(CP != CT): 0

Reward:

CT = (X + 180) If Comm:  0.2
Else:          0.0

CT = X

CT = X

Pursuer

Figure 2.1: An example communication decision problem. Sensor and Pursuer agents
must work together to track a target. The Pursuer must choose its own course (CP ).
The Sensor must choose whether or not to communicate the observed course taken
by the target (CT ); if it does, there is a 20% chance the target will alter course.

not the target is intercepted. The possible effects of communicating are given by

the numbers along the right-hand edge of the diagram, indicating the probabilities of

each outcome for the variables CT :

• If the Sensor does not communicate anything, then the target will remain on

its current course (CT = X, probability 1.0).

• If the Sensor communicates with the Pursuer, there is a 20% chance the target

intercepts the radio transmission and, realizing it has been detected, changes

to the opposite trajectory (CT = (X + 180◦), probability 0.2); otherwise, the

target continues on its original path (CT = X, probability 0.8).

Finally, rewards are given in the double box at upper right. As shown there, the

system as a whole receives a reward of 10 units if the target is intercepted in the end

(CT = CP ), and a reward of 0 units otherwise (CT 6= CP ). We can assume that all

other states and actions lead to 0 reward. For simplicity, we let communication be

cost-free in this instance.
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This tracking example can be represented as a Dec-POMDP as follows.

(a) S: The global state at any time consists of the location of all mobile elements

(Pursuer agents and targets) across the range of the sensor network, and their

current trajectories, so that each state, s ∈ S, is a tuple of locations and course

variables, one set per Pursuer/target.

(b) A: At each time-step, Sensor agents choose whether or not to broadcast infor-

mation to Pursuers, and Pursuers choose their courses of motion, or can opt to

capture a target whose present location they share.

(c) P : The transition function directs the situation according to actions taken;

for instance, communication actions of Sensor agents have probabilistic effects

upon the course of targets, as already described.

(d) R: The total reward is given as a function of whether or not individual targets

are captured, and is zero (0) otherwise.

(e) Ω: Each Sensor agent observes some sub-region of the entire range of the net-

work and detects target movement in that region; accordingly, its set of obser-

vations corresponds to either seeing a target (and its trajectory) or not, at each

location in its range. Pursuers observe their immediate area, along with the

proximal presence of targets, and their observation-sets correspond to possible

locations and targets; in addition, since they can receive messages from Sensors,

each possible observation includes the presence or absence of same.

(f ) O: The observation function takes various target locations and courses, given

by the state, and “parcels out” information to the various agents as appropriate.

(g) T : We may presume the problem has an infinite (effectively unlimited) horizon,

with continuous tracking and pursuit of new targets over time.

This is but one example, and clearly the details could be altered to add further

capacities, limitations, and complications. For instance, the communication cost-
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function can be made non-zero, so that acts of information-sharing take into account

factors like power usage; this can be modeled using the reward-function, R, adding

a negative penalty to actions involving communication by the Sensor. Noisy com-

munications can be accounted for by including the content of broadcast information

as part of the local-state observation for individual Pursuer agents; communication

actions by Sensors would then have some probability of sending incorrect or partial

information. Similarly, the function O can be set to represent noisy or faulty sensors,

providing only probabilistic guarantees about the actual course taken by a particular

target. Sensor networks that are only expected to operate over fixed periods of time

can be represented in models with finite time-horizons for planning purposes.

Even without such complications, this example already illustrates something of the

complex nature of decentralized decision-making. When devising a policy governing

what the Pursuer may do, clearly we must consider both the possibility that the

Sensor communicates and that it does not, along with the information that may

be communicated, and the effects of the communication as necessary. Furthermore,

when determining whether or not the Sensor should communicate its observation,

we must consider not only the effects of doing so on the target’s trajectory, but

also upon what the Pursuer will do in each case. Generating optimal courses of

action for each agent requires considering not only possible local outcomes and state

transitions, as in a single-agent decision problem, but also the set of possible policies

for the other agent. Furthermore, as time passes, agents will accumulate an entire

history of prior observations, which will provide more refined—or potentially more

confounding—information about the current possible state of the system as a whole.

As will be detailed below, it is this sort of ramified decision-making that contributes

to the complexity of decentralized problems. Since agents will generally be unable to

know the local states, observations, and actions of others, planning will often need to
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take account of vast numbers of possibilities, as policies of action are prepared that

maximize value over any and all contingencies.

2.1.3 Solutions to Decentralized Markov Processes

Solving a Dec-POMDP or Dec-MDP amounts to generating a policy for each

agent, a mapping between their local observations and their possible actions. In fact,

we will want these mappings to be functions of observation histories, since partial

observability means that agents may gather increasing amounts of information about

the current state over time (just as in single-agent POMDPs).

Definition 2.3 (Policies). A local policy for an agent αi is a mapping from sequences

of that agent’s observations, oi = 〈o1
i , . . . , o

k
i 〉, to its actions, πi : Ω?

i → Ai. A joint

policy for n agents is a collection of local policies, one per agent, π = 〈π1, . . . , πn〉.

In general, then, a solution method for a decentralized problem will seek to find

some joint policy that maximizes expected value given the starting state (or distri-

bution over states) of the problem. In order to evaluate policies, we must first define

the probability of a given global state-transition, given a series of observations and a

particular joint course of action.

Definition 2.4 (Transition-Probability for π). Given a joint policy π = 〈π1, . . . , πn〉
and a length-m observation sequence oi = 〈o1

i , . . . , o
m
i 〉 ∈ Ω?

i for each agent αi, we can

define the transition-probability for π between states s and s′, designated by P π(·),
recursively as follows. Let ε be the empty observation-sequence.

P π(s, ε, . . . , ε︸ ︷︷ ︸
×n

, s) = 1.

P π(s, o1o1, . . . , onon, s
′) =

∑
s′′∈S

P π(s, o1, . . . , on, s
′′)× P (s′′, π1(o1), . . . , πn(on), s′)×

O(π1(o1), . . . , πn(on), s′, o1, . . . , on).
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Based upon these policy-driven transitions, we can compute the expected value of a

policy, starting from a given state. For finite-horizon policies, this is straightforward.

Definition 2.5 (Value of a finite policy). The value of following a policy π =

〈π0, . . . , πn〉 for finite number of steps T , beginning in some state s, is as follows:

V π(s) =
∑

〈o1,..., on〉

∑
s′∈S

P π(s, o1, . . . , on, s
′)×R(s′, π1(o1), . . . , πn(on)), (2.2)

where each tuple of observation-sequences 〈o1, . . . , on〉 is such that every component

sequence oi is of the same length t, for any value t ∈ [0, T ).

Given a Dec-POMDP D, with a finite time-horizon T , and distinguished starting

state s0 ∈ S, a solution for D is thus a T -step policy, π. An optimal solution for D
is a T -step policy, π?, that maximizes expression (2.2).3

For infinite-horizon policies, things are somewhat more complicated, due to the

fact that the naive definition (i.e., simply replacing T in Definition 2.5 with ∞)

means that the expected value from any state is infinite whenever we have strictly

positive rewards, and so all policies are identical. In practice, this is usually dealt

with by concentrating on discounted reward over time, employing some weighting

factor γ ∈ (0, 1) to render rewards negligible over suitably long time-horizons. Since

our work here will focus almost entirely on the finite-horizon case, we leave this aside

for now. The thesis of Bernstein [15] covers the subject in detail.

2.2 Complexity of Dec-POMDPs

Here we outline the difficulties inherent in decentralized control problems. As

it turns out, such problems are generally intractable, and present many practical

3When D does not have a distinguished starting state, but rather an initial distribution over
states in S, the optimal policy is that one maximizing expected value over all possible starting
states, given that distribution.
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problems when it comes to exact solutions. Furthermore, approximate solutions to

Dec-POMDPs also turn out to be extremely difficult, making the landscape even

more challenging.

2.2.1 Worst-Case Theoretical Complexity

The fundamental touchstone here is the result of Bernstein, et al. [16], showing

that the decision variant of finite horizon Dec-POMDPs (and Dec-MDPs) is complete

for nondeterministic exponential time (NEXP), even with only two (2) agents. (The

infinite-horizon version is undecidable, a result that follows directly from the fact

that the same holds for single-agent POMDPs.) The essential hardness portion of

the proof is based on a reduction from the tiling problem (see Lewis [75]). While we

will not go into the details here, we outline some of its important implications.4

NEXP-hard problems possess extremely high complexity. To see how this is so, we

consider the more familiar class NP (nondeterministic polynomial time). Simply put,

problems in this class are such that, once a candidate solution has been presented, it

can be verified in time that is polynomial in the size of the original problem specifica-

tion. Nondeterminism, here, enters the picture in the process whereby the candidate

solution is presented for verification: the “NP algorithm” essentially amounts to

choosing some solution non-deterministically, and then performing verification. In

practice of course, nondeterministic machines do not exist, and so an NP solution

algorithm is in fact given simply in terms of the exact verification procedure.

Genuinely NP-hard problems, then, do not have feasible polynomial algorithms

for finding solutions, only for checking them. Furthermore, these problems have a

possible number of solutions that is exponential in the size of the given instance.

Thus, the only known method that could possibly solve an NP-hard problem is one

4Later, in Chapter 3, we outline the proof in more detail, as we make use of variations on the
technique to establish some novel complexity results.
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that enumerates and then verifies each of the exponentially-many solutions one by

one. Barring the reduction of NP to P—the discovery of a polynomial-time algo-

rithm for actually finding solutions—such problems are considered to have worst-case

exponential (EXP) time complexity for existing deterministic machines.5

Thus, NP-hard problems are intractable in the worst case, unless of course P =

NP, in which case the problems are in fact polynomial, since now we can generate

and verify solutions polynomially. With this in mind, the difficulty of NEXP-hard

problems is evident. For such problems, once a candidate solution is presented, verifi-

cation of that candidate requires worst case time that is irreducibly exponential in the

size of the original problem. Thus, a serious bottleneck exists, even if nondeterminism

were not an issue. At best, even if we had the complexity collapse NEXP = EXP (the

best that can be possible, and not to be expected in any case), such problems would

remain exponentially difficult. In the absence of such a collapse, practical complexity

would in fact seem to be doubly exponential, since the only generally optimal method

must search through an exponentially large space of potential solutions as before,

each of which then requires an exponential amount of time to verify. The upshot

is therefore that NEXP-hard problems, like Dec-POMDPs, can be expected to be

largely intractable.

Thus, finite-horizon Dec-POMDPs and Dec-MDPs are extremely difficult. Fur-

thermore, approximation is also highly complex. Many intractable problems have

efficient algorithms for bounded approximation. That is, given some factor ε, it is pos-

sible to find a solution that it is within ε of optimal, using time that is polynomial in

5Strictly speaking, for a complexity class C, saying that a problem is C-hard is only to place
a lower bound on its difficulty. That is, when we say something is NP-hard, or NEXP-hard, this
does not rule out the possibility that the problem is actually harder than that. When we say a
problem is in the class C, this puts an upper bound on complexity, meaning that it can be solved
by an algorithm for that class, and may in fact be easier. Finally, when we say that a problem is
C-complete, we have determined, among other things, that it is bounded above and below by C.
Thus, to say that Dec-POMDPs are NEXP-complete means that they are in fact NEXP-hard in
general, and no harder.
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a combination of that approximation factor and the problem size. For Dec-POMDPs,

this is unfortunately not the case, and as shown by Rabinovich, Goldman, and Rosen-

schein [107], ε-approximation is also NEXP-complete. As a result, approximation is

just as hard as optimal solution, and bounded methods are also generally impractical.

As we will discuss below, this means that many algorithms can only provide rough

guarantees about the optimality of solutions, or provide no bounds at all.

2.2.2 Comparison with Similar Problems

Papadimitriou and Tsitsiklis [93] show that single-agent MDPs with a finite time

horizon are P-complete. Strictly speaking, such problems are in fact pseudopolyno-

mial, since the solution time is polynomial in the size of the problem description only if

the time horizon is specified in non-compact unary form.6 However, given the general

restriction that the time horizon is sufficiently smaller than the size of the problem

state-space (T ≪ |S|), the problem class is strongly polynomial. In the infinite-

horizon MDP case, value and policy iteration algorithms (for an overview, see Sutton

and Barto [123]) converge to optimal solution policies in polynomial time, and linear

programming techniques also provide polynomial solutions (see Kallenberg [67]).

Papadimitriou and Tsitsiklis [93] also show finite-horizon single-agent POMDPs

to be PSPACE-complete. More recently, Lusena, et al. [79] have shown that unless we

have P = PSPACE (which is unlikely), there is no polynomial time ε-approximation

possible for POMDPs. In the infinite-horizon case, as shown by Madani, et al. [81],

POMDPs are in fact undecidable, and have no finite general solution technique. (In-

tuitively, since policies for POMDPs are maps from possible observation-histories to

6Intuitively, such problems may require an iterative approach, so that the solution will require
one step for each moment of time. Even if the amount of processing done per iteration is polynomial,
in the size of the problem specification, a compact, logarithmic representation of a sufficiently long
time-horizon would still mean that the overall time must be exponential in the problem size. This
problem disappears if the unary representation of the time is used, since the size of the instance
keeps pace with the iterations required.
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actions, the possibility of infinitely-long histories leads to the undecidability result.)

This of course implies that Dec-POMDPs are undecidable when the time horizon is

infinite, as well.

The NEXP-completeness of finite-horizon decentralized MDPs and POMDPs is

thus very strong, showing a significant increase in complexity over their single-agent,

centralized relatives. The result also significantly strengthened known complexity

properties for decentralized problems. Initially, Papadimitriou and Tsitsiklis [91]

were able to show that a similar problem, the static team decision problem (STDP)

of Radner [108], was NP-complete for the finite-horizon and single-agent case. They

later pointed out that this implies the NP-hardness of Dec-POMDPs, as well [92].

Unfortunately, their actual complexity is much worse than this lower bound.

When agents can communicate freely and instantaneously with one another, and

have vocabulary sufficient to express all their actions and local states (observations),

it is easy to see that Dec-MDPs (Dec-POMDPs) reduce to multi-agent MDPs (multi-

agent POMDPs), and are thus solvable as equivalent single-agent cases. In many such

cases, even if agents begin without a fixed pre-understood communication protocol,

they can in fact learn to communicate and coordinate properly, making the prob-

lems tractably solvable, as shown by Allen, Goldman, and Zilberstein [1, 43, 44, 45].

However, whenever communication is not cost-free—as indeed it is generally not—the

decision about what and when to communicate must also be considered, and the over-

all problem is identical to the general Dec-POMDP. Goldman and Zilberstein [43] give

an overview of complexity results for many subproblems, especially those involving

various forms of communication.

2.3 Exact Algorithms for Finite-Horizon Dec-POMDPs

As noted, the NEXP-completeness of general Dec-POMDPs means that algo-

rithms for solving such problems optimally can face doubly-exponential growth in
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Figure 2.2: A simple policy-tree, showing a three-step policy for a domain with two
possible observations (o1 and o2).

necessary space and time, rendering even simple problems potentially intractable. In

some computational domains, such theoretical worst-case complexity does not reflect

the average-case difficulty as encountered in practice, and many problem instances

are in fact solvable using polynomial (or better) amounts of computational resources.

In the case of Dec-POMDPs, however, this has not seemed to be the case. Existing

research has primarily focussed upon the basic feasibility of running exact and ap-

proximate algorithms, and success has been measured in terms of the sizes of the sets

{αi}, S, {Ai}, and {Ωi} for the largest problems solved, along with the maximum

finite time-horizons for which policies can be generated. Nothing systematic has been

determined about the relationships between problem solutions and these values, but

suffice to say that all existing cutting-edge methods solve only very small problem

instances (where, for instance, we have but two agents and only a handful of possible

actions and observations for each of them).

Part of the problem is the sheer profusion of possible policies. As we have already

explained, a joint policy for a Dec-POMDP D is a tuple of individual agent-policies,

where each of these is a mapping from sequences of observations to actions. One

convenient means of representing such mappings in the finite-horizon case is in the

form of policy-trees, as shown in Figure 2.2. Such a tree-structure consists of nodes
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Horizon (t) Policies (1 agent) Joint policies (2 agents)
1 2 4
2 8 64
3 128 16,384
4 32,768 1,073,741,824
5 2,147,483,648 4.612 · 1018

Table 2.1: Policy-tree explosion: the number of possible policies for one or two agents,
with 2 actions and 2 observations each.

labeled with action-choices, and branches labeled with possible observations; for a

given agent αi, each such tree will thus have a branching factor equal to the number

of possible observations, |Ωi|, and a depth equal to the horizon of the policy. Thus, in

our example, we see a three-step policy for an agent with two possible observations, o1

and o2. Each path down the tree from root to leaf then corresponds to an observation-

sequence, and an agent pursues the policy by taking the root-action, receiving the

ensuing observation, and following the associated branch to the next action, where

the process is repeated as required.

Given such a representation, it is easy to compute the number of possible horizon-t

policy-trees for an agent α. From the root node, with depth 0, to the leaves at depth

t − 1, we must choose labels for each node at that level; given the branching factor

|Ω|, the number of choices at some depth d is evidently |Ω|d. Therefore, given that

there are |A| choices for each action-label, the number of of possible distinct trees

for the agent is then |A|1+|Ω|+|Ω|2+···+|Ω|t−1

= |A| |Ω|
t−1

|Ω|−1 , which is exponential in the

number of possible observations, |Ω|, and doubly so in the time-horizon, t. Finally,

for an n-agent problem (assuming, without loss of generality, that all agents have the

same number of possible actions and observations), the set of all n-agent, horizon-t

joint policies is additionally exponential in n: (|A| |Ω|
t−1

|Ω|−1 )n, which is O(|A|n·|Ω|t). The

exact values for one and two agents, with only two actions and two observations each,
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are given in Table 2.1, which makes the point clear: exhaustive enumeration and

evaluation of policies for Dec-POMDPs is simply infeasible.

Algorithms for solving finite-horizon Dec-POMDPs optimally have tried to get

around the problem of policy profusion in a number of ways. The first known exact

solution algorithm for general Dec-POMDPs, was devised by Hansen, et al. [59], and

is explained in detail below. Briefly, it uses dynamic programming (DP), working

bottom-up to generate the finite-horizon policies from the leaves to the root; to miti-

gate the full combinatorial explosion, iterated pruning techniques are used to reduce

the number of policies that must be considered overall. However, such improvements

cannot generally make the problem tractable. While this of course follows by the

complexity results, it is also evident in practice: even for a very simple problem,

the method often cannot generate policies beyond a handful of time-steps. Similar

results have been reported with respect to other known optimal methods, including

those that proceed top-down, using heuristic search; again, as Szer, Charpillet, and

Zilberstein [124, 126] have pointed out, only the smallest problems can be solved. A

good overview of these results can be found in Seuken and Zilberstein [113, 116].

2.3.1 Outline of the Dynamic Programming Algorithm

Hansen, et al. [59] base their Dynamic Programming (DP) method for finite-

horizon Dec-POMDPs on Hansen’s own method of DP for single-agent POMDPs [58].

Incremental policy search and pruning are combined with the iterated elimination of

dominated strategies, in a manner analogous to some work in game theory. While

the algorithm cannot escape the basic worst-case hardness results for the problem

class, the intention is that pruning of dominated strategies will sometimes reduce the

search space of policies enough to allow us to solve more complex problems.

Since we use this method in some of our empirical results later on (Chapter 6),

we go over it in detail here. Given finite time horizon t and n agents, the solution is
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represented as a sequence of depth-t policy-trees, πt = 〈πt1, . . . , πtn〉, where each such

tree πti has labeled action-nodes and observation-branches, as described above. The

sum of expected rewards under each of the component policy-trees gives the overall

value of joint policy πt.

These individual agent policy-trees are built in a bottom-up fashion, and the algo-

rithm tries to avoid doing a full backup—creating the full space of trees—by selecting

policies to prune away as it goes. (In effect, at each iteration, each agent keeps only

those policies that are best responses to some possible policy of another.) The set of

depth-(t + 1) policy-trees in πt+1 is built by adding all possible action/observation-

transitions onto depth-t trees from πt. Therefore, the elimination of some tree π? at

any iteration means that all possible later trees that would include π? as a subtree

will never actually be considered. Early pruning of trees thus promises exponential

reduction of necessary work later on.

Each DP iteration consists of the following steps:

Input. For each agent αi, a set Πt
i of depth-t policy-trees πti , with an associated set

of value vectors V ti .

Backup. Generate the set of next-depth trees πt+1
i ∈ Πt+1

i , with value vectors V t+1
i .

Pruning. Trees πt+1
i ∈ Πt+1

i are pruned, given value vectors of other agents V t+1
j .

Output. Sets of trees Πt+1
i and vectors V t+1

i for each agent αi.

We give more detail of these various stages and their requirements below.

Backup and value calculation

The DP program is given a set Πt
i of depth-t policy-trees for each agent αi. Each

agent also possesses a set V ti of value vectors, one for each tree πti ∈ Πt
i. For a Dec-

POMDP D with state-set S, and letting Πt
−i = {Πt

j | j 6= i} be the set of trees for

other agents, each value vector vk ∈ V ti is of dimension |S|×∣∣Πt
−i
∣∣, and gives the value
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Figure 2.3: Expansion of the set of policy-trees from Π1 to Π2 for each of two agents.
Each larger tree (right-hand side) consists of a root-node with one possible action
label, and with observation-branches leading to one possible permutation of the trees
from the prior step (left-hand) side.

of following policy-tree πk ∈ Πt
i, for each possible start-state s ∈ S and sequence of

policy-trees for other agents 〈π1, . . . , πi−1, πi+1, . . . , πn〉 ∈ Πt
−i.

Based on the transition, observation, and reward models of the Dec-POMDP,

the algorithm then exhaustively generates the next set of trees Πt+1
i for each agent.

Figure 2.3 shows the full expansion of the set of policy trees for a pair of agents, from

initial horizon (t = 1, where the trees are just possible action leaf-nodes) to the next

time-step, again for the 2-action, 2-observation case. Once Πt+1
i has been generated

for each i, the next-stage value vectors V t+1
i are also calculated. Note that each such

vector will now be of higher dimension than before, rising to size
∣∣S × Πt+1

−i
∣∣.

Iterated pruning

The value of a policy-tree for agent αi is determined by that agent’s belief about

the state of the environment and about the possible policies being followed by other

agents. This belief is represented as the set of probability-distributions over this space

of possibilities, ∆(S×Πt
−i). We then want to prune policy-trees which are dominated

relative to any possible belief, in the sense that some other policy-tree does just as
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Figure 2.4: Policy-trees are pruned iteratively, beginning from the set created by
the full backup from the prior step. First, we eliminate policies for the first agent,
keeping only those that are dominated by others, given any possible policy of the
second agent; then, we do the same for the second. Since the reduction in the second
set may mean that further policies can be eliminated from the first, the process is
repeated until convergence.

well or better against any of the other agents’ current possible policy-trees. In order

to prune each policy-set Πt+1
i , the DP algorithm iterates as follows:

1. Choose agent αi and find policy-tree πk ∈ Πt+1
i , with value vector vk, such that:

∀δ ∈ ∆(S × Πt+1
−i ), ∃vm ∈ (V t+1

i /vk) s.t. δ · vm ≥ δ · vk.

2. Set Πt+1
i ← (Πt+1

i /πk).

3. Set V t+1
i ← (V t+1

i /vk).

That is, we trim out any policy that is less valuable than all others, given any

possible belief. (This is computed in an efficient manner using linear programming.)

Such a policy is eliminated from the policy-set, and its associated value vector is

eliminated along with it, since we will no longer have to consider the value of that

policy. This process is carried out iteratively for each agent αi in turn, as shown in

Figure 2.4. On the left-hand side of the diagram, we see that some policy-trees for

one agent are trimmed away, since each is dominated by some other policy in the

set. Then, on the right-hand side, the policy-trees of the second agent are trimmed,
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where their value are calculated relative only to those possible policies of the first

agent that remain. The process is then repeated: since the second agent has now

trimmed its possible policies, too, the first may now find that some of its remaining

policies are no longer necessary, since the target to which they are a best response no

longer exists. The algorithm continues looping through policies of each agent, until

it converges, and no more policies are eliminated.

Output policy

At the end of one iteration, the DP algorithm has generated a set of depth-k

policy-trees for each agent, comprising all of those courses of action that may prove

valuable under some possible belief. The process repeats until the time-horizon T

is reached. The result is then a collection of depth-T policy-trees, each of which is

provably optimal for some initial belief-distribution over possible initial states of the

Dec-POMDP. Then, given each agent’s starting belief about what that state may be,

we can calculate the value of each policy-tree relative to that particular belief. The

final output is then simply a sequence of depth-T policy-trees, πt = 〈πt1, . . . , πtn〉, each

maximizing value for the given agent, and comprising an optimal solution-policy.

2.4 Approximate DP for Finite-Horizon Dec-POMDPs

In Chapter 6, we also examine how the performance of some approximate dynamic

programming methods relates to defined measures of agent interaction. We thus

describe these methods here.

2.4.1 Memory-Bounded Dynamic Programming

Seuken and Zilberstein [114, 115] present an extension of the basic DP method

that places hard bounds on the number of policy-trees retained in each phase of the

bottom-up construction. In normal DP, many trees are retained during construction

that will turn out to be sub-optimal, once the full horizon has been reached, and
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begin
MaxTrees := maximum number of trees before backup
MaxObs := maximum number of observations for backup
T := horizon of DEC-POMDP D
H := pre-computed heuristic policies for each heuristic h ∈ H
Q1

i , Q
1
j := initialized to all 1-step policy trees

for t = 1 to T − 1 do
Selti , Seltj := ∅
for k = 1 to MaxTrees do

choose heuristic h ∈ H and generate belief state bT−t

foreach qi ∈ Qt
i, qj ∈ Qt

j do
evaluate policy-pair 〈qi, qj〉 relative to belief b

add best policy trees to Selti , Seltj
delete those trees from sets Qt

i, Qt
j

choose heuristic h ∈ H and generate belief state bT−t−1

Oi, Oj := MaxObs most likely observations for h(bT−t−1)
Qt+1

i , Qt+1
j := partBackup(Selti , Seltj , Oi, Oj)

complete trees in Qt+1
i , Qt+1

j via local search over observations
improve policies in Qt+1

i , Qt+1
j via hill climbing

select best joint policy tree δT for initial belief b0 from {QT
i , QT

j }
return δT

end
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Figure 2.5: The Improved Memory-Bounded dynamic programming (IMBDP) al-
gorithm combines the bottom-up policy-tree backup of regular DP with top-down
heuristic search to find relevant beliefs and most likely observations. These are then
used to prune down to a fixed maximum number of trees per agent at each iteration.

the various possible starting states are considered. Intermediate-stage beliefs about

the possible policies of other agents, which determine whether a given policy-tree is

dominated and can be eliminated, often turn out to be ill-founded. Thus, the memory-

bounded dynamic programming (MBDP) method employs top-down heuristics, such

as the assumption that the problem becomes a fully observable MDP after each step,

to work top-down in an efficient manner, eliminating sub-trees that are in fact not

reachable given the distribution over initial states. Combined with the parameter

constant maxTrees, which restricts how many policy-trees are ever retained after

pruning, the set of policies in original MBDP grows on the order of |A|×maxTrees|Ω|.
The algorithm performance is then linear with respect to the time horizon T , but still

features exponential dependence on the number of possible observations.

To deal with this problem, the improved MBDP (IMBDP) algorithm also caps the

maximum number of observations considered. As before, when considering sub-trees

that begin at some time step t ∈ T , the top-down heuristics are used to generate a

set of possible belief-states, and for each such state, the best policy-tree is selected.
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Rather than doing a full DP backup over all such policies, however, a strictly partial

backup is performed, using a set of most likely observations. This, for bt−1, the most

likely belief-state for horizon step t− 1, and best joint action a (derived according to

the heuristic model), we calculate the probability of any joint observation o as follows:

p(o) =
∑
s∈S

bt−1(s)×O(o | a, s).

Then, using a pre-set bound on total observations m = maxObs, the m most likely ob-

servations are used for backup of the policy-trees (with missing observation branches

filled in heuristically using local search techniques). Figure 2.5 shows the algorithm,

and its combination of bottom-up policy-tree backup of regular DP with top-down

heuristic search to find relevant beliefs and most likely observations.

Seuken and Zilberstein [114] are able to provide a bound on the error introduced by

the process that is quadratic in the time horizon T , and decreases as maxObs grows,

becoming 0 when maxObs = |Ω|, and all observations are used in backing up trees

as in original DP. Further, the algorithm is now polynomial in all parameters. Their

empirical work establishes that the algorithm can solve problems that are much larger

than can be managed using optimal methods of any known kind, with time-horizons

that are an order of magnitude longer. However, there is still rapid growth in time

and space requirements as maxTrees and maxObs increase. Thus, in Chapter 6,

we show that this performance can be tuned using our defined measures of agent

influence (Chapter 5). In particular, as problems grow more centralized, the memory-

bounding parameters maxTrees and maxObs can be set lower while still retaining

some assurance of quality approximation, allowing for far better solution times.

2.4.2 MBDP with Observation Compression

Carlin and Zilberstein [23] expand upon the previous work, taking a different

approach to the elimination of observations. Based on IMBDP, the method uses the
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same combination of bottom-up DP and top-down heuristic belief-state generation;

as well, the number of policy trees retained for backup is bounded by the same fixed

maxTrees parameter. In original IMBDP, we recall, the maxObs parameter bounds

how many of the most likely possible observations are retained as well. Unlikely

observations are pruned out, and the sub-tree branches under them are later filled

in using heuristic local search techniques; therefore, policy-trees still retain their full

branching factor. In the observation compressions (OC) variant, on the other hand,

the algorithm will in fact reduce this branching factor by merging certain observations

together, collecting them into a set so that all of them lead to the same policy-tree

branch. The parameter maxObs is thus used to bound the number of merged sets.

In order to decide which observations should be merged, the algorithm computes

which possible combinations lead to the least loss in expected value. Illustrating this

point for the two-agent case, and letting qi ∈ Qi be a policy-tree for agent αi, we can

use basic POMDP methods to compute V (qi | qj, b, ai, aj, oi, oj), which is the value

of continuing to follow joint policy 〈qi, qj〉, after having taken joint action 〈ai, aj〉
and receiving joint observation 〈oi, oj〉 in belief-state b. The best policy for αi, q

?
i , is

then the policy-tree qi that maximizes this expression. We can then compute three

quantities to determine what is sacrificed by following some other, non-optimal policy:

Li(qi | qj, b, ai, aj, oi, oj) = V (q?i | qj, b, ai, aj, oi, oj)− V (qi | qj, b, ai, aj, oi, oj)

WLi(qi | b, ai, {oi}) =
∑

oi∈{oi}

max
aj∈Aj

∑
oj∈Ωj

max
qj∈Qj

O(oi, oj | b, ai, aj)Li(qi | qj, b, ai, aj, oi, oj)

WL?i (Qi | b, a, {oi}) = min
qi∈Qi

WLi(qi | b, ai, {oi}).

That is, Li(·) computes the value lost by pursuing policy qi rather than the optimal

q?i . Then, WLi(·) is the expected total loss for merging the set of observations {oi}
and following the same policy for each, while WL?i (·) is simply the minimum of these.
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begin
MaxTrees := maximum number of trees before backup
MaxObs := maximum number of observations for backup
T := horizon of DEC-POMDP D
H := pre-computed heuristic policies for each heuristic h ∈ H
Q1

i , Q
1
j := initialized to all 1-step policy trees

Ai, Aj := the set of actions available to agents αi, αj

for t = 1 to T do
choose heuristic h ∈ H and generate belief state b
for each agent αi do

Qt+1
i := ∅

for each action a ∈ Ai do
Z := compressObs(αi, b, a, Qt

i, Q
t
−i,MaxObs)

Qt+1
i := Qt+1

i ∪ partBackup(Qt
i, a, Z)

Selt+1
i , Selt+1

j := ∅
for k = 1 to MaxTrees do

choose heuristic h ∈ H and generate belief state b
foreach qi ∈ Qt+1

i , qj ∈ Qt+1
j do

evaluate each policy-pair (qi, qj) relative to b

add best policy trees to Selt+1
i , Selt+1

j

delete these trees from Qt+1
i , Qt+1

j

Qt+1
i , Qt+1

j := Selt+1
i , Selt+1

j

select best joint policy tree δT from {QT
i , QT

j }
return δT

end

(a) The IMBDP-OC algorithm.

input : Agent αi, belief state b, root action ai, subpolicies Qi and Q−i,
and observation bound MaxObs

output: O ≡ a set of tuples 〈{ok}, εk〉, where each {ok} is a set of
observations, and εk is the error introduced by merging that set

begin
O := {〈{o1}, 0〉, 〈{o2}, 0〉, . . .}
for each observation ok, each policy qi,
and each q−i ∈ Q−i & a−i ∈ A−i for the other agent do

Precompute V (qi | q−i, b, ai, a−i, ok, o−i)
Keep track of best policies q∗i

while |O| > MaxObs do
({o′1}, {o′2}):=argmin〈{o1},ε1〉,〈{o2},ε2〉∈O WL∗(Qi | b, ai, {o1}∪{o2})
ε := WL∗(Qi | b, a, {o′1} ∪ {o′2})
O := O − {〈{o′1}, ε1〉, 〈{o′2}, ε2〉} ∪ 〈{o′1} ∪ {o′2}, ε〉

return O
end

(b) The compressObs method.

Figure 2.6: The IMBDP algorithm with observation compression. The method for
compressing the observations into merged sets is also included.

At every backup, then, the IMBDP-OC algorithm divides observations in a way

that minimizes the expected loss, under the constraint that at most maxObs sets be

employed. Figure 2.6 presents the main method, and the compressObs routine for

merging observations into combined sets.

Carlin and Zilberstein [23] show that when maxObs ≥ maxTrees, the OC variant

constructs the same best available policy-tree as original MBDP. In the worst case,

the algorithm loses some fixed amount of value per iteration, and has running time

that is again polynomial in all parameters. Their empirical investigation suggests

that there is some small time penalty for adding observation compression, but overall

runtime is comparable for IMBDP and their variant. In domains where there is

some penalty for ignoring improbable observations, the original algorithm runs the

risk of poor performance, and the OC variant does considerably better, since it does

not completely eliminate such observations. On the other hand, where less-probable

observations can safely be ignored, as they never arise in the course of actual optimal

42



courses of action, the algorithms are relatively comparable in terms of the values

of policies generated. Our work in Chapter 6 shows that performance is relatively

similar over a broad range of problems; again, the measures of influence defined in

Chapter 5 correlate strongly with policy value under IMBDP-OC, and again allow us

to set the bounding parameters intelligently.

2.5 Other Algorithmic Techniques

While optimal methods for Dec-POMDPs exist, in most cases only the very small-

est such problems can actually be solvable practically. Generally, the amount of plan-

space pruning afforded by a DP or heuristic search method is simply insufficient, and

the number of policy trees under consideration explodes unmanageably after only

very few iterative steps. Bernstein et al. [14, 13] have extended these methods, and

investigate policy iteration methods for infinite-horizon problems as well. Recently,

Aras et al. [5] have presented a mixed-integer mathematical programming method

that solves Dec-MDPs via a sequence-form reduction. Nevertheless, these algorithms

are primarily of theoretical interest, and have not significantly increased the practical

scope of problem-solving. No efficient and implementable techniques exist that can

solve the sorts of complex problems we are interested in here.

As a result of this fundamental difficulty, researchers have proposed a number of

approximate solution algorithms. While we discussed two variants of DP that bound

the memory used when seeking solutions, there are a number of other candidates.

For example, Nair et al. [86] present the Joint Equilibrium-based Search for Policies

(JESP) algorithm, which finds a locally-optimal joint solution (i.e. one that is optimal

for individual agents considered on their own). While this is interesting, it presents

difficulties for applications where systems can only be judged by their success or

failure on the whole. In sensor networks, for instance, it would be hard to accept a
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plan of action that allowed individual sensors to “succeed” without actually producing

a coordinated tracking effort.

Peshkin et al. [98] study how to approximate the decentralized solution using on-

line learning when the agents do not know the model of their environment. Schneider

et al. [112] assume that each decision-maker is assigned a local optimization prob-

lem, and show how to approximate the global optimal value function when agents

may exchange information about their local values at no cost. Neither convergence

nor bounds have been established for this approach. Wolpert et al. [134] assume

that each agent runs a predetermined reinforcement learning algorithm, transform-

ing the coordination problem into one of updating local reward functions so as to

maximize the global reward function. Again, this is an approximation algorithm for

on-line learning that does not guarantee convergence. Guestrin et al. study off-line

approximations, whether centralized [51] or distributed [50], where known dependen-

cies between agents’ actions induce a message-passing structure. In this context,

agents choose their actions in turns and communication is again presumed to be

free, limiting the work’s applicability. Finally, Amato et al. [2, 4] study linear and

non-linear programming techniques for generating fixed-size finite-state controllers

for Dec-POMDPs. Such controllers, while at least locally optimal for their fixed size,

yield generally sub-optimal solutions; some empirical work suggests that these are at

least better approximations to the optimal than other approaches mentioned here.
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CHAPTER 3

COMPLEXITY OF RESTRICTED MODELS

Given the difficulty of the general Dec-POMDP problem, much attention has been

paid to special cases, where some restrictions are placed on the problem definition. In

doing so, the hope is that we can reduce problem complexity, while still representing

problems of real interest. Here, we concentrate on some special models that restrict

the ways in which agents can possibly interact in a system. In some cases, this

has been shown to reduce problem complexity, and specialized algorithms have been

devised. In others, less has been shown about essential hardness.

In addition to reviewing some of the known results, we prove some new ones, and

by doing so reinforce the challenges inherent in decentralized domains. In particular,

we show that there are limits to the conclusions we can draw from the best-known

theorem concerning the simplification of such problems. It has been established that

the worst-case complexity of finite-horizon Dec-POMDPs goes down—from NEXP to

NP—when agents interact only via a joint reward structure, and are otherwise inde-

pendent of one another. Unfortunately, further reductions, based on other combina-

tions of fully or partially independent system dynamics are unlikely, if not impossible.

Indeed, we show that if the situation were reversed, and rewards were wholly

independent, whereas other dynamics were not, the problem would remain NEXP-

complete. Further, we consider two important Dec-POMDP sub-classes from the

literature, each of which tries to inject more independence into the transitions and

observations: (a) those domains in which the local agent sub-problems are indepen-

dent but for a (relatively small) number of event-based interactions, and (b) those in
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which agents only interact by way of influence on the set of currently available actions.

As it turns out, both of these types of problem are NEXP-complete as well—facts

previously unknown. (In the latter case, this is in fact a substantial increase in the

upper bound on worst-case complexity.)

As we will argue, these largely negative results—at least in terms of ease of ex-

pected solution—provide further impetus to examine new tools for the analysis and

classification of problem difficulty in decentralized problem solving. While the in-

troduction of increasing degrees of independence is an intuitive and elegant way to

simplify the apparent structure of a Dec-POMDP, it turns out that this does not

always correspond with real reduced complexity. Among other things, this motivates

our work in later chapters, where we attempt to solve this classification problem in a

novel way, by isolating new general properties of Dec-POMDPs that correlate more

directly with empirical problem difficulty.

3.1 Independence Relations in Dec-POMDPs

In general form, the functions governing state transitions, observations, and re-

wards in a Dec-POMDP can involve any number of probabilistic dependencies. An

obvious subcase of such a model is thus one in which these factors are subject to var-

ious independence relations. Becker et al. [7, 11, 12] have thus studied problems in

which the global state-space consists of the product of local states, so that each agent

has its own individual state-space. A Dec-POMDP can then be transition indepen-

dent, observation independent, or reward independent, as each the local effects given

by each corresponding function are independent of one another. Thus, for instance,

the local state transitions for any single agent in a transition-independent problem

do not depend upon those of any other agent, and similarly for the other models. If

a Dec-POMDP is in fact characterized by all three types of independence, then it

is trivially factorable into separate individual POMDPs, one for each agent. Thus,
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where we have a fully factorable problem that is also originally a Dec-MDP, the result

is a set of separate single-agent MDPs, each of which can be solved using any of the

usual tractable methods.

A more interesting result comes when the transition and observation dynamics

of a Dec-MDP are independent, but the overall reward structure remains global,

depending upon interactions of multiple agent actions. Such problems are restricted

Dec-MDP instances, but still arise often enough in practice to be of some real interest

(see discussion in [113, §2.5.1], for examples). As first shown by Goldman and Zilber-

stein [48], such problems are in fact NP-complete. Thus, while they remain generally

intractable, complexity is significantly reduced by the independence restrictions on

agent interactions, and it is suggested that such problems may be often more feasibly

solved. Indeed, Becker et al. [12] present an optimal method for such problems—the

Coverage Set Algorithm—that is often tractable in practice.

3.1.1 Factored Dec-MDPs and Independence

We begin with the basic formal definitions of this special sub-class of Dec-MDP,

adapted from existing literature, and review the NP-completeness claim.

Definition 3.1 (Factored Dec-POMDP). A factored, n-agent Dec-POMDP is a Dec-

POMDP such that the system state can be factored into n+ 1 distinct components,

so that S = S0 × S1 × · · · × Sn, and no state-variable appears in any Si, Sj, i 6= j.

As with the local (agent-specific) actions, ai, and observations, oi, in the general

Dec-POMDP definition, we now refer to the local state, ŝ ∈ Si × S0, namely that

portion of the overall state-space that is either specific to agent αi (si ∈ Si), or shared

among all agents (so ∈ S0). Note that we insist that the agent-specific portions of

local states be non-overlapping and distinct portions of the remaining state-space;

however, this restriction is not very limiting, as we can easily show.

Proposition 3.1. Any n-agent Dec-POMDP has an equivalent factored version.
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Proof. Consider an arbitrary n-agent Dec-POMDP, in accordance with Definition 2.1:

D = 〈{αi}, S, {Ai}, P, {Ωi}, O, R, T 〉.

We define a factored version of the problem

Df = 〈{αi}, Sf , {Ai}, P f , {Ωi}, Of , Rf , T 〉,

with components:

• {αi}, {Ai}, {Ωi}, T are identical between D and Df .

• We add n state variables, v1, . . . , vn, each of which has a single constant value,

vi = 1, ∀i. For each agent αi, the purely local portion of the state space is

Si = {vi}, and we let S0 = S ∈ D, the original state-space. Every state

sf ∈ (Sf = S0× S1× · · · × Sn) is then simply some state s ∈ S ∈ D, with n 1’s

appended; for any state s in the original state-space, we thus write s1n for the

corresponding state in the new state-space. Note that |S| = ∣∣Sf ∣∣.
• ∀s1n, s′1n, ∀a1, . . . , an, ∀o1, . . . , on,

1. P f (s1n, a1, . . . , an, s
′1n) = P (s, a1, . . . , an, s

′).

2. Of (∀a1, . . . , an, s
′1n, o1, . . . , on) = O(∀a1, . . . , an, s

′, o1, . . . , on).

3. Rf (s1n, a1, . . . , an) = R(s, a1, . . . , an).

It is easy to see that the new Dec-POMDP, Df is equivalent to the original, since

all state-transitions, observations, and rewards are based on precisely the same state-

variables in both problems. It is also worth noting that the proof establishes the same

result for Dec-MDPs. If the original problem D is a Dec-MDP, then any observation

sequence determines the global state s; thus, in the derived versionDf , the observation

sequence for s1n will also determine s, and the rest of the state is fixed.
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It is more interesting, however, to consider problems with system dynamics that

actually break down separately and meaningfully over the various local states. In

doing so, for convenience of presentation, we will use the notation s−i for the sequence

of all state-components except that for agent αi:

s−i = (s0, s1, . . . , si−1, si+1, . . . , sn)

(and similarly for action- or observation-sequences, a−i and o−i).

Definition 3.2 (Transition Independence). A factored, n-agent DEC-POMDP is

transition independent if and only if the state-transition function can be separated

into n+ 1 distinct transition functions P0, . . . , Pn, where, for any next state s′i ∈ Si,

P (s′i | (s0, . . . , sn), (a1, . . . , an), s−i) =


P0(s′0 | s0) if i = 0;

Pi(s
′
i | ŝi, ai, s′0) else.

In other words, the next local state of each agent is independent of the local

states of all others, given its previous local state and local action, and the external

system features (S0). Further, the external features evolve independently of all local

agent actions or states. Given these independence relations, the joint probability

distribution over global states is a product of the relevant individual distributions.

Definition 3.3 (Observation Independence). A factored, n-agent Dec-POMDP is

observation independent if and only if the joint observation function can be separated

into n separate probability functions O1, . . . , On, where, for any local observation

oi ∈ Ωi,

O(oi | (a1, . . . , an), (s′0, . . . , s
′
n), o−i) = Oi(oi | ai, ŝ′i)

In such cases, the probability of each agent’s individual observations is a func-

tion of their own local states and actions alone, independent of the states of other
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agents, and of what those others do or observe. As with transition probabilities, the

conditional independence given by this definition implies that the joint observation

function O can be represented as a product of the individual-agent observation func-

tions. Finally, we can extend the notion of independence to the Dec-POMDP reward

function, separating it into distinct local functions.

Definition 3.4 (Reward Independence). A factored, n-agent Dec-POMDP is reward

independent if and only if the joint reward function can be represented using a set of

local reward functions R1, . . . , Rn, such that:

R((s0, . . . sn), (a0, . . . , an)) = f(R1(ŝ1, a1), . . . , Rn(ŝn, an))

and

Ri(ŝi, ai) ≥ Ri(ŝi, a
′
i) ⇔ f(R1, . . . ,Ri(ŝi, ai), . . . , Rn) ≥ f(R1, . . . , Ri(ŝi, a

′
i), . . . , Rn)

That is, the joint reward function can be represented as a function over local

reward functions alone, under the constraint that we maximize the global reward if

and only if we maximize each of the local rewards. A typical example of such an

independent factorization is the additive sum of local rewards,

R((s0, . . . sn), (a0, . . . , an)) = R1(ŝ1, a1) + · · ·+Rn(ŝn, an),

where the system simply receives the total reward gathered by individual agents.

It is important to note that each of the three definitions of independence applies

equally to Dec-MDPs, just as well as Dec-POMDPs. (The reader will recall that a

Dec-MDP is a Dec-POMDP that is jointly fully observable [Definition 2.2], so that the

global state is determined by the current tuple of agent-observations.) When we are
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dealing with the latter type of problem, we are often interested in instances for which

the joint full observability of the overall state is accompanied by full observability at

the local level.

Definition 3.5 (Local Full Observability). A factored, n-agent Dec-MDP is locally

fully observable if and only if any agent’s local observation uniquely determines its

local state: ∀oi ∈ Ωi, ∃ŝi : P (ŝi | oi) = 1.

Local full observability is not simply equivalent to independence of observations.

In particular, a problem may be locally fully observable without being observation

independent (since agents may simply observe the results of non-independent joint

actions). On the other hand, it is easy to show that an observation-independent

Dec-MDP must also be locally fully observable.1

Proposition 3.2. If any factored, n-agent Dec-MDP is observation independent,

then it is locally fully observable as well.

Proof. Suppose an arbitrary factored, n-agent Dec-MDP D is observation indepen-

dent. Assume, for contradiction, that it is not locally fully observable. By Defini-

tion 3.5, this means that there exists some agent αi, and some observation oi ∈ Ωi,

for which there is no local state ŝi such that P (ŝi | oi) = 1. Let o?i be that observation.

Now, since the observation function for agent αi, Oi, must define a proper probability

distribution (and so it cannot be that all states ŝi have 0 probability given oi), there

must exist at least two local states with positive probability given the observation in

question; that is, there exist ŝ1
i , ŝ2

i such that:

1. ŝ1
i 6= ŝ2

i ;

2. P (ŝ1
i | o?i ) = k and P (ŝ2

i | o?i ) = m, with 0 � k, m � 1.

1A version of this result was originally proven by Goldman and Zilberstein [48], for a somewhat
more complicated case, and required the additional assumption that the Dec-MDP was transition-
independent as well. Our result is new, and the proof distinct.
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By Bayes’ Rule, and conditionalization:

P (ŝ1
i | o?i ) =

P (o?i | ŝ1
i )P (ŝ1

i )

P (o?i )

=

∑
ai
P (o?i | ai, ŝ1

i )P (ai | ŝ1
i )P (ŝ1

i )

P (o?i )

and therefore, since P (ŝ1
i | o?i ) 6= 0, we know that there exists some action, call it

a1
i , such that P (o?i | a1

i , ŝ
1
i ) 6= 0. By similar reasoning, there exists some action, call

it a2
i , such that P (o?i | a2

i , ŝ
2
i ) 6= 0. Now, by Definition 3.3, since D is observation

independent, we can factor the observation function:

O((a1, . . . , an), (s0, . . . , sn), (o1, . . . , on)) =
∏

1≤i≤n

Oi(ai, ŝi, oi)

Now consider any combination of observation-function values with non-zero value,

featuring designated components for agent αi, and otherwise identical:

O1(a1, ŝ1, o1)× · · · ×Oi(a
1
i , ŝ

1
i , o

?
i )× · · · ×On(an, ŝn, on) 6= 0 (3.1)

O1(a1, ŝ1, o1)× · · · ×Oi(a
2
i , ŝ

2
i , o

?
i )× · · · ×On(an, ŝn, on) 6= 0 (3.2)

(Such a combination must exist, trivially.) Since D is a Dec-MDP, by Definition 2.2,

then by Equation (3.1) there exists a function J from observation-tuples to states

such that: J(o1, . . . , o
?
i , . . . , on) = (ŝ1, . . . , ŝ

1
i , . . . , ŝn). Similarly, by Equation (3.2),

J(o1, . . . , o
?
i , . . . , on) = (ŝ1, . . . , ŝ

2
i , . . . , ŝn). However, since ŝ1

i 6= ŝ2
i , and J is a func-

tion, this is impossible. Therefore, by reductio, D must be locally fully observable.

3.1.2 Examples of Independent Problem Domains

While the various independent sub-classes of the general Dec-POMDP or Dec-

MDP framework are restricted, they remain useful, as they represent many prob-

lems encountered in practice. Transition-Independent problems cover any domains in
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which individual agents can operate without interference between them; when we do

not add additional presumptions of independence, these can still be quite rich. Decen-

tralized computation, where multiple machines work on sub-parts of a problem that

has been divided up ahead of time, can often be regarded as a transition-independent

domain, for instance. Once each processor has received its own batch of jobs or in-

structions, these can be run entirely separately, before being returned to a central

location. Such problems remain highly complex, since the final outcome—the reward

accumulated once the diverse results are composed into a single solution—can vary

widely, and there may be many interdependencies between the rewards and results

gained in the end. Becker et al. [12] consider a Mars rover domain with similar

features, in that rovers are able to move about their environment and gather scien-

tific samples separately, without any dependent interactions; however, the final value

of the samples gathered does involve interdependencies, since for example multiple

samples of the same material is less valuable than a range of distinct samples. The

same issues arise in the highly challenging area of vehicle routing, where individual

elements of a fleet of delivery trucks, for example, navigate their environment from

station to station absolutely independently, but the coordination of routing decisions

for optimal pay-off in terms of time and quality of service remains difficult.

Observation independence is also common in these sorts of domains. When agents

work separately, it is often the case that they observe nothing of the local variables

and actions of others. In the rover example, it is generally assumed that the rovers

have no access to one another’s activity. Similarly, in distributed processing, one node

will generally have no access to conditions and outcomes at other nodes. It is worth

noting that such forms of independence contribute to the challenge of the problems.

While dependent observations do add to the complexity of a problem—in that they

provide additional information that must be accounted for in planning—the lack of
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such information can also make optimal solution more difficult, since less may be

known about how one’s local action outcomes will affect final reward gained.

Reward independence is also common, since it often makes most sense to regard

the global reward function for a problem as an additive function of individual agent

rewards, ensuring that maximizing each agent’s individual outcomes will provide glob-

ally maximal reward as well. When such problems do not include the other forms of

independence, they can remain quite challenging. For instance, in modeling urban

vehicle traffic, it is possible to treat reward as a function of individual rewards, such

as the sum of inverse travel times during a commute. Because vehicle travel times and

conditions do not evolve independently, such problems are generally not transition

or observation independent, and so do not simply decompose into separate MDPs or

POMDPs, as they would if all three forms of independent were present.

3.2 Shared Reward Structures

As just mentioned, if a Dec-MDP (or Dec-POMDP) has all three forms of inde-

pendence given by Definitions 3.2–3.4, it can be decomposed straightforwardly into n

separate problems, where each agent αi works solely within the sub-environment given

by local states in Si × S0. Such single-agent problems are known to be P-complete,

and can be generally solved to high degrees of optimality in efficient fashion.2 to

calling the problems polynomially solvable; indeed, when However, it is possible to

create much more complex problem instances when nearly all of the independence

relationships hold. In particular, it has been shown that Dec-MDPs that are both

2See Papadimitriou and Tsitsiklis [93]. Strictly speaking, MDPs are only solvable in pseudopoly-
nomial time by most common dynamic programming methods, since the iterations of the algorithm
depend directly upon the time horizon, which is typically given in concise (binary) form; thus T iter-
ations of an algorithm for a problem whose size is (O)(log T ) is actually exponential in the problem
size. If T is given in prolix (unary) fashion, then strictly polynomial solving time results. (These
points are discussed in detail by Littman, Dean, and Kaelbling [77].) This is not typically considered
a serious objection to treating MDPs as feasible, polytime problems; often the stipulation is made
that T � |S|, for convenience.
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transition- and observation-independent, but do not separate their reward-structure,

are NP-complete.

We review this result, found in Goldman and Zilberstein [48] and Becker et al. [12].

To do so, we first describe the event-based reward structure used in that work. While

somewhat complicated, these ideas are of broader use to us. Later sections and

chapters will also make use of these definitions, or versions of them, to show how other

combinations of independent dynamics relate to complexity, and how the nature of the

reward structure relates precisely to the essential dimensionality of problem instances.

Again, we give all definitions in terms of Dec-POMDPs; they apply immediately to

Dec-MDPs in particular.

Definition 3.6 (History). A history for an agent αi in a factored, n-agent Dec-

POMDP D is a sequence of possible local states and actions, beginning in the agent’s

initial state: Φi = [ŝ0
i , a

0
i , ŝ

1
i , a

1
i , . . .]. When a problem has a finite time-horizon T , all

possible complete histories will be of the form ΦT
i = [ŝ0

i , a
0
i , ŝ

1
i , a

1
i , . . . , ŝ

T−1
i , aTi , ŝ

T
i ].

Definition 3.7 (Events in a History). A primitive event e = (ŝi, ai, ŝ
′
i) for an agent

αi is a triple representing a transition between two local states, given some action

ai ∈ Ai. An event E = {e1, e2, . . . , eh} is a set of primitive events. A primitive event

e occurs in the history Φi, written Φi � e, if and only if the triple e is a sub-sequence

of the sequence Φi. An event E occurs in the history Φi, written Φi � E, if and only

if some component occurs in that history: ∃e ∈ E : Φi � e.

Events can therefore be thought of disjunctively. That is, they specify a set of

possible state-action transitions from a Dec-POMDP, local to one of its agents. If

the historical sequence of state-action transitions that the agent encounters contains

any one of those particular transitions, then the history satisfies the overall event.

Events can thus be used, for example, to represent such things as taking a particular

action in any one of a number of states over time, or taking one of several actions at
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some particular state. For technical reasons, namely the use of a specialized solution

algorithm, these events are usually restricted in structure, as follows.3

Definition 3.8 (Proper Events). A primitive event e is proper if it occurs at most

once in any given history. That is, for any history Φi if Φi = Φ1
i eΦ2

i then neither

sub-history contains e: ¬(Φ1
i � e) ∧ ¬(Φ2

i � e). An event E is proper if it consists

of proper primitive events that are mutually exclusive, in that no two of them both

occur in any history:

∀Φi ¬∃x, y : (x 6= y) ∧ (ex ∈ E) ∧ (ey ∈ E) ∧ (Φi � ex) ∧ (Φi � ey).

Proper primitive events can be used, for instance, to represent actions that take

place at particular times (building the time into the local state ŝi ∈ e). Since any given

point in time can only occur once in any history, the events involving such time-steps

will be proper by default. A proper event E can then be formed by collecting all the

primitive events involving some single time-step, or by taking all possible primitive

events involving an unrepeatable action. These ideas can then be used to define a

non-independent reward structure for a Dec-POMDP D, in terms of combinations of

events for various subsets of the agents involved. Intuitively, the overall reward will

be given in terms of what is to be gained or lost when every event in one of these

combinations actually occurs during some joint history of the process.

Definition 3.9 (Joint Reward Structure). A joint reward structure maps various sets

of events for distinct agents to reward values:

ρ = {〈Ek
i , . . . , E

m
i , ci〉 | 0 ≤ i ≤ j, j ∈ N, ci ∈ <}

3Becker et al. [12] describe how these limitations on the structure or events can be overcome,
allowing a wider class of possible event-types.

56



where each event Ek
i (1 ≤ k ≤ n) is an event for agent αk, and no agent appears

twice in the sequence, so that there is no Ek
i and Em

i such that k = m. We write ρi

for the ith sequence in ρ, featuring events Ek
i and value ci. We refer to |ρ| = j, the

number of such tuples, as the size of the reward structure.

For any tuple 〈Ek
i , . . . , E

m
i , ci〉 ∈ ρ, the system receives the reward ci if each event

in the tuple occurs; that is, reward is received if and only if, for each event Ek
i in

the tuple, Φk � Ek
i . That is, the reward is received if every event it contains occurs

somewhere in the joint history of the process. Note that, as defined, the sequence

of events may involve a proper subset of agents, so that a given reward value ci can

depend only upon events featuring some, but not all, of the agents.

In principle, any reward-function R in a Dec-POMDP D can be defined in terms

of such an event-based reward structure, and so this does not in any way specialize

the general definition. However, such structures allow us to isolate some interesting

properties of otherwise-independent problems. As we discuss in the next chapter,

there is a direct connection between the size of the event-based reward structure

and the essential dimensionality of a given problem instance. This is particularly

interesting, given results in the literature that suggest that the operation of solution

algorithms is directly affected by this size. Furthermore, restricting dependence to

the reward function alone reduces the overall complexity of finding optimal solution.

Any agent αi in a factored Dec-MDP that is both transition- and observation-

independent can act optimally based upon a local policy, πi : (Si × S0) → Ai,

mapping local states to local actions. The probability that some primitive event

occurs, given that the agent follows some local policy is then straightforward. Letting

e = (ŝi, ai, ŝ
′
i), then P (e |πi) = 0 if πi(ŝi) 6= ai, since the policy will guarantee that

the agent never takes that particular action in that particular state; otherwise,

P (e |πi) =
T∑
t=0

Pt(ŝi |πi)Pi(ŝ′i | ŝi, ai), (3.3)
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where Pt(ŝi | πi) gives the probability of being in state ŝi at time t, given policy πi.

This can be calculated straightforwardly from the Dec-MDP specification of state-

transitions (and the other probability, Pi(ŝ
′
i | ŝi, ai), is simply αi’s transition function).

The expected value of a joint policy for all n agents follows immediately.

Definition 3.10 (Policy Value with Shared Rewards). For a factored, n-agent Dec-

MDP D with joint reward structure ρ, the value of a joint policy (π1, . . . , πn) is:

V (π1, . . . , πn) =

|ρ|∑
i=1

ci
∏
Ek

i ∈ρi

P (Ek
i | πk).

The optimal joint policy, (π1, . . . , πn)?, is one that maximizes the above equation.

3.2.1 Complexity of the Joint-Reward Case

As it turns out, finding a policy that maximizes value in such a problem is provably

easier than the worst-case NEXP-completeness of general Dec-POMDPs. While we

do not go through the proof in detail, we state this important result here.

Theorem 3.1. Solving Dec-MDPs with independent transitions and observations,

and a joint reward structure is NP-complete.

Proof Sketch (after Lemma 4, Goldman and Zilberstein [48]). For the upper bound,

we show that the problem of deciding whether a given policy has expected value

greater than some constant r is in NP. This follows straightforwardly from the policy

value as given in Definition 3.10. Given any joint policy (π1, . . . , πn) for considera-

tion, each ρi ∈ ρ can be evaluated in time that is polynomial in the state space and

number of agents, since each proper event involves a single distinct agent. Further-

more, each of these events can be evaluated in time polynomial in the problem size,

simply summing up the probability of constituent primitive events, as determined in

Equation (3.3). Since the reward-structure, ρ, is part of the problem description, the
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number of reward-components in the main sum, |ρ|, results in overall effort polynomial

in the problem size.4

For the lower bound, we can reduce the NP-complete problem DTEAM (Papadim-

itriou & Tsitsiklis [91, 92]) to an instance of the given type of Dec-MDP. We omit

this reduction, which is quite elementary; the interested reader is directed to the full

version of the proof of Theorem 1, Becker et al. [12].

3.2.2 Conclusions and Discussion

Unlike the distinction between the complexity classes P and NP, which is generally

considered to be absolute, but has never been proved so, the classes NEXP and NP

are known to be distinct, with NEXP demonstrably harder than NP. Thus, the NP-

completeness proof shows a significant reduction in complexity for the special class

of Dec-MDPs under consideration. In practice, furthermore, NP-hard problems are

those for which many instances exhibit exponential time-costs using typical solution

techniques. NEXP-hard problems, on the other hand, exhibit doubly exponential

time-costs, leading to a significant leap in observed run-time, so that, as we have

repeatedly stressed, only very small instances can actually be solved to optimality.

Therefore, even if the reduction to NP leaves these Dec-MDPs still generally infeasible,

they often reduce the solution times seen in practice to the point where real problems

of interest can be solved.

In this connection, Becker’s Coverage Set Algorithm (CSA) has been demonstrated

to solve shared-reward problems of reasonable size (for details, see Becker et al. [12],

and his thesis [8]). While the operation of the algorithm exhibits exponential time-

cost in the size of the joint reward structure, this is often quite manageable, given

a sparsely-connected series of events. This relationship is expanded upon in the

4This argument, while distinct from the one given by Goldman and Zilberstein, establishes the
equivalent point. We include this version for variety’s sake.
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next chapter, when we consider an approach devised by Petrik and Zilberstein [99]

that extends the CSA method by employing powerful mathematical programming

techniques. As we show there, the reward structure is importantly related to the

ability to reduce the dimensionality of such problems, and optimize the solution time.

Unfortunately, there is a limit to the power of the NP-completeness result. As

we shall show, other relatively obvious combinations of independence relationships in

Dec-MDPs do not yield the same general complexity reduction. Before we prove these

new results, we consider the original proof of NEXP-completeness in Dec-POMDPs,

which we draw on later.

3.3 Bernstein’s Proof of NEXP-Completeness

Before establishing our new claims, we review the proof of NEXP-completeness

for finite-horizon Dec-MDPs, as given by Bernstein et al. [18, 16] (we draw here on

perhaps the most complete version of the proof, from Bernstein’s thesis [15]). While

this is somewhat complicated, it is the basis for our next three main results, and is

worth explicating in some detail.

First, we note that the upper bound, namely that finite-horizon Dec-POMDPs are

in NEXP, meaning that they can actually be solved in nondeterministic exponential

time, will immediately and without modification establish the same upper bound for

all the problems that we will consider, since each is but a special sub-case of the general

finite-horizon framework. As we showed in Proposition 3.1, any Dec-POMDP can be

written in an equivalent factored form. Thus, Bernstein’s upper bound immediately

establishes the identical bound on the complexity of any factored finite-horizon Dec-

POMDP; since all the problems we will look at are but special restricted cases (like
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the transition- and observation-independent Dec-MDPs with shared rewards), the

upper bound applies to all of them as well.5

Theorem 3.2 (Upper Bound). The decision version of the finite-horizon, n-agent

problem Dec-POMDP ∈ NEXP.

Proof (after Theorem 4, Bernstein [15]). Consider arbitrary finite-horizon, n-agent

Dec-POMDP D, constant k, and relevant joint policy π. We show that we can

evaluate whether the value of π is at least k in exponential time. Policy π will, by

definition, consist of n mappings from agents’ observation-histories to actions. Any

Dec-POMDP, taken together with such a joint policy, can be treated as a single-agent

POMDP with individual policy, by treating each n-tuple of observations as a single,

complex observation, and likewise for joint action-tuples. In exponential time, each

of the exponentially-many possible sequences of such complex observations can be

converted into a belief-state over possible states of the underlying system. Similarly,

state-transitions and expected rewards over belief-states can be calculated in exponen-

tial time, turning the problem into a belief-state MDP, with state-space exponential

in the size of the original Dec-POMDP. Finally, dynamic programming can be used

to evaluate policy π over the MDP, in time that is polynomial in the size of the new

state-space (or exponential overall), to determine whether its value is at least k.

Since this result gives us an upper bound on the complexity of each problem-type

we examine, we will simply refer back to it as needed. More challenging (and more

interesting) is the process of establishing lower bounds on these problems. That is,

in each case, we shall want to show that the problems are in fact NEXP-hard, and

5Note that, as is standard in such complexity proofs, results are stated in terms of the “decision
version” of the problem. For the class of Dec-POMDPs, for instance, the decision version is the
problem of determining, for a given Dec-POMDP D, and constant value k, whether there exists any
policy for D with value at least k. This suffices to establish the complexity of the optimal-policy
problem, since any method that could produce an optimal policy could answer the decision question
in the affirmative for suitably chosen values of k.
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actually require nondeterministic exponential time to solve. The theoretical tool that

allows us to establish this result is the reduction, whereby any instance of a problem

already known to have that complexity is transformed (without expanding the size of

the problem representation beyond a polynomial factor) into an instance of the new

problem of interest. If it can then be shown that a solution to the latter form of the

problem is in fact a solution to the former, we have established that the latter form

is no easier than the original. Furthermore, if the problem that is reduced is known

to be complete for its complexity class—meaning that any problem in that class can

be reduced to it—then the new problem class is also complete for the class, since

reduction is a transitive operation.

3.3.1 The TILING Problem

The problem used in our reductions is the NEXP-complete TILING problem (see

Lewis [75], Papadimitriou [90]). A TILING problem instance consists of a board

size n, given concisely in log n binary bits, a set of tile-types L = {t0, . . . , tk}, and a

collection of binary and vertical compatibility relations between tiles H, V ⊆ L×L. A

tiling is a mapping of board locations to tile-types, t : {0, . . . , n−1}×{0, . . . , n−1} →
L; such a tiling is consistent just in case (i) the origin location of the board receives

tile-type 0 (t(0, 0) = tile0); and (ii) all adjoint tile assignments are compatible:

(∀x, y) 〈t(x, y), t(x+ 1, y)〉 ∈ H & 〈t(x, y), t(x, y + 1)〉 ∈ V.

The TILING problem is thus to decide, for a given instance, whether such a consistent

tiling exists. Figure 3.1 shows an example instance and consistent solution.

In what follows, we will sketch the main details of the reduction of TILING to a

2-agent Dec-MDP (this will establish the hardness result for the more general Dec-

POMDP case). A key detail to keep in mind going forward is that such a reduction

must not increase the size of the original TILING problem beyond a polynomial factor.
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Figure 3.1: An example of the TILING problem, and a consistent solution.

Since the TILING instance is given with the board size n represented logarithmically,

it will be necessary that any reductions likewise produce problems with size that is

O(log n). (For the purposes of proof, we can presume that n is suitably large, so that

the description of the set of tile-types and compatibility relations is also possible in

size logarithmic in n.)

3.3.2 The Basic Reduction

The essential idea behind the reduction is to begin with some arbitrary instance

of TILING, and create a finite-horizon, 2-agent Dec-MDP such that the latter has a

policy with non-negative value if and only if the former has a consistent tiling. Thus,

we will have shown that the problem of determining whether a Dec-MDP has a policy

with value at least k = 0 is as hard as TILING, which, together with the upper bound

result, will establish NEXP-completeness.

To do this, the Dec-MDP is designed to choose two random tile positions from the

board, which are then revealed separately to each agent, bit-by-bit. (The state-set of

the Dec-MDP can not directly include the chosen positions, else it would have a state-

set of impermissible size O(n), i.e., exponential in log n.) Following the revelation

of the tile locations, each agent chooses a tile to place there. The agents are then

required to repeat the bits they have seen back to the system, which calculates the
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relative locations of the tiles, and checks them for compatibility as necessary. In

order to ensure that the agents are honest in repeating the bits they have seen, the

system takes certain precautions to remember one such bit for each agent, without

letting the agent know the precise one that is being remembered. Deviations from

the remembered bit, or tile-types that are incompatible, lead to negative reward;

therefore, an optimal (0-value) policy is only possible if the agents already possess a

consistent solution for the original TILING problem, i.e., such a tiling must exist.

To accomplish this, the reduction thus creates a Dec-MDP with dynamics that

work in the following 5 phases.

Stage 1: Select. The system randomly chooses two possible indices, and one bit-

value at each of those indices, to encode one bit of each of the grid-locations

given to the two agents. Each of these is remembered for later.

Stage 2: Generate. Under the constraints given by the bits chosen in the prior

phase, two otherwise-random locations in the TILING grid, revealing one to

each agent, bit-by-bit.

Stage 3: Query. Each agent supplies a tile-type, which is remembered for later.

Stage 4: Echo. The agents repeat back the bits they have seen, allowing the system

to calculate the relative positions of the two tiles. The location-bits remembered

from the Select phase are used to keep the agents honest.

Stage 5: Test Having calculated the location of the two tiles, they are evaluated to

see whether they are consistent, according to the given TILING problem.

We give more detail of this reduction below.

3.3.3 The Proof of Correctness

In later sections, we present modifications of Bernstein’s reduction, extending the

proof technique to new sub-classes of the Dec-MDP framework. Thus, in the next
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section, we go over the nature of his reduction in detail, in order to make the extent of

our own alterations clear. Before doing so, however, we outline Bernstein’s correctness

results, which demonstrate that his reduced problem has a policy with non-negative

value if and only if the original TILING instance has a consistent solution. Like his

upper-bound result (Theorem 3.2), we will rely upon these claims in our own proofs;

we therefore describe their salient features here, so that we may refer back to them.

Proposition 3.3. If a consistent solution to the arbitrary TILING problem given

exists, then there exists a policy for the two agents with non-negative expected value.

Sketch of proof (after Lemma 1, Bernstein [15]). In the reduced problem, it is easy

to show that the sole policy with non-negative expected value involves two main

elements: (1) during the Query phase, providing a tile-type for the location provided

that is identical with that in an agreed-upon consistent tiling; and (2) during the Echo

phase, faithfully repeating the observed location-bits, so that the system can calculate

the compatibility relationships accurately.

In our own reductions, we will rely upon this result, arguing that the sole policy

with non-negative expected value must have the same features. Thus, we can use

Bernstein’s proof directly.

Proposition 3.4. The existence of a policy with non-negative value for the reduced

problem implies the existence of a consistent solution to the TILING instance given.

Sketch of proof (after Claims 1–3, Bernstein [15]). In the reduced problem, if either

agent deviates from the policy that faithfully echoes the location-bits seen during the

earlier Generate phase of the problem, then there will exist observation sequences for

which they have some positive probability of providing an incompatible pair of tile-

types. That is, since the agents do not know which bit of the location provided them is

being memorized by the system, they have no way of “gaming the system” reliably. In

particular, they have no way of knowing whether the system has revealed the same tile
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location (or adjacent locations) to each agent, and cannot avoid the possibility that

they are providing an incompatible pair of tile-types, leading to negative expected

reward in the final Test phase. Only by following the strictly faithful policy can they

avoid this possibility, and thus they must provide a consistent tiling.

As for the previous proposition, we will rely upon Bernstein’s proof directly. Our

own reductions will also require that agents provide faithful echoes of the locations

given, and choose compatible tile-types at any such location. The main differences

will be in the specific structure of the reduced problem, not in the nature of the

non-negative policies for same.

Together with Theorem 3.2, and the fact that the finite-horizon, 2-agent Dec-

MDP is a special case of the general finite-horizon Dec-POMDP, these propositions

establish Bernstein’s main complexity result:

Theorem 3.3 (NEXP-Completeness). The finite-horizon Dec-POMDP problem is

NEXP-complete.

In this connection, we note that the infinite-horizon version of the problem is un-

decidable, a fact that follows directly from the undecidable nature of infinite-horizon,

single-agent POMDPs (Madani, et al. [81]).

3.3.4 Details of the Reduction: State Space

We now outline the specifics of the Dec-MDP problem used in the reduction result.

Given a TILING instance 〈n, L,H, V 〉, we create a finite-horizon, 2-agent Dec-MDP

as follows. A key element of the model derives from the fact that in a Dec-MDP,

unlike a Dec-POMDP, we must be able to determine the global state, once we know

the observations of each agent. This, along with the need to ensure that neither agent

can observe the remembered bit that the system uses to keep them honest during the

Query phase, leads us to divide the set of variables defining a given state into 3

parts, according to which of the agents observes them.
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Both Agents. Four (4) variables are observed at each step. First, there is vari-

able phase ∈ {sel, gen, query, echo, test}, indicating the current phase of the

process. Second, there is variable index ∈ {0, . . . , 2 log n}, indicating the next

(x, y)-location bit to be generated or echoed back. Third, there is origin ∈ T, F ,

indicating whether or not we are at the origin point (0, 0) of the tiling grid.

Lastly, there is q ∈ Q, tracking the state of a finite-state automaton that cal-

culates the relative position of the locations echoed back by each agent (as will

be described briefly below, we ensure that |Q| = O(log n), as required).

Agent 1. This agent observes four (4) variables of its own, as well. First, it observes

the index and value of the location bit that the system remembers for the other

agent, index2 ∈ {0, . . . , 2 log n−1} and value2 ∈ {0, 1}. Second, it observes the

current position-bit used in the Generate phase to provide a tiling-location,

pos1 ∈ {0, 1}, and its own choice of a tile-type tile1 ∈ L.

Agent 2. This agent likewise observes (4) variables of its own, each of which is

directly analogous to those observed by the other agent: index1, value1, pos2,

and tile2.

The set of all states, S, is thus any combination of these variables, and thus |S| =

O(log n); we write any such state as a tuple of possible variable values, using a

semicolon to separate each of the three classes of observed variables, such as:

s = 〈query, 5, F, q0; 3, 1, 0, t3; 4, 0, 1, t5〉

As a convention, we can abstract over a set of variables by only partially specifying

their values, using “∗” where we are indifferent. For instance, we can identify the set

of all variables during the Echo phase, writing s ∈ 〈echo, ∗, ∗, ∗; ∗, ∗, ∗, ∗; ∗, ∗, ∗, ∗〉 to

indicate such a state.
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The Dec-MDP begins in the Select phase, with neither agent having chosen a

tile-type, and the FSA at its initial state: s0 = 〈sel, 0, T, q0; 0, 0, 0, t0; 0, 0, 0, t0〉

3.3.5 Details of the Reduction: Action Transitions

Each agent possesses two possible actions for repeating bits back to the system,

and an action for selecting each possible tile-type; therefore, A1 = A2 = {0, 1} ∪ L.6

The state-action transitions are specified as follows, for each phase of the problem

dynamics (any combinations not covered by the description are not reachable in the

problem, and can be treated arbitrarily).

Phase 1: Select. The process selects one bit of the location to be revealed to each

agent uniformly at random, and reveals it solely to the other agent.

P (s, a1, a2, s
′) =

1

(4 log n)2
whenever:

s = s0 = 〈sel, 0, T, q0; 0, 0, 0, t0; 0, 0, 0, t0〉,

s′ = 〈gen, 0, T, q0; i2, v2, 0, t0; i1, v1, 0, t0〉,

i1, i2 ∈ {0, . . . , (2 log n)− 1}, and v1, v2 ∈ {0, 1}.

Phase 2: Generate. Two tile positions are chosen and revealed to each agent, bit-

by-bit; this is done randomly, under the constraint that the bit chosen in the prior

phase (Select) must be honored. After the entire bit-sequence has been revealed to

each agent, the problem transitions deterministically to the next phase (Query).

6Here, we simplify Bernstein’s proof somewhat. In the original, agents also possessed a “wait”
action, allowing them to do nothing during some phases of the problem. However, as we will see,
all state-transitions during such “idle” phases are independent of any actions taken, so no separate
waiting action is required (the agents can choose any of their other possible actions whatsoever with
no effect on possible outcomes).
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P (s, a1, a2, s
′) =

1

h
whenever:

s = 〈gen, k, T, q0; i2, v2, ∗, t0; i1, v1, ∗, t0〉 (0 ≤ k < 2 log n),

s′ = 〈gen, k + 1, T, q0; i2, v2, b1, t0; i1, v1, b2, t0〉, where

b1 = v1 if k = i1, else b1 ∈ {0, 1},

b2 = v2 if k = i2, else b2 ∈ {0, 1},

h is the number of allowed combinations of b1 and b2.

P (s, a1, a2, s
′) = 1 whenever:

s = 〈gen, 2 log n, T, q0; i2, v2, ∗, t0; i1, v1, ∗, t0〉,

s′ = 〈query, 0, T, q0; i2, v2, 0, t0; i1, v1, 0, t0〉.

Phase 3: Query. This is a one-step phase, in which each agent chooses a tile-type,

and we transition to the Echo phase.

P (s, a1, a2, s
′) = 1 whenever:

s = 〈query, 0, T, q0; i2, v2, 0, t0; i1, v1, 0, t0〉,

s′ = 〈echo, 0, T, q0; i2, v2, 0, t1; i1, v1, 0, t2〉, where

ti =


ai if ai ∈ L

t0 else.

Phase 4: Echo. The system now has the agents repeat back the location-bits

that they previously observed. Using these bits, a finite-state automaton calculates

the relative positions of the tile-locations. For any state q ∈ Q of the FSA, and two

echoed bits b1, b2, we write FSA(q, b1, b2) for the output of the automaton at that

stage. Full details of the FSA construction can be found in Bernstein [15, §3.4.4];

here, we simply note again the important fact that it can be constructed within the
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proper space bounds, |Q| = O(log n). Once all the bits have been echoed back, the

system transitions to the final phase (Test).

P (s, a1, a2, s
′) = 1 whenever:

s = 〈echo, k, o, q; i2, v2, 0, t1; i1, v1, 0, t2〉,

s′ = 〈p, k′, o′, FSA(q, b1, b2); i2, v2, 0, t1; i1, v1, 0, t2〉, where

bi =


1 if ai = 1

0 else

, p, k′ =


echo, k + 1 if 0 ≤ k < (2 log n)− 1

test, 0 if k = (2 log n)− 1

,

o′ = T ⇔ (o = T & a1 = a2 = 0).

Phase 5: Test. The final phase is a single-step process in which the system

terminates.

P (s, a1, a2, s
′) = 1 whenever:

s = 〈test, 0, ∗, ∗; ∗, ∗, 0, ∗; ∗, ∗, 0, ∗〉,

s′ = 〈test, 0, T, q0; 0, 0, 0, t0; 0, 0, 0, t0〉.

3.3.6 Details of the Reduction: Rewards

The Reward function for the Dec-MDP is simple: agents receive reward of −1

for any state-action pair, except for a special designated set, for which they receive

reward of 0. This set corresponds to the key features of the desired policy: faithfully

repeating the bit that the system has remembered from their location during the

Echo phase, and ending up with a compatible pair of tiles in the Test phase.7 This

7Again, we simplify Bernstein somewhat: since we have no need of a “wait” action, and since the
state-transitions have the effect of choosing a default tile-type (t0) or bit (0) should the agents use
an inappropriate action at the relevant phases, we can allow agents to act without penalty in any
fashion they choose during the “idle” phases, where transitions do not depend upon those actions.
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last reward depends upon the final state of the FSA that calculates relative tile-

locations; it will be drawn from the set {equal, hor, ver, apart}, as the locations

are respectively identical, horizontally adjacent, vertically adjacent, or otherwise.

R(s, a1, a2) = 0 if and only if one of the following is true:

Select: s = 〈sel, ∗, ∗, ∗; ∗, ∗, ∗, ∗; ∗, ∗, ∗, ∗〉.

Generate: s = 〈gen, ∗, ∗, ∗; ∗, ∗, ∗, ∗; ∗, ∗, ∗, ∗〉.

Query: s = 〈query, ∗, ∗, ∗; ∗, ∗, ∗, ∗; ∗, ∗, ∗, ∗〉.

Echo: s = 〈echo, k, ∗, ∗; i2, v2, ∗, ∗; i1, v1, ∗, ∗〉,

a1, a2 ∈ {0, 1} and (a1 = v1 or k 6= i1) and (a2 = v2 or k 6= i2).

Test (i): s = 〈test, ∗, o, equal; ∗, ∗, ∗, t1; ∗, ∗, ∗, t1〉,

o = F or t1 = t0.

Test (ii): s = 〈test, ∗, ∗,hor; ∗, ∗, ∗, t1; ∗, ∗, ∗, t2〉,

〈t1, t2〉 ∈ H.

Test (iii): s = 〈test, ∗, ∗,ver; ∗, ∗, ∗, t1; ∗, ∗, ∗, t2〉,

〈t1, t2〉 ∈ V.

Test (iv): s = 〈test, ∗, ∗, apart; ∗, ∗, ∗, ∗; ∗, ∗, ∗, ∗〉.

3.3.7 Details of the Reduction: Observations and Time Horizon

Finally, we simply set the observation function for each agent to be deterministic:

given a state, agent αi observes the four variables that make up its portion of the state

space, along with the global variables that make up the first portion. The observation-

set for α1 is thus Ω1 = {phase, index, origin,Q, index2, value2, pos1, tile1}, and sim-

ilarly for α2. The time horizon is T = (4 log n) + 4, consisting of one step each for

the Select, Query, and Test phases, (2 log n) + 1 steps to Generate the bits of the

pair of (x, y) locations, and 2 log n steps for the agents to Echo these bits back.
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3.3.8 Discussion of the Reduction

It is intuitively easy to see that the Dec-MDP dynamics force agents to faithfully

repeat the bits they have seen back, and to choose tile-types from a known consistent

tiling, if they are to receive expected non-negative reward. In the Select and Gen-

erate phase, the agents are idle, as any actions they choose do not affect the system

dynamics, and the only variables that change are those related to the initial selection

of bits, and the revelation of their own tile-location. This has three important effects.

First, since the transitions are otherwise random, the agents can not know, given

what they have observed, what bit of their own location is being memorized by the

state (recall, they know only the bit for the other agent). Second, since they can

not affect the state-dynamics during these phases, nothing they can do in the way of

action can serve as a signal, allowing them to communicate any revealed bits to one

another, explicitly or implicitly.

Finally, since the FSA state-variable Q—which is observed by both—does not

change at all in these phases, and is only affected by the bits they echo back later

on, they have no information about the relative positions of the locations revealed,

and have no choice but to use the known consistent tiling when picking a tile-type

in the Query phase, lest they risk a negative reward later on. Further, during the

Echo phase, since the agents still can not know which of their own location-bits

has been memorized, the only policy guaranteed not to produce a negative-reward,

incompatible-tiling situation is the one that repeats the bits back exactly as given to

them. Any attempt to lie about these bits, even based upon an interim state of the

FSA, risks negative reward along the way. Thus, Bernstein’s reduction ingeniously

forces any policy with non-negative value to correspond directly to a consistent tiling,

as required. We will make use of similar reductions in our next results.
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3.4 Other Subclasses of Interactions

We now prove our new results, establishing the complexity of certain other sub-

classes of the Dec-POMDP framework, including two apparently restricted problem

instances that have been of some interest in the existing literature. From one point of

view, our results are wholly negative; that is, we show that the NP-completeness result

of the prior section is specific to the fully transition- and observation-independent

problems considered there. When these independence properties are not present to

the full extent, the worst-case complexity is once again in NEXP.

3.4.1 Reward-Independent-Only Models

We begin with a result that is rather simple, although it has not, to the best of

our knowledge, been established before, and is worth noting. Namely, we consider

the inverse of the NP-complete problem of Theorem 3.1; that is, rather than inde-

pendent transitions and observations with shared rewards, we look at the complexity

of problems for which rewards are independent, but transitions and observations are

not. As we show, this returns complexity to the general case.

Theorem 3.4. Factored, reward-independent Dec-MDPs with n agents are NEXP-

complete.

For our upper bound, as already described, we simply cite Theorem 3.2, which

immediately establishes that such problems are in NEXP. For the lower bound, we

modify the Dec-MDP from Bernstein’s reduction proof so as to ensure that the reward-

function factors appropriately into strictly local rewards.

Proof of Lower Bound. For our reduction, we create a Dec-MDP that is identical to

that of the Bernstein reduction, in terms of its state-set S, transition function P ,

observation sets and functions Oi and Ωi, and time horizon T . We are then required

to show how to factor the state-space appropriately, as required by Definition 3.1,

and re-design the reward function to be independent, in accords with Definition 3.4.
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State Space Factorization. We divide the state space into three distinct (3) parts:

1. S0 consists of the jointly observable variables, {phase, index, origin,Q}.

2. S1 consists of all those variables indexed to agent α1, with the addition of the

tile-type variable for the other agent, α2, {index1, value2, pos1, tile1, tile2}.

3. S2 consists of all those variables indexed to agent α2, with the exception of its

tile-type variable, {index2, value2, pos2}.

Clearly, then S = S0 × S1 × S2, as required. To avoid confusion, we stress that we

have not changed which portions of the state-space are observable to each agent. In

particular, each αi still does not observe the location-bit values indexi and valuei,

instead observing those for the other agent. Thus, the system still requires them to

echo back location bits that they have seen faithfully. Since we do not require that

the problem be transition- or observation-independent, it is permissible for an agent

to fail to fully observe their own local state; so long as some agent’s observations

determine that portion of the state space, all is well. Furthermore, it does not matter

that the actions of α2 can affect the local state-space of α1 (via the tile-type selection

process), since the problem is not assumed to be transition-independent.

As before, we write an agent’s local state as a tuple, with semicolons separating

variables according to how they are observed. Thus, the example global state:

s = 〈query, 5, F, q0; 3, 1, 0, t3; 4, 0, 1, t5〉

is the combination of state ŝ1 ∈ S0×S1 for α1: 〈query, 5, F, q0; 0, t3; 4, 0, t5〉, and state

ŝ2 ∈ S0 × S2 for α2: 〈query, 5, F, q0; 3, 1; 1〉. Once again, we use the symbol “∗” as a

wildcard, allowing us to write, e.g., ŝ1 = 〈sel, ∗, ∗, ∗; ∗, ∗; ∗, ∗, ∗〉 to designate the any

state for α1 during the Select phase.
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Reward Factorization. For each agent, we define a local reward function as follows.

Each agent receives reward of −1 for all local state-transitions, except for a special

designated set of transitions, for which they receive reward 0. Each agent remains idle

in the same phases as before, and so receives reward 0 in those phases, independent

of their action-choices. In the Echo phase, each reward function gives 0 reward if

and only if the agents faithfully echo their own stored bit (the exact nature of which

they are still unaware). In the Test phase, the second agent α2 receives 0 reward, no

matter what; however, the first agent α1 receives 0 just in case the tiling pair selected

by the two of them is compatible according to the defined TILING instance.

R(ŝ1, a1) = 0 iff any of: R(ŝ2, a2) = 0 iff any of:

Select: ŝ1 = 〈sel, ∗, ∗, ∗; ∗, ∗; ∗, ∗, ∗〉 ŝ2 = 〈sel, ∗, ∗, ∗; ∗, ∗; ∗〉

Generate: ŝ1 = 〈gen, ∗, ∗, ∗; ∗, ∗; ∗, ∗, ∗〉 ŝ2 = 〈gen, ∗, ∗, ∗; ∗, ∗; ∗〉

Query: ŝ1 = 〈query, ∗, ∗, ∗; ∗, ∗; ∗, ∗, ∗〉 ŝ2 = 〈query, ∗, ∗, ∗; ∗, ∗; ∗〉

Echo: ŝ1 = 〈echo, k, ∗, ∗; ∗, ∗; i1, v1, ∗〉, ŝ2 = 〈echo, k, ∗, ∗; i2, v2; ∗〉,

(a1 = v1 or k 6= i1) (a2 = v2 or k 6= i2)

Test (i): ŝ1 = 〈test, ∗, o, equal; ∗, t1; ∗, ∗, t1〉, ŝ2 = 〈test, ∗, ∗, ∗; ∗, ∗; ∗〉.

o = F or t1 = t0

Test (ii): ŝ1 = 〈test, ∗, ∗,hor; ∗, t1; ∗, ∗, t2〉,

〈t1, t2〉 ∈ H

Test (iii): s = 〈test, ∗, ∗,ver; ∗, t1; ∗, ∗, t2〉,

〈t1, t2〉 ∈ V

Test (iv): s = 〈test, ∗, ∗, apart; ∗, ∗, ; ∗, ∗, ∗〉.

Finally, let our joint reward function simply be the sum of the local reward functions:

75



R(〈s0, s1, s2〉, a1, a2) = R1(〈s0, s1〉, a1) +R2(〈s0, s2〉, a2) = R1(ŝ1, a1) +R(ŝ2, a2).

Correctness of the Reduction. It is relatively easy to see that any policy in this

new reduced problem has an expected non-negative (0) value precisely when the same

policy has expected non-negative value in Bernstein’s original reduced problem (since

all actions are the same, and rewards are negative or not in exactly the same cir-

cumstances). Thus, the correctness proof for the Bernstein reduction applies directly

here: there exists such a non-negative policy if and only if the TILING instance has

some consistent solution.

Thus we see that in some respects, transition and observation independence are

fundamental to the reduction of worst-case complexity from NEXP to NP. When only

the rewards depend upon the actions of both agents, the problems become easier;

however, when the situation is reversed, the general problem remains NEXP-hard.

As we remarked before, this is not entirely surprising: much of the complexity of

planning in decentralized domains stems from the necessity to take account of how

one’s action-outcomes are affected by the actions of others, and from the complications

that ensue when observed information about the system is tied to those actions as

well. The structure of rewards, while obviously key to the nature of the optimal

(or otherwise) solution, is not as vital—even if agents can separate their individual

reward-functions, making them entirely independent, other dependencies can still

make the problem extremely complex.

We therefore turn to two other interesting special-case Dec-MDP frameworks,

in which independent reward functions are accompanied by restricted degrees of

transition- and observation-based interaction. These models attempt to create sim-

pler problem instances by imposing further structure on the degree to which agents

can affect one another, short of full independence. While some empirical evidence has

suggested that these problems may be easier on average to solve, nothing has previ-
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ously been shown about their worst-case complexity. We fill in these gaps, showing

that even under such restricted dynamics, the problems remain NEXP-hard.

3.4.2 Event-Driven Interactions

The first model we consider is one of Becker et al. [9], which generalizes the notion

of a fully transition-independent Dec-MDP, in a manner analogous to that used in

the event-based reward structures discussed in Section 3.2. In this model, as before, a

set of primitive events, consisting of state-action transitions, is defined for each agent.

Such events can be thought of as occasions upon which that agent takes the given

action to generate the associated state transition. Dependencies are then introduced

in the form of relationships between one agent’s possible actions in given states and

another agent’s primitive events; essentially, that is, an agent’s actions are enabled (or

not) due to the pre-existing occurrence (or not) of an event upon which it depends,

modelled as a boolean variable. State-transitions are thus dependent upon the actions

of other agents only insofar as some such dependence exists.

This model thus allows a simple counting approach to agent interactions, and

the authors show that the Coverage Set algorithm introduced for fully transition-

independent problem instances [9] in fact also applies to their less-restricted model

in the presence of separate additive rewards. While no precise worst-case complexity

results have been previously proven, the authors do point out that the class of prob-

lems has an upper-bound deterministic complexity that is exponential in the size of

the state space, |S|, and doubly exponential in the number of defined interactions

(which suggests nondeterministic exponential time complexity as an upper bound).

This potentially bad news is mitigated by noting that if the number of interactions

is small, then reasonably-sized problems can still be solved. Here, we examine this

issue in detail, showing that, in fact these problems are NEXP-hard (indeed, NEXP-
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complete); however, when the number of dependencies is a log-factor of the size of

the problem state-space, NP-hardness is achieved.

We begin with the formal framework of the model. Histories (Definition 3.6),

events (Definition 3.7), and proper events (Definition 3.8), are all as before. The

model is a Dec-MDP with:

1. Two (2) agents.8

2. A factored state-space: S = S0 × S1 × Sn.

3. Local full observability: each agent αi can determine its own portion of the

state-space, ŝi ∈ S0 × Si, exactly.

4. Independent (additive) rewards: R(〈s0, s1, s2〉, a1, a2) = R1(ŝ1, a1) +R2(ŝ2, a2).

Interactions between agents are given in terms of a set of dependencies between certain

state-action transitions for one agent, and events featuring transitions involving the

other agent. Thus, if a history contains one of the primitive events from the latter

set, this can have some direct effect upon the transition-model for the first agent,

introducing probabilistic transition-dependencies.

Definition 3.11 (Dependency). A dependency is a pair dkij = 〈Ek
i , D

k
j 〉, where Ek

i is a

proper event defined over primitive events for agent αi, and Dk
j is a set of state-action

pairs 〈ŝj, aj〉 for agent αj, such that each pair occurs in at most one dependency:

¬(∃ k, k′, sj, aj) (k 6= k′) & 〈sj, aj〉 ∈ Dk
j ∈ dkij & 〈sj, aj〉 ∈ Dk′

j ∈ dk
′

ij .

Such a dependency is thus a collection of possible actions that agent αj can take in

one of its local state, each of which depends upon whether the other agent αi has made

one of the state-transitions in its own set of primitive events. Such structures can be

8The model can be extended to n agents with little real difficulty. Since we will show that the
2-agent case is NEXP-hard, however, this will suffice for the general claim.
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used to model, for instance, cases where one agent cannot successfully complete some

task until the other agent has completed an enabling sub-task, or where the precise

outcome depends upon the groundwork laid by the other agent.

Definition 3.12 (Satisfying Dependencies). A dependency dkij = 〈Ek
i , D

k
j 〉 is satisfied

when the current history for enabling agent αi contains the relevant event: Φi � Ek
i .

For any state-action pair 〈ŝj, aj〉, we define a Boolean indicator variable bŝjaj
, which

is true if and only if some dependency that contains the pair is satisfied:

bŝjaj
=


1 if (∃ dkij = 〈Ek

i , D
k
j 〉) 〈ŝj, aj〉 ∈ Dk

j & Φi � Ek
i ,

0 otherwise.

The existence of dependencies allows us to factor the overall state-transition func-

tion into two parts, each of which depends only on an agent’s local state, action, and

the status of the relevant indicator variable.

Definition 3.13 (Local Transition Function). The transition function for our Dec-

MDP is factored into two functions, P1 and P2, each defining the distribution over

next possible local states: Pi(ŝ
′
i | ŝi, ai, bŝiai

). We can thus write Pi(ŝi, ai, bŝiai
, ŝ′i) for

this transition probability.

When agents take some action in a state for which dependencies exist, they observe

whether or not the related events have occurred; that is, after taking any action aj

in state sj, they can observe the state of indicator variable bŝjaj
. (As Becker et al. [9]

note, this can be changed so that agents observe the status of the indicator before

they choose an action, if desired.)

With these definitions in place, we can now show that the worst-case complexity

of the event-based problems is the same as the general Dec-POMDP class.

Theorem 3.5. Factored, finite-horizon, n-agent Dec-MDPs with local full observ-

ability, independent rewards, and event-driven interactions are NEXP-complete.
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Again, the upper bound is immediate from the general case (Theorem 3.2). The

event-based structure is just a specific case of general reward-dependence in a Dec-

MDP, and such models can always be converted into Dec-MDPs where we define a

joint transition function P , without using events in particular. Thus, if the more

general Dec-POMDP class can be solved in nondeterministic exponential time, so

can this special class. For the lower bound, we provide a reduction, again based on

the Bernstein model, that builds in the special properties required.

Proof of Lower Bound. Unlike the previous reduction, in the proof of Theorem 3.4, we

will need to add some variables to our state-space in this case, and alter the dynamics

of the problem accordingly. In the original proof, each step of Echo consisted of both

agents providing one of their location-bits, after which the problem advanced a step,

and the FSA calculated its next state as it worked to determine the relative locations

of the tiles given by the agents. The reward function provided a non-negative (0)

reward just in case both agents were faithful in echoing back the memorized bits

(observed by the other agent), and if the final result was a compatible pair of tiles.

Such a reduction will not work directly for this problem for two reasons. First, the

rewards given in the Echo phase depend upon how the actions of one agent relate

to features (memorized location-bits) observed only by the other agent. Thus, our

problem cannot be locally fully observed and locally reward independent, if we retain

this feature. Second, the final reward, in the Test phase, the reward gained was based

on the final state of the FSA, something observed by both agents, again defying local

reward independence.

To solve the first of these problems, the intuitive idea will be to break each step

in the Echo phase into sub-steps. Individual sub-steps will allow agents to act in

sequence, after which the event-structure will ensure that there are local state features

that lead to appropriate reward for the other agent. The second problem can be solved
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similarly, by adding extra sub-steps to the Test phase, and making the FSA state a

locally observable part of the individual state-space of only one agent.

States of the Problem. Our reduction Dec-MDP will feature the following state

variables, again broken down according to how they are observed.

S0: Both Agents. Three (3) variables are observed at each step. First are variables

phase ∈ {sel, gen, query, echo, test}, and index ∈ {0, . . . , 2 log n}, indicating

the state of the system and the next (x, y)-location bit to be generated or echoed,

just as before. Third, there is sub ∈ A,B,C,D, indicating possible sub-steps of

each part of the Echo or Test phases (as explained below).

S1: Agent 1. This agent observes seven (8) variables of its own, as well. First, it

observes origin ∈ T, F , and q ∈ Q, which are just the origin-point and FSA

variables as before, although now only observed by the single agent. Second,

it observes the index and value of the other agent’s remembered location bit,

index2 ∈ {0, . . . , 2 log n− 1} and value2 ∈ {0, 1}, and its own position-bit and

chosen tile-type, pos1 ∈ {0, 1}, and tile1 ∈ L, again as before. Last, it observes

a variable act2 ∈ {0, 1, •}, that corresponds to possible bit-echo actions the

other agent may take during the relevant phase and variable choice2 ∈ L∪{◦},
corresponding to possible tile-choice actions by the other agent, to be used in

the Test phase (with • and ◦ being “null” values, in each case).

S2: Agent 2. This agent observes five (5) variables of its own, each of which is

directly analogous to one of those observed by the first agent: index1, value1,

pos2, tile2, and act1. (Note that it does not observe the origin or FSA variables,

nor does it have a recorder variable for the tile-choice of agent 1.)

Again, since the new variables each have a constant number of values, the set of

all states S = S0 × S1 × S2, is composed of factors, and has required size |S| =

O(log n), for suitably large n. Further, the problem is a locally fully observable
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Dec-MDP, since each agent observes its own local portion in entirety. Again, we

write any such state as a tuple of possible variable values, using a semicolon to

separate each of the three classes of observed variables, and use the “∗” convention

to abstract over features to which we are indifferent. As before, the Dec-MDP begins

in the Select phase, with neither agent having chosen a tile-type, and the FSA

at its initial state; the sub, acti, and choice2 variables are set to default values:

s0 = 〈sel, 0, A;T, q0, 0, 0, 0, t0, •, ◦; 0, 0, 0, t0, •〉

State Transitions. As in our prior reduction, agent actions can either echo location-

bits, or choose tile-types, so that A1 = A2 = {0, 1} ∪ L. For the first three phases,

Select, Generate, and Query, the problem dynamics are essentially identical to

the original version (Section 3.3.5). That is, Select chooses memorized location-bits

at random, and Generate produces two otherwise-random sequences of location-bits

for each agent to memorize, and all other variables remain the same. For these two

phases, the transition-models are thus the same as before, with the addition of the

sub, acti, and choice2 variables, which do not change throughout from the initial

state. Since those transitions are indifferent to the actions that agents choose, the

joint transition function given in the original can be trivially factored into the separate

local transition functions, P1 and P2 as required. Similarly, in the Query phase, the

action-choices affect only local state-variables, and so factorization of the transition

function is straightforward. (In both cases, no events or dependencies are required,

and so the indicator variables are false by default, meaning that all transitions are

entirely independent of them, and they need not be specified at all.) Therefore, we

do not present all the details here, as they are unnecessary; we simply note that the

Query phase ends with a transition to the first state in the Echo phase, namely:

s′ = 〈echo, 0, A;T, q0, i2, v2, 0, t1, •, ◦; i1, v1, 0, t2, •〉.
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Each step in the previous Echo phase is now broken up into four sub-steps, A

through D, as follows:

A: In this sub-step, the agents can choose whichever actions they like, and the state

transitions to the next sub-step, regardless. (Note, however, that the action of

agent 2 will be “recorded” in the next sub-step, based on a set of events that

will be specified in the next section.)

P (ŝ1,a1, ŝ
′
1) = 1 iff: P (ŝ2,a2, ŝ

′
2) = 1 iff:

ŝ1 = 〈echo, k, A; o, q, i2, v2, 0, t1, •, ◦〉, ŝ2 = 〈echo, k, A; i1, v1, 0, t2, •〉,

ŝ′1 = 〈echo, k, B; o, q, i2, v2, 0, t1, •, ◦〉. ŝ′2 = 〈echo, k, B; i1, v1, 0, t2, •〉.

Again, there are no event-dependencies for these state-action pairs, so the

boolean indicator variables need not be specified.

B: We define a set of dependencies, one per step k ∈ {0, . . . , (2 log n) − 1} of the

Echo phase. Letting a1
1, . . . , a

m
1 ∈ A1 be the possible actions for agent 1, each

such dependency will be of the form dk21 = 〈Ek
2 , D

k
1〉 (that is, an event for agent

2, and a set of state-action pairs for agent 1), with:

Ek
2 = {(ŝ2, 1, ŝ

′
2)}, and

Dk
1 = {(ŝ1, a

1
1), . . . , (ŝ1, a

m
1 )},

where ŝ2, ŝ
′
2 are the two local states of agent 2 as given in sub-step A, above,

and ŝ1 is the state for agent 1 as in the following:
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P (ŝ1,a1, bŝ1a1 , ŝ
′
1) = 1 iff: P (ŝ2,a2, ŝ

′
2) = 1 iff:

ŝ1 = 〈echo, k, B; o, q, i2, v2, 0, t1, •, ◦〉, ŝ2 = 〈echo, k, B; i1, v1, 0, t2, •〉,

ŝ′1 = 〈echo, k, C; o, q, i2, v2, a1, t1, bŝ1a1 , ◦〉, ŝ′2 = 〈echo, k, C; i1, v1, 0, t2, •〉.

where: a1 = 1 if a1 = 1, and 0 otherwise.

That is, agent 1 transitions to a state that depends upon the state of the

indicator variable: if agent 2 chose action “1” at the prior sub-step A, then

this will be recorded in agent 1’s local variable act2, otherwise a zero (0) will be

recorded. In this step, we now employ the variable pos1, previously unused in

this phase, to record the action taken at sub-step B by agent 1 (in the next step

we will also use dependencies to record this choice in the other agent’s state-

space, just as we have recorded agent 2’s here). We note that the dependency-

structure defined fits the requirements of Definitions 4.2 and 3.11. Since there

is only a single atomic event for agent 2, indexed by a k-value that ensures

that it does not repeat, in each dependency-event Ek
2 , it is obviously proper. In

addition, since each state-action pair for agent 1 in Dk
1 also features an indexed

k-value, each these appear in no more than one dependency.

C: In this sub-step, we use the same trick to record the prior sub-step’s action for

agent 1, using the local state-variable for agent 2, act1. Again, we define a set

of dependencies, one per step k ∈ {0, . . . , (2 log n)−1}. Letting a1
2, . . . , a

m
2 ∈ A2

be the possible actions for agent 2, each such dependency will be of the form

dk12 = 〈Ek
1 , D

k
2〉, with:

Ek
1 = {(ŝ1, 1, ŝ

′
1), (ŝ1, 1, ŝ

′′
1)}, and

Dk
1 = {(ŝ2, a

1
2), . . . , (ŝ2, a

m
2 )},
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where ŝ1, ŝ
′
1, ŝ

′′
1 are the local states of agent 1 as given in sub-step B, above (ŝ′1

and ŝ′′1 correspond to the two possible outcomes for boolean variable bŝ1a1), and

ŝ2 is the state for agent 2 as in the following:

P (ŝ1,a1, ŝ
′
1) = 1 iff: P (ŝ2,a2, bŝ2a2 , ŝ

′
2) = 1 iff:

ŝ1 = 〈echo, k, C; o, q, i2, v2, a1, t1, act2, ◦〉, ŝ2 = 〈echo, k, C; i1, v1, 0, t2, •〉,

ŝ′1 = 〈echo, k,D; o, q, i2, v2, a1, t1, act2, ◦〉. ŝ′2 = 〈echo, k,D; i1, v1, 0, t2, bŝ2a2〉.

D: In this last sub-step, the system transitions to the next step of Echo, or to Test,

as required. The variables for the origin (o) and FSA state (q) are updated in

the local state of agent 1, based on the recorded actions of both agents.

P (ŝ1, a1, ŝ
′
1) = 1 iff: P (ŝ2,a2, ŝ

′
2) = 1 iff:

ŝ1 = 〈echo, k,D; o, q, i2, v2, a1, t1, act2, ◦〉, ŝ2 = 〈echo, k,D; i1, v1, 0, t2, act1〉,

ŝ′1 = 〈p, k′, A; o′, FSA(q, a1, act2), i2, v2, 0, t1, •, ◦〉, ŝ′2 = 〈p, k′, A; i1, v1, 0, t2, •〉,

p, k′ =


echo, k + 1 if 0 ≤ k < (2 log n)− 1

test, 0 if k = (2 log n)− 1

o′ = T ⇔ (o = T & a1 = act2 = 0).

Thus, we have used our dependencies to allow each agent to record the other

agent’s actions in certain sub-steps of the Echo phase (which will allow us, later on,

to separate the reward function in a proper local manner). We note that there are

a total of 4 log n dependencies in the formulation, each of which is of constant size

(depending only upon the number of actions each agent possibly has). Again, then,

the size of this additional information is O(log n), for suitable values of n, the size of

the TILING grid.

Finally, we extend the Test phase. Where before the process the system would

take a single step and terminate, we here take three (3) separate sub-steps.
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A. This sub-step is deterministic, independent of choices of agent actions. However,

we will set up a dependency in the next step in order to record the action

of agent 2; later, we will set up the reward functions to force that agent to

repeat the same choice of tile-types it made in the Query phase in order to

gain non-negative joint reward.

P (ŝ1,a1, ŝ
′
1) = 1 iff: P (ŝ2,a2, ŝ

′
2) = 1 iff:

ŝ1 = 〈test, 0, A; o, q, i2, v2, 0, t1, •, ◦〉, ŝ2 = 〈test, 0, A; i1, v1, 0, t2, •〉,

ŝ′1 = 〈test, 0, B; o, q, 0, 0, 0, t1, •, ◦〉. ŝ′2 = 〈test, 0, B; 0, 0, 0, t0, •〉.

B. For this sub-step, we create a set of dependencies, one for each possible tile-choice

action for agent 2. Letting m = |L|, we let a1
2, . . . , a

m
2 be this set of actions.

Then, for each such action ak2, we create a dependency dk21 = 〈Ek
2 , D

k
1〉, with:

Ek
2 = {(ŝ2, a

k
2, ŝ
′
2)1, . . . , (ŝ2, a

k
2, ŝ
′
2)r}, and

Dk
1 = {(ŝ1, a

1
1), . . . , (ŝ1, a

u
1)},

where each primitive event for agent 2, (ŝ2, a
k
2, ŝ
′
2)j, is one of the possibilities

given in the previous step (there will be different ones, given possible combi-

nations of variables i1, v1, and t2, but again no two can ever occur in a single

history, so the event will be proper). Also, a1, . . . , a
u
1 are the set of all possible

actions for agent 1, and the single state ŝ1 is as in the following:

P (ŝ1,a1, ŝ
′
1) = 1 iff: P (ŝ2,a2, ŝ

′
2) = 1 iff:

ŝ1 = 〈test, 0, B; o, q, 0, 0, 0, t1, •, ◦〉. ŝ2 = 〈test, 0, B; 0, 0, 0, t0, •〉,

ŝ′1 = 〈test, 0, C; o, q, 0, 0, 0, t1, •, t2〉, ŝ′2 = 〈test, 0, C; 0, 0, 0, t0, •〉.

where: t2 = ak2 ⇔ bŝ1a1 = 1.
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Thus, this step will record the value of agent 2’s prior action, allowing the reward

function to give the right reward in the final sub-step of Test, based only on

agent 1’s state. Again, the number of necessary dependencies is bounded by

the number of tile-types in L, and so will not require undue amounts of space

to specify during the reduction.

C. Finally, the Test phase terminates, moving to an absorbing final state.

P (ŝ1,a1, ŝ
′
1) = 1 iff: P (ŝ2,a2, ŝ

′
2) = 1 iff:

ŝ1 = 〈test, 0, C; o, q, 0, 0, 0, t1, •, t2〉, ŝ2 = 〈test, 0, C; 0, 0, 0, t0, •〉,

ŝ′1 = 〈test, 0, A;T, q0, 0, 0, 0, t0, •, ◦〉. ŝ′2 = 〈test, 0, A; 0, 0, 0, t0, •〉.

Local Reward Functions. We now present the factored, local reward function,

similar to that one in the prior reduction (Section 3.4.1). In this problem, each

agent again receives reward of −1 for all local state-transitions, except for a special

designated set of transitions, for which they receive reward 0. Each agent remains idle

in the same phases as before, and so receives reward 0 in those phases, independent of

their action-choices. In the Echo phase, each reward function again gives 0 reward if

and only if the agents faithfully echo their own stored bit (the exact nature of which

they are still unaware). However, there is one catch, namely that the use of the

sub-steps and recorder variables act1 and act2 allow us to give the reward for these

choices to the other agent. Thus, agents can receive 0 reward even if they lie, but

the do so knowing that they may cause the other agent to receive negative reward in

future. The only joint policy with non-negative expected value is therefore one that

forces both agents to tell the truth during Echo, just as before. As in the previous

proof for the Reward-Independent-Only case, the Test phase only really applies to

the first agent, who receives 0 just in case the tiling pair selected by both agents

is compatible according to the defined TILING instance (again forcing the second
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agent to choose from a consistent tiling solution, even if it personally accrues no local

reward for doing so).

R(ŝ1, a1) = 0 iff any of: R(ŝ2, a2) = 0 iff any of:

Select: ŝ1 = 〈sel, ∗, ∗; ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗〉 ŝ2 = 〈sel, ∗, ∗; ∗, ∗, ∗, ∗, ∗〉

Generate: ŝ1 = 〈gen, ∗, ∗; ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗〉 ŝ2 = 〈gen, ∗, ∗; ∗, ∗, ∗, ∗, ∗〉

Query: ŝ1 = 〈query, ∗, ∗; ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗〉 ŝ2 = 〈query, ∗, ∗; ∗, ∗, ∗, ∗, ∗〉

Echo (A): ŝ1 = 〈echo, ∗, A; ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗〉 ŝ2 = 〈echo, ∗, A; ∗, ∗, ∗, ∗, ∗〉

Echo (B): ŝ1 = 〈echo, ∗, B; ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗〉 ŝ2 = 〈echo, ∗, B; ∗, ∗, ∗, ∗, ∗〉

Echo (C): ŝ1 = 〈echo, k, C; ∗, ∗, i2, v2, ∗, ∗, act2, ∗〉, ŝ2 = 〈echo, ∗, C; ∗, ∗, ∗, ∗, ∗〉

(act2 = v2 or k 6= i2)

Echo (D): ŝ1 = 〈echo, ∗, D; ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗〉 ŝ2 = 〈echo, k,D; i1, v1, ∗, ∗, act1〉,

(act1 = v1 or k 6= i1)

Test (A): ŝ1 = 〈test, ∗, A; ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗〉 ŝ2 = 〈test, ∗, A; ∗, ∗, ∗, t2, ∗〉,

a2 = t2

Test (B): ŝ1 = 〈test, ∗, B; ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗〉 ŝ2 = 〈test, ∗, B; ∗, ∗, ∗, ∗, ∗〉

Test (C.i): ŝ1 = 〈test, ∗, C; o, equal, ∗, ∗, ∗, t1, ∗, t1〉, ŝ2 = 〈test, ∗, ∗; ∗, ∗, ∗, ∗, ∗〉.

o = F or t1 = t0

Test (ii): ŝ1 = 〈test, ∗, C; ∗,hor, ∗, ∗, ∗, t1, ∗, t2〉,

〈t1, t2〉 ∈ H

Test (iii): s = 〈test, ∗, C; ∗,ver, ∗, ∗, ∗, t1, ∗, t2〉,

〈t1, t2〉 ∈ V

Test (iv): s = 〈test, ∗, C; ∗, apart, ∗, ∗, ∗, ∗, ∗, ∗〉.

Finally, let our joint reward function simply be the sum of the local reward functions:
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R(〈s0, s1, s2〉, a1, a2) = R1(〈s0, s1〉, a1) +R2(〈s0, s2〉, a2) = R1(ŝ1, a1) +R(ŝ2, a2).

Observations and Horizon. Again, we simply set the observation function for each

agent to be deterministic: given a state, agent αi simply observes the four variables

that make up its portion of the state space, along with the global variables that make

up the first portion. This also takes care of the requirement that agents be able to

observe whether or not dependencies are satisfied after taking relevant actions, since

each agent’s state-space contains variables that determine the value of the indicator

variables in the right spots. The time horizon is T = (10 log n) + 6, consisting of one

step each for the Select, and Query stages, three steps for Test, (2 log n) + 1 steps

to Generate the bits of the pair of (x, y) locations, and 4 × (2 log n) steps for the

multi-step Echo phase.

Correctness of the Reduction. Again, it is straightforward that any policy in

this new reduced problem has an expected non-negative (0) value precisely when the

same policy has expected non-negative value in Bernstein’s original reduced problem.

The first three phases are exactly the same, since agents “idle” and accumulate 0

reward no matter what. Then, in the Echo phase, agents are again required to

faithfully repeat observed location-bits: if they do not, then there is some positive

probability that the other agent will receive a negative reward on a later sub-step.

Finally, during the Test phase, sub-step A requires that agent 2 repeats the same

tile-type it chose during Query. Finally, the last step simply replicates the final

step of Bernstein’s reduction, giving non-negative reward only for compatible tile

choices. Thus, the correctness proof for the original reduction again applies directly:

there exists such a non-negative policy if and only if the TILING instance has some

consistent solution.
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3.4.2.1 A Special, NP-Hard Case

The reduction just presented relies on the fact that we allow the number of de-

pendencies in the problem to grow as a factor of log n, where n is the size of the grid

in the original TILING instance. (We do not allow the set to grow any larger, lest

the reduction no longer suffice for the complexity proof.) Since the overall size of the

state-space S in the reduced Dec-MDP state-space is also O(log n), this means that

the number of dependencies is O(|S|). Thus, the NEXP-completeness result will hold

for any Dec-MDP with event-based transitions where the number of dependencies is

polynomial in the size of the state-space.

When we are able to restrict the number of dependencies further, however, we can

do better in terms of the upper bound on worst-case complexity.

Theorem 3.6. A factored, finite-horizon, n-agent Dec-MDP with local full observ-

ability, independent rewards, and event-driven interactions are solvable in nondeter-

ministic polynomial time (NP) if the number of dependencies is O(log |S|), where S

is the state-set of the problem.

Proof. Let D be a Dec-MDP as described, and let S be its state-set. Let d be the

set of dependencies; by assumption, |d| = O(log |S|). We let d1, . . . , d|d| be a set

of new variables, one per dependency. For any agent αi, we have that the state-set

Si = S0 × Si is some portion of the global state-set S. Further, for any αi, we let

di ⊆ d be those dependencies dkji = 〈Ek
j , D

k
i 〉 that involve possible state-action pairs

of that agent. Since agents can observe whether or not dependencies are fulfilled, we

can augment the local state-space of each αi with the dependencies for that agent, so

that S ′i = S0 × Si × di.

The result is a Dec-MDP with state-space S ′ = S0×S1×d1×· · ·×Sn×dn, where

any local policy for an agent αi is a mapping from local states ŝ′i ∈ S ′i to actions

ai ∈ Ai. (Since the local states now contain all information to which each agent

has access during the course of any policy run, these now suffice. Given any joint

90



policy for the augmented problem, we can use dynamic programming to evaluate it

in time that is polynomial in the size of the new state-space. Since the sum-total

of all dependencies is O(log n), we have that the size of the augmented state-space

is polynomial in the size of the original: |S ′| = O(|S|), and therefore that we can

evaluate the policy in time that is polynomial in the size of the original, as well.

Thus, the problem class can be solved in nondeterministic polynomial time.

3.4.2.2 Discussion of the Results

These results are interesting for several reasons. First, the fact that the gen-

eral event-based case is NEXP-complete, even in the presence of fully independent

rewards and local full observability (Theorem 3.5), suggests that many interesting

decentralized problems are potentially intractable. Becker et al. [9] show how the

event-dependency model can be used to represent common problem structures in the

hierarchical task modeling language TAEMS [37, 74, 132], which has been used in a

number of real-world domains. The TAEMS framework allows us to represent a vari-

ety of interactions between sub-tasks in multiagent domains, including relationships

where the actions and outcomes for one agent enable (make possible) or facilitate

(ensure quality of) the possible outcomes for another agent. Since TAEMS is used in

some practical systems, complexity analysis that can be extended to that framework

is welcome.

In addition, the isolation of cases where complexity is likely to be lower (albeit

still potentially NP-hard, as Theorem 3.6 shows) can help in determining what sort of

task structures and agent interrelationships lead to intractability. In domains where

the dependency structure can be kept simple relative to the overall state-space size,

it may possible to derive optimal solutions in a reasonable amount of time. Both of

these subjects are worthy of further study. In our final chapter, we will return to this

issue briefly, suggesting how we might proceed from here.
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3.4.3 State-Dependent Actions

Guo [54, 55, 56] considers another specialized subclass Dec-MDPs based on ap-

parently even more restricted types of interaction. In this model, we again deal with

separate agent state-spaces, and all agent action-transitions and rewards are inde-

pendent of the actions of other agents. Such problems are not wholly decoupled,

however, as the actions available to each agent at any point depend upon the global

state of the system. Thus, agents interact by making choices that restrict or broaden

the range of actions available to others.

Definition 3.14 (Dec-MDP with State-Dependent Actions). An n-agent Dec-MDP

with state-dependent actions is a tupleD = 〈S0, {Si}, {Ai}, {Bi}, {Pi}, {Ri}, T 〉, where:

• S0 is a set of shared states, and each Si is the state-space of agent si, with the

global state space S = S0 × S1 × · · · × Sn. We let s0 ∈ S be the initial state.

• Each Ai is the action-set for αi.

• Each Bi : S → 2Ai is a mapping from global states of the system to some set of

available actions for each agent αi. For all s ∈ S, Bi(s) 6= ∅.9

• Pi : (S0 × Si)×Ai(S0 × Si) is the state-transition function over local states for

αi. The global transition function is simply the product of individual Pi.

• Ri : (S0 × Si) → < is a local reward function for agent αi. We let the global

reward function be the sum of local rewards.10

• T ∈ N is the finite time-horizon of the problem.

9This requirement—that agents have some action-choice in every state—is a basic presumption of
most Markov decision models. We note that it can always be relaxed by simply providing a “no-op”
action that causes self-transitions in some state, having the same practical effect as an absence of
actions. Guo also requires that Bi(s) ⊂ S, for all s, so that at every state there is some action that
is not available. Since this requirement can be trivially satisfied in any problem by simply adding
some new action that is never available anywhere, we choose to ignore it here.

10In the original formulation, this additive feature is not present, and the global reward function
can be any arbitrary combination of local rewards. Since we will show our complexity for this more
restricted version of the reward function, this will suffice for the more general case as well.
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We note that there need be no observations in such a problem; since we presume

local full observability, each agent’s observations are just their local states. Further-

more, it is presumed that each agent can observe its own available actions in any

state; a local policy is thus a mapping from local states to available actions.

For such cases, Guo presents a planning algorithm based on heuristic action-set

pruning, along with a learning algorithm that combines pruning with Q-learning (on

the latter, see [123, chap. 6]). While empirical results show that these methods are

capable of solving potentially large instances, we again know very little analytically

about the actual difficulty of solving problems with state-dependent actions. An NP-

hardness lower bound is given [54] for the overall class, by reducing a normal-form

game problem to the state-dependent but this is potentially quite weak, since no

upper bound has been shown, and even the operative algorithmic complexity of the

solution methods given is not well understood. We rectify this situation, showing

that in fact the problem of determining whether a given instance of such a problem

has a policy with non-negative value is also just as hard as the general case.11

Theorem 3.7. Factored, finite-horizon, n-agent Dec-MDPs with local full observ-

ability, independent rewards, and state-dependent action-sets are NEXP-complete.

Once more, we can rely upon the general upper bound on the complexity of Dec-

POMDPs (Theorem 3.2). These sorts of Dec-MDPs are obviously special cases of the

general model, which can easily incorporate state-based actions simply by allowing

every action in every global state.

Proof of Lower Bound. This reduction will be very like the prior one, for event-driven

interactions (Theorem 3.5). Again, we will use the trick of “recording” certain actions

11Again, in the original literature, the reward function for the problem is an arbitrary function of
local rewards. Thus, the problem is more generally a partially observable stochastic game (POSG),
and the initial complexity results are formulated in terms of equilibria, rather than optimal cooper-
ative policies. Here, we show that the more restricted, purely additive, solution concept suffices.
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of each agent in the state-space of the other, allowing us to have purely local rewards

and local full observability. This time, however, we will use the idea of action-sets

that are dependent upon the global state, rather than event-based dependencies, to

enforce the dynamics we desire.

State-Space. We again give a reduction of any TILING problem to a 2-agent

instance of the Dec-MDP with state-dependent actions. The state-space is exactly as

for the prior reduction, and is divided the same way into the local, fully observable

states for each agent. We do not repeat the description here, noting only that we

again start with state s0 = 〈sel, 0, A;T, q0, 0, 0, 0, t0, •, ◦; 0, 0, 0, t0, •〉.

Actions and Transitions. As before, both agents possess actions {0, 1} ∪ L. Un-

less otherwise specified, these actions are available for both agents in every state;

exceptions, along with a set of additional actions for each agent are detailed below.

Again, our reduction works identically to the previous one through the first three

phases (Select, Generate, and Query) of the problem, leading to the initial state of

the Echo phase, which is again s′ = 〈echo, 0, A;T, q0, i2, v2, 0, t1, •, ◦; i1, v1, 0, t2, •〉.
This phase is again divided into four sub-steps, A through D, with details as follows.

A: In this sub-step, the agents can choose whichever actions they like (all are avail-

able), and the state transitions to the next sub-step deterministically. The

action of agent 2 is “recorded” by its own pos2 variable, which in previous

reductions was unused in this phase of the problem, remaining fixed (pos2 = 0).

P (ŝ1,a1, ŝ
′
1) = 1 iff: P (ŝ2,a2, ŝ

′
2) = 1 iff:

ŝ1 = 〈echo, k, A; o, q, i2, v2, 0, t1, •, ◦〉, ŝ2 = 〈echo, k, A; i1, v1, 0, t2, •〉,

ŝ′1 = 〈echo, k, B; o, q, i2, v2, 0, t1, •, ◦〉. ŝ′2 = 〈echo, k, B; i1, v1, a2, t2, •〉,

a2 = 1 if a2 = 1 and is 0 otherwise.
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B: We add four (4) actions to agent 1’s action set A1, a00, a01, a10, a11. Intuitively,

we will use aij to allow us to record the situation where agent 1 echoes back

bit-value i, given that agent 2 has echoed back bit-value j (in sub-step A).

Formally, we enforce this by restricting its action-set function B1:

B1(〈echo, ∗, B; ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗; ∗, ∗, 0, ∗, ∗〉) = {a00, a10}

B1(〈echo, ∗, B; ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗; ∗, ∗, 1, ∗, ∗〉) = {a01, a11}

Given this limitation, we can then record agent 1’s own choice of bit in its own

pos1 variable, and agent 2’s choice in agent 1’s act2 variable:

P (ŝ1, a1, ŝ
′
1) = 1 iff: P (ŝ2, a2, ŝ

′
2) = 1 iff:

ŝ1 = 〈echo, k, B; o, q, i2, v2, 0, t1, •, ◦〉, ŝ2 = 〈echo, k, B; i1, v1, a2, t2, •〉,

ŝ′1 = 〈echo, k, C; o, q, i2, v2, a1, t1, act2, ◦〉, ŝ′2 = 〈echo, k, C; i1, v1, a2, t2, •〉.

a1 = 1 if a1 ∈ {a10, a11}, and 0 otherwise,

act2 = 1 if a1 ∈ {a01, a11}, and 0 otherwise.

C: In this sub-step, we use the same trick to record the prior sub-step’s action for

agent 1, using the local state-variable for agent 2, act1. We add two actions, a•0

and a•1 to agent 2’s action set A2, and force it to choose exactly one of them,

based on the variable in agent 1’s own local state-space that records its prior

action (from sub-step B).

B2(〈echo, ∗, C; ∗, ∗, ∗, ∗, 0, ∗, ∗, ∗; ∗, ∗, ∗, ∗, ∗〉) = {a•0}

B2(〈echo, ∗, C; ∗, ∗, ∗, ∗, 1, ∗, ∗, ∗; ∗, ∗, ∗, ∗, ∗〉) = {a•1}

Given this restriction, we can then force the recording of agent 1’s choice of bit

in agent 2’s act1 variable:
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P (ŝ1, a1, ŝ
′
1) = 1 iff: P (ŝ2, a2, ŝ

′
2) = 1 iff:

ŝ1 = 〈echo, k, C; o, q, i2, v2, a1, t1, act2, ◦〉, ŝ2 = 〈echo, k, C; i1, v1, a2, t2, •〉,

ŝ′1 = 〈echo, k,D; o, q, i2, v2, a1, t1, act2, ◦〉. ŝ′2 = 〈echo, k,D; i1, v1, a2, t2, act1〉,

act1 = 1 if a2 = a•1, and 0 otherwise.

D: Finally, the system transitions to the next step of Echo, or to Test, as before.

The variables for the origin (o) and FSA state (q) are again updated in the local

state of agent 1, based on recorded actions of both agents.

P (ŝ1, a1, ŝ
′
1) = 1 iff: P (ŝ2,a2, ŝ

′
2) = 1 iff:

ŝ1 = 〈echo, k,D; o, q, i2, v2, a1, t1, act2, ◦〉, ŝ2 = 〈echo, k,D; i1, v1, a2, t2, act1〉,

ŝ′1 = 〈p, k′, A; o′, FSA(q, a1, act2), i2, v2, 0, t1, •, ◦〉, ŝ′2 = 〈p, k′, A; i1, v1, 0, t2, •〉,

p, k′ =


echo, k + 1 if 0 ≤ k < (2 log n)− 1

test, 0 if k = (2 log n)− 1

o′ = T ⇔ (o = T & a1 = act2 = 0).

Thus, just as before we used event-based dependencies, we have now used restric-

tions on the sets of actions to allow (indeed, to force) each agent to record the other

agent’s actions in certain sub-steps of Echo, again allowing us to later produce a fully

factored local reward function. To do so only requires the addition of a fixed number

of actions, independent of the state-space size, and cannot upset the reduction process

by increasing specification size too much.

We use similar techniques in the Test phase of the problem, this time expanding

each step to two separate sub-step (one less than in the prior reduction), and recording

necessary information using action-set selection techniques.

A. In this sub-step, we record the tile-choice of agent 2 into the choice2 variable,

which is part of agent 1’s local state-space. To do so, we first limit agent 1’s
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action-set to exactly one tile-type selection actions from L, directly correspond-

ing to the tile chosen by the other agent. (Note that since we use actions that

already exist in the original problem specification, this step does not require

any increase in the problem size at all.)

B1(〈test, 0, A; ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗; ∗, ∗, ∗, t2, ∗〉) = {a ∈ L | a = t2}.

Then, we have state transitions as follows:

P (ŝ1,a1, ŝ
′
1) = 1 iff: P (ŝ2,a2, ŝ

′
2) = 1 iff:

ŝ1 = 〈test, 0, A; o, q, i2, v2, 0, t1, •, ◦〉, ŝ2 = 〈test, 0, A; i1, v1, 0, t2, •〉,

ŝ′1 = 〈test, 0, B; o, q, 0, 0, 0, t1, •, t2〉, ŝ′2 = 〈test, 0, B; 0, 0, 0, t0, •〉.

where: t2 = a1.

B. As before, the Test phase terminates, moving to an absorbing final state.

P (ŝ1,a1, ŝ
′
1) = 1 iff: P (ŝ2,a2, ŝ

′
2) = 1 iff:

ŝ1 = 〈test, 0, B; o, q, 0, 0, 0, t1, •, t2〉, ŝ2 = 〈test, 0, B; 0, 0, 0, t0, •〉,

ŝ′1 = 〈test, 0, A;T, q0, 0, 0, 0, t0, •, ◦〉. ŝ′2 = 〈test, 0, A; 0, 0, 0, t0, •〉.

Rewards, Observations, and Time Horizon. The reward function for this problem

is essentially identical to that for the previous reduction (page 88), as the state-spaces

are the same. The only difference is that we only have two sub-steps in the Test phase,

rather than three. Our new reward function simply replaces the rewards previously

given in sub-step B with those previously given in sub-step C, and eliminates the

reference to an action for agent 2 in sub-step A, since that agent is now idle. As it

is otherwise identical, we do not repeat it here. Observations are likewise as before

97



(under the general presumption that agents always know what action-choices they

have). The time horizon T = (10 log n) + 5, which is one step less than the prior

problem, simply because we have eliminated a single sub-step in Test.

Correctness. Given the functionally identical reward functions, this reduction

produces exactly the same non-negative policies as before. Thus, agents must still

echo bits back reliably or risk negative rewards, and there is a policy with non-

negative expected value just in case there is a consistent solution to the original

TILING instance.

3.4.3.1 Discussion of the Result.

Guo and Lesser [56, 54] were able to show that the problem of deciding whether a

problem with state-based actions had an equilibrium solution with value greater than

k was NP-hard. (Again, this is because they allow a more general reward function,

so that the problem may be competitive, and is in fact a form of partially observable

stochastic game, or POSG.) It was not ascertained whether or not this lower bound

was tight, however; since it was recognized that the general POSG class was NEXP-

complete, this remained an important open question, given that NEXP-hard problems

are considerably more difficult. Our result shows that this bound was indeed too low.

Since an optimal joint policy will be an equilibrium for the special case of additive

rewards, the general problem can be no easier.

This is interesting, for reasons that go beyond the satisfaction of a formal proof.

These sorts of decentralized problems indeed appear to be quite simple in structure,

requiring wholly independent rewards and action-transitions, so that agents can only

interact with one another via choices that affect which actions are available. A typical

example of such a problem is one in which two persons act completely regardless of

one another, except for the fact that there is only a single rowboat, used for crossing

a stream; if either agent uses the rowboat to get to the other side, then that action
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is no longer available to the other. Another example involves two persons who share

a work-space, although only the first of them has keys to the door: if that person

unlocks the door, then both agents can freely make use of the space independently. In

the first case, involving the rowboat, one agent’s action can eliminate possible actions

for the other; in the case of the door, unlocking it can make possible some actions

that were not available before. These sorts of problems are intuitive, and common,

and not all of them are hard to solve, obviously. Our results show, however, that the

same structures can be intractable in the worst case. Since we can use the actions

that are made available to encode all the information we need to pass between agents

in the TILING reduction, even this seemingly simple form of interaction can lead to

great complexity in solving.

3.4.4 Other Interaction Models

Here, we briefly mention a few other models and ideas from the literature. While

we do not deal with them in detail, each is worth examining further in future.

Thomas [127, 128] defines an extension of the Dec-MDP model based on the idea

of direct interactions between agent pairs. In this model, global states are again

factored into local states of each agent. Then, along with the usual action-transitions

and rewards, each pair of agents is furnished with a special subset of actions, namely

the direct interactions. Such interactions affect only the local states of the pair

of agents engaged in them, and take place only after that pair communicates in

order to coordinate this local action-choice. Such a problem model thus introduces

a restricted form of agent interaction, alongside a modicum of centralized control

and coordination. Thomas presents problem domains—such as fire-bucket brigade

coordination—that allow for the application of a specialized reinforcement-learning

scheme, whereby agents pass on portions of a local reward to others during these direct

interactions. Such a learning method effectively solves large multiagent problems that
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are infeasible when fully decentralized. Only the most general complexity results are

known for such a framework. Since the direct-interaction model is built upon the usual

decentralized problem, worst-case complexity is trivially identical (NEXP-complete):

if we leave the set of direct interactions empty, the resulting problem is just a Dec-

MDP. Nothing is known about cases in which these sets are non-empty; of special

interest is the case in which all interactions are of the direct variety.

Nearly Monotonic problems arise in distributed problem-solving domains, where

information-processing tasks are divided between multiple agents, and the final global

solution is composed out of local sub-solutions [24, 25]. Such problems are entirely

monotonic when the composition problem is trivial, since local solutions are guaran-

teed to be globally valid. More interesting results are found when the local solutions

do not so smoothly translate into global outcomes. Empirical results have shown

that various measures of the degree of problem monotonicity can serve as heuristics

for the performance of certain algorithms for distributed sensor interpretation and

distributed diagnosis. Many nearly monotonic problems can be solved quite well

using techniques which divide up a complex distributed problem and solve its sim-

pler sub-parts using only local information; however, some nearly monotonic problem

instances resist such solutions, and more analysis is necessary to understand why.

We would also like to examine more closely recent models of local interaction

proposed by Oliehoek, Spaan, et al. [88, 122], where degrees of interaction are deter-

mined according to the connectivity properties of certain graphical models. While

they have used techniques based on factored Markov Games to solve some relatively

complicated instances, little is known about the real complexity of the domains.

3.5 Conclusions and Discussion

In this chapter, we have given an overview of a number of existing models for

decentralized problem-solving. In each case, the models restrict the forms of agent
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interaction in some way, in order to produce a special sub-case of the general Dec-

POMDP problem. It has been known for some time that systems where agents

act entirely independently apart from sharing rewards have reduced worst-case com-

plexity. Somewhat unfortunately, we have shown that this does not apply to other

variants, where we relax the independence requirements even only a little. In all of

the cases we looked at, the new problem variants are as hard as the general case. This

fact, when combined with results that show that many other contemporary models

of decentralized problem solving are equivalent to the general Dec-POMDP model

(as shown by Seuken and Zilberstein [116]), reveals the essential difficulty of optimal

planning in decentralized settings.

At the same time, it must be stressed that the NEXP-complexity demonstrated

here is a worst-case measure. Not all decentralized domains are going to be in-

tractable, and indeed the event-based and action-set models we examine have been

shown in many cases to yield to specialized solution methods, providing us with the

ability to solve interesting instances in reasonable amounts of time. When the number

of action-dependencies is small, or there are few ways that agents can affect available

action-sets, it may well be possible to provide optimal solutions effectively. That is,

the high worst-case complexity is no guarantee that average-case difficulty is likewise

high. In later chapters, we expand upon this idea. On the one hand, it would be

extremely difficult to provide precise theoretical bounds on average-case complexity

for Dec-POMDPs; indeed, this sort of complexity measure is very hard to pin down

in nearly any domain, since it is often difficult even to say what the “average” case

looks like. On the other hand, we have developed some general measures of agent

interaction that apply to all Dec-POMDPs, regardless of structural assumptions. As

we will show later on, this measure has predictive power with respect to the actual

empirical difficulty of solving problems, optimally or approximately.
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CHAPTER 4

REWARDS, EVENTS, AND DIMENSIONALITY

The previous chapter showed that, outside of fully transition- and observation-

independent Dec-MDPs, the worst-case complexity of even quite restricted models of

interaction remains very high. As a result, in later chapters we will want to provide

new tools for analyzing and identifying the average-case difficulty of problems, as

encountered in practice. Before we move on to that part of the project, however, we

provide some new results concerning the simpler (NP-complete) case. Our work here

shows that in such problems, the structure of the shared-reward function corresponds

precisely with essential problem dimensionality, as revealed when using mathematical

programming techniques.

Such techniques extend the power to solve shared-reward Dec-MDPs. Becker’s

Coverage Set Algorithm (CSA), the first method established specifically to solve such

problems, can work quite well when the reward-structure is specified concisely, but

exhibits resource requirements that are exponential in the number of events used [12].

This can be an even greater problem, given the fact that while an event-based model

may be highly intuitive, it can also be very inefficient, since it may be difficult to find

the minimal number of events necessary to specify the system completely. Mathe-

matical programming methods first explored by Petrik and Zilberstein [99] go a long

way towards solving this problem. As we will show, these techniques allow us to com-

pactify problems, reducing them only to their essential dimensions; furthermore, the

size of the compactified problem directly determines the minimal number of events,

and vice-versa.
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Shen et al. [119] have suggested that complexity of a decentralized problem in-

creases with the “degree of interaction” between agents. We develop these ideas

in one particular possible direction, for the transition- and observation-independent

problems with shared reward previously considered in Section 3.2. We describe one

method of isolating the essential dimensionality of such Dec-MDPs via formulation as

separable bilinear programs. This leads to some new results. We show how the bilin-

ear programming version of the problem can be converted back into the event-based

structure, and that doing so often reduces (and provably never increases) the number

of events needed to describe the reward-structure, a key factor governing solution

algorithm performance.

As we have somewhat simplified the presentation of the event-based model from

Becker et al. [12], we begin by defining the specific type of Dec-MDP framework used

in this work, and outlining the shared reward constraint structure that is the main

source of problem complexity for such domains. Following that, we describe how such

problems can be formulated and solved as bilinear programs, and reviews a method

for compacting the problem to its essential dimensions. Next, we present proofs that

demonstrate connections between the constraint structure and the essential dimen-

sionality of a problem instance; it is shown how dimension compactification can be

used to generate a compact constraint structure, reducing the hardest aspect of the

problem as much as possible.

4.1 Decentralized MDPs

The class of problems first introduced by Becker, et al. [12], where the process is

independent, but for shared influence on the joint reward, can alternatively be defined

based on single-agent MDPs.

Definition 4.1. A Markov decision process is a tuple M = 〈S, A, P, R, ∆S, T 〉,
with individual components as follows:
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• S is a finite set of world states.

• A is a finite set of available actions.

• P (s, a, s′) is a state-transition function.

• R : (S × A)→ < is the reward function.

• ∆S is the initial state-distribution.

• T is the finite time-horizon of the problem.

To define the shared reward structure of the multiagent Dec-MDP version, we require

the following further notions.

Definition 4.2. For any MDPM, an event fromM is some set of state-action pairs,

E = {〈s, a〉1, 〈s, a〉2, . . . , 〈s, a〉m} ⊆ (S × A).

When E is a singleton {〈s, a〉} we call E a primitive event, and we also refer to 〈s, a〉
itself as a (primitive) event.

This definition is a novel simplification of the original (Definitions 3.7 & 3.8), as

we do not require the uniqueness conditions on proper events present there (although

such conditions could be accommodated without affecting the results given here).

Our notion of event is to be considered disjunctive, i.e. the event

E = {〈s1, a1〉, 〈s2, a2〉, . . . , 〈sm, am〉} ⊆ (S × A)

can be thought of as a statement to the effect that an agent performs action a1 in

state s1 or performs action a2 in state s2 . . .or performs action am in state sm.

Definition 4.3. For a pair of MDPs M1, M2, a reward-constraint on M1, M2 is a

triple c = 〈E1, E2, rc〉, where each E i is an event from Mi, and rc ∈ <.
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A reward-constraint is the basis for defining a shared dependency between the

two processes M1 and M2. Again, such a constraint 〈E1, E2, c〉 can be regarded

as a statement to the effect that if event E1 occurs AND event E2 occurs, then the

system receives additional reward rc. Such structures provide an intuitive definition

of shared reward, and naturally describe many domains in which agents are engaged,

for instance, in complementary or redundant subtasks. These problems allow sepa-

rate execution, but can still make the overall system reward a complex function of

combined agent behaviors, requiring coordination.

To properly define such a problem, the reward-constraints must obey a particular

simple condition, however.

Definition 4.4. Let C = {c1, . . . , cm} be a set of reward-constraints on some pair of

MDPs M1, M2. C is feasible iff all distinct reward-constraints are non-intersecting:

(∀ 〈s, a〉1, 〈s, a〉2)(∀ ci, cj)
[〈s, a〉1 ∈ E1

i ∧ 〈s, a〉1 ∈ E1
j

∧ 〈s, a〉2 ∈ E2
i ∧ 〈s, a〉2 ∈ E2

j

] ⇒ (rci = rcj ).

That is, a feasible set of reward-constraints can never assign more than one reward

to a pair of primitive events (〈s, a〉1, 〈s, a〉2). Note that such sets need not assign

values to all pairs of primitive events; only that each such pair be assigned at most one

supplementary shared reward. Such pairs define the problem’s interaction structure.

Definition 4.5. For two agents x and y, a two-agent factored and decentralized

Markov decision process (Dec-MDP) is a triple

D = 〈Mx,My, ρ〉

where Mx and My are MDPs and ρ, the shared-reward structure for D, is a feasible

set of reward-constraints.
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An optimal solution to a such a factored Dec-MDP is a pair of deterministic

policies, πx, πy, one per agent, maximizing the expected sum of individual rewards

(Ri ∈Mi) and joint reward (ρ).

Note that this type of factored and decentralized MDP is more properly called a

transition and observation-independent, locally and jointly fully observable Dec-MDP ;

for convenience, in this chapter we simply refer to them as factored Dec-MDPs.

As we have pointed out before, these restricted versions of the general class are still

useful for representing many real-world problems in which agents can work separately,

without interfering with one another, but overall value of actions is a function of all the

agents together. Examples include domains in which tasks can be divided into com-

ponents that can be accomplished separately; given uncertainty about progress and

outcome of subtasks, such problems still prove challenging. As we already outlined,

Becker et al. [12] have shown that the problem of solving these factored Dec-MDPs

optimally is NP-complete. While this significantly reduces worst-case complexity

from NEXP-hardness, solution can still be quite difficult in practice. They apply a

specialized method, the Coverage Set Algorithm (CSA), to such problems; they show

that it can perform quite well on some cases, although it is not applicable to Dec-

MDPs in general. The main hurdle in using the CSA on a given factored Dec-MDP

comes from the shared-reward structure ρ: while most of the algorithmic heavy lift-

ing is performed efficiently using linear programming and hill-climbing methods, the

algorithm iterates exponentially in the number of reward-constraints, |ρ|.
This fact motivates the current results. As we will show, the structure of ρ is

tightly bound to the dimensionality of a factored Dec-MDP, where this refers to the

essential size of matrices necessary for solving the problems via mathematical pro-

gramming methods. As ρ grows, so generally will the dimensionality. We give bounds

on this growth, and then show how techniques for dimensionality compactification re-

duce the problem to only its essential (or dominant) dimensions. Further, we show
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that such techniques can be used to generate new, often much smaller, shared-reward

structures. These results provide firm connections between dimensionality and reward

interactions in a Dec-MDP, and can reduce the complexity of the constraint structure,

thus improving performance for algorithms like CSA that are highly sensitive to |ρ|.

4.1.1 An example of a Factored Dec-MDP

We present a simple example of a factored problem instance, to help make things

clear, and for use in our later description of solution methods. In this domain D,

two agents x and y must make some delivery of goods of type a and b to one of two

customers, c1 and c2. For each agent, the individual action-outcomes and rewards

are given by two MDPs, Mx and My. The particular details are unimportant; we

simply note that specifying the MDPs separately, with separate transition and reward

functions, means that they can be regarded as wholly independent from the point of

view of each agent. Further, the techniques we present are able to easily solve each

agent’s independent sub-problem, based on the transition probabilities and reward

functions of the individual MDPs.

However, the delivery problem contains one important source of dependency: the

first customer, c1, is willing to (1) pay $2 extra for receiving two items, and (2) will

give an additional $2 bonus if it actually receives two different types of items. This

shared bonus can be given in terms of the following feasible set of events (writing

〈ci, dlj〉k for the event of agent k delivering item type j to customer ci).

ρ =
[ 〈〈c1, dla〉x, 〈c1, dla〉y, 2〉,

〈〈c1, dla〉x, 〈c1, dlb〉y, 4〉,

〈〈c1, dlb〉x, 〈c1, dla〉y, 4〉,

〈〈c1, dlb〉x, 〈c1, dlb〉y, 2〉]
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x\y 〈c1, dla〉y 〈c2, dla〉y 〈c1, dlb〉y 〈c2, dlb〉y
〈c1, dla〉x 2 0 4 0
〈c2, dla〉x 0 0 0 0
〈c1, dlb〉x 4 0 2 0
〈c2, dlb〉x 0 0 0 0

Table 4.1: The shared-reward structure for the delivery problem for agents x and y.

The shared-reward structure is therefore as shown in Table 4.1, which tracks the extra

reward to be gained for the various state-action pairs for each agent. In general, any

shared-reward structure can be represented in such a matrix form, where each entry

corresponds to the shared-reward bonus for the corresponding pair of primitive events.

Obviously, for any pair of MDPs Mx and My, the size of this matrix representation

is at most |Sx| |Ax| × |Sy| |Ay|. Note also that this matrix only describes the shared

reward for the relevant states and actions; there may be many more state-action

pairs that play no role in the joint reward, but are part of the independent single-

agent MDP planning problems. The policy for such a problem will involve actions for

each agent in its own sequential planning problem—which might involve such things

as planning local routes to various deliveries, for instance—while also maximizing

overall reward based on the shared constraints.

4.2 Bilinear Programs and Factored Dec-MDPs

Petrik and Zilberstein [99] show how these restricted-interaction instances can be

represented and solved as separable bilinear programs (for more details on separability,

see Horst & Tuy [63]). We simplify their presentation somewhat here. For factored

Dec-MDP D = 〈Mx,My, ρ〉, we define the equivalent bilinear program:
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maximize rT1 x+ xTRy + rT2 y

subject to Axx = ∆Sx x ≥ 0

Ayy = ∆Sy y ≥ 0

(4.1)

Such a program is defined similarly to the dual linear program form for single-agent

MDPs (see Puterman [104]). The vectors x and y are composed of variables corre-

sponding to the possible state-action pairs from the two MDPs; we write x(s, a) for

the state-action pair corresponding to s ∈ Sx and a ∈ Ax, for instance. Each linear

reward-vector ri in the objective function is simply the individual reward, taken from

Ri ∈ Mi. The matrices Ai encode state-visitation information, so that the multi-

plication in the constraints generates the original state distribution ∆Si , preserving

total flow in the system for each state; for instance, multiplying vector x by Ax yields,

for any s ∈ Sx,

∑
a∈Ax

x(s, a)−
∑
s′∈Sx

∑
a′∈Ax

P (s | s′, a′)x(s′, a′) = ∆Sx(s).

Note that all elements so far are linear. However, we get generally non-linear behavior

in the objective function via the matrixR, encoding the shared-reward structure of the

factored Dec-MDP. This leads to NP-hardness in solving the overall problem, although

methods have been found that work quite well in practice. Once the mathematical

program has been solved, the agent policies for agent x can be extracted by letting

πx(s) = a iff x(s, a) > 0, and similarly for y.

While any general Dec-MDP can be represented bilinearly in principle, it is only

practical for either very small general problems, or for the special nearly-independent

form given here. Koller and Megiddo [71, 72] consider the representation of extensive-

form games in the form of linear complementarity problems (LCP, see [35]). Man-

gasarian [82] shows how such LCPs can in turn be represented as a separable bilinear

program. Unfortunately, for the general problem class, this two-stage reduction is of
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little practical use: variables take the form of possible action-observation sequences for

each agent, and thus the resulting bilinear formulation is exponentially large in the size

of the original Dec-MDP. (This is not a failure of the method, per se; evidently, given

the NEXP-hardness of the original general class, this is unavoidable by any method in

the worst case). Still, such reductions are possible in principle, and may lead to useful

methods in some general cases. A similar approach is used by Aras et al. [5], who per-

form a similar sequence-form reduction in order to solve Dec-MDPs via mixed integer

programs. Similarly, Amato et al. [2, 4] employ quadratically-constrained linear and

non-linear methods to solve the general problem. These methods extend the ability

to solve some general-form Dec-MDPs (and Dec-POMDPs), but are still limited by

their inherent complexity.

The bilinear approach is particularly useful in the special case described here,

where R is simply a reward matrix on state-action pairs. Especially interesting is

the possibility for dimensionality reduction. As we show, this technique allows us to

develop automated methods for reducing the size of reward-constraint formulations

in factored Dec-MDPs, providing new hope for methods like CSA that scale poorly.

4.2.1 Dimensionality Reduction

We will refer to the dimensionality of a bilinear program for a factored Dec-MDP

as in equation (4.1), by which we mean n, the size of the y-dimension of shared-reward

matrix R. As we will describe, this dimensionality has been observed to dominate

the complexity of solving such programs, and we will prove that it is tightly bound

to the shared reward constraint structure. Note that in what follows, we assume that

the original matrix R is a square (n× n) matrix, i.e. that x and y are both of length

n; for two MDPs with differently sized state or action-sets, this can be enforced by

padding out the smaller MDP with null actions and null states. This is trivial and
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convenient. Note also that we could as easily perform all described operations along

the x-dimension of R; nothing depends upon y.

Petrik and Zilberstein [99] prove that any given factored Dec-MDP can easily and

automatically be reduced to its essential dimensions, based on shared-reward matrix

R. That is, we can perform the following elementary matrix operations to eliminate

all constant dimensions of y (along which the best response for agent y is the same

for anything x does):

Eigenvector Generation: Generate the (n × n) matrix RTR, and calculate the

eigenvectors of RTR. Since RTR is always a symmetric square matrix, these eigen-

vectors can be written in their orthonormal form.

Divide the Eigenvectors Let F be the matrix with columns formed by all the

eigenvectors of RTR that have non-zero eigenvalues; let G be the zero-value eigenvec-

tors. Let [F ;G] be the matrix of all eigenvectors, with all of F first (otherwise order

of columns does not matter). Note that since RTR is symmetric and (n× n), [F ;G]

is also an (n× n) matrix.

Generate the Inverse: Let D = [F ;G]−1. It is an elementary fact that such an

inverse always exists, for any collection of the eigenvectors of a symmetric, square

matrix, like RTR. Let k be the number of columns in F (i.e., the number of non-zero

eigenvectors of RTR), let matrix DT
k be the first k rows of DT (i.e., the transposed

inverse corresponding to those non-zero eigenvectors), and let matrix DT
k+1 be the

remaining rows.

Separate Dimensions: Let y1 = DT
k y and y2 = DT

k+1y. This separates out those

dimensions of y that “matter” in our problem (y1), from those that do not (y2). Let

〈y1, y2〉 be the vector composed of y2 appended to y1. (Note that the size of [y1; y2] is

just the same as the original, n = |y|.)
It is now elementary that the following form of mathematical program is equivalent

to the original (4.1):
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maximize rT1 x+ xTRFy1 + rT2 [F ;G]〈y1, y2〉

subject to Axx = ∆Sx

Ay[F ;G]〈y1, y2〉 = ∆Sy

x ≥ 0 y1 ≥ 0 y2 ≥ 0.

(4.2)

It is easy to verify, given the construction of y1 and y2 by inverse multiplication, that

[F ;G]〈y1, y2〉 = y, and so this formulation respects the original individual reward

function r2 for agent y, and the original constraints on distribution of states, ∆Sy .

What is interesting, however, is that we can replace the original (n× n) joint-reward

matrix R in (4.1) with the (n× k) matrix RF here. Further, when k, the dimension-

ality of F , is small, and RTR has few non-zero eigenvectors, this can be a substantial

savings. Additionally, we can then go back to the original problem formulation, and

replace the reward-constraint structure with a new one, often smaller, as we describe

below. This means that we can preserve the often more intuitive structure, based on

events, and use algorithms exploiting this sort of structure.

4.2.2 Application to Our Example Problem

To see how this works in practice, let us consider again our simple delivery prob-

lem, with a 4-dimensional shared-reward matrix as found in Table 4.1:

R =


2 0 4 0
0 0 0 0
4 0 2 0
0 0 0 0

 RTR =


20 0 16 0
0 0 0 0
16 0 20 0
0 0 0 0


The non-zero eigenvectors of RTR are thus the columns of:

F =


1√
2

1√
2

0 0
1√
2
− 1√

2

0 0



In this case, further, the inverse-row-matrix DT
k = F T ; it is important to note that

this will not hold in general, although DT
k always exists and is easily calculated.
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Thus, we have the following (using y(i, k) to abbreviate the event of y giving item k

to customer i):

RF =


3
√

2 −√2
0 0

3
√

2
√

2
0 0

 y1 = DT
k y =

[
y(1,a)+y(1,b)√

2
y(1,a)−y(1,b)√

2

]

Our new joint-reward matrix RF is now 2-dimensional, and has only two y1-variables,

each a linear combination of pre-existing variables. One can easily confirm that the

minimized reward function is identical to the original (that is, xTRy = xTRFy1),

and so the resulting objective function is equivalent to the original. It is also easy

to generate remaining components G and y2, and confirm that all other operations

preserve equivalent problem input and output.

For an example like this, the dimensionality reduction is not very surprising;

clearly, in the original specification of R, deliveries to the second customer play no

role in maximizing the shared reward. No extra reward is received for deliveries to

c2, and the columns y(2, ∗) and rows x(2, ∗) are all empty (0). This is not generally

the case, however; the method does not amount to simply ignoring columns that are

all 0. There will be many cases in which no columns or rows of the original R are

empty, and yet we can still compactify.

Furthermore, this example shows an important, and less obvious, new feature of

the dimension reduction process, namely the compactification of the overall reward-

constraint structure. While prior work has been interested in converting event-based

Dec-MDPs into the bilinear formulation solely as a means of solving them, we can

now go a step further. That is, we can convert the reduced bilinear form back into

the reward-constraint formulation, with the possibility of a substantive savings in the

size of the structure ρ.

Even though our original problem was very small, we are still able to re-write

it using a smaller ρ than was possible before. Comparing the two matrices for the

reward function:
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R =


2 0 4 0
0 0 0 0
4 0 2 0
0 0 0 0

 RF =


3
√

2 −√2
0 0

3
√

2
√

2
0 0


we see that in original matrix R, no non-zero column or row contains any repeated

values. Thus, the original shared-reward structure ρ is minimal with respect to its

elementary events. That is, ρ needs four distinct entries ρ to specify R. In the case of

RF , however, this is not true, since the first column, corresponding to new variable

(y(1, a) + y(1, b))/
√

2 ∈ y1, contains only a single value, 3
√

2. It follows that we

can write a new reward-constraint structure in terms of the new, compound event-

variables in y1, featuring only 3 entries. Even on this small, nearly minimal example,

then, we have reduced the minimum number of constraints necessary to describe the

joint-reward structure. For algorithms like CSA, exponential in this value, this can

significantly improve performance.

4.3 Constraints and Dimensionality

As we now show, these reductions in the overall dimensionality and size of the

reward-structure are not accidental: we can relate basic properties of the minimal

constraint structure for a problem to the dimensionality of its reduced bilinear form,

to establish that the reduced form will always be no larger than the original.

We first establish an upper bound upon the essential dimensionality of a factored

Dec-MDP, by which we mean the dimensionality of the reward matrix RF in the

compactified bilinear form; we write k[D] for the essential dimensionality, with k

equal to the number of columns of matrix RF .

Theorem 4.1. Let D = 〈Mx,My, ρ〉 with

ρ =
[ 〈Ex1 , Ey1 , r1〉, 〈Ex2 , Ey2 , r2〉, . . . 〈Exm, Eym, rm〉

]
and let Yρ = ∪mi=1Eyi . Then k[D] ≤ |Yρ| .

114



That is, the essential dimensionality of the problem is bounded on top by the

size of the set formed from the union of all y-events in ρ. While this bound may be

loose, it can often provide a good guide to the overall essential complexity of a given

factored Dec-MDP D.

Proof. Let the length of our original y-vector be n (so the dimensionality of unreduced

matrix R is also n). Now consider any primitive event 〈s, a〉yj /∈ Yρ; since this event

is not featured in any constraint in ρ, we have that column j of R is all 0’s. Thus,

column j of RTR is all 0’s, and so there exists a unitary vector

v0
j = [01 02 · · · 0j−1 1j 0j+1 · · · 0n−1 0n]T

(i.e. 0’s in all places, and 1 in place j), which is a 0-value eigenvector of RTR. For

each such 〈s, a〉yj /∈ Yρ, such a distinct vj will exist; each will be orthogonal, and

the entire collection can be put into orthonormal form. Thus the size of the set G

of all 0-value eigenvectors of RTR will be at least the size of the complement of Yρ,

|G| ≥ (n− |Yρ|). Therefore, since |F | = (n− |G|), k[D] = |F | ≤ |Yρ|

Thus, for any factored Dec-MDP D, we can bound the dimensionality of the

reduced form in advance. In the worst case, all primitive events are featured in the

reward-structure, and Yρ = {y(s, a) | s ∈ Sy, a ∈ Ay}, so this bound will simply be

n. Of course, the worst case for compactification is that all eigenvalues of RTR are

non-zero, and dimensionality is in fact n. (This is equivalent to invertibility of R).

A more interesting result concerns the opposite direction, namely bounding the

size of the minimal constraint structure for a factored Dec-MDP based upon the

reduced bilinear representation. As noted, in Section 4.2.2, our example can be

written using 3 constraints once in compact bilinear form, rather than the original 4.

This point can easily be made general.
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Fact 1. Let D be a factored Dec-MDP written in reduced form (4.2), with compact-

ified shared-reward matrix RF . For any column i of RF , let ui[RF ] be the number

of unique values occurring in that column. Then D can be written in an equivalent

form D−, using reward structure ρ− with size:

∣∣ρ−∣∣ =

|RF |∑
i=1

ui[RF ].

We can see this from our example problem, where the reward structure will be:

ρ =
[ 〈{x(1, a), x(1, b)}, y(1, a) + y(1, b)√

2
, 3
√

2〉,

〈x(1, a),
y(1, a)− y(1, b)√

2
, −
√

2〉,

〈x(1, b),
y(1, a)− y(1, b)√

2
,
√

2〉]
In general, for any column of RF corresponding to a compound event variable y− ∈ y1,

and any unique value u in that column, reward structure ρ− requires one constraint.

Each such constraint will be of the form

c = 〈Ex, y−, u〉

where Ex is the set of all state-action pairs x(s, a) corresponding to rows of RF in

which value u appears. This allows us to easily bound the general size of the reduced

shared-reward structure.

Fact 2. Let factored Dec-MDP D = 〈Mx,My, ρ〉, be written in equivalent form D−

as just described. We have an upper bound on the size of the reduced shared-reward

structure for the re-written problem:

∣∣ρ−∣∣ ≤ |Sx| × |Ax| × k[D].
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Proof. This is a straightforward application of Fact 1. Since the size of the structure

is |ρ−| = ∑|RF |
i=1 ui[RF ], and the number of unique values in any column of RF is at

most n = |Sx| × |Ax| (i.e., simply the number of rows in RF , equal to the size of

vector x). The result is then obvious, since the number of columns in RF is simply

the number of columns in F , i.e. the essential dimensionality k[D].

Along with these basic bounds, we can also prove something far more significant

about the shared-reward structure of a compactified, factored Dec-MDP D. In partic-

ular, we show that putting D in the reduced form (4.2), and then rewriting it in terms

of the induced reward structure, can only reduce the number of necessary constraints.

Theorem 4.2. Let D be a factored Dec-MDP with |ρ| = n; let D− be the compact-

ified bilinear form of the problem, and ρ− be the resulting constraint structure, as

described above. Then we have the following:

∣∣ρ−∣∣ ≤ |ρ|
The full proof of Theorem 4.2 requires two parts. We must show that the original

formulation of D must contain at least one distinct constraint for (i) every column of

RF , and (ii) every distinct value in that column. The first is easily shown; here, we

prove the second, since it is more interesting.

Proof. Consider any column c of RF , and suppose it contains two distinct values

ci 6= cj. Let vc ∈ F be the column eigenvector of F that generated column c ∈ RF
(i.e., c = Rvc). Thus, since

ci =
n∑
k=1

rikvc and cj =
n∑
k=1

rjkvc
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there must exist column k∗ of R such that rik∗ 6= rjk∗ (else ci = cj). Therefore, in

the original problem formulation of D, the specification of R in terms of events will

require two separate and distinct constraints:

c1 =〈Ex1 = {〈s, a〉xi , . . .}, Ey1 = {〈s, a〉yk∗ , . . .}, rik∗〉,

c2 =〈Ex2 = {〈s, a〉xj , . . .}, Ey1 = {〈s, a〉yk∗ , . . .}, rjk∗〉.

Thus, each distinct value in any column of RF corresponds to at least one constraint

in the original problem.

Thus, the reduction in number of necessary constraints observed for our example

problem is no accident. Rather, the three-stage process of (1) conversion into bilinear

form, (2) dimensionality reduction, and (3) re-conversion into event-based reward-

constraint form, will never increase the size of the problem specification (since it only

ever shrinks ρ, and leaves all else alone).

4.4 Practical Applications

These techniques are of more than formal interest. Ongoing research by Petrik

has applied the presented techniques to a number of domains, including the multia-

gent broadcast-channel and tiger problems—standard benchmarks used, for example,

in recent work by Aras et al. [5]—and a common Dec-MDP formulation of a Mars

rover robot exploration problem, as used in Becker, et al. [9]. The reduction method

has been shown to reduce the number of events necessary to specify a wide range

of these domains. In the broadcast domain, dimensionality (and the number of nec-

essary events) is reduced to 3 no matter what the original problem size, providing

a potentially very large reduction from the event-based specification. In the rover

case, many irrelevant events are eliminated, reducing to one (1) for each site that two
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rovers both explore, out of many initial events involving all possible sites; addition-

ally, in particular instances the number of events may further be reduced even more

significantly, with very little resulting error. Finally, when applied to instances of the

decentralized tiger problem, the number of events is reduced by about a factor of 5,

from 108 to 20, with a reward loss of at most 2%. Since even linear reductions in

the number of events provides exponential possible speed-ups for algorithms like the

CSA, this transforms such problem instances from ones that are simply infeasible to

those that can be practically solved after all.

4.5 Conclusions and Discussion

As we have shown, the reduction process allows us to potentially eliminate con-

stant dimensions for one agent’s actions, and also rewrite the problem in terms of a

smaller reward structure. While the method of converting into bilinear program and

doing dimensionality reduction was already known, this work is the first to show how

to move back to the original form, and how that affects problem size. This is of both

theoretical and practical interest.

In analytical terms, this method allows us to reveal the essential structure of

dependencies between agents in a factored Dec-MDP. By converting to the reduced

form, we can find a minimal set of events suitable for representing a domain. The

event-based formulation is very convenient and intuitive, but can be highly inefficient.

While simple techniques for merging events exist, they are limited. In fact, as we have

shown, problems can be such that there is simply no way of reducing the size of the

event formulation, so long as we use state-action pairs. This poses a serious roadblock

to the use of methods like the Coverage Set Algorithm, which explicitly iterates based

on separate constraints. Our process of reduction allows problems to reduce this size,

often dramatically.
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Of course, it may be hard to look at a linear combination of state-action pairs,

as generated by our method, and see how this relates to the structure of the original

problem. That is, it is difficult to interpret the weighted combination of elementary

events produced by compactification. One possibility for future work concerns fac-

tored Dec-MDPs for which this problem of interpretation is much easier. In such

cases, the partial inverse matrix DT
k is of a special form, and our new reduced prob-

lem can be expressed in terms of simple events from the original problem, while still

reducing the maximum number of constraints generated. These sorts of extensions

have many possible practical applications, since they can provide ways of automat-

ically reconfiguring large and complex multiagent system specifications, eliminating

unnecessary events and reward-constraints from consideration.

Finally, we note that is straightforward to extend this approach to problems with

more than two agents, if rewards depend on pairs of agents and the dependency graph

is bipartite. In this case, the problem is again formulated bilinearly. An extension

to general multiagent problems is more problematic. A possible approach may rely

on a multilinear program formulation, and then applying a tensor version of singular

value decomposition (SVD). The problem is that in general, these methods are often

NP-complete, unlike two-dimensional SVD, which can be done in polynomial time.

We do not pursue these other ideas at the present time, since they are not the

main focus of our work here. Instead, we move on from the use of restricted models,

to a more general account of agent interaction. This allows us to tackle the problem of

complexity more directly, by looking for measures of expected practical difficulty that

do not depend upon assuming special kinds of structures to the system dynamics.
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CHAPTER 5

AN INFORMATION-THEORETIC TREATMENT OF
INTERACTION AND PROBLEM DIFFICULTY

The previous chapters have presented a number of recent attempts to simplify the

solution complexity of Dec-POMDP models by restricting the ways in which agents

may interact with one another. We are now interested in a more unified picture

of agent interactions. Such an account would look at interactions in general terms,

considering (among other things) the following questions:

1. How do we identify interactions at all?

2. How do we quantify their effect on

(a) the quality of a solution outcome?

(b) the difficulty of finding a solution outcome?

The various special models already considered each identify interactions differently,

Now, we want to move beyond that more piecemeal approach, looking instead for

a widely applicable means of evaluating how agents influence both one another and

the overall problem dynamics. Our approach is both analytical and empirical. On

the one hand, we consider general properties of agent interaction measures. On the

other, we examine exactly how these measures correlate with the practical difficulty

of applying various optimal and approximate algorithms to Dec-POMDPs.

5.1 The Effect of Interactions in General

All existing theoretical and empirical work points to the fact that the practical

complexity of solving Dec-POMDPs depends upon interactions between the state-
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transitions, observations, and rewards of different agents; the precise nature of this

connection is the focus of our current line of investigation. As we have pointed out,

if a problem is completely separable into individual agent problems, complexity is

no longer a fundamental problem. Work on problems that are partially independent

(Section 3.1) shows that limiting actions can in fact reduce elementary complexity,

but our further complexity proofs have shown how restricted these results can be.

This raises another interesting question about agent interactions, namely how they

affect a problem’s overall complexity. We seek a general framework, or at least a set

of properties, applicable to all Dec-POMDPs, and want to know how that general

account relates to the difficulty of solving them. Prior work has suggested that the

complexity of a decentralized problem increases in proportion to the “degree of inter-

action” between agents, although a fully precise definition of this measure has not yet

been proposed [119]. In the game theory literature, it has been shown that bounding

the influence any agent can have on overall reward simplifies the process of finding

equilibria [69]. In the context of MDPs, it has been shown that the performance of

learning algorithms is inversely proportional to information-theoretic measures of the

overall system dynamics [109]. Combining these ideas, a more complex hypothesis is

that performance of solution techniques can be improved in cases where we restrict

the effect agents can have on the overall expected value of joint policies, which in

turn will depend upon the probabilistic dynamics of the Dec-POMDP system. In

this chapter, we make a first attempt at providing a more general account of such

restricted interaction, and in the next we provide evidence that the hypothesized

correlation exists: as problems grow more centralized, they tend to get easier.

5.2 Information and Action in Decentralized Planning

The need to account for the actions of other agents presents one of the primary

sources of complexity and problem difficulty for decentralized planning. Methods—
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optimal or approximate—that compare and evaluate one agent’s policies against those

of others soon run into difficulties, as the number of necessary comparisons grows too

large. This is in some respects unavoidable: since the outcomes of one agent’s actions

interact with those of others, intelligent planning cannot avoid paying attention to

multiple policies at once. In previous chapters, we considered event-based models of

interaction, which essentially amount to ways of counting how often agents interact,

isolating particular intersections between their courses of action to find (potentially)

simpler problem instances. Here, we look at another way of quantifying interaction

in a multiagent problem. Instead of focussing on particular single interactions, we

investigate a way of measuring overall interaction, in terms of information relations.

Information is central to problem complexity. When we plan in a decentralized

environment, we only ever need to take other agents into account in those cases where

our course of action would be different, depending upon what those others were doing.

We base our plans on the possible actions of those who can affect our own outcomes,

something that becomes especially difficult when we do not have full knowledge of

what they are actually doing. That is, devising and executing plans is complicated

by a lack of information about the actions of others. Of course, a lack of information

can only be felt where the presence of information would actually be helpful: where

knowing the actions of others might make some kind of difference to what we do.

Here, we present a precise way of measuring this kind of informational relationship,

evaluating how much knowledge of a given agent’s actions can tell us about the

dynamics of the overall system. We show how to quantify the total possible influence

an agent has on the system in such information-theoretic terms, and demonstrate,

both analytically and empirically, how this sort of influence is related to the difficulty

of solving a multiagent problem. As shall become clear, these sorts of information

measures allow us to quantify such otherwise vague or general notions as “influence”
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or “centralization,” and correlate well with the performance of both optimal and

approximate solution algorithms.

5.3 Quantifying Agent Influence

In order to measure the degree of influence and interaction between agents, we

have devised a means for grading the difference between agent effects upon system

dynamics, called the influence gap. First, we determine the total effect each agent

has on the Dec-POMDP system, in terms of the amount of information about those

dynamics that is carried by that agent’s actions. Then, we measure the difference

between these various levels of influence (the “gap”). As we shall show, the individual

information-measure proposed has some interesting formal properties. Furthermore,

the gap measurement generally correlates with the empirical performance of both op-

timal and approximate algorithms. In particular, as this gap shrinks to zero, for cases

where agents have equal (non-zero) influence over the problem dynamics, problems

are generally harder to solve. Conversely, as the gap grows, and one agent comes to

dominate the system—that is, as a single agent has more and more control over the

outcomes in the Dec-POMDP—problems generally prove easier to solve.

5.3.1 Entropy and Mutual Information

We begin with a few standard definitions and results from Information Theory.

Originally defined by Shannon [117, 118], these allow us to measure both the amount

of potential information carried by a random variable, and the amount of information

shared between two such variables. We do not discuss the motivation for measuring

information as given here, but note that the Shannon measure proves to be a natural

one; an interested reader may turn, for instance, to the textbook of MacKay [80] (any

standard treatment of the subject will contain the same definitions and propositions).
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Definition 5.1 (Shannon information content). Let x be a possible outcome for

some random variable X, occurring with probability P (x). The Shannon information

content of x is given by:

h(x) = log
1

P (x)
. (5.1)

When the logarithm used to define information is the base-2 log, we refer to the

information content h(x) (and all other measures given in what follows) as being

measured in bits ; when the natural logarithm is used, the measure is said to be in

nats. Other than a scaling factor, it is indifferent which units are actually used.

Given the information content for individual outcomes, we can measure the overall

information content of a variable, referred to as its entropy or uncertainty.

Definition 5.2 (Entropy). For random variable X, with outcomes x ∈ X, each

occurring with probability P (x), the entropy of X is the average information content

of any outcome:

H(X) ≡
∑
x∈X

P (x) log
1

P (x)
, (5.2)

using the convention that when P (x) = 0, we set 0× log 1/0 = 0.

Entropy has two basic properties, establishing its maximum and minimum values.

Each is straightforward to establish, and no proofs are provided here.

• Entropy is maximized when X is uniformly distributed: H(X) ≤ log |X| (where

|X| is the number of possible values x ∈ X), and H(X) = log |X| just when

∀x ∈ X, P (x) = 1/ |X|.

• Entropy is bounded below by 0 (H(X) ≥ 0), and is minimized when X has a

sole possible outcome: H(X) = 0 just when ∃x ∈ X, P (x) = 1.

These properties provide some justification for thinking of entropy as a measure of

uncertainty in random variables, since it is minimized when the outcome is determin-

istic, and grows larger as the distribution becomes more even-handed.
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The definition of entropy is also easily extended to joint distributions ; given the

pair of variables X, Y , for instance, the entropy of their joint occurrences, H(X, Y )

is given by simply replacing P (x) with P (x, y) throughout formula (5.2). More inter-

estingly, we can also define a conditional notion of entropy, based on the uncertainty

of the conditional distribution over two variables.

Definition 5.3 (Conditional Entropy). For random variables X and Y , the condi-

tional entropy of X given Y is the average, over y ∈ Y , of the entropy of P (X | y):

H(X |Y ) ≡
∑
y∈Y

P (y)
∑
x∈X

P (x | y) log
1

P (x | y)

=
∑

x∈X, y∈Y

P (x, y) log
1

P (x | y)
. (5.3)

We can now prove some basic properties of conditional entropy. The first estab-

lishes that conditioning always reduces entropy, so that the conditional entropy of X

given Y is bounded above by the entropy of X alone. The second shows that this

upper bound is reached precisely when X and Y are independent. Finally, we can

demonstrate a useful chain rule for conditional entropy, relating it to other quantities.

Proposition 5.1. Conditioning never increases entropy: H(X |Y ) ≤ H(X).

Proof. The result relies upon two facts, not proven here, but well-established:

1. Jensen’s Inequality [65]: for a real convex function f and random variable x,

E [f(x)] ≥ f(E [x]), where E [z] is the expectation of z.

2. The function log 1/x = − log x is convex.

With these facts in hand, we reason as follows:

H(X |Y )−H(X) =
∑

x∈X, y∈Y

P (x, y) log
1

P (x | y)
−
∑
x∈X

P (x) log
1

P (x)
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That is, by marginalization and the definition of conditional probability:

=
∑

x∈X, y∈Y

P (x, y) log
P (y)

P (x, y)
+ logP (x)

=
∑

x∈X, y∈Y

P (x, y) log
P (x)P (y)

P (x, y)

And then, by Jensen’s Inequality:

≤ log
∑

x∈X, y∈Y

P (x, y)
P (x)P (y)

P (x, y)

= log
∑

x∈X, y∈Y

P (x)P (y) = log 1 = 0.

Thus H(X |Y )−H(X) ≤ 0 and so H(X |Y ) ≤ H(X).

Proposition 5.2. If variables X and Y are independent, then the conditional entropy

of X given Y is simply the entropy of X: H(X |Y ) = H(X).

Proof. Suppose variables X and Y are independent of one another. Then, for any

values x ∈ X and y ∈ Y , P (x, y) = P (x)P (y) and P (x | y) = P (x), and we have:

H(X |Y ) =
∑

x∈X, y∈Y

P (x, y) log
1

P (x | y)

=
∑

x∈X, y∈Y

P (x)P (y) log
1

P (x)

=
∑
y∈Y

P (y)
∑
x∈X

P (x) log
1

P (x)

= 1×
∑
x∈X

P (x) log
1

P (x)
= H(X).

Thus, for independent variables X and Y , the uncertainty of X given Y is just the

original uncertainty of X itself.
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Proposition 5.3. For any variables X and Y , the conditional entropy of X given

Y is just their joint entropy, minus the entropy of Y ; that is, conditional entropy

satisfies the chain rule: H(X |Y ) = H(X, Y )−H(Y ).

Proof. From the definition of conditional entropy of X given Y , we have:

H(X |Y ) =
∑

x∈X, y∈Y

P (x, y) log
1

P (x | y)

=
∑

x∈X, y∈Y

P (x, y) log
P (y)

P (x, y)

=
∑

x∈X, y∈Y

P (x, y)(logP (y)− logP (x, y))

=
∑

x∈X, y∈Y

P (x, y) logP (y)−
∑

x∈X, y∈Y

P (x, y) logP (x, y)

Thus, by marginalization:

=
∑
y∈Y

P (y) logP (y)−
∑

x∈X, y∈Y

P (x, y) logP (x, y)

And so, since log 1/x = − log x:

=
∑

x∈X, y∈Y

P (x, y) log
1

P (x, y)
−
∑
y∈Y

P (y) log
1

P (y)

= H(X, Y )−H(Y ).

Thus, the conditional entropy of X given Y is just the residual remaining when

subtracting Y ’s entropy from the joint entropy of the two variables together.

Finally, since we can measure how much the entropy of one variable is affected

by the values of another, we can think about how much uncertainty about the first

is reduced, given the second. This provides us with a basic means of measuring the

amount of information that one variable carries about another:
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Definition 5.4 (Mutual Information). For two random variables X and Y , the mu-

tual information between X and Y is given by the difference between the entropy of

X and the conditional entropy:

I(X;Y ) ≡ H(X)−H(X |Y ), (5.4)

Proposition 5.4. Mutual Information can be written equivalently as follows:

I(X;Y ) =
∑

x∈X, y∈Y

P (x, y) log
P (x, y)

P (x)P (y)
(5.5)

Proof. By definition, and the chain rule for conditional entropy (Proposition 5.3):

I(X;Y ) ≡ H(X)−H(X |Y ) = H(X)− (H(X, Y )−H(Y ))

=
∑
x∈X

P (x) log
1

P (x)
−

∑
x∈X, y∈Y

P (x, y) log
1

P (x, y)
+
∑
y∈Y

P (y) log
1

P (y)

By marginalization:

=
∑

x∈X, y∈Y

P (x, y)(log
1

P (x)
+ log

1

P (y)
− log

1

P (x, y)
)

=
∑

x∈X, y∈Y

P (x, y)
P (x, y)

P (x)P (y)
.

Thus, the two forms given for I(X;Y ), equations (5.4) and (5.5), are equivalent.

Mutual Information has three elementary and noteworthy properties:

• It is symmetrical : I(X;Y ) = I(Y ;X). This follows straightforwardly from the

form given in equation (5.5), and the elementary fact P (x, y) = P (y, x).

• It is bounded below by 0: I(X;Y ) ≥ 0. This follows from the form given in

equation (5.4), and the fact that H(X |Y ) ≤ H(X) (Proposition 5.1).
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• It is precisely 0 when variables X and Y are independent. This follows from

equation (5.5): if X and Y are independent, then P (x, y) = P (x)P (y) and so

the log term is log 1 = 0 at every point in the sum.

We can now use this idea of mutual information to deal with the dynamics of Dec-

POMDPs, treating a given agent’s actions, and various elements of the problem do-

main that can change in response, as if they were random variables. The mutual

information between the actions and the various outcomes will then provide an easily

calculated measure of how much influence the agent has on the system.

5.3.2 Agent Influence and Influence Gap

In a Dec-POMDP, an agent’s actions can have effects on any or all of the three

main components of the system: state-transitions, single-step rewards, and observa-

tions. We separate those parts of the problem, giving three corresponding influence

measures, and then combine them into an overall quantification of an agent’s inter-

action with the problem dynamics.

In the definitions that follow, we define our measures for each individual agent,

relative to actions taken from its own action-set. For an n-agent Dec-POMDP, and

one such agent αi with action-set Ai, let α−i be the set of all agents except αi,

and let A−i be the set of joint actions that can be taken by those other agents (so

A−i = {〈a0, . . . , ai−1, ai+1, . . . , an〉 | am ∈ Am}).

Definition 5.5 (State-influence). For any agent αi in a Dec-POMDP, D, the state-

influence of αi, SIi, is the mutual information between that agent’s actions (taken as

a random variable), and the outcome state variable.

SIi ≡ I(S;Ai) =
∑
s∈S

∑
ai∈Ai

p(s, ai) log
p(s, ai)

p(s) p(ai)

=
∑
s∈S

∑
ai∈Ai

p(s | ai) p(ai) log
p(s | ai)
p(s)

(5.6)
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where we marginalize to get:

p(s | ai) =
∑
s′∈S

∑
aj∈A−i

P (s | s′, ai, aj) p(s′) p(ai) p(aj) [P (·) ∈ D]

p(s) =
∑
ai∈Ai

p(s | ai) p(ai)

and we treat starting states, s′, and possible actions as occurring uniformly:

p(s′) =
1

|S| p(ai) =
1

|Ai| p(aj) =
1∣∣A−i∣∣ .

Definition 5.6 (Reward-influence). For any agent αi in a Dec-POMDP, D, the

reward-influence of αi, RIi, is given by the mutual information between that agent’s

actions (taken as a random variable), and the outcome reward in a single time-step.

(We will abuse notation somewhat and write r ∈ R for the range of the reward-

function, R, i.e., the various distinct reward-values possible in D.)

RIi ≡ I(R;Ai) =
∑
r∈R

∑
ai∈Ai

p(r, ai) log
p(r, ai)

p(r) p(ai)

=
∑
r∈R

∑
ai∈Ai

p(r | ai) p(ai) log
p(r | ai)
p(r)

(5.7)

where we marginalize to get:

p(r | ai) =
∑
s∈S

∑
aj∈A−i

p(r | s, ai, aj) p(s) p(ai) p(aj)

p(r) =
∑
ai∈Ai

p(r | ai) p(ai)

we use the definition:
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p(r | s, ai, aj) =


1 if R(s, ai, aj) = r for R(·) ∈ D;

0 otherwise.

and we treat states and actions as occurring uniformly:

p(s) =
1

|S| p(ai) =
1

|Ai| p(aj) =
1∣∣A−i∣∣ .

Definition 5.7 (Observation-influence). For any agent αi in a Dec-POMDP, D, the

observation-influence of αi, OIi, is given by the mutual information between that

agent’s actions (taken as a random variable), and the resulting joint observation,

o ∈ Ω = Ω0 × · · · × Ωn:

OIi ≡ I(Ω;Ai) =
∑
o∈Ω

∑
ai∈Ai

p(o, ai) log
p(o, ai)

p(o) p(ai)

=
∑
o∈Ω

∑
ai∈Ai

p(o | ai)p(ai) log
p(o | ai)
p(o)

(5.8)

where we marginalize to get:

p(o | ai) =
∑
s′∈S

∑
aj∈A−i

O(o | ai, aj, s′) p(s′ | ai, aj) p(ai) p(aj) [O(·)) ∈ D]

p(s′ | ai, aj) =
∑
s∈S

P (s′ | s, ai, aj) p(s) p(ai) p(aj) [P (·) ∈ D]

p(o) =
∑
ai∈Ai

p(o | ai) p(ai)

and we treat prior states and actions as occurring uniformly:

p(s) =
1

|S| p(ai) =
1

|Ai| p(aj) =
1∣∣A−i∣∣ .
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These three values thus give us a measure of how much information is shared

between an agent’s actions, on the one hand, and the values of the state-transition,

reward, and observation functions that specify the Dec-POMDP, on the other. As

we noted in the previous section, mutual information is always non-negative, and so

SIi ≥ 0, RIi ≥ 0, and OIi ≥ 0, for any agent αi. When in fact SIi = 0, then for

all intents and purposes agent αi has no effect upon the state-transition table; given

that agent’s action in any system state, the outcome state is either purely random (if

it is also the case that Sj = 0 for all αj), or is influenced only by the other agents in

α−i. A similar point holds for RIi and OIi. (We make this more precise in the next

section, and discuss upper bounds on the measures.)

We can thus look at the sum total of these three possible influences as measuring

the combined influence that agent αi can have on the system dynamics of a Dec-

POMDP. The difference between these degrees of influence then measures how much

more or less one agent dominates the dynamics of the system than another. The

overall influence gap for a Dec-POMDP is then a function of individual agent gaps.

Definition 5.8 (Influence and Influence Gap). For any agent, αi, in a Dec-POMDP,

D, the influence of αi, I(αi), is the sum of αi’s various influence measures:

I(αi) = SIi +RIi +OIi. (5.9)

For any pair of agents, αi and αj, in a Dec-POMDP, D, the influence gap between αi

and αj, IG(αi, αj), is the absolute difference between their influence:

IG(αi, αj) ≡ |I(αi)− I(αj)| . (5.10)

The overall influence gap for D is the pairwise minimum of inter-agent gaps:

IG(D) ≡ min
αi, αj∈D

IG(αi, αj). (5.11)
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A word about the last part of the definition, where we give the gap for a problem

in terms of the minimum of the pairwise gaps: as we shall show later on in our

empirical study of two-agent problems, the difficulty of solving a problem tends to

correlate inversely with the size of the gap between the two. That is, as the influence

gap between the two agents shrinks to 0 (and both has equal, non-zero influence),

problems tend to become much harder, while as it grows away from 0 (and one agent

dominates the other), they tend to become easier to solve. Since multiagent problems

generally grow in difficulty with the number of agents, the use of the minimum gap

thus makes most sense. Even if large gaps exist between most agents, we can expect

that any pair with a very small gap between them is usually still going to have a very

hard sub-problem to solve when coordinating among themselves. (If the reader finds

this line of reasoning unpersuasive, it should be noted that the definition can be seen

as simply one of convenience.)

5.4 Properties of Influence

We now establish a few basic properties of agent influence. One thing to note,

right off the bat, is that all our measures are straightforward to compute. Evidently,

no complex mathematics is involved: all operations are either simple arithmetic, or

involve taking the log. Further, for each agent, αi, the number of operations required

to calculate total influence I(αi) is

O(|Ai| × (|S|+ |R|+ ∣∣Ω∣∣),
and so the calculation of total influence for all agents, and pairwise comparison be-

tween them, is clearly

O([|{Ai}| × (|S|+ |R|+ ∣∣Ω∣∣)] + |{αi}|2).

134



Not only is this polynomial in the size of the Dec-POMDP, D, but it is worth noting

that it will generally be somewhat less, since a full problem specification can be

quite complex to detail completely, given the need to specify joint action transitions,

rewards, joint observations, and so forth.

Beyond this basic fact, we can demonstrate some other properties of the influ-

ence measures. Bounds can be placed on their ranges, and we can demonstrate the

necessity of taking all three distinct forms of agent influence—over state-transitions,

rewards, and observations—into account when planning in a decentralized setting.

Furthermore, we can show how agents without influence over parts of the system

dynamics can be ignored in the planning process in certain cases, simplifying the

resulting problem.

5.4.1 Bounding the Influence Measures

As we have discussed, each individual measure of influence is non-negative, by

the very nature of mutual information. The upper bounds on the influence measures

will vary from problem to problem, depending upon the number of distinct actions,

states, reward-values, or shared observations:

Theorem 5.1. Each influence measure is bounded as follows:

1. 0 ≤ SIi ≤ log(|S| × |Ai|).

2. 0 ≤ RIi ≤ log(|R| × |Ai|) (where |R| is, again, the number of possible reward-

values in the range of reward-function, R).

3. 0 ≤ OIi ≤ log(
∣∣Ω∣∣× |Ai|).

Proof. For SIi, we can reason as follows. The lower bound is given by the basic

definition of mutual information, as already mentioned. Also by definition, and by

the chain rule for conditional entropy (Proposition 5.3),
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SIi ≡ I(S;Ai) = H(S)−H(S |Ai)

= H(S)− (H(S,Ai)−H(Ai))

= H(S) +H(Ai)−H(S,Ai)

≤ H(S) +H(Ai)

≤ log |S|+ log |Ai| = log(|S| × |Ai|),

where the last two lines follow from the elementary bounds on entropy, namely that

0 ≤ H(Z) ≤ log |Z|, for any variable (or joint combination) Z. The same proof can

be applied to establish the bounds on RIi and OIi.

Just as we provided a simple bound on each individual influence measure, we can

also put elementary limits on an agent’s total influence, and on the overall influence

gap for a problem.

Theorem 5.2. For any agent, αi, and Dec-POMDP, D:

1. 0 ≤ I(αi) ≤ log(|S| × |R| × ∣∣Ω∣∣× |Ai|3).

2. 0 ≤ IG(D) ≤ maxαi
I(αi).

Proof. For the first part, we know from Theorem 5.1 that:

0 ≤ I(αi) = (SIi +RIi +OIi)

≤ log(|S| × |Ai|) + log(|R| × |Ai|) + log(
∣∣Ω∣∣× |Ai|)

= log(|S| × |R| × ∣∣Ω∣∣× |Ai|3).

The second part of the claim follows by definition of IG(D), since the pairwise absolute

difference between agent-influences is bounded above by the largest of the pair, and

below by zero.
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Figure 5.1: A sample problem domain where one agent only has observation-influence.
States are given in circles, with the rewards for the final outcomes ($0 and $10),
labeling those states. Arrows denote action transitions, and are labeled with pairs
of actions and associated probabilities; a dash, ‘–’, means that the action-transition
is indifferent to any choice made by the agent in question. The small circles at the
ends of the first set of arrows contain the associated observations for the state-action
transition: either the state of the coin (H or T ), or nothing at all (? ).

5.4.2 Necessity of the Influence Measures

We have separated our conception of influence into three distinct measures, gov-

erning agent impact on state-transitions, single-step rewards, and observations. This

is not merely for ease of definition. Rather, each element is defined separately due to

the simple fact that an agent may have absolutely no influence on one or more parts

of the system dynamics, and yet be key to the solution of a given Dec-POMDP via its

effect on another. While it may seem at first as if an agent that, for instance, has no

effect at all upon rewards received at any stage cannot be involved in any real way in

the optimal policy, this is not the case. Via influence on joint state-transitions or on
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the information other agents receive via observations, such an agent could still have

all the effect in the world, making a difference to any final outcome.

As an illustration of this point, we present the problem given in Figure 5.1. The

problem involves flipping a coin in a darkened room. There are two agents involved.

Before the coin is flipped, in initial state, s0, one agent chooses whether or not to

turn on the lights in the room (actions Off and On in the diagram). The coin

is then flipped, and lands Heads or Tails with equal probability, no matter which

actions are chosen by either agent; however, if the lights have been turned on, both

agents observe the coin’s outcome, otherwise observing nothing at all. After the flip,

whatever the observation, the other agent must pick heads (PH ) or tails (PT ). If it

chooses correctly, the state transitions to a goal-state carrying a joint non-zero reward

($10), and if it chooses incorrectly, no reward is received.

It is easy to see that the agent choosing the light-switch position has no state-

influence, and no reward-influence. In the first state-action transition, the state given

by the coin-flip transitions randomly, and is completely independent of any action

taken by either agent. In the second transition, to the two possible outcome states, the

result is decided entirely by the state of the coin and the action of the other agent, who

picks either Heads or Tails. Thus, all state-transitions are completely independent

of the light-switching agent, and state-influence will be zero (0). Furthermore, the

only reward to be gained is at the final stage in the process, and again, since this

transition is independent of the actions of the light-switching agent, reward-influence

will also be zero (0).

At the same time, however, the action-choice of that agent has positive influence

on the observations. When that agent chooses to turn on the light, that action results

in both agents observing the state of the coin with certainty; if the light is not turned

on, then nothing is observed, also with certainty. Thus we have the possible joint

observations o ∈ Ω = (Ω0 × Ω1): 〈H,H〉, 〈T, T 〉, and 〈?, ?〉. And in accord with
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Definition 5.7, we treat all states and agent as if they were uniformly distributed, so

p(s) = 0.2 for any of the 5 states in the problem, and the agents two actions each are

assumed to occur with probability p(a) = 0.5. We can then calculate the probability

of moving to the Heads state, H, given the agent’s choice of the On action (ignoring

the other agent’s actions, since the transition is indifferent, and they marginalize out):

p(H |On) =
∑
s∈S

P (H | s, On)p(s)p(On),

which, since the leading transition-probability is 0 for all states but the intial one, is:

= P (H | s0, On)p(s0)p(On)

= 0.5× 0.2× 0.5 = 0.05.

And similarly, we have the other important state-action probabilities, given by:

p(H |Off ) = 0.05, p(T |On) = 0.05, and p(T |Off ) = 0.05.

Furthermore, we can calculate the probability of observation 〈H,H〉, conditional

on the agent choosing the On action:

p(〈H,H〉 |On) =
∑
s∈S

O(〈H,H〉 |On, s)p(s |On)p(On),

where the leading observation-probability will again be 0 for all states but Heads :

= O(〈H,H〉 |On, H)p(H |On)p(On)

= 1.0× 0.05.5 = 0.025.

Additionally, we have the other values: p(〈H,H〉 |Off ) = 0, p(〈T, T 〉 |On) = 0.025,

p(〈T, T 〉 |Off ) = 0, p(〈?, ?〉 |On) = 0, and p(〈?, ?〉 |Off ) = 0.025.
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Finally, the marginal probability of every observation-pair is easily shown to be

identical (p(〈H,H〉) = p(〈T, T 〉) = p(〈?, ?〉) = 0.0125), and we can calculate the

observation-influence for the agent as follows:

OI ≡ I(Ω;A) =
∑
o∈Ω

∑
a∈A

p(o | a)p(a) log
p(o | a)

p(o)
,

which, given the above values, is expressed in bits as:

= 4× (0.025× 0.5× log2

0.025

0.0125
)

= 4× (0.0125× log2 2) = 4× (0.0125× 1) = 0.05 bits.

Thus, the light-switching agent has non-zero observation-influence. (In fact, since

its state- and reward-influence are both zero, this is its total influence, as well.) It is

also easy to see that this agent is key to the expected value of any policy. For any

policy where the agent turns the light on in initial state s0, before the coin is flipped,

the other agent will receive its observation of the state of the coin, and the optimal

action-choice will guarantee the maximum reward, for an expectation of the full $10.

If the light is not turned on, then any choice by the second agent is indifferent,

since the same observation (〈?, ?〉) is received with certainty, whatever the coin-flip

outcome, and any such policy has expected value of only (0.5× $10) = $5. Although

all its influence is limited to observations, the importance of the agent is clear.1

Similar examples can be drawn up for state- and reward-influence, so that some

agent’s overall effect is limited to just one aspect of the dynamics, but is still key

to the outcome. For this reason, we have chosen to divide the influence-measures

1It is worth noting that the example also demonstrates the inverse effect: the agent who chooses
Heads or Tails has no observation-influence at all, but is also key to the expected value of any policy,
solely on the basis of its influence over state-transitions and single-step rewards.
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into three parts. Doing so allows us to isolate the particular ways in which actions

may actually affect the system, and it is only by looking at the total across all three

dimensions of influence that we can be certain whether a given agent is important to

solving the problem or not.

5.4.3 Insufficiency of the Influence Measures

In order to demonstrate the necessity of paying attention to each of our three

influence measures, we have just shown how an agent can affect expected value with

only a single form of positive influence on the system. It should now be noted that

the converse is not true. That is, simply because an agent does have some positive

influence on the system, this does not mean that it will have any effect on the expected

value of policies.

This is easy to see. Turning again to the sample problem given in Figure 5.1,

consider what would happen if we changed the rewards, so that the agents received

$10 in both final outcome states, but all else remained the same. In that case, the

light-switching agent would still have precisely the same observation-influence on the

system, but now would have absolutely no effect on expected value, since all policies

whatsoever would have the same payoff in the end. Thus, when planning, such an

agent could in theory be completely ignored: any course of action by the other agents

will be indifferent to its behavior. (Note that it is not key to this point that all

outcomes be the same, so that any policy whatsoever has the same value; it is just

as easy to construct examples where an agent has positive influence, but zero impact

on value, and yet all other agents are still faced with a challenging planning problem,

with many distinctly different outcomes.)

In some sense, this sort of outcome is unavoidable, and we argue that it should

not be thought of as a defect in the notion of influence. There will indeed be cases

in which an agent will have influence on system dynamics, but will not play any
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role in determining the expected value of a policy (or partial sub-policy). However,

this is really no different than noting, after having solved a Dec-POMDP, that some

possible actions play no role in deciding the outcome of any policy. While it may

be easy to see that apparent influence is actually unimportant in the simple example

just considered, this will not be readily apparent in other cases. Short of evaluating

the expected value of every course of action—that is, short of solving the problem in

full—we will not be able to eliminate the possibility that the actions of an agent that

possesses some measure of influence are actually of importance.

5.4.4 Zero-Influence Agents in Multiagent Problems

Since it is possible for an agent to possess some influence, but be irrelevant to

outcomes, positive influence cannot be used to identify agents that are of real impor-

tance when planning. On the other hand, our influence measures do allow us to rule

out agents that are definitely unimportant.

Theorem 5.3. In a Dec-POMDP D with n agents, suppose some agent αi has no

influence at all: I(αi) = (SIi+RIi+OIi) = 0. In this case, the remaining agents can

ignore αi, since the value of any joint policy is indifferent to the particular policy πi.

That is, for any individual policies π1, . . . , πi−1, πi+1, . . . , πn of the other agents, and

some policy πi of αi, let π+(πi) be the joint policy, 〈π1, . . . , πi−1, πi, πi+1, . . . , πn〉
(assuming all individual policies to be of some same length, k); we then have that:

(∀πi, π′i) (∀s ∈ S)V π+(πi)(s) = V π+(π′i)(s) (5.12)

Proof. For convenience, we prove the claim for finite policies, although essentially the

same technique could be used for the infinite-horizon case. Our proof will establish the

converse claim: if some pair of policies for αi lead to different values, then I(αi)  0.

We begin by assuming that there exists policies πi, π
′
i, and some state s ∈ S, such

that policy-values differ: V π+(πi)(s) 6= V π+(π′i)(s). In that case, by the definition of
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policy-value (Definition 2.5, page 27), there exists some tuple of observation-sequences

〈o1, . . . , on〉 and state s′ ∈ S such that:

P π+(πi)(s, o1, . . . , on, s
′)×R(s′, π1(o1), . . . , πi−1(oi−1), πi(oi), πi+1(oi+1), . . . , πn(on))

has a different value than:

P π+(π′i)(s, o1, . . . , on, s
′)×R(s′, π1(o1), . . . , πi−1(oi−1), π′i(oi), πi+1(oi+1), . . . , πn(on))

There are then two sub-cases to consider:

Case 1. The probabilities are different:

P π+(πi)(s, o1, . . . , on, s
′) 6= P π+(π′i)(s, o1, . . . , on, s

′). (5.13)

By Definition 2.4 (page 26), the probability of transitioning from s to s′, given a

collection of observation-histories of the form oioi (that is, a sequence for agent αi

where the most recent observation is oi), is defined recursively for any policy π:

P π(s, o1o1, . . . , onon, s
′) =

∑
s′′∈S

P π(s, o1, . . . , on, s
′′)× P (s′′, π1(o1), . . . , πn(on), s′)×

O(π1(o1), . . . , πn(on), s′, o1, . . . , on).

The inequality in Equation (5.13) then means that at least one of these must hold:

Sub-case a. Observation sequences o1, . . . , on, and states s, s′ ∈ S exist such that:

P (s, π1(o1), . . . , πi(oi), . . . , πn(on), s′) 6= P (s, π1(o1), . . . , π′i(oi), . . . , πn(on), s′),
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which simply means that

p(s′ | s, π1(o1), . . . , πi(oi), . . . , πn(on)) 6= p(s′ | s, π1(o1), . . . , π′i(oi), . . . , πn(on)).

However, since πi(oi), π
′
i(oi) ∈ Ai, we now have that the distribution over states

is non-independent of actions for αi: p(S |Ai) 6= p(S). It is a basic fact about

Mutual Information between two variables X and Y , however, that it is 0 if

and only if X and Y are independent (see page 129). Thus, the state-influence

(Definition 5.5) of αi must be strictly positive, SIi  0.

Sub-case b. State s′ ∈ S, and observations o1, . . . , on exist such that:

O(π1(o1), . . . , πi(oi), . . . , πn(on), s′, o1, . . . , on), 6=

O(π1(o1), . . . , π′i(oi), . . . , πn(on), s′, o1, . . . , on),

which means that

p(o1, . . . , on |π1(o1), . . . , πi(oi), . . . , πn(on), s′), 6=

p(o1, . . . , on | π1(o1), . . . , π′i(oi), . . . , πn(on), s′).

Again, this implies that the distribution over joint observations is non-inde-

pendent of the actions of αi, p(Ω |Ai) 6= p(Ω), and the observation-influence

(Definition 5.7) of αi is strictly positive, OIi  0.

Case 2. The one-step rewards are distinct:

R(s′, π1(o1), . . . , πi−1(oi−1), πi(oi), πi+1(oi+1), . . . , πn(on)) 6=

R(s′, π1(o1), . . . , πi−1(oi−1), π′i(oi), πi+1(oi+1), . . . , πn(on)).
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In this case, we note that in the defining reward-influence (Definition 5.6), we defined

the probability distribution over rewards using the convention:

p(r | s, a1, , . . . , an) =


1 if R(s, a1, . . . , an) = r for R(·) ∈ D;

0 otherwise.

Thus, the probability distribution over rewards is not independent of the actions of

αi, P (R |Ai) 6= P (R), and so reward-influence is strictly positive, RIi  0.

Therefore, since each possibility means that one of the influence quantities is

strictly positive, we have that αi has positive influence, I(αi) = (SIi+RIi+OIi)  0,

as required.

In effect, then, any n-agent Dec-POMDP for which some agent has no influence

is in fact equivalent to an (n− 1)-agent problem. Since any such agent has no effect

on possible policy values, planning need not consider them. (As for those agents

themselves, a random policy is automatically optimal.) While this is only the extreme

case, it is hard to do better, at least when planning optimally. As we have discussed,

it is always possible that an agent with some measured influence yet has no effect

on policy values. However, it is very hard to identify such cases in general, short of

evaluating all policies.

5.4.5 Influence in Factored Dec-POMDPs

In Section 3.1, we presented the model of a factored Dec-POMDP, where the

state-space divides into non-overlapping local state-spaces for each agent: S = S0 ×
S1 × · · · × Sn, and for each αi, the local space is Ŝi = S0 × Si. As it turns out, the

current definitions of influence are somewhat inadequate to these sorts of problems.

In particular, there will be cases in which the separate sub-problems for the agents

are entirely disjoint, and yet the influence measure will still be positive.
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A simple thought-experiment establishes the point. Assume that we have two

wholly separate MDPs, M1 and M2, such that agent α1 ∈ M1 has some positive

influence I(α1)  0 in its problem, and similarly I(α2)  0 in M2. Now form a

factored Dec-MDP D, by simply combining the two state-spaces, so that S1 × S2 =

S ∈ D (with S0 = ∅), and let the system dynamics remain defined over each agent’s

local states. This will be a problem, obviously, that is fully independent, in terms

of state-transitions, observations, and rewards. Thus, equally obviously, the agents

can plan in their own state-space without paying any attention at all to the other

agent, and yet, by definition, the influence measures will be identical (that is, strictly

positive) in the new problem. Indeed, if we set up the problems so that the agent’s

originally had equal influence, I(α1) = I(α2), the influence gap would be 0, something

that we have argued is suggestive of the very hardest decentralized problems.

Thus, the presence of independence relations in a problem can mean that agents

can in fact plan and work separately, even if they both have positive influence. To

amend this, we extend the definitions of influence to factored state-spaces. In each

case, the idea is once again to measure how much influence the agent has on the

dynamics of the state-space, but to restrict the measurement to the local state-spaces

of other agents. As an example, we define the factored state-influence of agent αi as

the mutual information between its actions and the state-space apart from Si.

Definition 5.9 (Factored State-Influence). For any agent αi in a Dec-POMDP D
with factored state-space S = S0 × S1 × · · · × Sn, let S−i be all parts of the state-

space that do not belong to that agent:

S−i = S0 × · · · × Si−1 × Si+1 × · · ·Sn.

The factored state-influence of αi, FSIi, is the mutual information between that

agent’s actions (taken as a random variable), and state variables in this new set.

146



FSIi ≡ I(S−i;Ai) =
∑
sj∈S−i

∑
ai∈Ai

p(sj, ai) log
p(sj, ai)

p(sj) p(ai)

=
∑
sj∈S−i

∑
ai∈Ai

p(sj | ai) p(ai) log
p(sj | ai)
p(sj)

(5.14)

where we marginalize to get:

p(sj | ai) =
∑

si,s′i∈Si

∑
s′j∈S−i

∑
aj∈A−i

P (sj, si | s′j, s′i, ai, aj) p(s′j, s′i) p(ai) p(aj) [P (·) ∈ D]

p(sj) =
∑
ai∈Ai

p(sj | ai) p(ai)

and we treat starting states, (s′j, s
′
i), and possible actions as occurring uniformly:

p(s′j, s
′
i) =

1

|S| p(ai) =
1

|Ai| p(aj) =
1∣∣A−i∣∣ .

This is a straightforward generalization of the original (Definition 5.5); similarly

we can define factored versions of reward- and observation-influence, FRIi and FOIi

(we omit the repetition here). Given these, we can once again talk about agent

influence in a factored problem.

Definition 5.10 (Factored Influence). For any agent, αi, in an n-agent Dec-POMDP

D with factored state-space S = S0×S1×· · ·×Sn, the factored influence of αi, FI(αi),

is the sum of its factored influence measures:

FI(αi) = FSIi + FRIi + FOIi. (5.15)

Having done so, we note one property of these new measures, that is the factored

analogue of Theorem 5.3.
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Theorem 5.4. In a n-agent Dec-POMDP D with factored state-space S = S0×S1×
· · ·×Sn, agent αi can be ignored by the remaining agents—in the sense that the value

of any joint policy is indifferent to the particular policy πi—if any of the following

hold:

1. Agent αi has no factored influence: FI(αi) = 0.

2. Problem D is reward-independent and αi has no factored influence on state-

transitions or observations: FSIi = FOIi = 0.

3. ProblemD is transition-independent and αi has no factored influence on rewards

or observations: FRIi = FOIi = 0.

4. Problem D is observation-independent and αi has no factored influence on state-

transitions or rewards: FSIi = FRIi = 0.

5. Problem D is reward- and transition-independent and αi has no factored influ-

ence on observations: FOIi = 0.

6. Problem D is reward- and observation-independent and αi has no factored in-

fluence on state-transitions: FSIi = 0.

7. Problem D is transition- and observation-independent and αi has no factored

influence on rewards: FRIi = 0.

8. Problem D is reward-, transition-, and observation-independent.

Since the proof of each sub-claim is very similar to the proof of Theorem 5.3, we

omit it here, and simply note that it is true. While the result is somewhat tedious to

state, it is yet interesting, as it shows how partially independent problem dynamics

can expand the ways in which a problem can be simplified.

5.5 Conclusions and Discussion

Mutual Information is a useful concept in many areas. Many machine learning

techniques based on non-parametric methods, for instance, work by identifying places
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where there is maximal or minimal mutual information between certain variables, as

a means of discovering noteworthy connections and divining the structure of system

dynamics. Our application of the idea to planning problems is new, and it leads to

some interesting properties, particularly where we can identify agents that may be

excluded from consideration when we are working out our courses of action. We would

argue that, once understood, it makes some intuitive sense: clearly if knowing an

agent’s actions would tell us little or nothing about the system dynamics, there is less

risk in ignoring those actions, and less to be gained by planning optimal responses to

them. Furthermore, the idea of influence gap gives us a means of precisely quantifying

a degree of centralization in some particular problem or organizational structure.

We have been able to bound this gap, and have established precise criteria for

when agents may be safely ignored, in general Dec-POMDPs, and in their factored

(perhaps partially independent) versions. At the same time, we have shown that

there are cases of agents with no important effect on problem dynamics, even in

the presence of apparently positive influence. The measure must therefore only be

an approximate guide to the essential structure of agent interactions. However, as

we shall show in the next chapter, there is substantial empirical evidence that the

influence gap measure we have proposed has real bearing on the question of how hard

particular Dec-POMDP instances will be to solve. This returns us to the conclusions

drawn from our complexity results in Chapter 3. Since many Dec-POMDPs, even

with highly restrictive models of interaction, remain highly complex in the worst-case

analysis, we want to examine the average-case complexity, or at least its empirical

counterpart, the expected difficulty of solving problems in practice. As we shall go

on to show, the measures just provided give us tools to do just that.
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CHAPTER 6

INFLUENCE GAP AND ALGORITHM PERFORMANCE

In the previous chapter, we have isolated some important theoretical properties of

our influence measures. These would be of secondary interest, however, if they only

revealed that we can safely ignore those agents that have no influence whatsoever.

After all, such problems are only a degenerate case, and the fact does nothing to help

in solving general Dec-POMDPs. Thus, we want to say something more substantive

about the relationship between influence gaps and general problem difficulty: we are

interested in how our measure bears on problems in which all agents have at least

some real effect on system dynamics. In this chapter, we address the issue empirically,

via two main sets of experiments.

First, we look at how influence gap bears on the performance of the optimal

dynamic programming method (outlined in Section 2.3). As we shall see, performance

of the algorithm correlates with influence gap, in that the average empirical difficulty

of problem instances decreases as the gap grows. When the gap shrinks to zero,

and agents have equal influence, problems are generally among the hardest possible

instances, and the ability to solve them optimally is seriously constrained. Conversely,

as the gap grows, and one agent’s influence dominates (but all agents still have an

affect), the problems tend to grow much simpler, and the optimal method is able to

solve problems across time-horizons that are much greater than ever possible before.

Our second set of results concerns the memory-bounded approximate DP algo-

rithms, which combine ground-up policy-tree generation with top-down heuristic

pruning (detailed in Section 2.4). In these methods, memory is conserved by en-
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forcing hard bounds on the number of policy trees retained at each backup step. As

we shall see, the choice of this bounding value is key, as the time penalty for each

additional tree is considerable. Previous work has simply fixed this value, more or

less arbitrarily, across all problem instances. Our work here provides a more well-

grounded method for choosing this value. Specifically, we find that problems with

larger influence gaps have two nice features. Fist, the approximate methods generate

much more valuable policies, as compared to small-gap problems. Second, effective

approximation becomes easier as the gap grows, so that we can find policies that are

apparently much closer to the best available, using fewer trees. These results suggest

ways in which we can tune our approximate techniques intelligently, measuring influ-

ence gap and using that value to help us choose our bounds on the resources used, in

order to effectively exploit trade-offs between solution quality and computation.

6.1 Influence Gap and Optimal Dynamic Programming

Our initial experiments deal with the exact dynamic programming (DP) algorithm

for general Dec-POMDPs, devised by Hansen, et al. [59], and outlined in detail in

Section 2.3. Working bottom-up, DP creates sets of n-step finite-horizon policy-trees

by backing up existing (n − 1)-step trees, then employs iterated pruning to reduce

the overall set (and differentiating it from the elementary method of exhaustively

exploring and evaluating all possible policies). In this pruning stage, a policy for one

agent is retained if and only if it provides an optimal possible response to some policy

of another agent. Unfortunately, this sort of pruning does not make the method any

more practically effective: as we have detailed, existing results have shown that it

is simply infeasible to generate policies of more than 4–5 finite action-steps, even in

problems with extremely simple structures. This is not a particular fault of optimal

DP, of course; as we have repeatedly stressed, these limitations are shared by all

known optimal techniques, and reflect the basic difficulty of Dec-POMDPs.
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At the same time, prior empirical tests of the various optimal algorithms have not

been very systematic. Part of this is no doubt due to the observed difficulty of those

test-cases already considered. Since each of the standard problem instances has turned

out to be very hard to solve, and since the theoretical complexity of Dec-POMDPs

is so high, researchers have seen little need to move beyond a handful of standard

domains. There is a risk to this approach, however: lacking detailed knowledge of

the average-case complexity of Dec-POMDP instances, it is harder to make detailed

comparison of algorithms. In addition, if it turns out a new algorithm performs

very well over some problem domains not yet considered by researchers, it is hard

to evaluate the importance of the results. Finally, it would be worth investigating

whether or not there is any legitimate hope for optimal algorithms. If it turns out

that no problem instances whatsoever are ever amenable to exact solution, that would

be sobering, of course; however, it would also be informative, particularly because no

such thing has ever been convincingly demonstrated.

Our initial experiments address this issue. The results are interesting in two ways.

First, we show that there are, indeed, many problem-instances for which optimal so-

lution techniques work very well, something not well-documented in prior research on

the topic. Second, we demonstrate a correlation between empirical problem difficulty

and influence gap. In particular, as the gap widens among a class of problems of

the same size, the optimal DP algorithm finds them easier to solve, and is able to

effectively generate longer and longer finite horizon policies. This result provides our

first confirmation that influence gap tracks an important property of Dec-POMDPs.

6.1.1 Experimental Design

Because the optimal DP method has intractability issues with even small prob-

lems, our testbed was restricted to a collection of simple Dec-POMDPs. Figure 6.1

shows a simple sketch of one such instance, the Noisy Broadcast Channel Problem;
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msg1 α2msgα

Figure 6.1: A sample of a small, 2-agent Dec-POMDP, the Noisy Broadcast Channel
Problem. In it, agents send messages along a common channel, receiving a positive
reward as long as there is no collision. Messages arrive to the agents’ broadcast queues
at random intervals, and no communication is possible in the attempt to coordinate
channel usage at run-time.

first introduced by Ooi and Wornell [89], the broadcast domain has been converted

into Dec-POMDP form and used as a standard basis for testing performance of Dec-

POMDP solvers, and is one of the problems that has proved so challenging, even in

its simplicity. In that problem, two agents share control of a single broadcast chan-

nel, down which they must send packets. The packets to be sent arrive randomly

(with a known distribution) to each agents queue, and at each time-step an agent

chooses to send a packet or not; if only one agent sends a packet, the pair receives a

positive reward, but if both agents send at once, there is a collision, the packets are

lost, and no reward is received. The goal, then, is to maximize sent packets over the

time-horizon of the problem, minimizing collisions. While the problem is elementary

to describe, generation of optimal deterministic policies is very challenging, and dy-

namic programming, along with other known optimal methods, ranging from heuristic

search to sophisticated techniques based on mixed-integer linear programming, fail

to solve the problem beyond 4–5 time-steps. (Aras et al. [5] give an overview of the

performance results for the full range of these techniques.)

We move beyond the single broadcast domain, however, to consider not only

that particular problem but rather a full range of domains that are comparable in

size and complexity. So, in order to measure how influence gap correlated with the
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Problem Agents States Actions Observations
Broadcast 2 4 2 2

Table 6.1: Parameters for the set of problems used to test optimal DP.

performance of the DP algorithm, we generated a testbed of 900 distinct two-agent

domains, each of which had the same number of parameters as the broadcast problem

(given in Table 6.1). While of the same size as the original, the state-transition and

reward dynamics of these Dec-POMDPs differ in systematic fashion, allowing us to

test over a wide range of possible influence gaps. We thus separated the 900 problems

into three main groups (of 300 instances each) based on their transition matrices:

Random non-independent instances: The matrix of transition probabilities for

joint actions was generated at random (respecting the need for it to comprise a

proper probability distribution).

Independent instances: Transition probabilities were generated randomly, under

the constraint that they could be factored into independent components for

each of the two agents.

Single-agent instances: Transition probabilities were generated randomly, under

the constraint that only the first agent, α1, had any influence over the outcomes

(i.e., state-influence SI2 = 0).

As well, within each class of 300 instances there were three subclasses, each comprised

of 100 instances and divided based on the structure of their reward matrices:

Random non-equal instances: The reward generated for any joint action in any

state was selected at random, uniformly from the set {1, 0}.

Fixed equal instances: The reward matrix of the literature’s original broadcast

problem was utilized; it is noted that in these cases, each agent has an equal

influence upon the reward (RI1 = RI2 = 0.0338).
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Fixed single-agent instances: The reward matrix of our preliminary single-agent

experiments was utilized; only the first agent had any influence over the out-

comes (i.e., reward-influence RI1 = 0.2158 while RI2 = 0).

In each case, we fixed observations (which simply amounted to whether a packet

had arrived to the queue or not), so that neither agent had any influence over it,

at any time. Thus, the observation-influence of each agent did not factor into the

gap between them, and we discounted it; influence gap is then measured in terms of

the absolute difference between the sum (SIi + RIi), for each agent, αi. This choice

merely simplified our models somewhat, and had no meaningful effect on the results.

Given our testbed cases, we calculated the following measures for each problem

(all values are given in nats, using the natural log in our calculations for convenience):

State-influence: SIi for each agent αi; this value fell in the range [0, 0.504].

Reward-influence: RIi for each agent αi; this value fell in the range [0, 0.3804].

Influence gap: The difference in influence; this value fell in the range [0, 0.394].

For each problem instance, the DP algorithm was run as usual. Since the algorithm

operates deterministically, providing an identical output each time, there was no need

to run it more than once per instance. We were not interested in absolute timing data

for the algorithm, which in any case could vary considerably, from a few seconds on

easy problems to upwards of an hour on the hardest instances.

Instead, performance was measured by allowing DP to run until the number of

policy-trees generated at the backup stage for any one agent exceeded 1200, at which

point further progress was infeasible, given time and memory constraints.1 Further-

1Our test machine had a dual 2.5 GHz PowerPC G5 processor and 2GB RAM. Increasing these
resources might have allowed a somewhat larger cap on the number of trees, but would not have
affected our results in any qualitative manner. All prior testing of optimal DP, on all available
platforms, indicates that we were operating very close to the algorithm’s feasible limits. In addition,
these results still establish the correlation we sought, since they allowed us to separate problem
instances in a meaningful way.
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more, if a problem-instance could be solved to a time-limit of 100 iterations (a 100-

step policy tree) without exceeding the 1200-tree bound, the program was terminated.

Such performance indicates a very easy problem, and one for which continued explo-

ration is no longer interesting, since it is effectively possible to iterate indefinitely.

(While such problems were no longer interesting to explore, their very existence was

interesting, since no such long-range optimal solutions had ever been generated before

in the literature.) This main independent variable, the number of iterations before

the limit on trees was reached, thus ranged between 3 (all problems were solved to

at least these many instances) and 100, our cap value. For the DP algorithm, then,

this provides a straightforward empirical measure of problem difficulty.

6.1.2 Empirical Results

Upon analysis of our results, we found that the operation of the DP algorithm

fell into three main classes, and we separated our problem-instances accordingly.

(Table 6.2 outlines the various classes of our variables, giving the full details.)

Hard: Problems for which only 3–4 backup steps were possible before the 1200-tree

limit was reached, and further progress became effectively impossible, given

computational constraints. It is worth noting that 4 steps is the prior best

general limit for optimal dynamic programming, suggesting that in fact prior

research has concentrated mainly on hard instances.

Medium: Problems for which more than 4 backup steps are possible, but do not

allow indefinite policy generation. Such problems were concentrated heavily in

the range of [5, 9] iterations, with 93% of the Medium instances falling there,

while nearly all the remainder fall in the range of [10, 19] iterations, with just

two outliers solved to 32 policy-steps. While the lower range is not much greater

than that for the hard problems, it in fact reflects a two-fold increase in solution

size from all prior optimal results.
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Variable Source Type Unit Classes Range Prop. (%)
Influence Problem Dependent nats Zero 0 0.282

Gap Small (0, 0.05) 0.27
Medium [0.05, 0.2) 0.22

Large [0.2, 0.394] 0.228
Steps Algorithm Independent Iterations Hard 3–4 0.407

Medium 5–32 0.216
Easy 100+ 0.377

Table 6.2: Classes of the two main variables measured in the experiments with the
optimal DP algorithm. The table includes their ranges, and their proportion among
the overall set of problem instances.

Easy: Problems for which a full 100 steps are possible, and policy generation appears

to continue indefinitely.

Additionally, the influence gap measure fell into four natural classes, each of which

comprised relatively equal proportions of the space of all problem instances:

Zero: Agents exercised the same amount of influence, and so the difference is 0.

Small: A difference in the range (0, 0.05).

Medium: A difference in the range [0.05, 0.2).

Large: A difference in the remaining range, up to the maximum observed, [0.2, 0.394].

Our results measure how many of the problem instances falling into each of the

influence gap classes also fall into the various classes of difficulty. Our results indicate

that problems with large gaps between the influences of the two agents will tend

to be proportionately easier, whereas problems where the difference between agent

influences falls to 0 are proportionately harder. Before presenting the results, however,

we exclude a certain subclass of problems that otherwise threaten to skew the numbers

unfairly in our favor.

In certain problems, the overall effect of one agent αi is completely negated, and we

have the sum of influences SIi+RIi = 0. In such cases, as we proved in Section 5.4.4,
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the resulting Dec-POMDP is in fact equivalent to a single-agent problem; the other

agent can plan without taking αi into account, and αi itself can effectively enact any

randomly chosen policy at all, without affecting resulting value. Practically, this has

the effect that all such instances are easily solved by the DP algorithm; indeed, we

included such problems as a way to check that the method worked properly, and could

indeed solve an effectively single-agent domain.

Reducing the influence of one agent to 0 has another effect, however; specifically,

it tends to make the influence gap measure larger overall, since the gap is then just

equal to the influence of the other agent. Thus, if such cases were not excluded

from our results, the effect of influence gap on proportionate difficulty would seem

even more strongly to indicate the correlation we claim between a large gap and an

easy problem. Such single-agent problems are a special, degenerate case, and do not

reflect algorithm behavior for truly multiagent decentralized systems; furthermore,

the ease of solving them has everything to do with the fact that they are single-agent,

rather than the gap between agent influences. Our final numbers therefore reflect

this exclusion. We remove 145 problem instances from our data; all 100 instances

that combine single-agent transitions with single-agent rewards, and 45 others for

which the various random processes happened to produce an effectively single-agent

problem. Our final results are thus based on 755 of our original 900 instances, and

Table 6.2 outlines each of the categories into which we divided our main variables,

along with the proportion of total cases into which the remainder fall.

Figure 6.2 compares the four categories of influence gap, showing the proportion

of each set of problems falling into each difficulty class. Evidently, there is a trend

towards more easier problems as the gap between agent influences increases. When

the influence gap is 0, the majority (69%) of the problems are of the hardest type,

solvable only to 3–4 iterations; the remainder are split almost evenly between medium

problems and easy ones, with 15% falling into the latter class. As the gap increases,
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Difficulty Distribution, by Information Gap

0

20

40

60

80

100

120

140

160

0 Gap Small Gap Medium Gap Large Gap

I
n

s
ta

n
c
e
s

Hard Medium Easy

Figure 6.2: Instances falling into each range of difficulty (Hard, Medium, Easy), for
each range of influence gap (with single-agent 0-instances omitted).

these proportions reverse themselves dramatically. When the influence gap falls into

the large range, most of the problems (70%) fall into the easy difficulty class, whereas

only a few (4%) remain very hard. Table 6.3 gives the full numbers.

These results confirm that there is a correlation between influence gap and problem

difficulty for general Dec-POMDPs. Furthermore, our results also help account for

other phenomena, observed during experimentation, that are otherwise somewhat

surprising. In our original plans for this research, we had provisionally hypothesized

that the special subclass of transition-independent Dec-POMDPs (see Section 3.1),

to which specialized algorithms had previously been applied, would turn out to be

easier to solve using DP than would the more general instances (especially since the

former are of a lower complexity class). Contrary to this hypothesis, however, it was

found that that a higher proportion of the problems featuring independent transition

matrices proved difficult to solve.

This fact does not pose any challenge to the theoretical complexity results, of

course, nor does it suggest a deficiency in the DP algorithm. After all, even if
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Influence Gap Total Cases Hardness Range (steps) Cases Prop. (%)
Zero 213 Hard 3–4 146 0.69
[0] Medium 5–32 35 0.16

Easy 100+ 32 0.15
Small 204 Hard 3–4 100 0.49

(0, 0.05) Medium 5–32 46 0.23
Easy 100+ 58 0.28

Medium 166 Hard 3–4 54 0.33
[0.05, 0.2) Medium 5–32 37 0.22

Easy 100+ 75 0.45
Large 172 Hard 3–4 7 0.04

[0.2, 0.394] Medium 5–32 45 0.26
Easy 100+ 120 0.70

Table 6.3: The correlation between the different classes of influence gap and the
different levels of difficulty, for the optimal DP algorithm experiments.

transition-independent Dec-POMDPs are worst-case NP-complete, rather than be-

ing NEXP-complete, we should still expect exponential penalties in computing their

solutions, and so the optimal algorithm cannot be expected to provide a general-

purpose efficient method for solving them. In addition, the algorithms that solve

these sorts of problems are specially designed to exploit the independent dynamics,

like the Coverage Set Algorithm [12] or the bilinear programming method of Petrik

and Zilberstein [99] (see Section 4.2). Thus, we cannot necessarily expect better

performance from a general method, which does nothing to utilize independence.

However, this still leaves the question of why DP seems to find the independent prob-

lems harder on average; we might have expected that, at the very least, it would be

indifferent to the type of transitions featured in a given Dec-POMDP.

We can now offer an explanation for this result. If influence gap and difficulty

are indeed correlated, as we have suggested, then we can predict that the larger

proportion of hard problems should mean that a higher percentage of the independent

problems have small influence gaps. Indeed, this is just what we found, as shown in

Figure 6.3, which compares problems based on type of transition-matrix (excluding

160



Distribution of Information Gaps, by Transition Type
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Figure 6.3: Instances falling into each range of influence gap (0, Small, Medium,
Large), for the two types of transition structures: general, randomly completed non-
independent matrices and independent matrices, respectively.

the single-agent transition problems, so we compare just 600 instances here). As

we can see, more of the independent problems (50%) feature a 0-level influence gap

than do the non-independent problems (18%). More of the independent problems

(34%) also exhibit large gaps than do the non-independent cases (25%), but that

difference is much less pronounced.2 While transition-independent problems do fall

into a lower worst-case complexity class, a large proportion of them still fall into the

hardest empirical category. The fact that this proportion accords with prediction is

further evidence for the correlation between influence gap and difficulty.

2The preponderance of 0-gap problems has to do, it seems, with the extra constraints that
independence places on the form of the state-transition matrix. For these problems, this leads to
more symmetrical problems, i.e., those for which each agent has the same influence, and so the gap
between agents is zero (0).
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6.1.3 Conclusions and Discussion

Our results demonstrate a connection between the information-theoretic influence

gap measure and the ease with which a Dec-POMDP can be solved using dynamic

programming. As the gap between agent influences widens, more problems become

easier to solve, although some still remain of the hardest difficulty. As the gap tight-

ens, so that agents exert the same (non-zero) amount of influence, more problems

become difficult, although some are still easily solved. The fact that the observed

correlation is not absolute, at either end of the scale, and that some problems do not

exhibit the difficulty level generally associated with their influence gap, suggests some

further factor in the system dynamics that interacts with algorithm performance.

Still, the correlation is clearly demonstrated, and we thus argue that the influ-

ence gap measure is of real interest. As we have described, prior research on exact

algorithms for Dec-POMDPs has generated largely negative results, as even simple

problems are found to be difficult to solve optimally. The usual response has been to

turn to approximate methods, for which exact performance guarantees are not readily

available, or to special algorithms only applicable to particular restricted subcases.

We provide another approach. First, we have shown that there exist many problems

for which optimal methods are in fact practical. Second, we provide a general-purpose

heuristic measure to aid in finding those problems. Influence gap can be easily and

automatically calculated in advance, for any Dec-POMDP whatsoever, and does not

rely upon any special domain structure. Furthermore, since a large gap correlates

with problems that tend to be easier to solve, it can be used as a means of sorting

out instances to which optimal methods are more likely to be applicable.

Lastly, we note that there is a somewhat philosophical moral to these results. Some

research in multiagent systems has suggested that increasing the centralization of

control can lead to simplified planning [41, 135]. This intuitive idea, often observed in

practice, is given support by our results. In a precise sense, an increasing influence gap
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reflects a concentration of control more and more in the hands of one agent, and indeed

this tends to lead to easier problems. We argue that influence gap captures a real

feature of multiagent problems, namely the relative centralization of control. When

the gap is zero, and a pair of agents have equal non-zero influence, the problem is in

some real sense maximally decentralized, since neither of the pair has any more control

than the other. As the gap grows, this trend is reversed, and one agent becomes more

and more central to the system dynamics, reaching maximal centralization when that

agent has all the influence, and the other has none at all.

6.2 Influence Gap and Approximate Dynamic Programming

While it is interesting to note the correlation between widening influence gap and

ease of exact solution, the prior results are somewhat limited, due to the very nature

of the optimal DP algorithm. As we have repeatedly stressed, optimal methods for

solving Dec-POMDPs are faced with significant computational challenges, and even

for large-gap problems, only very small instances were able to be solved at all. We

are thus also interested in the applicability of approximate methods to Dec-POMDPs.

Furthermore, we want to extend the empirical analysis to include other algorithms, in

order to determine whether the observed correlation is a function of the DP algorithm

alone, or holds up under application of other techniques as well.

Here, we look at the performance of two related approximate dynamic program-

ming algorithms (described in Section 2.4), Improved Memory-Bounded Dynamic

Programming (IMBDP) and a variant of same that uses Observation Compression

techniques (MBDP-OC). As we shall show, there is an even more pronounced cor-

relation between the efficacy of these methods—in terms of the ability to generate

high-value solution policies—and the influence gap measure. Furthermore, we will

show how the performance of the algorithms can be tuned in important ways, using

knowledge supplied by our influence gap measure. This provides a means of achiev-
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Figure 6.4: The 2-agent box-pushing test domain. Each agent observes the environ-
ment immediately in front of itself. The goal is to push boxes into the goal region;
the larger boxes carry more reward, but require both agents to push them.

ing greater efficiency in the use of the approximation techniques, making intelligent

choices about how to trade off solution quality and the time and resources required

for computation. Using the influence gap, that is, we can evaluate a problem ahead

of running our method, then set parameters of the approximate DP technique in a

way that provides good quality guarantees while minimizing run-time. This work is

then a first step in using a generally applicable measure of agent interaction in the

design and implementation of approximation techniques.

6.2.1 The Box-Pushing Test Domain

In our experiments, we tested algorithm performance on variations of the repeated

box-pushing problem domain. This sort of domain is relatively familiar in AI [73]; it

is easily formulated as a Dec-POMDP and has been used as a test-bed for empirical

testing and comparison of the IMBDP and MBDP-OC methods. Figure 6.4 gives a

graphical overview of the domain, which has the following features:

164



Grid: The environment is specified in terms of a set of grid locations. Variations of

the problem can be formed by changing the size of this grid. One special grid

location (marked in black in the figure) is designated the goal.

Boxes: There are a number of boxes located at various points around the grid. Boxes

may be of two distinct sizes, small and large; the former take up one grid square,

the latter take up two of them.

Agents: A pair of agents, each representing an autonomous robot. Agents can move

about the grid, although two agents may not occupy the same grid location at

once. When adjacent to a box, an agent can choose to push it, by attempting

to move into a grid location containing the box.

States: The global state consists of the current location of each agent, as well as the

size and locations of each box, along with the current orientation of each agent.

Local Observations: Each agent observes only the grid square immediately in front

of it, based on its orientation.

Action Dynamics: The domain is stochastic: whenever an agent chooses to rotate,

or to move to an adjacent square, it succeeds or fails with some set probability;

movements into squares occupied by other agents, or in the direction of imme-

diately adjacent walls always fail. Boxes shift position in the direction of agent

movement, if an agent successfully moves into a square containing that box,

with one important exception: large boxes require two agents to move. That is,

in order to shift a large box, the agents must work together, moving in unison

into the corresponding grid locations.

Shared Reward: The agents collect a joint reward whenever a box is pushed into

the goal location, dependent upon its size; these amounts can vary from instance

to instance, but it is usually the case that successfully pushing the large box
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Problem Agents States Actions Observations
Broadcast, etc. 2 4 2 2
Box-Pushing 2 100 4 5

Table 6.4: Number of different parameters for the simple two-agent problems, used
in testing the optimal DP algorithm, compared to those for the box-pushing variants,
used in testing the approximate methods.

to the goal leads to a significantly greater reward than does pushing the small

box. There is generally a penalty for bumping into walls or other agents.

Time: Whenever one of the boxes is pushed to the goal location, the domain re-sets

to the initial state, with agents and boxes returned to random locations. There

is an overall time-limit, in terms of a number of action-steps (successful or not).

Even for relatively small grids, these box-pushing problems can be significantly

more complex than those domains studied in the preceding work on optimal methods.

In our tests, we employed a series of different reasonably-sized problem-instances, with

parameters given as in Table 6.4, where we compare them to those used in the tests

of optimal DP.

We explain the particulars of the domain in more detail below, when we discuss

our experimental design. For now, we simply note that these numbers represent

a significant increase in the difficulty of the problem instances. As we have previ-

ously explained, the complexity of DP backups depends exponentially on the numbers

of possible observations and actions, and doubling these numbers means that these

problems are effectively beyond reasonable solution, particularly given the order of

magnitude increase in the number of system states (from 4 to 100).

6.2.2 Motivation for the Experiments

The key feature in the memory-bounded DP algorithms is the parameter govern-

ing the maximum trees retained for each agent at each backup iteration. By enforcing
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Figure 6.5: Time to calculate a policy, for an increasing number of time-steps. As we
increase the maximum number of trees per agent retained at each backup iteration,
planning time also increases. The data here is for the MBDP-OC algorithm, on a
box-pushing problem with minimal centralization.

a hard cap on the number of trees kept to be backed up at the next step, the algo-

rithm avoids the full combinatorial explosion that tends to arise with regular dynamic

programming, and as a result can generate policies with much longer horizons. The

choice of how many trees to retain is key to algorithm performance. On the one hand,

the larger the cap value, the better the possible approximation.3 On the other hand,

any increase in the cap value carries with it a severe penalty, in terms of the time

taken to perform computation.

Figure 6.5 illustrates this point. Shown there is the performance of MBDP-OC,

run on a box-pushing problem with minimal centralization (as explained in the next

3In the limit, when the cap is allowed to grow arbitrarily, the approximate method simply reverts
to the normal DP algorithm, since all non-dominated trees will be retained as before.

167



section). This is representative of the entire range of our results, and plots using the

other algorithm and other degrees of centralization are essentially identical. As we

can see, the time to plan increases exponentially with the time-horizon (note that

the y-axis is log-scale). In addition, each increase in the maximum-trees parameter

is marked across the board by what is nearly an order-of-magnitude increase in time

required. When the algorithm only retains the single tree considered best at each

backup step, planning for a 40-step policy takes approximately 100 seconds; by the

time we move to using a maximum of five (5) trees per backup, time taken has run to

over 16,000 seconds (about four and a half hours). Clearly, there is strong motivation

to minimize the number of trees used, so that planning can proceed effectively.4

One difficulty, however, is that it is not yet known how best to set the parameters

governing algorithm performance. In the existing literature, the approach has gener-

ally been to set the number of trees to a “reasonable number” (usually no more than

3), and compare algorithm performance in terms of value and time, given this essen-

tially arbitrary cap. Here, we set out to address this issue, comparing performance of

various settings over a wide range of distinct box-pushing problem instances, while

also tracking how that performance varies as the influence gap between agents shrinks

or grows. As we shall see, the results are interesting in a number of ways. In brief,

we discover that influence gap is very strongly correlated with the overall quality

of outcome policies in the two-agent box-pushing domain. As one agent’s influence

grows to dominate the other, the output policies become much more successful, lead-

ing to higher and higher levels of expected joint reward. Furthermore, we discover

some useful properties of the maximum-trees parameter. First, we can show that it

is possible to achieve much of our expected value with a relatively small number of

4There is also a parameter governing the maximum number of observations used in generating
trees; we did not vary this in these experiments. Our results are clear enough as they are, and we
will look at this parameter in future.
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trees. Second, we can demonstrate that approximation in fact gets somewhat easier

as influence gap increases, so that agents are able to set the maximum-trees parameter

lower, while still being assured of a better overall outcome.

6.2.3 Experimental Design

We performed a wide range of experiments as follows. First, we set up a 100-state

box-pushing domain, with total number of parameters as given in Table 6.4. The

initial set-up for the problem was identical to that previously used in existing work

for testing the two algorithms [23], and involved:

Grid: a 12-location domain.

Agents and observations: 2 agents, with 4 possible directional orientations, each

with 5 total distinct observations, based on what it sees in the square immedi-

ately in front of it (nothing, a wall, the other agent, or either type of box).

Actions: Each agent has 4 possible actions, choosing to turn left or right, move

ahead one square, or stay put for one step; each individual action in the base

problem succeeds with base probability of 0.9 for each agent, independent of

the actions of the other agent.

Boxes and Goals: There were 3 boxes, 2 small ones and 1 large. Small boxes could

be pushed by a single agent, while the large box required both moving in concert.

There was a set of 4 distinct“goal” locations in the grid, and if any box were

pushed to one of those location, the problem re-set: boxes were returned to their

initial locations, and agents were placed in a random configuration of location

and orientation.

Reward: If a small box was pushed to a goal, reward r = 10 was received; for the

large box, r = 100; if agents attempt to move forward and fail because they

bump into a wall, or attempt to push the large box alone, there is a penalty
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r = −5; finally, for attempting to move forward but failing due to bumping into

the other agent the penalty was r = −6.

In this initial set-up, agents are entirely symmetrical, so far as the influence over

the system dynamics. Effects on reward, observations, and state-action transitions

are entirely identical across the pair of agents, and so the influence gap is zero (0).

We thus needed to vary the domain in order to affect the gap. In order to do so,

we systematically transformed the ways in which the state-transition and reward

matrices were drawn up, allowing agents to have varying influence, and increasing

centralization steadily as we did so. As the problem became increasingly centralized,

information about action-outcomes and reward for both agents became increasingly

concentrated in the hands of the first agent, α1, although we ensured that α2 retained

at least as much influence as before.

While the actual specifics of the matrices that lead to these results are uninforma-

tive, we can show the actual influence values generated, to track increasing centraliza-

tion.5 We tested nine (9) distinct settings of the influence gaps for our problem, and

in presenting our data later, we will refer to them using the values 〈10, 20, 30, . . . , 90〉.
These are used mainly for convenience, but were not chosen entirely arbitrarily: in

generating test-cases, we controlled the revision of our matrices using a “centraliza-

tion parameter” that fell in the range [0, 100]. At level 0, the parameter does nothing,

and the problem would be identical to the original (with the zero influence gap); as

the parameter goes up, α1 comes to dominate the problem more and more, until we

get to a maximum value at 100, where α1 would effectively have full control, and α2’s

5We think this is another useful feature of our influence gap measure: it can identify increasing
centralization even where it is not intuitively obvious. That is, a cursory inspection of the transition
and reward matrices in our set of problems would not immediately suggest that some are more
centralized than others. All of them feature the same sets of actions and rewards, and the numbers
do not necessarily “look” any more centralized for one problem or another. Influence gap, on the
other hand, allows us to calculate this sort of effect across problem instances, providing a transparent
indication of differences.
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Level α1 Inf. α2 Inf. Gap Diff.
10 0.1545 0.0270 0.1275 n/a
20 0.1726 0.0271 0.1455 0.0179
30 0.1934 0.0273 0.1661 0.0206
40 0.2162 0.0274 0.1888 0.0227
50 0.2408 0.0276 0.2132 0.0244
60 0.2667 0.0278 0.2390 0.0258
70 0.2939 0.0279 0.2660 0.0270
80 0.3221 0.0281 0.2940 0.0280
90 0.3511 0.0283 0.3229 0.0289

Table 6.5: The various “centralization levels” for the box-pushing problems, with
the associated influence measures for each agent, and the gap between them. The
right-most column shows the differences between the current gap and the previous
level (i.e., the difference between the gap for that level and the one below it), showing
that the gap grows more rapidly as the levels go up. All values are in nats.

influence would in fact revert to 0. Since we were not interested in the latter case,

where the problem is in fact just a single-agent MDP, and wanted to move beyond

the original problem, we tested the effect of our centralization parameter at each 10

units in between. Table 6.5 gives the actual values for each agent’s influence, and the

associated gap, for these centralization levels.

Having created the distinct problems, with differing influence gaps, we performed

a wide-ranging series of tests, varying the following quantities for each of the two

algorithms, IMBDP and MBDP-OC:

Influence gap: 9 levels, 10–90, as just described.

Maximum trees: 5 settings, from 1–5 trees per agent at each backup iteration.

Time Horizon: 6 levels, ranging from 5–40 action-steps for finite policy generation.

We tested all possible combination of these parameters, testing 270 total settings per

algorithm. Further, due to the fact that we used the random policy heuristic for

each solution method (detailed in Section 2.4.1), performance could vary somewhat

on different runs over the same problem instance. Although the variation was not
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extremely pronounced, we compensated for it, and sought to eliminate artifacts in

the timing data, by performing 20 runs of each of the variable combinations (for 5400

total experimental runs). We then measured two independent variables, averaged

over the 20 runs in each case:

Solution Time: total time in seconds to provide a solution.

Solution Value: the expected value of the policy generated.

Experiments were run on the University of Massachusetts Amherst Computer

Science Swarm Cluster.6 Each set of combined parameters for testing was run on a

single compute node of the Swarm; each node consisted of an 8-core Xeon 5355 2.66

GHz processor, running with 16GB of RAM and 250GB of hard drive space.

6.2.4 Empirical Results

Precise timing data was not central to our concerns here, but we note a few things

about the results. First, as already discussed—and as illustrated in Figure 6.5—

planning time increases dramatically across the time horizon, and goes up an order of

magnitude with each increase in the maximum number of trees. This is as expected,

given what we know about the cost of doing backups and pruning; indeed, we collected

timing data to confirm and illustrate the points made in the prior discussion. Also

expected, but worth noting, is that time to solution is not significantly affected by

the influence gap. That is, given a particular fixed cap on the number of trees used

by the algorithms, and a given number of policy-steps to compute, each method runs

in essentially the same amount of time on all problems of a given size, no matter

the influence gap in question. This is expected, since the algorithms retain the same

number of trees (given by the cap size), no matter how hard or easy the problem may

6See the Swarm page at http://www.cs.umass.edu/~swarm/index.php?n=Main.HomePage for
details. Many thanks go to Andre Gauthier for assistance with use of the system.
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Figure 6.6: The maximum value of policies, relative to the increasing influence gap.
Value shown is for the longest-horizon (40-step) policy-trees, using the maximum
number (5) of trees for the two algorithms.

be. Further, top-down heuristic generation is the same throughout, and different gaps

make no real difference to the process of individual policy-tree evaluation.

Thus, the only real way to have a significant impact upon the run-time of the

approximate DP algorithms is to limit the number of trees used. As we shall now

argue, however, this is exactly where the influence gap measure can be useful. Our

results show that an increasing gap has two consequences. First, we see a gain in

absolute value of the policies generated, with large-gap problems and increased cen-

tralization leading to dramatic increases in overall value. Second, we see that the

more centralized problems are in a real sense easier to approximate, since a larger

proportion of the overall value can be gained using fewer trees overall.
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The first of these outcomes is demonstrated in Figure 6.6. This plot gives the

total value (in r units) accumulated for the longest policies generated, the 40-step

horizon trees, using the maximum number (5) of trees in each algorithm, relative to

the increasing information gap across our problem-instances. On the one hand, we

are not interested in comparing the two algorithms over the particular instances.7

On the other hand, it is notable that both algorithms display very similar behavior:

almost without exception, value of resulting policies trends upwards with increasing

influence gap, beginning to climb quickly at gaps above level 60, and trending sharply

upwards from there in a seemingly exponential form (the sole exception to the trend

being a slight down-turn in value for IMBDP between levels 30 and 40). Thus, there is

a great difference in value between the least and most centralized problem-instances.

This is very interesting, particularly because it is borne out for both algorithms,

and accords with what we have observed in the optimal DP case. As influence gap

increases, our methods are able to find much better policies, and the problems provide

much greater potential rewards, using the same resources in each case. Furthermore,

our results also reveal interesting features of the ways in which value was accumulated,

relative to influence gap. By comparing how much of the final value of the longest

policies could be gained by using different caps on the number of maximum trees, we

can see how much each increase in this value contributed to the best possible solution.

These results are shown in Figure 6.7, where we compare the percentages of total

value possible that can be attributed to each possible number of trees. That is, for any

value of n ∈ [1, 5], we take the total value gained for a 40-step policy generated using

n trees, minus the value of the policy generated using (n−1) trees, and express it as a

percentage of the total possible value (using 5 trees). This then isolates the percentage

7It is interesting to note, however, that MBDP-OC dominates IMBDP over all problems from
centralization levels 10–70, but is then surpassed at the levels higher than that. We do not have any
suggestions as to why this may be so, and further testing would be required to see if it is a genuine
and persistent phenomenon. Further work on the subject will take up the question.
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Figure 6.7: The percentage of the maximum value accumulated (i.e., using 5 maxi-
mum trees per backup) due solely to using a particular number of trees. Data is given
for lower and higher sets of influence gap ranges, for both algorithms.
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of overall possible value that can be attributed to using n as our cap for backups. The

figure shows these values for various levels of influence gap, from the lowest values

and least-centralized problems (at top), to the highest and most-centralized problems

(at bottom), for each of the two algorithms.

Two things stand out about these results. First, they are remarkably consistent

in that, in all cases, the greatest majority of overall value can be gained using just

three (3) trees per backup step. After that, the marginal value to be gained drops

off sharply. This means that the great majority of the total value to be had from the

various instances of the box-pushing domain is in fact gained from using just three

trees. While numbers differ from level to level, all problem instances allow at least

80% of the best-observed value to be gained using only 3 trees, even given the great

range in absolute total value to be had. Thus, the substantial time-penalties suffered

when moving up to 4 or 5 trees only brings with it rather modest increases in value.

The second interesting feature comes when we look a little closer at the differences

between levels, however. Comparing the top and bottom plots in the figure, we can

see that as influence gap goes up, performance is increasingly front-loaded : at the

higher gaps, more and more of the overall value is accumulated in using fewer trees,

while for the lower gaps, there is still some substantial gain to be had by moving on to

the greater number of trees. This is clearly illustrated when we plot the performance

profiles of our algorithms, as shown in Figure 6.8, where we normalize absolute values

of the best policies over the different levels of influence-gap, and show how this value

accumulates as a percentage, given the increasing number of trees used. (For clarity

in presentation, we have isolated the odd-numbered levels of influence-gap.)

As we can see, both algorithms exhibit the same trend: as the gap grows, the

peak found at the level of 3 trees grows sharper, and things flatten out much more.

(There is a slight bit of noise in the plot for MBDP-OC, where gap-level 50 and 70

are virtually identical.) The effect is much more pronounced for IMBDP: for that
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algorithm, only about 65% of total value is accumulated using 3 trees at influence-

gap level 10, whereas 98% of the value is gained using the same number for level

90, with a relatively smooth progression between them. For MBDP-OC, the effect is

somewhat less drastic, but the value still ranges from 79–96%. At the level of 4 trees,

there are still gains of at least 15% of total value to be made at the lowest level, while

the higher levels have leveled off considerably (admittedly, this is only really evident

at the least-centralized level 10). Thus, as the gap grows between agents, there is a

real sense in which our ability to approximate efficiently increases.

6.2.5 Conclusions and Discussion

These results supplement those discovered for the optimal DP algorithm, and

extend them in significant and interesting ways. On the one hand, we see that a

widening influence gap continues to correlate with improved algorithm performance.

As the gap widens, our agents are able to generate policies that go much further,

and gain much more value, using no more (and often substantially less) in the way of

computational resources.

This result was by no means guaranteed: while anecdotal evidence had previously

suggested that influence gap had a similar effect on the performance of other algo-

rithms beyond exact DP, it was possible that the effects were algorithm-specific, or

somehow limited to the small parameter sets used in prior testing. While it is true

that the approximate methods under consideration use DP backups, too, their re-

liance on top-down search and various forms of heuristic policy completion mean that

they operate in some fundamentally different ways. Furthermore, the box-pushing

problems we have used go far beyond the sorts of dynamics seen in the prior experi-

ments, ranging over far larger state-sets.

In addition, our latest empirical results suggest some exciting new implications

for the influence measure. Not only do the solutions found for wider-gap problems
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yield significantly greater absolute value, the algorithms converge much more quickly

towards the maximums observed. Referring back to the relationship between time

to plan and the maximum number of trees used, as discussed in connection with

Figure 6.5, we can see how significant this approximation effect actually is. For a

40-step policy, the time to plan using 3 maximum trees is 35% of that required when

using 4 trees, and 16% of the time required to use a full 5 trees per iteration. These

effects grow ever greater as the time-horizons are extended, and beyond a certain

point, planning with the largest number of trees is simply infeasible. In the case

of small-gap problems, however, the time-penalty may be thought worthwhile, since

only 65–80% of the total possible value can be expected if we use only 3 trees, and we

may feel that using 4 or 5 is advisable. For the large-gap problems, better guarantees

are available: not only is absolute value much higher, but upwards of 95% of the total

observed can be gained using just the 3 trees.

In some sense, of course, these results come by benefit of hindsight. That is,

we ran our algorithms using various parameter-sets, and then analyzed the results to

reveal these trends, after already having used the full number of trees on all instances.

While this is true, we argue that the usefulness of our influence-gap measure lies in

the fact that it can now be applied to new instances of a problem-domain, in advance

of running our algorithms. For new instances of the box-pushing domain, we can

calculate the influence-gap ahead of time, then choose our approximation parameters

accordingly, with some real expectation about the quality—absolute and relative—of

our results.

For new classes of problems, of course, some work has to be done in advance.

Since the range of the influence-gap is problem-specific, there are no fixed levels that
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correspond to “high” and “low” gaps across the board.8 Given a new set of instances,

we thus will need to calculate the influence-gaps over a range of representative in-

stances, and perhaps do some off-line testing to establish our performance profiles.

Nonetheless, once these sorts of results are known for a new class of problems, influ-

ence gap provides a straightforward way of classifying given instances encountered in

practice. The results we have seen so far lead us to expect that we can apply these

measures in more and more domains, with similar outcomes.

8That is, while we know that the various influences for each agent are positive, they are unbounded
above. Thus, as the dynamics of systems grow more complex, and more distinct values of the
associated quantities are available, the influence and associated gap will grow.
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CHAPTER 7

CONCLUSION

7.1 Summary of Contributions

Our work here has focussed on the ways in which agents may interact with one

another and influence the dynamics of a decentralized, cooperative control problem.

We have extended existing knowledge of these problems in a number of new directions,

and we have answered some lingering questions about some existing models of agent

interaction.

We began by outlining the general formal model on which all this work is based,

the decentralized partially observable Markov decision process, or Dec-POMDP, and

touched on its jointly fully observable Dec-MDP variant. We looked also at some

well-understood algorithms for solving them, based on either optimal or approximate

dynamic programming. As they are NEXP-complete, these problems are extremely

hard to solve in general. We gave an overview of the proof of this fact, and looked

at a known result about the reduced complexity of problem instances that can be

factored into separate sub-problems for each agent. In particular, when the local

state-transitions and observations of individual agents are independent, and the only

connection is via the shared reward function, the problems are then NP-complete.

Our first major results established the limitations of this reduction. We showed

first that when the situation is reversed, and only rewards are independent, the prob-

lem remains NEXP-complete, as in the general case. NEXP-completeness was also

demonstrated from two interesting models taken from the literature, using event-

based dependencies between actions on the one hand, and state-based action selec-
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tion on the other. Each of these models seeks to isolate simpler types of decen-

tralized problems by restricting the form of interaction, without making the agents

wholly independent; however, our results show that this is not possible in general. In

both cases, these fact were previously unknown, and they significantly strengthen the

known lower bounds, establishing them firmly for the first time. We were also able

to identify precisely when problems with event-based dependencies do in fact drop

from NEXP-hard to NP-hard; as we showed, this holds exactly when the number of

dependencies is no more than a logarithmic factor of the overall state-space size.

We then established some new properties of the Dec-MDP model with shared

reward, but otherwise independent dynamics. As we showed, there is a precise con-

nections between the number of events necessary and sufficient to specify the joint

reward function and the essential dimensionality of the problem, where the latter is

understood in terms of the size of matrices used to solve such Dec-MDPs via math-

ematical programming techniques. In addition, we demonstrated that a process of

dimensionality reduction, using basic matrix algebra techniques, allows such problems

to be reformulated in such a way that the number of events is provably minimized.

While the hardness results can be viewed pessimistically, we stress that worst-

case complexity is not always correlated with the actual difficulty of solving most

problem instances. With that in mind, we sought to examine how the average-case

empirical hardness of problems related to their interaction structure. We note that

there are many restricted models of agent interaction. Rather than proposing yet

another new variant, we chose to take a more general approach. We defined an

information-theoretic measure of agent influence, in terms of how much knowing an

agent’s actions would tell us about the underlying state dynamics (i.e., the transition-

outcomes, observations, and rewards). A given problem’s centralization can then be

understood in terms of the gap between these influences for different agents: as this

gap grows, one agent’s influence comes to dominate more and more. These influence
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measures apply to all Dec-POMDPs, and we were able to bound their possible values.

In addition, we showed that they are precise evaluators of the importance of certain

agents in the planning process in exactly one way: if an agent has no influence,

according to our way of reckoning it, then that agent can be discounted in all planning.

We also extended the general influence measures to the case of Dec-POMDPs with

locally factored state-spaces, and established analogous exclusion results when various

possible independence relations hold (or not).

Our empirical work moved this analysis beyond the limit cases where agents are

provably without any influence at all. In that regard, our results are two-fold. First,

for the optimal dynamic programming solution algorithm, we showed that there is

a correlation between an increasing influence-gap and ease of solution. As problems

grow more centralized, and one agent dominates, we are more often able to solve them

optimally while using a reasonable amount of computational resources, generating

optimal finite-policy solutions for much longer time-horizons than ever before possible.

This suggests that we can use the influence measure as a means of identifying problem

instances for which optimal methods can actually be effective.

Furthermore, where an exact solution is still not possible, our results show that in-

fluence gap can still predict the performance of approximate algorithms. Our second

set of empirical results establish that a widening gap correlates with better perfor-

mance for two memory-bounded inexact dynamic programming variants. As the gap

grows, increased centralization leads to an increase in the ability to find high-valued

policies. In addition, there is evidence that the algorithms can work in a more effi-

cient fashion: since we can calculate the influence gap in advance, we can set control

parameters in such a way that we can expect to achieve better approximations while

minimizing time and space required for computation.

Overall, our work here solidifies our understanding of important issues in multi-

agent decision making. Given how hard the problem, even in apparently simplified
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forms, has proven to be, new ways to identify simplifications and important structures

are needed. Our general measures provide some foundations for further work on this

necessary next step.

7.2 Future Work

Many open and interesting questions remain, or are newly suggested by the results

we have established here. We end by describing some of these, making suggestions

where we can for the directions in which future research might progress.

7.2.1 Ignoring Low-Influence Agents

We have shown that when an agent has no influence, as we define it, in a general or

factored Dec-POMDP, planning can proceed without needing to take that agent into

account. A related issue is then what happens if we plan while ignoring agents that

do have some influence over the system’s dynamics. Clearly, in the worst case, this

sort of approach would be disastrous. However, if applied intelligently, it might have

some real potential; that is, if we only chose to ignore agents with very little or no

influence, the resulting policies might still work quite well. It would be interesting to

consider this question both analytically and empirically. On the one hand, we would

like to consider the problem of bounding the potential negative effect on policy value

that comes with ignoring low-influence agents. Ideally, this could be given in terms of

the measure itself. That is, we should like to be able to express the difference between

the value of an optimal, fully cooperative joint policy π?, and the value of some policy

π−i that was arrived at while ignoring agent αi, as a function of influence I(αi). While

this might be difficult to determine, an empirical profile of the strategy would be an

interesting next step, investigating the actual declines in policy-value encountered by

following it, and charting how they relate to the computational advantages, in terms

of time and space required for planning, that result.
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7.2.2 Influence and Problem Decomposition

Another possible approximation strategy would involve changing system dynamics

so that agent influences decouple. That is, rather than ignoring agents with little or

no influence, and then planning for the original domain as if they did not exist,

we would look for ways to change the structure so that the new version allowed

for better solution. For example, we might consider new organizational structures for

hierarchical domains, evaluating them based on the relative sizes of the influence gaps

in each one. By settling on high-gap organizations—that is, those that are relatively

centralized—we might then expect to find more easily possible plans within those

structures, according to the empirical results we have already seen. Alternatively,

agent’s could seek to eliminate from consideration any actions that might cause them

to influence one another. Again, there will obviously be cases where such a strategy

will not work, since there are problems that can only be solved at all if agents actually

work together. However, it is certainly possible that agents can often find ways of

eliminating interactions where influence levels are high, perhaps by agreeing ahead of

time not to take certain possible actions in certain circumstances, thus eliminating

those events from the possible system dynamics. Given the choice of several events

to avoid, they might choose those where the influence measures were the greatest

(e.g. , where the mutual information between actions and some state-variable were

highest). Again, we should like to be able to bound the effect such choices might have

on outcome policy value, and to investigate the effects empirically.

7.2.3 Limited Interactions and Reduced Complexity

While we have shown that some models of apparently restricted interaction are

still highly complex in general, we also demonstrated that in at least one case we can

bound complexity more strictly. When the structure of dependencies between agents

is suitably small, we showed, worst-case hardness falls by an exponential factor (from
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NEXP to NP). It would be worth trying to find similar cases in other known models,

since the general complexity results seem to apply quite broadly. Further, we would

like to examine the practical consequences of such reductions in essential hardness. As

our proofs have it, the number of dependencies must be no more than logarithmic in

the overall state space. This is a somewhat abstract characterization of an interesting

and potentially important sub-class of problems. We would like to see if there are

common-sense and real-world examples of such structures. One example that comes

to mind are those domains in which the time at which events occur is an essential

feature of the state-space, but most if not all actions are indifferent as to the time

at which they occur. In such cases, it might be possible to specify dependencies in

terms of a small collection of events, since all states that are identical apart from time

variable will be treated the same as far as actions go. With a long time-horizon, and

so a large resulting state-space, these savings can be considerable, and the logarithmic

property can well hold. This is worthy of more study.

7.2.4 Learning with Interactions and Approximation

Another interesting question concerns using the structure of reduced interaction

models as tools in learning useful policies for decentralized problems. Thomas [127]

and Guo [54] have both shown how to use special forms of interactions in a rein-

forcement learning framework. In each case, agents are able to learn action policies

that produce far more value in far less time than is possible using a general learning

technique which ignores the nature of the interactions. Such work can be extended

to other interaction models.

In addition, it would be interesting to combine learning approaches with the sorts

of heuristic problem-reduction methods just discussed. When faced with a large

and complex problem, real-world intelligent agents often simplify their planning by

identifying certain key points at which their actions and those of others interact.
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Planning for these key elements, to reduce conflict or enhance cooperation, generally

precedes (or even supersedes) the fine details when it comes to determining individual

courses of action. In addition, many incidental interactions between agent plans are

ignored, often because their apparent possible effect on the outcome is negligible. One

might then consider ways in which agents may learn to do this sort of identification

and hierarchization process effectively, picking out interactions which seem to require

more or less planning. Another possibility is that learning can be used to converge

upon improved measures of general interaction, replacing a quantity like influence

gap with other, better predictors of problem difficulty.
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Online planning algorithms for POMDPs. Journal of Artificial Intelligence
Research 32 (2008), 663–704.

[111] Russell, Stuart, and Norvig, Peter. Artificial Intelligence: A Modern Approach,
2nd ed. Prentice Hall, 2003.

[112] Schneider, Jeff, Wong, Weng-Keen, Moore, Andrew, and Riedmiller, Martin.
Distributed value functions. In Proceedings of the Sixteenth International Con-
ference on Machine Learning (1999), pp. 371–378.

[113] Seuken, Sven, and Zilberstein, Shlomo. Formal models and algorithms for de-
centralized control of multiple agents. Tech. Rep. UM-CS-2005-68, University
of Massachusetts, Amherst, Department of Computer Science, 2005.

[114] Seuken, Sven, and Zilberstein, Shlomo. Improved memory-bounded dynamic
programming for decentralized POMDPs. In Proceedings of the Twenty
Third Conference on Uncertainty in Artificial Intelligence (Vancouver, British
Columbia, Canada, 2007).

197



[115] Seuken, Sven, and Zilberstein, Shlomo. Memory-bounded dynamic program-
ming for DEC-POMDPs. In Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (Hyderabad, India, 2007), pp. 2009–2015.

[116] Seuken, Sven, and Zilberstein, Shlomo. Formal models and algorithms for de-
centralized decision making under uncertainty. Autonomous Agents and Multi-
Agent Systems 17, 2 (2008), 190–250.

[117] Shannon, Claude E. A mathematical theory of communication. Bell Systems
Technical Journal 27 (July and October 1948), 379–423, 623–656.

[118] Shannon, Claude E., and Weaver, Warren. The Mathematical Theory of Com-
munication. University of Illinois Press, 1949.

[119] Shen, Jiaying, Becker, Raphen, and Lesser, Victor. Agent Interaction in Dis-
tributed MDPs and its Implications on Complexity. In Proceedings of the Fifth
International Joint Conference on Autonomous Agents and Multi-Agent Sys-
tems (2006), pp. 529–536.

[120] Smallwood, Richard D., and Sondik, Edward J. The optimal control of partially
observable Markov processes over a finite horizon. Operations Research 21, 5
(1973), 1071–1088.

[121] Sondik, Edward J. The optimal control of partially observable Markov processes
over the infinite horizon: Discounted costs. Operations Research 26 (1978),
282–304.

[122] Spaan, Matthijs T. J., and Melo, Francisco S. Interaction-driven Markov games
for decentralized multiagent planning under uncertainty. In Proc. of Int. Joint
Conference on Autonomous Agents and Multi Agent Systems (2008), pp. 525–
532.

[123] Sutton, Richard S., and Barto, Andrew G. Reinforcement Learning An Intro-
duction. MIT Press, Cambridge,MA, 2000.

[124] Szer, Daniel, and Charpillet, François. An optimal best-first search algorithm
for solving infinite horizon DEC-POMDPs. In Proceedings of the Sixteenth
European Conference on Machine Learning (Porto, Portugal, 2005), pp. 389–
399.

[125] Szer, Daniel, and Charpillet, François. Point-based dynamic programming for
DEC-POMDPs. In Proceedings of the Twenty-First National Conference on
Artificial Intelligence (Boston, Massachusetts, 2006), pp. 1233–1238.

[126] Szer, Daniel, Charpillet, François, and Zilberstein, Shlomo. MAA*: A heuris-
tic search algorithm for solving decentralized POMDPs. In Proceedings of the
Twenty-First Conference on Uncertainty in Artificial Intelligence (Edinburgh,
Scotland, 2005), pp. 576–583.

198



[127] Thomas, Vincent. Proposition d’un formalisme pour la construction automa-
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