
OPERATING SYSTEM SUPPORT FOR MODERN APPLICATIONS

A Dissertation Presented

by

TING YANG

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

March 2009

Department of Computer Science

c© Copyright by Ting Yang 2009

All Rights Reserved

OPERATING SYSTEM SUPPORT FOR MODERN APPLICATIONS

A Dissertation Presented

by

TING YANG

Approved as to style and content by:

Emery D. Berger, Co-chair

J. Eliot B. Moss, Co-chair

Scott F. Kaplan, Member

Israel Koren, Member

Andrew G. Barto, Department Chair
Department of Computer Science

ABSTRACT

OPERATING SYSTEM SUPPORT FOR MODERN APPLICATIONS

MARCH 2009

TING YANG

B.Sc., ZHEJIANG UNIVERSITY, HANGZHOU, CHINA

M.Sc., ZHEJIANG UNIVERSITY, HANGZHOU, CHINA

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Emery D. Berger and Professor J. Eliot B. Moss

Computer systems now run drastically different workloads than they did two decades

ago. The enormous advances in hardware power, such as processor speed, memory and

storage capacity, and network bandwidth, enable them to run new kinds as well as a large

number of applications simultaneously. Software technologies, such as garbage collec-

tion and multi-threading, also reshape applications and their behaviors, introducing more

challenges to system resource management.

However, existing general-purpose operating systems do not provide adequate support

for these modern applications. These operating systems were designed over two decades

ago, when garbage-collected applications were not prevalent and users interacted with sys-

tems using consoles and command lines, rather than graphical user interfaces. As a re-

sult, they fail to allow necessary coordinations among resource management components

v

to ensure consistent performance guarantees. For example, garbage-collected applications

cannot adjust themselves to maintain high throughput under dynamic memory pressure,

simply because existing virtual memory managers do not collect and expose enough infor-

mation to them. Furthermore, despite the increasing demand of supporting co-existing in-

teractive applications in desktop environment, resource managers (especially memory and

disk I/O) mostly focus on optimizing throughput. They each work independently, ignoring

the response time requirements that the CPU scheduler attempts to satisfy. Consequently,

pressure on any of these resources can significantly degrade application responsiveness.

In order to deliver robust performance to these modern applications, an operating sys-

tem has to coordinate its resource managers (e.g., CPU, memory, and disk I/O), as well

as cooperate with resource managers in the user space, such as the garbage collector and

the thread manger. To support garbage-collected applications, we present CRAMM, a sys-

tem that enables them to predict an appropriate heap size using information supplied by

the underlying operating system, allowing them to maintain high throughput in the face

of changing memory pressure. To support highly interactive workloads, we present Red-

line, a system that manages CPU, memory, and disk I/O in an integrated manner. It uses

lightweight specifications to drive CPU scheduling and to coordinate memory and disk I/O

management to serve the needs of interactive applications. Such coordination enables it to

maintain responsiveness in the face of extreme resource contention, without sacrificing re-

source utilization. We also show that Redline can be used to support response time sensitive

multi-threaded server applications.

Our experiences and extensive experiments show that we can coordinate resource man-

agers, both inside and outside the operating system, efficiently without destroying the mod-

ularity of the existing system. Such coordination prevents resource managers from working

at cross purposes, and dramatically improve the performance of applications when facing

heavy resource contention, sometimes by orders of magnitude.

vi

TABLE OF CONTENTS

Page

ABSTRACT . v

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation . 1

1.1.1 Problem One: Garbage-collected Applications . 2
1.1.2 Problem Two: Interactive Applications . 5
1.1.3 Problem Three: Multi-threaded Server Applications 6
1.1.4 Why Existing Operating Systems are Insufficient 6

1.2 The Thesis . 9
1.3 Contributions . 10

1.3.1 CRAMM for Garbage-collected Applications . 10
1.3.2 Redline for Interactive Environments . 11
1.3.3 Redline for Multi-threaded Server Applications 11

1.4 Outline of the Dissertation . 12

2. CRAMM FOR GARBAGE-COLLECTED APPLICATIONS 13

2.1 Garbage Collection Heap Size . 13
2.2 An overview of the CRAMM system . 15

3. CRAMM: GARBAGE COLLECTION HEAP SIZING MODEL 17

3.1 Garbage Collection Background . 17

3.1.1 Heap Orgnization . 18

vii

3.1.2 Reclaiming Dead Objects . 18

3.2 Garbage Collection Behavior Analysis . 19

3.2.1 Garbage Collection Paging Behavier . 19
3.2.2 Heap Size, Execution Time and Working Set Size 23

3.3 GC-neutral Heap Sizing Model . 23
3.4 Adjusting the Heap Size . 25

3.4.1 Selecting the Initial Heap Size . 25
3.4.2 Base Heap Adjustment Algorithm . 25
3.4.3 Handling Nursery Collections . 27

4. CRAMM: VIRTUAL MEMORY SUPPORT . 28

4.1 CRAMM VM Design . 28

4.1.1 Collecting Information . 29
4.1.2 Cooperating with Garbage Collector . 29

4.2 CRAMM VM Structure . 30

4.2.1 Page Replacement Algorithm . 31
4.2.2 Available Memory . 32

4.3 Calculating Working Set Size . 32

4.3.1 Page List Position . 33
4.3.2 LRU Histogram . 34
4.3.3 Major Fault Cost . 35

4.4 Controlling Histogram Collection Overhead . 35

4.4.1 Inactive List Size Adjustment . 36
4.4.2 Adaptivity Triggers . 37

5. CRAMM: EXPERIMENTAL EVALUATION . 39

5.1 Methodology Overview . 39

5.1.1 Application Platform . 40
5.1.2 Garbage Collectors . 40
5.1.3 Benchmarks . 40

5.2 CRAMM VM Performance . 41
5.3 Static Memory Allocation . 44

viii

5.3.1 MarkSweep Collector . 44
5.3.2 SemiSpace and GenMS Collector . 54

5.4 Dynamic Memory Allocation . 55

5.4.1 Adapting to Dynamic Memory Pressure . 55
5.4.2 Comparing with JRockit and HotSpot . 61
5.4.3 Running Multiple JVMs . 64

6. REDLINE FOR BETTER RESPONSIVENESS . 66

6.1 Motivation: Insufficiency of Commodity Operating Systems 67
6.2 Interactive Workloads and Design Considerations . 68

6.2.1 The Characteristics of Interactive Workloads . 68
6.2.2 A Taxonomy of System Resource Management 70
6.2.3 Design Considerations . 72

6.3 An Overview of the Redline System . 73

6.3.1 Specification Management . 73
6.3.2 Admission and Load Control . 74
6.3.3 Integrated Resource Management . 75

7. REDLINE SPECIFICATIONS . 76

7.1 Selecting Interactive Applications . 77
7.2 Specification Management . 78

7.2.1 Specification Fields . 78
7.2.2 How to Load Specifications . 79
7.2.3 How to Choose Specifications . 81

7.3 Discussion . 82

8. REDLINE: CPU MANAGEMENT . 84

8.1 Admission and Load Control . 84

8.1.1 Load Tracking . 85
8.1.2 Management Policies . 86

8.2 The EDF Scheduling Class . 87

8.2.1 Scheduling Algorithm . 88
8.2.2 EDF Scheduler Data Structure and Complexity 90

ix

8.3 SMP Load Balancing . 91
8.4 Discussion . 92

9. REDLINE: VIRTUAL MEMORY MANAGEMENT . 94

9.1 Redline Page Reclamation . 94
9.2 Protecting working sets . 96

9.2.1 Page Reclamation Algorithm . 98
9.2.2 Dynamic Load Control . 98

9.3 Rate-controlled reserve . 99
9.4 Setting speed-bump pages . 100
9.5 Discussion . 101

10. REDLINE: DISK I/O MANAGEMENT . 103

10.1 Page Cache and Journaling . 104

10.1.1 Compound Transactions in Journaling . 104
10.1.2 Large Direct I/O Operations . 106

10.2 Block device layer and I/O scheduler . 107

10.2.1 Unified Threshold for Congestion Control . 108
10.2.2 Shared Queues for I/O Requests . 109

10.3 Discussion . 110

11. REDLINE: EXPERIMENTAL EVALUATION . 111

11.1 Methodology Overview . 111
11.2 CPU Scheduling . 112

11.2.1 EDF Scheduler Overhead: . 113
11.2.2 CPU Overload – Fork Bombs . 115
11.2.3 Competing Interactive Tasks . 117

11.3 Memory Management . 118

11.3.1 Memory overload – Memory Bombs . 118
11.3.2 Effectiveness of the Rate-controlled Reserve . 119
11.3.3 Effectiveness of Setting Speed-bump Pages . 122

11.4 Disk I/O Management . 123

11.4.1 Reading . 123

x

11.4.2 Writing . 124

12. REDLINE FOR MULTI-THREADED SERVERS . 126

12.1 Introduction . 126
12.2 Redline Sever Architecture . 129

12.2.1 Manging Specifications and Threads . 130
12.2.2 Serving a Request . 132
12.2.3 Adapting to Changes . 132

12.3 Proof-of-concept Evaluation . 133

12.3.1 CPU Intensive . 134
12.3.2 Mixture of CPU and I/O . 136

13. RELATED WORK . 137

13.1 Overview . 137
13.2 Automatic Heap Sizing for Garbage-collected Applications 137
13.3 CPU Scheduling for General Purpose Systems . 139

13.3.1 Time-sharing Schedulers . 139
13.3.2 Proportional Share Schedulers . 141
13.3.3 Supporting (Soft) Real Time applications . 145

13.4 CPU Scheduling for (Soft) Real Time Systems . 149

13.4.1 Bandwidth/Execution Rate Control . 150
13.4.2 CPU Reservations . 151

13.5 CPU Scheduling Frameworks . 152

13.5.1 Two-Level Scheduling Frameworks: . 152
13.5.2 Multi-Level Scheduling Frameworks: . 153

13.6 Memory Management . 155

13.6.1 Page replacement in General Purpose Systems 155
13.6.2 Application Specific Paging . 156
13.6.3 Tracking the Working Set . 157

13.7 Disk I/O Management . 158

13.7.1 I/O Scheduling in General Purpose Systems . 159
13.7.2 I/O Scheduling in (Soft) Real Time Systems . 160

xi

13.8 Multiple Resource Management in Operating Systems 161

13.8.1 Performance Isolation . 162
13.8.2 Supporting (Soft) Real-Time Applications . 163

14. CONCLUSION . 167

14.1 Summary of contributions . 167
14.2 Future Work . 168

BIBLIOGRAPHY . 169

xii

LIST OF TABLES

Table Page

5.1 CRAMM VM Performance (SPEC2000 INT & FP) . 42

5.2 CRAMM VM Performance (SPECjvm98, pseudojbb, and
ipsixql) . 42

5.3 Dynamic Memory Allocation: Performance of Adaptive vs. Non-Adaptive
Collectors . 55

11.1 A subset of the specifications used in the Redline experiments. The
memory protection period and I/O priority are chosen automatically
by Redline. 112

12.1 Using the Linux server and the Redline server to process a burst of 200
requests, each with about 10 ms computation work, and whose
response time requirement is 1 second. We also consider a case where
the computation is followed by a random disk I/O. In both cases, the
Redline server is able to satisfy more requests while maintaining high
throughput. 134

13.1 A comparison of approaches to dynamic heap sizing. 138

13.2 A comparison of representative operating systems to Redline 162

xiii

LIST OF FIGURES

Figure Page

1.1 Impact of bursts of memory pressure on the performance of two industrial
Java virtual machines: JRockit and HotSpot. Page swapping degrades
their performance by up to 94% and 40% respectively, and
dramatically increases total execution time. 3

1.2 The frame rate of mplayer when performing a Linux kernel compiling
using make -j32 on a standard Linux 2.6 kernel. Heavy resource
contention makes the movie unwatchable. 4

1.3 Serving a burst of 200 requests using various number of threads under
Linux. Each request has about 10 ms computation work and their
response time requirement is 1000 ms. Using too many threads causes
all requests to miss their deadline. 5

2.1 The CRAMM system. The CRAMM VM system efficiently gathers
detailed per-process reference information, allowing the CRAMM
heap size model to choose an optimal heap size dynamically. 15

3.1 The number of page faults encountered when varying physical memory
allocation for a set of heap sizes. (Garbage Collector: MarkSweep and
SemiSpace, Benchmark: 213 javac) . 20

3.2 The effect of heap size on performance and working set size (the number
of pages needed to run with 5% slowdown from paging). 22

4.1 Segmented queue page lists for one address space (file or process). 30

4.2 The structure of histogram . 35

5.1 Virtual memory overhead (% increase in execution time) without paging,
across all benchmark suites and garbage collectors. 43

5.2 Static Memory Allocation: MarkSweep (javac and jack) 45

5.3 Static Memory Allocation: MarkSweep (ipsixql and pseduojbb) 46

xiv

5.4 Static Memory Allocation: MarkSweep (jython and pmd) 47

5.5 Static Memory Allocation: SemiSpace (javac and jack) 48

5.6 Static Memory Allocation: SemiSpace (ipsixql and psuedojbb) 49

5.7 Static Memory Allocation: SemiSpace (jython and pmd) 50

5.8 Static Memory Allocation: GenMS (javac and jack) 51

5.9 Static Memory Allocation: GenMS (ipsixql and pseudojbb) 52

5.10 Static Memory Allocation: GenMS (jython and pmd) 53

5.11 Dynamic Memory Allocation (SemiSpace, pseudojbb): Heap
Adjustment and Throughput . 57

5.12 Dynamic Memory Allocation (MarkSweep, pseudojbb): Heap
Adjustment and Throughput . 58

5.13 Dynamic Memory Allocation (GenMS, pseudojbb): Heap Adjustment
and Throughput . 59

5.14 Dynamic Memory Allocation (SemiSpace, javac): Heap Adjustment 60

5.15 Dynamic Memory Allocation (MarkSweep, javac): Heap
Adjustment . 60

5.16 Dynamic Memory Allocation (GenMS, javac): Heap Adjustment 61

5.17 Throughput under dynamic memory pressure, versus JRockit and
HotSpot. 62

5.18 Running Two Instances of Adaptive Collectors: Identical Collector and
Application . 63

5.19 Running Two Instances of Adaptive Collectors: Identical Collector and
Different Applications . 63

5.20 Running Two Instances of Adaptive Collectors: Different Collectors and
Different Applications . 64

6.1 Design space for highly interactive systems . 70

xv

6.2 The Redline system. Combining integrated resource management with
appropriate admission and load control, Redline provides strong
isolation for interactive applications while ensuring high system
utilization. It maintains system responsiveness, even under heavy
resource contention. 74

7.1 Loading specifications in Redline . 80

9.1 Redline VMM page reclamation flow graph. The gray components are
additions unique to Redline. Redline protects the working set of
interactive applications by skipping unexpired pages; provides limited
isolation among them using a rate-controlled reserve; and further
reduces the memory reference speed of best-effort application by
setting speed-bumps. 95

10.1 How I/O requests are organized and processed in block device layer in
Linux. 108

11.1 An evaluation of CPU scheduling overhead. Figure (a) shows the context
switching times as evaluated by lmbench. Figure (b) shows the total
running time of varying numbers of CPU intensive tasks. Note the
y-axis starts at 1300 to make the minor variation visible. 114

11.2 Playing a video and launching fork bombs of (a) 50 or (b) 2,000 CPU
intensive tasks. They immediately disrupt the responsiveness of the
video in Linux, but have almost no impact in Redline 116

11.3 Playing video while dragging around a window. 117

11.4 Playing video with 4 x 300 MB memory bomb tasks. The frame rate is
severely erratic under Linux, but is steady under Redline. The lower
part shows when each frame is played during the interval (118s,
120s). 120

11.5 Playing a movie with 4 x 300 MB interactive memory bomb tasks. It show
that, without the rate controlled memory reserve, the Redline system
can be disrupted by various amount of time in the fact of memory
contention. 121

11.6 Competing memory bomb tasks. Under Linux, the lower-priority
background task prevents the higher-priority foreground task from
caching its working set. In Redline, the interactive task quickly builds
up it working set. 122

xvi

11.7 Read: massive reads cause mplayer to display the movie erratically under
Linux, while playback remains smooth in Redline. 123

11.8 Write: saving 30 KB in vim or writing 100 MB with a background
workload writing to disk in three modes. Bad interactions among
different components can degrade responsiveness dramatically, and
Redline successfully eliminates their effects. 124

12.1 How the Linux CPU scheduler uses 5 threads to serve 5 requests, where
each request performs 10ms computation work. All requests finish at
the end of the 50ms period due to proportional sharing. 127

12.2 How Linux CPU scheduler uses 5 threads to serve 5 requests, where each
request performs 10ms computation work and then issues a disk I/O.
Due to proportional-sharing, when disk I/O starts, there is no enough
computation work left to hide their latencies, resulting in lower
throughput. 128

12.3 Redline server architecture. 129

12.4 Comparing the Redline and Linux servers (CPU only). The Redline server
achieve nearly optimal responsiveness (as does the Linux server with 1
thread) without sacrificing throughput. Proportional-share scheduling
can cause all requests to miss their deadline, as happens when the
Linux server uses a large number of threads. 135

12.5 Comparing the Redline and Linux servers (CPU + I/O). An additional disk
I/O has almost no impact on the Redline server. It offers the best
combination of responsiveness and throughput (almost the same as in
the CPU-only case) in all the configurations tested. 135

xvii

CHAPTER 1

INTRODUCTION

1.1 Motivation

The tremendous advances in computer technology over the past two decades have re-

shaped the way applications are developed, how they behave, and how users interact with

computer systems. These have led to dramatic changes in the workloads running on com-

puter systems, which, in turn, introduce new challenges in operating system resource man-

agement, as well as the need to support new kinds of applications.

The exponential increases in hardware power, such as processor speed, memory, stor-

age capacity, and network bandwidth, have enabled computers to run new kinds of ap-

plications, as well as new combinations of applications. Inexpensive machines can now

run many latency-sensitive and resource-intensive applications (e.g., multimedia players,

image processors, web browsers, and video games) that were previously infeasible. For ex-

ample, a personal computer can simultaneously play a high-quality movie, download and

display web pages, and scan for viruses. Furthermore, graphical user interfaces have be-

come the primary means to interact with and manage computers, since they make systems

much more user-friendly. Compared to command-line interactive applications, that need a

very limited amount of resources and can tolerate perception delays of over 100 ms, mod-

ern interactive applications are much more challenging. Multimedia and GUI applications

usually need substantially more resources and require perception delays of less than 50 ms

to provide users with smooth experiences.

Similarly, new software technologies also have impacts. Garbage collection provides

automatic memory management in user space, allowing programmers to develop applica-

1

tions in a faster and safer fashion. Multi-threading enables applications to perform many

tasks simultaneously, allowing more efficient use of resources. Unlike traditional applica-

tions, new applications have the ability to control the amount of resources they consume,

such as the heap size used by garbage-collected applications and the number of threads

used by multi-threaded applications. This extra level of management in application run-

time systems makes resource management more complicated, but also brings new opportu-

nities, since applications can adapt to resource allocation changes, achieving more reliable

performance.

However, existing general-purpose operating systems (e.g., Windows, Linux, FreeBSD,

and Solaris) have not kept up with these changes. These operating systems evolved from

systems dating from the 1970s and 1980s, when batch and command-line applications dom-

inated and supporting interactivity was relatively easy. These operating systems typically

use heuristics to better support the need of modern applications better, such as using pri-

ority boosting to achieve better interactiveness. These approaches tend to be ad hoc and

inefficient, especially under high resource contention. In general, their resource managers

are designed to work independently to optimize overall system utilization. Due to the lack

of coordination, resource managers may work at cross purposes or make conflicting de-

cisions when facing resource contention, leading to dramatic performance losses that are

avoidable. Here are a few examples.

1.1.1 Problem One: Garbage-collected Applications

The performance of garbage-collected applications is highly sensitive to heap size. A

smaller heap reduces the amount of memory referenced, but requires more frequent garbage

collections that hurt performance. A larger heap reduces the frequency of collections, thus

improving performance by up to 10x. However, if the heap cannot fit in available RAM,

performance drops off suddenly and sharply.

2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2 2.5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Normalized Elapsed Time

JRockit -- SPEC pseudojbb

13.055 trans/ms

0.777 trans/ms 0.722 trans/ms

No Memory Pressure
Dynamic Memory Pressure

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2 2.5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Normalized Elapsed Time

HotSpot -- SPEC pseudojbb

No Memory Pressure
Dynamic Memory Pressure

Figure 1.1. Impact of bursts of memory pressure on the performance of two industrial Java
virtual machines: JRockit and HotSpot. Page swapping degrades their performance by up
to 94% and 40% respectively, and dramatically increases total execution time.

3

 0

 5

 10

 15

 20

 25

 30

 35

 0 200 400 600 800 1000

F
ra

m
e

s
 p

e
r

S
e

c
o

n
d

 (
fp

s
)

Elapsed Time (Seconds)

Impact of parallel kernel compilation on mplayer

Linux CFS
Redline

Figure 1.2. The frame rate of mplayer when performing a Linux kernel compiling using
make -j32 on a standard Linux 2.6 kernel. Heavy resource contention makes the movie
unwatchable.

Due to the fact that the virtual memory manager in the operating system does not ex-

pose enough information, existing garbage-collected languages either ignore this problem,

allowing only static heap sizes, or adapt the heap size dynamically using mechanisms that

are only moderately effective. For example, Figure 1.1 shows the effect of dynamic mem-

ory pressure on two industrial-strength Java virtual machines, BEA’s JRockit [19] and Sun

HotSpot [69], running a variant of the SPECjbb2000 benchmark. The solid line depicts

program execution when given enough RAM, while the dashed line shows execution under

extra periodic bursts of memory pressure. Due to page swapping, this memory pressure

degrades performance by up to 94% (JRockit) and 40% (HotSpot), and dilates overall exe-

cution time by a factor of 220% and 160% respectively.

4

 0 500 1000 1500 2000 2500

Finish Time (ms)

Processing a burst of 200 requests using various number of threads

Linux, 1 thread

Linux, 10 threads

Linux, 50 threads

Linux, 100 threads

Linux, 200 threads

98 satisfied

91 satisfied

67 satisfied

37 satisfied

 0 satisfied

Figure 1.3. Serving a burst of 200 requests using various number of threads under Linux.
Each request has about 10 ms computation work and their response time requirement is
1000 ms. Using too many threads causes all requests to miss their deadline.

1.1.2 Problem Two: Interactive Applications

Applications running in desktop environments have become increasingly interactive

and resource-intensive, and users rely heavily on graphical user interfaces (GUI) to interact

with and manage their computers. The resource managers in current operating systems

work independently to optimize overall system utilization. They use general policies that

do not take response time requirements into account, providing at best limited support for

interactive applications.

Take Linux as an example. Figure 1.2 shows the frame rate of mplayer, a movie player,

while a Linux kernel compilation, invoked using make -j32, is performed using both a stan-

dard Linux 2.6.x kernel and our Redline kernel. The thirty-two parallel kernel compilation

jobs soon exhaust system resources, causing severe contention for the CPU, memory, and

disk I/O. This workload substantially degrades the interactivity of the movie player, render-

ing the video unwatchable. Worse, the entire GUI becomes unresponsive. Similar behavior

occurs on Windows when watching a video using the Windows Media Player while running

a virus scanner in the background.

5

1.1.3 Problem Three: Multi-threaded Server Applications

Many server applications are now multi-threaded, which allows them to make better

use of hardware resources, such as exploiting multiple CPUs and hiding disk latencies.

Choosing a proper number of threads is challenging and important to performance. If the

number of threads is too small, a server application may lose the opportunity to overlap I/O

and network latencies with computation, resulting in poor throughput. Using more threads

helps to improve resource utilization, but too many threads can significantly compromise

server response times in the face of a large burst of requests.

Figure 1.3 shows how a burst of 200 requests are served under Linux using various

number of threads. Each request consists of about 10 ms of computation work, and the

desired response time is 1000 ms. The graph shows when each request is finished and

the number of requests satisfied within the desired time for each case. As the number of

threads increases, each thread receives less CPU bandwidth, requiring more time to process

a request. As a result, the number of requests that meet the desired response time drops.

Eventually, all requests miss their deadline when 200 threads are used.

1.1.4 Why Existing Operating Systems are Insufficient

The reason why existing operating systems fail to provide adequate support for modern

applications lies in their resource management. Although these systems have improved

significantly over the years, their general principles have remained almost unchanged. We

will provide more details when we discuss specific problems in the later chapters of this

dissertation.

CPU Management: Designed to support batch workloads, the primary concern of

traditional CPU schedulers is to allow applications to share the CPU bandwidth fairly.

A time-sharing scheduler, as in FreeBSD [91], Solaris [90] and Windows [112], al-

locates CPU quanta (the unit for CPU allocation) to applications based on their dynamic

priorities. Staring from an initial value, the scheduler periodically re-evaluates each ap-

6

plication’s priority based on its CPU usage. The priority of an application is decreased

after consuming CPU and increased after waiting or blocking. The scheduler selects the

application with the highest priority and assigns the next quantum to it.

The weight-based proportional-share scheduler used by Linux [27] allocates CPU to

applications, so that they make progress proportional to their weights. Higher weights

indicate more CPU bandwidth. The scheduler normalizes the progress made by each ap-

plication with respect to the total weight in the system, and selects the application that has

made the least progress to be executed next. For both of these schedulers, CPU bandwidth

allocation is relative, i.e., the more applications that are running, the less CPU bandwidth

each of them receives.

These schedulers neither take response time constraints into account nor protect against

overload. As a result, they lack the ability to support diverse workloads including GUI and

multimedia applications. They cannot provide isolation between threads and applications,

and consequently they cannot provide meaningful guarantees about the level of service that

applications will receive.

Memory Management: For an application to run smoothly, it is essential to cache

enough information in memory to avoid expensive disk I/O operations. In order to do so,

most operating system uses an application’s working set to predict the information that it

likely to use in the near future, which is defined by Denning [49] as:

The working set W (t,τ) of a process at time t is the collection of informa-
tion referenced by the process during the process time interval (t− τ, t).

The virtual memory manager (VMM) identifies the working set by scanning memory

pages periodically. Those pages that have not been referenced since the last scan are con-

sidered out of working set and subject to eviction. Linux [27] uses a global page list that

approximates LRU order, while Windows [112] organizes pages on a per-process basis.

The scan of memory pages is triggered when the VMM fails to satisfy an allocation re-

quest.

7

As memory pressure increases, the VMM will scan memory pages more frequently (i.e.,

using a smaller τ), shrinking the working sets of applications to fit all of them in. This works

reasonably well when memory pressure is moderate, since it optimizes the total number of

potential page faults and offers graceful degradation. However, if memory pressure is high

enough, it leads to a well-known phenomenon–thrashing, where the working sets cached in

memory are so small that no application can make reasonable progress. Furthermore, such

a page reclamation policy favors applications that have higher memory reference speeds,

regardless of CPU scheduling priorities.

Disk I/O Management: Accessing disk is expensive, and thus has a significant impact

on system throughput. The amount of time needed to serve a disk I/O request consists of

three parts: transfer time, seek time, and rotation time. The latter two mechanical delays are

much longer and dominate the overhead of disk I/O operations. Simply serving requests

in FIFO order leads to prohibitively low throughput. Therefore, a system usually groups

I/O requests and serves them in a certain order to reduce mechanical delays. The SCAN

algorithm used by Linux [27], FreeBSD [91], and Solaris [90] is a typical example. SCAN

sorts requests according to their physical block locations. It serves requests in the sorted

order regardless of which applications they belong to, favoring overall throughput over the

timeliness of individual requests. In addition, most systems also put the data read from

and written to disk in a memory cache to avoid unnecessary I/O operations. Technically

speaking, this cache belongs to memory management. Dirty data in this cache is flushed to

disk periodically en masse to achieve better throughput.

To summarize, the resource managers neither cooperate with each other, nor commu-

nicate with user applications. They make decisions based on their own general policies,

attempting to maximize the overall system throughput without exposing much informa-

tion to user applications. They may work at cross purposes, and thus decisions made by

different resource managers can interfere with each other. While such a scheme works

reasonably well for supporting batch workloads, it lacks the ability to support the diverse

8

needs of modern applications, such as providing meaningful response time guarantees for

interactive applications, and supplying garbage-collected applications with the necessary

information for choosing their heap sizes.

1.2 The Thesis

The thesis that this dissertation supports is:

A general-purpose operating system needs to and can be extended to serve the needs of

modern applications better by coordinating its resource managers, as well as cooperating

with user-level resource management.

The non-cooperative resource management scheme used by existing general-purpose

operating systems can lead to a wide range of problems, especially when facing resource

contention and when resource managers make conflicting decisions. This dissertation fo-

cuses on three such problems with a significant impact on current systems:

• choosing the heap size for garbage-collected applications, which involves coopera-

tion between the VMM and the garbage collector;

• maintaining responsiveness for interactive applications, which requires coordinating

multiple resources, including the CPU, memory, and disk I/O; and

• maximizing the responsiveness of multi-threaded server applications, which requires

cooperation between the CPU scheduler and the thread manager.

System Design Requirements: In order to solve these problems, a general-purpose

operating system has to be extended with mechanisms that enable the necessary commu-

nication and cooperation among resource managers. The design of these extensions must

consider a number of requirements to ensure that the system is both effective and practical.

• Modularity: The interface between different components should be minimal, so that

the modularity of these components can be preserved and they remain manageable

individually.

9

• Low overhead: The extensions made should have well-controlled overhead, so that

the system has comparable performance to general purpose operating systems while

adding the ability to coordinate resource managers.

• Compatibility: The system should have a certain degree of backward compatibility,

so that legacy applications can take advantage of new features without any modifica-

tion, or with minimal modification if required.

• Ease of use: The system should not impose too much of a burden on users. It should

allow users to use any new features with minimal effort and manage them intuitively,

without deep knowledge of how resources are managed.

1.3 Contributions

This dissertation explores the possibilities of solving the problems described above us-

ing integrated resource management, which includes both coordination of kernel resource

managers themselves and cooperation between kernel and user-level resource mangers.

Our approaches comprise the following contributions.

1.3.1 CRAMM for Garbage-collected Applications

For garbage-collected applications, we present CRAMM (Cooperative Robust Auto-

matic Memory Management), a system that enables cooperation between the virtual mem-

ory manager in the operating system and the garbage collector in the virtual machine. It

allows garbage-collected applications to adjust their heap sizes dynamically in response to

changing memory allocation, and thus achieve high throughput.

On the virtual memory manager side, CRAMM uses a novel low overhead mechanism

to track application working set size. Upon request, the virtual memory manager reports to

the garbage collector the working set size together with the amount of available memory

in the system. The garbage collector then feeds this information to an analytical heap

sizing model, selecting a new heap size whose corresponding working set size just fits in

10

the amount of available memory. This allows garbage-collected applications always to use

nearly optimal heap sizes, maximizing throughput while incurring at most a trivial amount

of page swapping.

1.3.2 Redline for Interactive Environments

For highly-interactive environments, we present Redline, a system that integrates re-

source management (memory and disk I/O management) with the CPU scheduler, orches-

trating these resource managers to maximize the responsiveness of interactive applications.

Redline adopts a lightweight specification-based approach that provides enough infor-

mation to allow the system to meet the response time requirements of interactive applica-

tions. Redline’s specifications, which essentially are CPU reservations [74], give a rough

estimate of the amount of resources required by an application over any period of time in

which they are active. These specifications allow applications to reserve CPU bandwidth,

and are used to coordinate other resource managers with the CPU scheduler. They are

concise, consisting of just a few parameters, and are straightforward to generate.

Each resource manager then uses these specifications to inform its decisions. Red-

line’s memory manager protects the working sets of interactive applications according to

their specifications, preferentially evicts pages from best-effort applications, and further

reduces the risk of paging through a rate-controlled memory reserve. Redline’s disk I/O

management avoids pauses in interactive applications by dynamically prioritizing these

tasks based on their specifications. Finally, Redline extends a standard time-sharing CPU

scheduler with an earliest deadline first (EDF)-based scheduler [85] that implements the

CPU reservation mechanism to serve the needs of interactive applications according to

their specifications.

1.3.3 Redline for Multi-threaded Server Applications

For multi-threaded server application, we present a Redline server architecture that

cooperates with the underlying Redline EDF scheduler to achieve better response time

11

guarantees. The Redline server uses recent workload information provided by the CPU

scheduler to determine the maximum number of requests it can process simultaneously. It

attaches to each of these requests a specification generated from the desired response time,

and passes them to interactive threads. The Redline EDF scheduler then serves them using

the CPU reservation according to the attached specifications. Through careful management

of the specifications, the Redline server is thus able to maximize the number of requests

satisfied without sacrificing throughput.

1.4 Outline of the Dissertation

We organize this dissertation into three parts. The first part describes the CRAMM

system, starting by presenting its motivation and an overview in Chapter 2. Chapter 3

proposes the heap sizing model based on a comprehensive analysis, and Chapter 4 describes

how the CRAMM VM supports dynamic heap sizing. Chapter 5 provides an extensive

evaluation of our prototype implementation in Linux.

The second part focuses on the Redline system. Chapter 6 provides additional motiva-

tions for Redline, as well as an overview. Chapter 7 describes its specification management.

The design of Redline’s CPU, memory, and disk I/O management are described in Chap-

ters 8, 9 and, 10 respectively. Chapter 11 evaluates the effectiveness of the Redline system

in desktop environments by stressing the system with extreme workloads.

The third part (Chapter 12) discusses how Redline can also be used to support multi-

threaded server applications. It presents the Redline server architecture and a proof-of-

concept evaluation. Finally, Chapter 13 compares both CRAMM and Redline with related

work. Finally, we present conclusions and suggestions for future work in Chapter 14.

12

CHAPTER 2

CRAMM FOR GARBAGE-COLLECTED APPLICATIONS

Garbage-collected languages have now become mainstream, including general-purpose

languages such as Java and C# and scripting languages such as Python and Ruby. Garbage

collection provides many software engineering advantages over traditional manual memory

management, eliminating dangling pointers and double freeing, and drastically reducing

the risk of memory leaks. However, it also carries a potential liability: page swapping, a

problem known for decades. It has been observed that when the heap accessed by garbage

collection is larger than available physical memory, the collector spends most of its time

thrashing [98]. Because disks are five to six orders of magnitude slower than RAM, page

swapping can easily ruin performance.

In this part of the dissertation, we study the behavior of garbage-collected applications

and explore how the virtual memory manager in the operating system can provide support

so that GCed applications can choose their heap size in a predictive manner, making full

use of memory while avoiding page swapping.

2.1 Garbage Collection Heap Size

The virtual memory (VM) systems in today’s operating systems were designed to sup-

port applications written in the widely-used programming languages of the 1980s and

1990s, C and C++. To maximize the overall performance of these applications, it is enough

to fit their working sets in physical memory [50]. Since these applications do not have the

ability to change their working set sizes, existing VM systems typically manage available

13

memory with an approximation of LRU [33, 40, 49, 50, 89], which works reasonably well

for legacy applications.

Garbage collection offers an extra layer of memory management in user space. It can

run applications with different heap sizes, effectively changing their working set sizes.

Therefore, garbage-collected application performance is highly sensitive to heap size. A

smaller heap reduces the amount of memory referenced, but requires more frequent garbage

collections that may hurt performance. A larger heap reduces the frequency of collections,

thus improving performance by up to 10x. However, if the heap cannot fit in available

RAM, performance drops off suddenly and sharply. This is because garbage collection has

a large working set (a full collection visits almost the entire heap) and thus can trigger catas-

trophic page swapping that degrades performance and increases collection pauses by orders

of magnitude [67]. Hence, heap size and main memory allocation need to be coordinated

to achieve good performance. Unfortunately, current VM systems do not provide sufficient

support for this coordination, and thus do not support garbage-collected applications well.

Choosing the appropriate heap size for a garbage-collected application—one that is

large enough to maximize throughput but small enough to avoid paging—is a key per-

formance challenge. The ideal heap size is one that makes the working set of garbage

collection just fit within the process’s main memory allocation. However, an a priori best

choice is impossible in multiprogrammed environments where the amount of main memory

allocated to each process constantly changes. Existing garbage-collected languages either

ignore this problem, allowing only static heap sizes, or adapt the heap size dynamically

using mechanisms that are only moderately effective, as we have shown in Chapter 1.

The problem with these adaptive approaches is not that their adaptivity mechanism is

broken, but rather that they are reactive. The only way these systems can detect whether

the heap size is too large is to wait until paging occurs, which leads to unacceptable per-

formance degradation. Since they lack adequate information, these systems can reduce the

heap size only incrementally, prolonging the painful period of dynamic memory pressure.

14

WSS Estimator

Histogram
Page Fault

Handler

In
a
c
tiv

e
L
is

t
S

iz
e

C
o
n
tr

o
l

Major Fault
Cost Monitor

Minor Fault
Cost Monitor

Virtual Memory Manager (VM)

Minor fault
overhead target

Allowable Major
Fault overhead

Heap Size
Manager

Working Set
Size Model

Java Virtual Machine (JVM)

Garbage Collector

W
S

S

A
v
a
ila

b
le

M
e
m

o
ry

H
e
a
p

c
h
a
n
g
e

Figure 2.1. The CRAMM system. The CRAMM VM system efficiently gathers detailed
per-process reference information, allowing the CRAMM heap size model to choose an
optimal heap size dynamically.

2.2 An overview of the CRAMM system

CRAMM (Cooperative Robust Automatic Memory Management) is a system that en-

ables garbage-collected applications to predict an appropriate heap size, allowing the sys-

tem to maintain high performance while adjusting dynamically to changing memory pres-

sure. Figure 2.1 presents an overview of the CRAMM system.

CRAMM consists of two parts. The first part is the CRAMM VM system that dynam-

ically gathers the working set size (WSS) of each process, where we define the WSS as

the main memory allocation that yields a trivial amount of page swapping. To accomplish

this, the VM system maintains separate page lists for each process and computes an LRU

reference histogram [116, 133] that captures detailed reference information while incurring

little overhead (around 1%). The second part of CRAMM is its heap sizing model, which

15

controls application heap size and is independent of any particular garbage collection al-

gorithm. The CRAMM model compares the WSS measured by the CRAMM VM to the

current heap size. It then uses this comparison to select a new heap size that is as large as

possible (thus maximizing throughput) while yielding little or no page faulting behavior.

We apply the CRAMM model to five different garbage collection algorithms, demonstrat-

ing its generality.

16

CHAPTER 3

CRAMM: GARBAGE COLLECTION HEAP SIZING MODEL

A garbage collector (GC) periodically and automatically finds and reclaims heap-

allocated objects that a program can no longer possibly use, during which it may reference

a large amount of memory pages within a short period of time. In order to maintain high

performance, it must have the ability to predict the working set size corresponding to a

choosen heap size.

In this chapter, we first present a general discription of garbage collection, introducing

GC terminology and concepts that are critical to understanding CRAMM. We then analyze

the behavior of garbage collection, revealing how heap size impacts working set size and

total execution time. Based the results of our analysis, we present CRAMM’s heap sizing

model, and describe its adaptive adjustment algorithm.

3.1 Garbage Collection Background

Garbage collectors operate on the principle that if an object is unreachable via any chain

of pointers starting from roots—pointers found in global/static variables and on thread

stacks—then the program cannot possibly use the object in the future, and the collector

can reclaim and reuse the object’s space. Through a slight abuse of terminology, reachable

objects are often called live and unreachable ones dead. Reference counting collectors de-

termine (conservatively) that an object is unreachable when there are no longer any pointers

to it. Here, we focus primarily on tracing collectors, which actually trace through pointer

chains from roots, visiting reachable objects.

17

The frequency of collection is indirectly determined by the heap size: the maximum

virtual memory space that may be consumed by heap-allocated objects. When allocations

have consumed more than some portion of the heap size (determined by the collection

algorithm), collection is invoked. Thus, the smaller the heap size, the more frequently GC

occurs, and the more CPU time is spent on collection.

3.1.1 Heap Orgnization

GC algorithms divide the heap into one or more regions. A non-generational GC col-

lects all regions during every collection, triggering collection when some percentage of the

entire heap space is filled with allocated objects. A non-generational GC may have only one

region. In contrast, generational GCs partition the regions into groups, where each group

of regions, called a generation, contains objects of a similar age. Most commonly, each

group consists of a single region. When some percentage of the space set aside for a gener-

ation has been filled, that generation, and all younger ones, are collected. Additionally, live

objects that survive the collection are generally promoted to the next older generation. New

objects are typically allocated into a nursery region. This region is usually small, and thus

is collected frequently, but quickly (because it is small). The generational configurations

that we consider here have two generations, a nursery and a mature space. Because nursery

collection generally filters out a large volume of objects that die young, mature space grows

more slowly—but when it fills, that triggers a full heap collection.

3.1.2 Reclaiming Dead Objects

Orthogonal to whether a collector is generational is how it reclaims space. Mark-sweep

(MS) collection marks the reachable objects, and then sweeps across the allocation region

to reclaim the unmarked ones. MS collection is non-copying in that it does not move

allocated objects. In contrast, a copying collector proceeds by copying reachable objects to

an empty copy space, updating pointers to refer to the new copies. When done, it reclaims

the previous copy space. A typical example of copying collector is Semi-space (SS), which

18

decides the heap into to equal spaces and copies live objects from one space to the other. We

do not consider here collectors that compact in place rather than copying to a new region,

but our techniques would work just as well for them. Their paging performance is similar

to MS collectors. Notice that collectors that have a number of regions may handle each

region differently. For example, a given GC may collect one region by copying, another by

MS, and others it may never collect (so-called immortal spaces).

During the execution of a garbage-collected application, allocation and collection are

intertwined. When allocating into an MS-managed region, the allocator uses free lists to

find available chunks of space. When allocating into a copying region, it simply increments

a free space pointer through the initially empty space. For generational collection, the

nursery is usually a copy-collected space, thus allowing fast allocation. The mature space,

however, may be a copying- or a non-copying-collected region, depending on the particular

collector.

3.2 Garbage Collection Behavior Analysis

To build robust mechanisms for controlling paging behavior of GCed applications it

is important first to understand their behaviors. We studied them by analyzing memory

reference traces for a set of benchmarks, executed under each of several collectors, for a

number of heap sizes (our earlier work explores this in more detail [135]). The goal was to

reveal, for each collector, the regularities in the reference patterns and the relation between

heap size and working set size.

3.2.1 Garbage Collection Paging Behavier

Figures 3.1 shows the number of page faults for varying physical memory allocations,

for SPECjvm98 benchmark javac under two different collectors: mark-sweep (MS) and

semi-space (SS). Each curve comes from one simulation of the benchmark in question, at

a particular fixed heap size. (Note that the vertical scales are logarithmic.)

19

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250

N
um

be
r

of
 p

ag
e

fa
ul

ts

Real Memory Size (MB)

MarkSweep _213_javac Total faults (log)

25MB
30MB
40MB
50MB
60MB
80MB

100MB
120MB
160MB
200MB
240MB

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 20 40 60 80 100 120 140 160

N
um

be
r

of
 p

ag
e

fa
ul

ts

Real Memory Size (MB)

SemiSpace _213_javac Total faults (log)

30MB
40MB
50MB
60MB
80MB

100MB
120MB
160MB
200MB
240MB

Figure 3.1. The number of page faults encountered when varying physical memory alloca-
tion for a set of heap sizes. (Garbage Collector: MarkSweep and SemiSpace, Benchmark:
213 javac)

20

The behaviors of these collectors strongly resemble each other. We see that each curve

has three regions. At the smallest real memory sizes, we see extremely high paging. Cu-

riously, larger heap sizes perform better for these small real memory sizes! This happens

because most of the paging occurs during collection, and a larger heap size causes fewer

collections, and thus less paging.

The second region of each curve is a broad flat area representing substantial paging.

For a range of physical memory allocations, the program repeatedly allocates in the heap

until the heap is full, and the collector then walks over most of the heap, collecting dead

objects. Both steps are similar to looping over a large array, and require an allocation equal

to a semi-space (for SS) or the whole heap (for MS) to avoid paging.

Finally, the third region of each curve is a sharp drop in faults that occurs once the

allocation is large enough to capture the “looping” behavior. Note that the final drop in

each curve happens in order of increasing heap size, i.e., the smallest heap size drops to

zero page faults at the smallest allocation. It occurs at an allocation that is a constant plus

nearly half of the heap size for SS, or a constant plus the heap size for MS. This regularity

suggests that there is a base amount of memory needed for the Java virtual machine and

application code.

From this analysis we see that the working set size (WSS) for a GCed application is

determined almost entirely by what happens during full collections, because full collec-

tions touch every reachable heap object. Since live and dead objects are generally mixed

together, the working set includes all heap pages used for allocated objects. It also includes

the space needed for copied survivors of copying regions. Thus, each non-copying region

contributes its size to the working set, while each copying region adds its size plus the

volume of copied survivors, which can be as much as the size of the copying region in the

worst case.

21

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200 250
 0

 50

 100

 150

 200

 250

 300

E
xe

cu
tio

n
T

im
e

(s
ec

on
d)

W
or

ki
ng

 S
et

 S
iz

e
(M

B
)

Heap Size (MB)

MarkSweep -- SPEC _213_javac

Execution Time
Working Set Size (5%)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200 250
 0

 50

 100

 150

 200

 250

 300

E
xe

cu
tio

n
T

im
e

(s
ec

on
d)

W
or

ki
ng

 S
et

 S
iz

e
(M

B
)

Heap Size (MB)

SemiSpace -- SPEC _213_javac

Execution Time
Working Set Size (5%)

Figure 3.2. The effect of heap size on performance and working set size (the number of
pages needed to run with 5% slowdown from paging).

22

3.2.2 Heap Size, Execution Time and Working Set Size

Several properties of GCed applications are important here. First, given adequate phys-

ical memory, performance varies with heap size. For example, Figure 3.2 depicts the effect

of different heap sizes on performance. Similar to the previous one, this graph is for javac

under two garbage collectors (SS and MS), but it is typical of other benchmarks. On the

left-hand side, where the heap is barely large enough to fit the application, execution time

is high. As the heap size increases, execution time sharply drops, finally running almost

2.5x faster. This speedup occurs because a larger heap reduces the number of collections,

thus reducing GC overhead. The execution time graph has a 1/x shape, with vertical and

horizontal asymptotes.

However, the working set size—here given as the amount of memory required to run

with at most 5% elapsed time added for paging—has a linear shape. The slope for MS is

approximately 1.0, since it always fills up the whole heap before collection. On the other

hand, the slope for SS is approximately 0.5, because it alway fills up half of the heap before

collection due to its copying nature. Overall, the key observation is that working set size is

very nearly linear in terms of heap size, and can be predicted reasonably well.

3.3 GC-neutral Heap Sizing Model

The goal of the CRAMM heap sizing model is to relate heap size and working set size,

so that, given a current physical memory allocation, we can determine a heap size whose

working set size just fits in the allocation. We define heap size, H, as the maximum amount

of space allowed to contain heap objects (and allocation structures such as free lists) at

one time. If non-copy-collected regions use N pages and copy-collected regions allocate

objects into C pages, then

H = N +2×C

Note that we must reserve up to C pages into which to copy survivors from the original

C space, and the collector needs both copies until it is done. The total WSS for the heap

23

during full collection is determined by the pages used for copied survivors, CS:

WSS = N +C +CS

Thus heap WSS varies from N +C to N +2×C.

As a program runs, its usage of non-copying and copying space may vary, but it is rea-

sonable to assume that the balance usually does not change rapidly from one full collection

to the next. We call the ratio of allocable space (N +C) to heap size (N +2×C) the heap uti-

lization, u. It varies from 50% for N = 0 (i.e. pure copying collectors, such as SS) to 100%

for C = 0 (i.e. pure non-copying collectors, such as MS). Given an estimate of u, we can

determine N +C from H, but to determine WSS we also need to estimate CS. Fortunately,

CS is a property of the application (volume of live objects in copy-collected regions), not

of the heap size. As with u, we can reasonably assume that CS does not change too rapidly

from one full collection to the next.

When adjusting the heap size, we use this equation as our model:

∆H = (∆WSS−∆CS)/u

According to this equation, a garbage-collector needs several pieces of information to de-

termine how much the heap size should be changed to fit itself in the available memory. The

heap utilization u and ∆CS can be estimated by the garbage collector itself based on recent

history. ∆WSS is just the target WSS (i.e., the physical memory allocation the operating

system is willing to give to the application) minus the WSS corresponding to the current

heap size. The garbage collector will rely the underlying CRAMM virtual memory system

to provide both of these facts (i.e., the physical memory allocation to the applications and

the WSS corresponding to the current heap size), when adjusting the heap size.

24

3.4 Adjusting the Heap Size

Now we describe how the JVM can use the model presented in the previous section to

adjust the heap size in response to dynamic memory allocation changes. Since the analyt-

ical heap sizing model is neutral with respect to garbage collection algorithms, it easy to

apply it to different garbage collectors. We first consider how to determine the initial heap

size. We then describe the basic adjustment algorithm for the common case, which happens

after every full collection. Finally, we add an adjustment to handle nursery collections for

generational collectors.

3.4.1 Selecting the Initial Heap Size

Once the JVM reaches the point where it needs to calculate an initial heap size, it has

touched an initial working set of code and data. Thus, the space available for the heap is

exactly the volume of free pages the VM is willing to grant us (call that Free). However, at

this stage, the JVM does not have any information to drive the heap sizing model, therefore

it has to choose an initial heap size conservatively to avoid page swapping during the first

full collection. We wish to set our heap size so that our worst case heap WSS during the

first full collection will not exceed Free. But the worst case heap WSS is exactly the heap

size, so we set H to the minimum of Free and the user-requested initial heap size.

3.4.2 Base Heap Adjustment Algorithm

After each full heap collection, the garbage collector re-computes the heap size that

should be used. Pseudo-code 1 shows the heap size adjustment algorithm. The most im-

portant responsibility of this algorithm is tracking the parameters, specifically the heap

utilization u and ∆CS. To determine u, we simply calculate it as the amount of memory

allocated divided by the heap size (line 3), and assume that the near future will be similar.

Estimating ∆CS is more involved and critical (line 4 – 12), because underestimating CS

of the next full collection (and thus ∆CS) can result in substantial page swapping. For a

pure non-copying collector, this will not be an issue. In order to provide a safe estimate,

25

Pseudo-code 1 Heap Size Adjust Algorithm
1: get available memory and WSS from CRAMM VM;
2:
3: heapUtil = allocated/heapSize; // calculate heapUtil factor
4: if (CS > maxCS) { // observed an increase in CS
5: update maxCSInc;
6: update maxCS;
7: WSS += maxCSInc/2; // add half of the increase to next CS
8: }
9: else // observe a decrease in CS

10: WSS += maxCS−CS; // use maxCS as next CS
11: maxCSInc = maxCSInc×0.5; // decay maxCS and maxCSInc
12: maxCS = maxCS×0.98;
13:
14: ∆heap = (available memory - WSS)/heapUtil;
15: new heapSize = heapSize+∆heap; // calculate the new heap size

we track the maximum value for CS that we have seen so far, maxCS, and we also track the

maximum increment we have seen to CS, maxCSInc.

If, after a full collection, CS exceeds maxCS, we assume CS is increasing and estimate

∆CS = maxCSInc/2, i.e., that it will grow by 1/2 of the largest increment. This prevents us

from growing the heap size too much when the application is still building up its data struc-

ture. Otherwise we estimate ∆CS as maxCS−CS, i.e., that CS for the next full collection

will equal maxCS. This prevents us from growing the heap in response to a collection with

exceptionally small survival rate. After calculating ∆CS, we decay maxCS, multiplying it

by 0.98 (a conservative policy, allowing us to grow the heap gradually if the live size of the

application becomes smaller), and maxCSInc, multiplying it by 0.5 (a more rapidly adjust-

ing policy, allowing us to grow the heap quickly once the application’s live size reaches a

stable point).

Once all the parameters are updated, we calculate the new heap size (line 14 – 15) using

the information supplied by the CRAMM virtual memory manager, specifically the amount

of physical memory available to us and the working set size of the current heap size. We

26

also should be careful not to set the heap size to be smaller than the application’s live size,

which typically triggers an out-of-memory exception.

3.4.3 Handling Nursery Collections

Because nursery collections for generational collectors do not process the whole heap,

their WSS reported from the CRAMM VM dramatically underestimates the working set

size for future full collections. Furthermore, their survival rate σ (i.e., CS/ν, where ν is the

size of the nursery) could be substantially different from a full collection. Predicting the

parameters based on a tiny nursery collection is dangerous. Therefore, if the nursery size is

less than 50% of allocable space, we do not update H. For larger nurseries, we compensate

WSS by adding the size of uncollected copying space times 1+σ:

WSS = WSS+(1+σ)×uncollected size

The purpose of this adjustment is to mimic the working set size of a full collection that has

the same survive rate.

This algorithm takes into account the arbitrary combination of copying and non-copying

regions and handles generational collectors. Our tracking of maxCS and maxCSInc also

helps avoid paging when the application’s live size fluctuates dramatically. We periodically

request the current Free value, so that we can reduce the heap size between full collections

if our allocation shrinks suddenly. If Free is less than maxCS, we trigger an immediate

collection.

27

CHAPTER 4

CRAMM: VIRTUAL MEMORY SUPPORT

We now present the CRAMM VM system. Given the heap sizing model presented in

Chapter 3, the underlying VM system must provide to a GC-based process both its working

set size (WSS) and its physical memory allocation,1 thus allowing the GC to choose a

proper heap size. Unfortunately, we cannot easily obtain this information from standard

VM systems, including the Linux VM.

We first describe why standard VM systems are insufficient for predictively adaptive

heap sizing. We then describe the structure of the CRAMM VM, followed by detailed

discussions of how the VM calculates working set sizes and how it controls its overhead.

4.1 CRAMM VM Design

Linux uses a global page replacement policy that manages each physical page within

a single data structure for all processes and files. Linux thus has only ordinal information

about all pages, giving each page a ranking among the total pool of pages. It has no cardinal

information about the reference rates, nor any separation of pages according to process

or file. Consequently, it cannot track the LRU reference histogram—the distribution of

memory references to pages managed by an LRU queue—which is needed to determine

the WSS for each process. Furthermore, it cannot predict how much it could reduce the

allocations of files and other processes without inducing heavy page faulting. It therefore

1The physical memory allocation is not the same as the resident set size. The latter is the amount of
physical memory currently consumed by a process, while the former is the amount of physical memory that
the VM is willing to let the process consume before evicting its pages.

28

cannot wisely choose a physical memory allocation to offer to a GC-based process. Finally,

even if it chose to reduce the allocations for some files or other processes, global page

replacement cannot guarantee that it will replace the pages of those processes first.

4.1.1 Collecting Information

The CRAMM VM system addresses these limitations. Figure 2.1 gives an overview of

the CRAMM VM structure and interface. For each file and process, the VM keeps separate

page lists and an LRU reference histogram. It also tracks the mean cost of a major page

fault (one that requires disk I/O) so that, along with the histogram and a desired maximum

fault rate, it can compute the WSS of a process.

Its ability to compute the WSS of each file and process allows the CRAMM VM to

calculate new allocations to each without causing thrashing by assigning too small an al-

location. When an allocation is reduced, the separate page lists allow the VM to prefer

reclaiming pages from those files and processes that are consuming more than their alloca-

tion.

4.1.2 Cooperating with Garbage Collector

A garbage collector communicates with the CRAMM VM through system calls. First,

the collector registers itself as a cooperative process with the CRAMM VM at initialization

time. The VM responds with the current amount of free memory, allowing the collector

to pick a reasonable initial heap size. Second, after each heap collection, the collector

requests a WSS estimate and a physical memory allocation from the VM. The collector

then uses this information to select a new heap size. If it changes its heap size, it calls

on the VM to clear its old histogram, since the new heap size will exhibit a substantially

different reference pattern.

Finally, the collector periodically polls the VM for an estimate of the free memory—the

physical memory space that could be allocated to the process without causing others to

thrash. If this value is unexpectedly low, then memory pressure has suddenly increased.

29

Buffer

Active (CLOCK) Inactive (LRU) Evicted (LRU)

Major fault

Evicted

Refill & Adjustment

Minor fault

Pages protected by turning off

permissions. Referencing a page

triggers a minor fault.

Pages evicted to disk. Referencing a

page triggers a major fault.

Header

Page Des

AVL node

Recently used pages.

References ignored

Figure 4.1. Segmented queue page lists for one address space (file or process).

Either some other system activity is aggressively consuming memory (e.g., the startup of

a new process), or this process has more live data (increased heap utilization), and thus is

using more memory than expected. The collector responds by pre-emptively collecting the

heap and selecting a new heap size.

4.2 CRAMM VM Structure

The CRAMM VM allocates a data structure, called a mem info, for each address space

(an inode for files or an mm struct for processes). This structure comprises a list of

pages, an LRU reference histogram, and some additional control fields.

Figure 4.1 shows the page list structure of a process. The CRAMM VM manages each

address space (the space of a file or a process) much like the Linux VM manages its global

queue. For the in-memory pages of each address space, it maintains a segmented queue

(SEGQ) structure [9], where the active list contains the more recently used pages and the

inactive list contains those less recently used. When a new page is faulted into memory,

the VM places it at the head of the active list. If the addition of this page causes the

active list to be too large, it moves pages from the tail of the active list to the head of the

inactive list. When the process exceeds its main memory allocation, the VM removes a

page from the tail of the inactive list and evicts it to disk. This page is then inserted at the

30

head of a third segment, the evicted list. When an address space’s WSS exceeds its main

memory allocation, the evicted list’s histogram data allows the VM to project how large the

allocation must be to capture the working set.

The active list is managed using a CLOCK algorithm. The inactive list is ordered by

each page’s time of removal from the active list. The relative sizes of these two lists is

controlled by an adaptive mechanism described in Section 4.4. Like a traditional SEGQ, all

inactive pages have their access permissions removed, forcing any reference to an inactive

page to cause a minor page fault. When such a page fault occurs, the VM restores the

page’s permissions and promotes it into the active list, and then updates the address space’s

histogram. The insertion of a new page into the active list may force other pages out of

the active list. The VM manages the evicted list similarly; the only difference is that a

reference to an evicted page triggers disk activity.

4.2.1 Page Replacement Algorithm

The CRAMM VM places each mem info structure into one of two lists: the unused list

for the address spaces of files for which there are no open file descriptors, and the normal

list for all other address spaces. When the VM must replace a page, it preferentially selects

a mem info from the unused list and then reclaims a page from the tail of that inactive

list. If the unused list is empty, the VM selects a mem info in a round robin manner from

the normal list, and then selects a page from the tail of its inactive list.

As Section 5.2 will show, this eviction algorithm is less effective than the standard

Linux VM replacement algorithm due to the round robin visiting of all processes. However,

the CRAMM VM structure can support standard replacement policies and algorithms while

also presenting the possibility of new policies that control per-address-space main memory

allocation explicitly.

31

4.2.2 Available Memory

A garbage collector will periodically request that the CRAMM VM report the available

memory—the total main memory space that could be allocated to the process. Specifically,

the CRAMM VM reports the available memory (available) as the sum of the process’s

resident set size (rss), the free main memory (free), and the total number of pages found in

the unused list (unused). There is also space reserved by the VM (reserved) to maintain a

minimal pool of free pages that must be subtracted from this sum:

available = rss+ free+unused− reserved

This value is useful to the collector because the CRAMM VM’s per-address-space

structure allows it to allocate this much space to a process without causing any page swap-

ping. Standard VM systems that use global memory management (e.g., Linux) cannot

identify the unused file space or preclude the possibility of page swapping as memory is

re-allocated to a process.

4.3 Calculating Working Set Size

The CRAMM VM tracks the current working set size of each process. Recall that the

WSS is the smallest main memory allocation for which page faulting degrades process

throughput by less than t%. If t = 0, space may be wasted by caching pages that receive

very little use. When t is small but non-zero, the WSS may be substantially smaller than

for t = 0, yet still yield only trivial page swapping. In our experiments, we chose t = 5%.2

In order to calculate the WSS, the VM maintains an LRU reference histogram h [116,

133] for each process. For each reference to a page at position i of the process’s page

2The threshold t% in our WSS definition indicates the overhead caused by page swapping when running
an application. Usually a small but non-zero t% will give a mainingful WSS. We chose 5% because it is the
level widely considered as acceptible in industry.

32

lists, the VM increments h[i].3 This histogram allows the VM to calculate the number of

page faults that would occur for each possible memory allocation. The VM also monitors

the mean cost of a major fault (majfc) and the time T that each process has spent on the

CPU. To calculate the WSS, it scans the histogram backward to find the allocation at which

the number of page faults is just below (T × t)/majfc. The VM calculates the WSS of a

GCed application at the end of each garbage collection, if it receives a notification from the

garbage collector.

4.3.1 Page List Position

When a page fault occurs, the referenced page is found within the page lists using a hash

map. In order to maintain the histograms, the CRAMM VM must determine the position

of that page within the page lists. Because a linear traversal of the lists is inefficient, the

VM attaches an AVL tree to each page list. Figure 4.1 shows this structure that the VM

uses to calculate page list positions in logarithmic time. Specifically, every leaf node in the

AVL tree points to a linked list of up to k pages, where k depends on the list into which the

node points. Every non-leaf node is annotated with the total number of pages in its subtree;

additionally, each non-leaf node is assigned a capacity that is the k-values of its children.

The VM puts newly added pages into a buffer, and inserts this buffer into the AVL tree as a

leaf node when that buffer points to k pages. Whenever a non-leaf node drops to half full,

the VM merges its children and adjusts the tree shape accordingly.

When a page is referenced, the VM first searches linearly to find the page’s position

in the containing leaf node. It then walks up the AVL tree, summing the pages in leaf

nodes that point to earlier portions of the page list. Thus, given that k is constant and small,

3Notice that we refer to the histogram as an LRU reference histogram, but that our page lists are not in
true LRU order, and so the histogram is really a SegQ reference histogram. Also, note that only references
to the inactive and evicted lists are applicable here, since references to active pages occur without kernel
intervention.

33

determining a page’s list position is performed in time proportional to the height of the

AVL tree.

Because the CRAMM VM does not track references to pages in the active list, one leaf

node contains pointers to all pages in the active list, and for this leaf node, k = ∞. For leaf

nodes that point to inactive and evicted pages. We set k to 64—a value chosen to balance the

work of linear search and tree traversal. The AVL trees have low space overhead. Suppose

an application has N 4KB pages, and our AVL node structure is 24 bytes long. Here, the

worst case space overhead (all nodes half full, so the total number of nodes is twice the

number of leaf nodes) is:

((N
64 ×2×2)×24)

(N×212)
< 0.037%

On average, we observe that the active list contains a large portion (more than half) of

the pages used by a process, and thus the observed space overhead is even lower.

4.3.2 LRU Histogram

Keeping one histogram entry for every page list position would incur a large space

overhead. Instead, the CRAMM VM groups positions into bins. In our implementation,

every bin corresponds to 64 pages (256 KB given the page size of 4 KB). This granularity is

fine enough to provide a sufficiently accurate WSS measurement while reducing the space

overhead substantially.

Furthermore, CRAMM dynamically allocates space for the histogram in chunks of 512

bytes. Given that a histogram entry is 8 bytes in size, one chunk corresponds to histogram

entries for 16 MB of pages. Figure 4.2 shows the data structure for a histogram. We see that,

when a process or file uses less than 64 pages (256 KB), it uses only bin0, requiring no extra

bins. This approach is designed to handle the frequent occurrence of small processes and

files. Any process or file that requires more than 256 KB but less than 16MB memory uses

the level 1 histogram. Larger ones use the level 2 histogram. The worst-case histogram

34

bin0

Level_1

Level_2

Histogram

Hit counters updated after

every minor or major fault

Figure 4.2. The structure of histogram

space overhead occurs when a process uses exactly 65 pages. Here, the histogram will

need about 0.2% of the memory consumed by the process. In common cases, it is about 8

bytes per 64 pages, which is less than 0.004%.

4.3.3 Major Fault Cost

Calculating WSS requires tracking the mean cost of a major page fault. The CRAMM

VM keeps a single, system-wide estimate of the mean fault cost, majfc. When the VM

initiates a swap-in operation, it marks the page with a time-stamp. After the read completes,

the VM calculates the time used to load the page. This new time is then used to update

majfc.

4.4 Controlling Histogram Collection Overhead

Because the CRAMM VM updates a histogram entry at every reference to an inactive

page, the size of the inactive list determines the overhead of histogram collection. If the

inactive list is too large, then too much time will be spent handling minor page faults and

updating histogram entries. If the inactive list is too small, then the histogram will provide

35

too little information to calculate an accurate WSS. Thus, we want the inactive list to be as

large as possible without inducing too much overhead. In our experiments, we attempt to

control the overhead of updating histogram entries to be around 1%. This is small enough

not to disturb the execution, but allows the CRAMM VM to collect enough information to

calculate the application’s WSS even in the face of dramatic phase changes.

The VM sets a target for minor fault overhead, expressed as a percentage increase in

running time for processes, and dynamically adjusts the inactive list size according to this

target. For each process, the VM tracks its CPU time T and a count of its minor page

faults n. It also maintains a system-wide minor fault cost minfc using the same approach as

with majfc. It uses these values to calculate the minor fault overhead as: (n×minfc)/T . It

performs this calculation periodically, after which it resets both T and n. Given a target of

1% and a constant threshold for deviation from that target of 0.5%, one of three cases may

apply:

• If the overhead exceeds 1.5%, the VM decreases the inactive list size.

• If the overhead is less than 0.5%, it increases the inactive list size.

• If there are no minor faults during this period, and if the inactive list is not full, then

it moves pages from the active to the inactive list (refilling the inactive list).

This simple adaptive mechanism, set to a 1% overhead target and a 0.5% deviation

threshold, successfully keeps the overhead low while yielding sufficient histogram infor-

mation for WSS calculations.

4.4.1 Inactive List Size Adjustment

CRAMM assigns each process a target inactive size, initially 0. When CRAMM adjusts

the inactive list size, it is really setting this target size. Assume that a process has PA pages

in the active list and PI in the inactive list. Depending on the overhead’s relationship to its

threshold, the new target will be:

36

• Increase: PI +max(min(PA,PI)/32,8)

• Decrease: PI−max(min(PA,PI)/8,8)

• Refill: PI +max(min(min(PA,PI)/16,256),8)

By choosing the smaller of PA and PI in these equations, we make the adjustments small

if either list is small, thus not changing the target too drastically. These formulas also ensure

that at least some constant change is applied to the target, ensuring a change that will have

some effect. We also put an upper bound on the refilling adjustment to prevent flushing

too many pages into the inactive list at a time. Finally, we decrease the target inactive

list size more aggressively than we increase it because low overhead is a more critical and

sensitive goal than accurate histogram information. We also refill more aggressively than

we increase because zero minor faults is a strong indication of an inadequate inactive list

size.

Whenever a page is added to the active list, the VM checks the current inactive list

size. If it is less than its target, then the VM moves several pages from the active list to

the inactive list (8 pages in our implementation). When an adjustment triggers refilling, the

VM immediately forces pages into the inactive list to match its new target.

4.4.2 Adaptivity Triggers

In the CRAMM VM, there are two events that can trigger an inactive list size adjust-

ment. The first, adjust interval, is based on running time, and the second, adjust count, is

based on the number of minor faults.

For every new process, its adjust interval is initialized to a default value (1
16sec). When-

ever a process is scheduled, if its running time since the last adjustment exceeds its ad-

just interval value, then the VM adjusts the inactive list size.

The adjust count variable is initialized to be (adjust interval×2%)/minfc. If a process

suffers this number of minor faults before adjust interval CPU time has passed, then its

37

overhead is well beyond the acceptable level. At each minor fault, the VM checks whether

the number of minor faults since the last adjustment exceeds adjust count. If so, it forces

an adjustment.

38

CHAPTER 5

CRAMM: EXPERIMENTAL EVALUATION

We implemented the CRAMM VM system in the Linux kernel and the CRAMM heap

sizing model in the Jikes RVM research Java virtual machine [6], and applied our heap

size manager to five different garbage collectors. We now evaluate our CRAMM VM im-

plementation and heap size manager. We first compare the performance of the CRAMM

VM with the original Linux VM. We then add the heap size manager to several collectors

in Jikes RVM, and evaluate their performance under both static and dynamic real memory

allocations. We also compare them with the JRockit [19] and HotSpot [69] JVMs under

similar conditions. Finally, we run two concurrent instances of our adaptive collectors un-

der memory pressure to see how they interact with each other. These results demonstrate

CRAMM’s effectiveness in maintaining high performance in the face of changes in appli-

cation behavior and system load.

5.1 Methodology Overview

We performed all measurements on a 1.70GHz Pentium 4 Linux machine with 512MB

of RAM and 512MB of local swap space. The processor has 12KB I and 8KB D L1 caches

and a 256KB unified L2 cache. We installed both the “stock” Linux kernel (version 2.4.20)

and our CRAMM kernel. We ran each of our experiments six times in single-user mode,

and always report the mean of the last five runs. In order to simulate memory pressure, we

used a background process to pin a certain volume of pages in memory using mlock.

39

5.1.1 Application Platform

We used Jikes RVM v2.4.1 [6] built for Linux x86 as our Java platform. We optimized

the system images to the highest optimization level to avoid run-time compilation of those

components. Jikes RVM uses an adaptive compilation system, which invokes optimization

based on time-driven sampling. This makes executions non-deterministic. In order to get

comparable deterministic executions, we took compilation logs from 7 runs of each bench-

mark using the adaptive system, and directed the system to compile methods according

to the log from the run with the best performance. This is called the replay system. It is

deterministic and highly similar to typical adaptive system runs.

5.1.2 Garbage Collectors

We evaluate five collectors from the MMTk memory management toolkit [23] in Jikes

RVM: MS (mark-sweep), GenMS (generational mark-sweep), CopyMS (copying mark-

sweep), SS (semi-space), and GenCopy (generational copying). All of these collectors

have a separate non-copying region for large objects (2KB or more), collected with the

Treadmill algorithm [10]. They also use separate non-copying regions for meta-data and

immortal objects. We now describe the other regions each collector uses for ordinary small

objects. MS is non-generational with a single MS region. GenMS is generational with a

copying nursery and MS mature space. CopyMS has two regions, both collected at every

GC. New objects go into a copy region, while copy survivors go into an MS region. SS

is non-generational with a single copying region. GenCopy is generational with copying

nursery and mature space. Both generational collectors (GenMS and GenCopy) use Appel-

style nursery sizing [8] (starts large and shrinks as mature space grows).

5.1.3 Benchmarks

For evaluating JVM performance, we use a wide ranges of benchmarks. We ran all

benchmarks from the SPECjvm98 suite (standard and widely used), plus those bench-

marks from the DaCapo suite [24, 25] (an emerging standard for JVM GC evaluation)

40

that run under Jikes RVM, plus ipsixql (a publicly available XML database program)

and pseudojbb (a variant of the standard, often-used SPECjbb server benchmark with a

fixed workload (140,000 transactions) instead of fixed time limit). For evaluating general

VM performance, we used the standard SPEC2000 suite.

Most results are similar, so to make our presentation clear we present results from some

representative collectors and benchmarks that cover all interesting cases. For collectors, we

chose SS, MS, and GenMS to cover copying, non-copying, and generational variants. For

benchmarks, we chose javac, jack, pseudojbb, ipsixql, jython, and pmd to

cover all the benchmark suites we used.

5.2 CRAMM VM Performance

For the CRAMM VM to be practical, its baseline performance (i.e., while collecting

useful histogram/working set size information) must be competitive with a standard VM

when physical RAM is plentiful.

We first compare the performance of the CRAMM VM to that of the stock Linux kernel

across our entire SPEC2000 benchmark suite.1 In order to get stable results, we use the

input that makes each benchmark run longer than 60 seconds. Table 5.1 presents the results

of these experiments, with integer benchmarks (INT) on the left and floating point bench-

marks (FP) on the right. For each program we give the percentage increase in execution

time under CRAMM versus the stock Linux kernel (I), the percentage of time spent han-

dling minor faults (M), the total execution time (T), and the number of minor faults trapped

by CRAMM kernel. While the inactive list size adjustment mechanism effectively keeps

the cost of collecting histogram data in the desired range (e.g., 0.59% for SPEC2Kint and

1.02% for SPEC2Kfp), the slowdown is generally about 1.0–3.0%. We believe this over-

head is caused by CRAMM polluting the cache when handling minor faults as it processes

1We could not compile and run some SPEC2000 Fortran programs, so we omit these FP benchmarks.

41

INT I(%) M(%) T(s) faults FP I(%) M(%) T(s) faults
gzip 2.17 0.66 93.11 101260 wupwise 1.96 0.88 260.25 420273
vpr 0.95 0.23 228.06 99447 swim 0.58 0.72 522.13 627641
gcc 1.57 0.50 78.51 52566 applu 3.08 2.78 501.80 2608207
mcf 1.34 0.74 367.12 331030 mgrid 2.01 1.69 417.58 1369456

crafty 0.36 0.34 227.02 131825 mesa 0.98 1.01 449.24 815891
parser 0.50 0.45 574.89 377250 art01 0.78 0.43 493.50 425467

perlbmk 0.57 0.54 74.23 43631 equake 0.89 0.75 218.42 297999
gap 1.33 1.22 183.15 398268 ammp 1.06 0.97 782.01 1317055

vortex 2.12 0.55 111.42 61453 apsi 2.20 0.73 961.49 1136198
bzip2 0.90 0.66 130.69 131630 twolf -0.62 0.20 808.00 311724
mean 1.18 0.59 mean 1.29 1.02

Table 5.1. CRAMM VM Performance (SPEC2000 INT & FP)

Benchmark GenCopy SemiSpace MarkSweep GenMS CopyMS
I(%) M(%) I(%) M(%) I(%) M(%) I(%) M(%) I(%) M(%)

compress 1.70 0.82 0.97 0.89 1.42 0.88 0.29 0.91 2.91 0.91
jess 1.48 0.38 2.98 1.28 2.58 1.37 3.94 1.49 3.13 1.48

raytrace 1.43 0.49 2.29 1.24 2.48 1.37 3.05 1.42 2.47 1.34
db 1.35 0.83 1.46 1.01 1.49 1.00 1.49 0.86 1.50 0.97

javac 2.79 1.01 2.30 1.39 2.91 1.50 2.00 1.20 2.13 0.99
mpegaudio 0.56 0.33 0.63 0.37 1.57 0.94 1.66 0.94 1.55 0.81

mtrt 0.84 0.43 2.53 1.14 2.67 1.27 2.82 1.27 2.54 1.32
jack 1.90 0.61 2.85 1.21 1.98 1.25 3.15 1.41 2.30 1.23

pseudojbb 0.42 1.08 1.20 1.32 1.16 1.08 1.81 1.06 1.67 1.05
ipsixql 2.28 0.89 2.70 1.37 4.39 1.14 5.31 1.18 4.89 1.16
mean 1.48 0.69 1.99 1.12 2.27 1.18 2.55 1.17 2.51 1.13

Table 5.2. CRAMM VM Performance (SPECjvm98, pseudojbb, and ipsixql)

page lists and AVL trees. This, in turn, leads to extra cache misses for the application.

We verified that at the target minor fault overhead, CRAMM incurs enough minor faults to

calculate the working set size accurately with respect to our 5% page fault threshold.

We further evaluate the performance of the CRAMM VM using Java benchmarks under

five garbage collectors. Table 5.2 presents the results, showing only the percentage increase

in execution time (I) and percentage of time spent in handling minor faults (M). These

results are strongly similar to those of SPEC2000 benchmarks. We notice that CRAMM’s

performance is generally somewhat poorer on the Java benchmarks, where it must spend

more time handling minor faults caused by the dramatic working set changes between the

42

CRAMM VM Overhead

0

0.5

1

1.5

2

2.5

3

3.5

4

SPEC2Kint SPEC2Kfp Java-
GenCopy

Java-
SemiSpace

Java-
MarkSweep

Java-GenMS Java-
CopyMS

%
 O

v
e

rh
e

a
d

Additional Overhead

Histogram Collection

Figure 5.1. Virtual memory overhead (% increase in execution time) without paging,
across all benchmark suites and garbage collectors.

mutator and collector phases of GCed applications. However, the fault handling overhead

remains in our target range.

Figure 5.1 summarizes all the experimental results, which are geometric means across

all benchmarks: SPEC2000int, SPEC2000fp, and Java benchmarks (SPECjvm98, DaCapo,

pseudojbb, and ipsixql) with five different garbage collectors. Overall, CRAMM collects

the necessary information with low overhead in most cases (about 1–2.5%), and its per-

formance is competitive to that of the stock kernel. In exchange for this small percentage

overhead, the CRAMM VM enables our adaptive garbage collectors to select heap sizes

predictively on the fly, reducing total execution time dramatically in the face of memory

pressure.

43

5.3 Static Memory Allocation

To test our adaptive mechanism, we run the benchmarks over a range of requested

heap sizes with a fixed memory allocation. We select memory allocations that reveal the

effects of large heaps in small allocations and small heaps in large allocations. In particular,

we try to evaluate the ability of our mechanism to grow and shrink the heap. We run

the non-adaptive collectors (which simply use the requested heap size) on both the stock

and CRAMM kernels, and the adaptive collectors on the CRAMM kernel, and compare

performance.

5.3.1 MarkSweep Collector

Figures 5.2, 5.3, and 5.4 present the execution time for benchmarks using the MS col-

lector with a static memory allocation. For almost every combination of benchmark and

requested heap size, our adaptive collector chooses a heap size that is nearly optimal. It

reduces total execution time dramatically, or performs at least as well as the non-adaptive

collector. At the leftmost side of each curve, the non-adaptive collector runs at a heap size

that does not consume the entire allocation, thus under-utilizing available memory, col-

lecting too frequently and inducing high GC overhead. The adaptive collector grows the

heap size to reduce the number of collections without incurring paging. At the smallest

requested heap sizes, this adjustment reduces execution time by as much as 85%.

At slightly larger requested heap sizes, the non-adaptive collector performs fewer col-

lections, better utilizing available memory. One can see that there is an ideal heap size for

the given benchmark and allocation. At that heap size, the non-adaptive collector performs

well—but the adaptive collector often matches it, and is never very much worse. The max-

imum slowdown we observed is 11% across all the benchmarks. (Our working set size

calculation uses a page fault threshold of t = 5%, so we are allowing a trivial amount of

paging—while reducing the working set size substantially.)

44

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

E
la

ps
ed

 T
im

e
(s

)

Heap Size (MB)

MarkSweep -- SPEC _213_javac (95MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250

E
la

ps
ed

 T
im

e
(s

)

Heap Size (MB)

MarkSweep -- SPEC _228_jack (80MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

Figure 5.2. Static Memory Allocation: MarkSweep (javac and jack)

45

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250

E
la

ps
ed

 T
im

e
(s

)

Heap Size (MB)

MarkSweep -- ipsixql (85MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 50 100 150 200 250

E
la

ps
ed

 T
im

e
(s

)

Heap Size (MB)

MarkSweep -- pseudojbb (115MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

Figure 5.3. Static Memory Allocation: MarkSweep (ipsixql and pseduojbb)

46

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250

E
la

ps
ed

 T
im

e
(s

)

Heap Size (MB)

MarkSweep -- Dacapo jython (110MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250

E
la

ps
ed

 T
im

e
(s

)

Heap Size (MB)

MarkSweep -- Dacapo pmd (110MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

Figure 5.4. Static Memory Allocation: MarkSweep (jython and pmd)

47

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250

E
la

ps
ed

 T
im

e
(s

)

Heap Size (MB)

SemiSpace -- SPEC _213_javac (95MB memory)

static-stock
static-cramm

adaptive-cramm

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250

E
la

ps
ed

 T
im

e
(s

)

Heap Size (MB)

SemiSpace -- SPEC _228_jack (80MB memory)

static-stock
static-cramm

adaptive-cramm

Figure 5.5. Static Memory Allocation: SemiSpace (javac and jack)

48

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

E
la

ps
ed

 T
im

e
(s

)

Heap Size (MB)

SemiSpace -- ipsixql (85MB memory)

static-stock
static-cramm

adaptive-cramm

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

E
la

ps
ed

 T
im

e
(s

)

Heap Size (MB)

SemiSpace -- SPEC pseudojbb (115MB memory)

static-stock
static-cramm

adaptive-cramm

Figure 5.6. Static Memory Allocation: SemiSpace (ipsixql and psuedojbb)

49

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250

E
la

ps
ed

 T
im

e
(s

)

Heap Size (MB)

SemiSpace -- Dacapo jython (110MB memory)

static-stock
static-cramm

adaptive-cramm

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250

E
la

ps
ed

 T
im

e
(s

)

Heap Size (MB)

SemiSpace -- Dacapo pmd (110MB memory)

static-stock
static-cramm

adaptive-cramm

Figure 5.7. Static Memory Allocation: SemiSpace (jython and pmd)

50

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

E
la

ps
ed

 T
im

e
(s

)

Heap Size (MB)

GenMS -- SPEC _213_javac (95MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250

E
la

ps
ed

 T
im

e
(s

)

Heap Size (MB)

GenMS -- SPEC _228_jack (80MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

Figure 5.8. Static Memory Allocation: GenMS (javac and jack)

51

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250

E
la

ps
ed

 T
im

e
(s

)

Heap Size (MB)

GenMS -- ipsixql (85MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250

E
la

ps
ed

 T
im

e
(s

)

Heap Size (MB)

GenMS -- pseudojbb (115MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

Figure 5.9. Static Memory Allocation: GenMS (ipsixql and pseudojbb)

52

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250

E
la

ps
ed

 T
im

e
(s

)

Heap Size (MB)

GenMS -- Dacapo jython (110MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250

E
la

ps
ed

 T
im

e
(s

)

Heap Size (MB)

GenMS -- Dacapo pmd (110MB memory)

non-adaptive+stock
non-adaptive+cramm

adaptive+cramm

Figure 5.10. Static Memory Allocation: GenMS (jython and pmd)

53

Once the requested heap size goes slightly beyond the ideal, the non-adaptive collec-

tor’s performance drops dramatically. The working set size is just slightly too large for

the allocation, which induces enough paging to slow execution by as much as a factor of

5 to 10. In contrast, our adaptive collector shrinks the heap so that the allocation com-

pletely captures the working set size. By performing slightly more frequent collections, the

adaptive collector consumes a modest amount of CPU time to avoid a lot of paging, thus

reducing elapsed time by as much as 90%. When the requested heap size becomes even

larger, the performance of our adaptive collector remains the same. However, the execu-

tion time of the non-adaptive collector decreases gradually. This is because it does fewer

collections, and it is collections that cause most of the paging.

Interestingly, when we disable adaptivity, the CRAMM VM exhibits worse paging per-

formance than the stock Linux VM. An LRU-based eviction algorithm turns out to be a poor

fit for garbage collection’s memory reference behavior. Collectors typically exhibit loop-

like behavior when tracing live objects, and LRU is notoriously bad in handling large loops.

The Linux VM instead uses an eviction algorithm based on a combination of CLOCK and

a linear scan over the program’s address space, which happens to work better in this case.

5.3.2 SemiSpace and GenMS Collector

Figures 5.5, 5.6, and 5.7 show the results of the same experiments for the SemiSpace

collector (a copying collector). Figures 5.8, 5.9, and 5.10 are for the GenMS collector

(a generational collector with a marksweep mature space). As we can see, these graphs

are qualitatively highly similar to those for the MarkSweep collector. For almost every

combination of benchmark and its corresponding given memory allocation, our adaptive

collectors choose a heap size that is large enough to make full use of available memory, but

small enough to avoid substantial paging, indicating that CRAMM’s analytical heap sizing

model indeed works very well with various garbage collectors.

54

Benchmark Collector Enough Mem Adaptive Non-Adaptive Adaptive
(Memory) (Heap Size) T(sec) MF T(sec) cpu MF T(sec) cpu MF Yes/No
pseudojbb SS (160M) 297.35 1136 339.91 99% 1451 501.62 65% 24382 0.678

(160M) MS (120M) 336.17 1136 386.88 98% 1179 928.49 36% 47941 0.417
GenMS (120M) 296.67 1136 302.53 98% 1613 720.11 48% 39944 0.420

javac SS (150M) 237.51 1129 259.35 94% 1596 455.38 68% 24047 0.569
(140M) MS (90M) 261.63 1129 288.09 95% 1789 555.92 47% 25954 0.518

GenMS (90M) 249.02 1129 263.69 95% 2073 541.87 50% 33712 0.487

Table 5.3. Dynamic Memory Allocation: Performance of Adaptive vs. Non-Adaptive
Collectors

5.4 Dynamic Memory Allocation

The results given so far show that our adaptive mechanism selects a good heap size

when presented with an unchanging memory allocation. We now examine how CRAMM

performs when the memory allocation changes dynamically. To simulate dynamic memory

pressure, we use a background process that repeatedly consumes and releases memory.

Specifically, it consists of an infinite loop, in which it sleeps for 25 seconds, mmap’s 50MB

memory, mlock’s it for 50 seconds, and then unlocks and unmaps the memory. We also

modify how we invoke benchmarks so that they run long enough (we give pseudojbb a

large transaction number, and iterate javac 20 times).

5.4.1 Adapting to Dynamic Memory Pressure

Table 5.3 summarizes the performance of both non-adaptive and adaptive collectors

under this dynamic memory pressure. The first column gives the benchmarks and their

initial memory allocation. The second column gives the collectors and their requested

heap sizes respectively. We set the requested heap size so that the benchmark will run

gracefully in the initial memory allocation. We present the total elapsed time (T), CPU

utilization (cpu), and number of major faults (MF) for each collector. We compare them

against the base case, i.e., running the benchmark at the requested heap size with sufficient

memory. The last column shows adaptive execution time relative to non-adaptive. We

see that for each collector the adaptive mechanism adjusts the heap size in response to

55

memory pressure, nearly eliminating paging. The adaptive collectors show very high CPU

utilization and dramatically reduced execution time.

Figures 5.11, 5.12, and 5.13 illustrate how our adaptive collectors (SemiSpace, Mark-

Sweep and GenMS respectively) change the heap size while running pseudojbb under

dynamic memory pressure. The upper graphs on each page demonstrate how available

memory changes over time, and the corresponding heap size chosen by each adaptive col-

lector. We see that as available memory drops, the adaptive collectors quickly shrink the

heap to avoid paging. Likewise, they grow the heap responsively when there is more avail-

able memory. One can also see that the difference between the maximum and minimum

heap size is approximately the amount of memory change divided by heap utilization u,

which is consistent with our working set size model presented in Section 3.3.

We also compare the throughput of the adaptive and non-adaptive collectors (the lower

graphs in Figures 5.11, 5.12, and 5.13), by printing out the number of transactions finished

as time elapses for pseudojbb. These curves show that memory pressure has much less

impact on throughput when running under our adaptive collectors. It causes only a small

disturbance and only for a short period of time (i.e., during the period of dynamic memory

pressure). The total execution time of our adaptive collectors is a little longer than that

of the base case, simply because they run at a much smaller heap size (and thus collect

more often) when there is less memory. The non-adaptive collectors experience significant

paging slowdown when under memory pressure.

Figures 5.14, 5.15, and 5.16 demonstrate the heap adjustment performed by our adap-

tive collectors while running javac under the same dynmic memory pressure. They are

qualitatively similar to those for pseudojbb, with one special case, where the SemiSpace

collector chooses an unusually small heap size. Our analysis of the execution trace shows

that this is a pretty interesting case, caused by our iterative execution of javac. This is

because that garbage collection happened to be performed during the initialization stage

of one iteration, resulting in an exceptionally high survival rate. Our adaptive collector

56

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300 350

M
em

or
y

||
H

ea
p

(M
B

)

Elapsed Time (second)

SemiSpace -- pseudojbb (160M)

Heap
Avail

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300 350 400 450 500

of

 T
ra

ns
ac

tio
ns

 fi
ni

sh
ed

 (
th

ou
sa

nd
s)

Elapsed Time (second)

SemiSpace -- pseudojbb (160M)

base-160
adaptive-160

static-160

Figure 5.11. Dynamic Memory Allocation (SemiSpace, pseudojbb): Heap Adjustment
and Throughput

57

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300 350 400

M
em

or
y

||
H

ea
p

(M
B

)

Elapsed Time (second)

MarkSweep -- pseudojbb (160M)

Heap
Avail

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700 800 900 1000

of

 T
ra

ns
ac

tio
ns

 fi
ni

sh
ed

 (
th

ou
sa

nd
s)

Elapsed Time (second)

MarkSweep -- pseudojbb (160M)

base-120
adaptive-120

static-120

Figure 5.12. Dynamic Memory Allocation (MarkSweep, pseudojbb): Heap Adjustment
and Throughput

58

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300 350

M
em

or
y

||
H

ea
p

(M
B

)

Elapsed Time (second)

GenMS -- pseudojbb (160M)

Heap
Avail

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700 800

of

 T
ra

ns
ac

tio
ns

 fi
ni

sh
ed

 (
th

ou
sa

nd
s)

Elapsed Time (second)

GenMS -- pseudojbb (160M)

base-120
adaptive-120

static-120

Figure 5.13. Dynamic Memory Allocation (GenMS, pseudojbb): Heap Adjustment and
Throughput

59

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300

M
em

or
y

||
H

ea
p

(M
B

)

Elapsed Time (second)

SemiSpace -- SPEC _213_javac (140M)

Heap
Avail

Figure 5.14. Dynamic Memory Allocation (SemiSpace, javac): Heap Adjustment

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300

M
em

or
y

||
H

ea
p

(M
B

)

Elapsed Time (second)

MarkSweep -- SPEC _213_javac (140M)

Heap
Avail

Figure 5.15. Dynamic Memory Allocation (MarkSweep, javac): Heap Adjustment

60

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300

M
em

or
y

||
H

ea
p

(M
B

)

Elapsed Time (second)

GenMS -- SPEC _213_javac (140M)

Heap
Avail

Figure 5.16. Dynamic Memory Allocation (GenMS, javac): Heap Adjustment

thus chose a smaller heap size to avoid paging, assuming that the amount of copy survived

objects would continue to increase during next collection. However, it decayed maxCSInc

rapidly, and soon recovered to use much larger heap sizes.

5.4.2 Comparing with JRockit and HotSpot

JRockit and HotSpot have the ability to adjust the heap size according to a requested

throughput or pause time target. However, as we have previously demonstrated, JRockit

and HotSpot do not adjust heap size well in response to changing memory allocation.

Figure 5.17 compares the throughput of our adaptive collectors with that of JRockit and

HotSpot. We carefully choose the initial memory allocation so that the background process

imposes the same amount of relative memory pressure as for our adaptive collectors.

However, being an experimental platform, Jikes RVM’s compiler did not produce as ef-

ficient code as these commercial JVMs. The purpose of our experiments is not to compare

61

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300 350 400

of

 T
ra

ns
ac

tio
ns

 fi
ni

sh
ed

 (
th

ou
sa

nd
s)

Elapsed Time (second)

adaptive-GenMS
adaptive-MS
adaptive-SS

HotSpot
JRockit

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

of

 T
ra

ns
ac

tio
ns

 fi
ni

sh
ed

 (
th

ou
sa

nd
s)

Normalized Elapsed Time

adaptive-GenMS
adaptive-MS
adaptive-SS

HotSpot
JRockit

Figure 5.17. Throughput under dynamic memory pressure, versus JRockit and HotSpot.

62

 50

 60

 70

 80

 90

 100

 110

 0 100 200 300 400 500 600 700 800

H
ea

p
S

iz
e

(M
B

)

Elapsed Time (second)

MS+pseudojbb:Heap-1
MS+pseudojbb:Heap-2

 90
 100
 110
 120
 130
 140
 150
 160

M
em

or
y

(M
B

)

MS + pseudojbb vs MS + pseudojbb (220MB)

MS+pseudojbb:Avail-1
MS+pseudojbb:Avail-2

Figure 5.18. Running Two Instances of Adaptive Collectors: Identical Collector and Ap-
plication

 50

 60

 70

 80

 90

 100

 110

 0 100 200 300 400 500 600 700

H
ea

p
S

iz
e

(M
B

)

Elapsed Time (second)

MS+pseudojbb:Heap-1
MS+javac:Heap-2

 90
 100
 110
 120
 130
 140
 150
 160

M
em

or
y

(M
B

)

MS + pseudojbb vs MS + javac (220MB)

MS+pseudojbb:Avail-1
MS+javac:Avail-2

Figure 5.19. Running Two Instances of Adaptive Collectors: Identical Collector and Dif-
ferent Applications

63

 50

 60

 70

 80

 90

 100

 110

 0 100 200 300 400 500 600 700

H
ea

p
S

iz
e

(M
B

)

Elapsed Time (second)

GenMS+pseudojbb:Heap-1
MS+javac:Heap-2

 90
 100
 110
 120
 130
 140
 150
 160

M
em

or
y

(M
B

)

GenMS + pseudojbb vs MS + javac (220MB)

GenMS+pseudojbb:Avail-1
MS+javac:Avail-2

Figure 5.20. Running Two Instances of Adaptive Collectors: Different Collectors and
Different Applications

the absolute performance across different JVM implementations, but rather to compare

how well they adapts to dynamic memory allocation changes, and how applications are

affected. We thus normalize the time for each of them to the total execution time that

each JVM takes to run when given ample physical memory (presented as the lower graph

in Figure 5.17). The results show that both JRockit and HotSpot experience a large rela-

tive performance loss. The flat regions on their throughput curves indicate that they make

barely any progress when available memory suddenly shrinks to less than their working

set. Meanwhile, our adaptive collector changes the heap size to fit in available memory,

maintaining high performance.

5.4.3 Running Multiple JVMs

Finally, we examine how our adaptive collectors interact with each other. We started

two instances using adaptive collectors with a certain memory allocation (220MB), and let

64

them adjust their heap sizes independently. We explored several combinations of collec-

tor and benchmark: the same collector and benchmark, the same collector and different

benchmarks, and different collectors with different benchmarks. The experiments show

that, for all these combinations, our adaptive collectors keep CPU utilization at 91% or

more. Figures 5.18, 5.19, and 5.20 show the amount of available memory observed by

each collector and their adapted heap size over time. We see that, after bouncing around a

little, our adaptive collectors tend to converge to heap sizes that give each job a fair share

of available memory, even though each works independently. More importantly, they incur

only trivial amounts of paging. Note that, in Figure 5.20, the “heap size” curve of GenMS

is much smoother than its “memory” curve. This is because the adaptive GenMS collector

does not adjust the heap size after small nursery collections. Filtering out small nursery

collections prevents the adaptive collector from changing the heap size too aggressively,

and thus stablizes the heap heap size.

65

CHAPTER 6

REDLINE FOR BETTER RESPONSIVENESS

In modern desktop environments, users routinely run highly-graphical user interfaces

with resource-intensive applications, ranging from video players and photo editors to web

browsers, complete with embedded Javascript and Flash applets. Users now rely on graph-

ical user interfaces to manage and interact with their computer systems. Therefore, main-

taining responsiveness is now an important issue, since it has a huge impact on user’s

experience.

Unfortunately, existing general-purpose operating systems do not provide adequate sup-

port for effectively handling these interactive workloads. Current operating systems such as

Windows, Linux, and Solaris were designed to use standard resource management policies

and algorithms, which in turn were not developed with rapid interactivity in mind. While

their CPU schedulers attempt to enhance interactive behavior, their memory managers and

I/O managers focus on increasing system throughput rather than reducing latency. This

lack of coordination between subsystems, and the fact that they can work at cross purposes,

means that pressure on any resource can significantly degrade application responsiveness.

In this part of the dissertation, we focus on how multiple resource managers inside

the operating system kernel can be coordinated to maintain system responsiveness under

resource contention, producing a system named Redline. We first motivate the work by

describing the insufficiency of existing commodity operating systems using a real work-

load example. We then discuss the characteristics of modern interactive workloads and

design considerations for supporting such workloads. Finally, we present an overview of

66

the Redline system, before we present the details of each individual resource manager in

later chapters.

6.1 Motivation: Insufficiency of Commodity Operating Systems

Most existing resource managers evolved from designs and implementations developed

decades ago when batch-style workloads were prevalent. At that time, their main focus was

maximizing the overall throughput, not response time. Despite incremental improvements

made over the past years, they are still not able to maintain system responsiveness under

heavy resource contention, as we have already shown in Figure 1.1 (Chapter 1).

Their insufficiency is the consequence of two facts. First, these resource managers, de-

signed to achieve better resource utilization but mostly oblivious to response time require-

ments, are out-dated. While best-effort, priority-based schedulers (or even proportional-

share schedulers) are a good match for batch-style applications, they provide limited sup-

port for ensuring responsiveness. These schedulers distribute the CPU bandwidth to all

running applications in proportion to their priorities (or weights). As a result, they do not

provide absolute guarantees on CPU bandwidth allocation and provide no isolation among

applications, both of which properties are required by interactive applications. Memory

managers reclaim pages based on an LRU policy, making interactive applications vulnera-

ble to memory pressure, since they reference their pages more slowly. Disk I/O schedulers

generally sort I/O requests according to physical locations to minimize overall seeks and

mechanical delays. Requests from different applications might be mixed in shared queues,

regardless of their response time requirements. As a result, disk-intensive applications can

easily saturate I/O bandwidth, making applications like a movie player unusable.

More importantly, these resource managers are not coordinated to ensure better respon-

siveness. They work independently using their own general polices, leading to conflicting

decisions in the face of resource contention. As a result, contention on any one of these

resources can easily ruin responsiveness. For example, a memory-intensive application

67

can cause the system to evict pages from the graphical user interface, regardless of how

hard the CPU scheduler attempts to allocate CPU bandwidth to it, making the system as

a whole unresponsive. Similarly, disk-intensive applications can easily saturate I/O band-

width, making applications like video players unusable. Activities that strain the resources

of a system—image or video processing, working with large data files or file systems, or

switching frequently between a number of active applications—are likely to cause one of

the resource managers to under-allocate resources to some interactive tasks, making those

tasks respond poorly.

6.2 Interactive Workloads and Design Considerations

We contend that the reason for the poor interactivity support in commodity operating

systems lies in their resource management. We believe that the resource managers of an

interactive system have to be coordinated and take into account the characteristics of inter-

active applications, so that they can manage the resources in an integrated manor towards

providing better responsiveness. We now describe the behavior of interactive applications

and sketch out several system design requirements based on the study of existing resource

management schemes.

6.2.1 The Characteristics of Interactive Workloads

Modern interactive systems have to handle applications whose behaviors are drastically

different from those of decades ago, making system resource management more challeng-

ing.

• Applications have more complicated workloads that highly depend on their type and

external events (e.g., user inputs, interrupts). For example, a service daemon may

wake up occasionally in response to certain events, and must consume high CPU

bandwidth in a short period of time to process them in a timely manner. The GUI

subsystem updates the screen according to mouse operations, introducing wide vari-

68

ance in the amount of work. In general, an application’s resource requests tend to be

bursty, which may arrive at any time and involve arbitrary amounts of work. Even a

single application can change its behavior dramatically. For instance, a movie player

normally exhibits periodic behavior. However, if a user attempts to change the video

size, play in fast forward, or seek to a new position, it suddenly becomes more CPU

intensive or I/O intensive. The combinations of multiple such applications makes the

system workload even more difficult to predict.

• A system has to support a large number of latency-sensitive (or response time sensi-

tive) applications. Take Linux as an example. After boot up, a Linux system already

has more than 70 processes running, including various kernel threads, service dae-

mons, and the GUI subsystem. These processes are essential to the system. Failure

to satisfy these processes can cause poor responsiveness, or potentially even more

catastrophic results, such as a system crash if a critical kernel thread does not re-

spond for a period of time. In general, a system has to support hundreds of processes

simultaneously, many of which interact with the user either directly or indirectly.

• Applications are highly interdependent. An operation as simple as clicking a mouse

involves a surprisingly large number of processes, ranging from kernel threads deliv-

ering events and service daemons taking care of inter-process communication, to the

GUI subsystem (window manager, desktop manager, Xserver) updating the screen,

complete with the application itself performing corresponding actions.

Even though interactive applications are response-time sensitive, they are not as time

critical as real-time applications. Moderate delays will not lead to catastrophic failure.

Users are willing to tolerate such delays as long as the system makes steady progress and

adapts quickly enough. Consequently, the system does not need to adhere to strict guaran-

tees, thus allowing certain flexibility in system resource management.

69

Interactive

Desktop

Environment

Performance

Guarantee

R
e
s
o
u
rc

e

Is
o
la

ti
o
n

Hard

real-time

systems

Soft

real-time

systems
General

Purpose

Systems

Containers, Zones

Virtualization

Figure 6.1. Design space for highly interactive systems

In summary, the resource management of an interactive system must be able to support

a large number of interdependent response-time sensitive applications, whose workloads

are highly dynamic and potentially unpredictable. These applications require certain per-

formance guarantees in order to maintain their responsiveness within a user-acceptable

range.

6.2.2 A Taxonomy of System Resource Management

Despite the increasing importance of handling interactive workloads, most system re-

source management schemes do not match the need of such workloads very well, as Fig-

ure 6.1 illustrates. Each of them has its own strengths, but also limitations in terms of

handling interactive workloads.

70

General-purpose Systems

As we have previously described, resource managers in general-purpose systems place

most of their emphasis on effectively sharing resources to maximize the overall throughput,

and are not coordinated to handle response time requirements. As a result, there is not

enough isolation among applications. The amount of resources allocated to an application

can be severely interfered with by other applications in the system. Furthermore, because

the manangers usually have no admission control, users can easily overwhelm the system

with a massive number of processes. While general-purpose systems have high resource

utilization, they have very limited support for response time guarantees.

(Soft) Real-time Systems

Real-time systems [81, 74, 60, 96] are designed to provide applications with strict per-

formance guarantees, and thus they have to manage multiple resources for applications in

a more integrated manner and take the worse case scenario into account. Every applica-

tion is required to inform the system of all its resource requirements, by writing a contract

or specification [12]. This information is then used to perform admission control, which

rejects any request that may potentially cause the violation of a contract to ensure strict

performance guarantees. As a consequence of such pessimistic admission control, these

systems usually have low resource utilization and are capable of providing guarantees only

to a very limited number of applications.

Hierarchical Sharing

Several systems manage multiple resources in a hierarchical manner [29, 129, 126]. For

example, QLinux [126] manages CPU, disk I/O, and network bandwidth using hierarchical

proportional share algorithms. Each level in the hierarchy distributes resources to its lower

level, until leaf nodes allocate them to applications. Therefore applications running under

different leaf nodes are largely isolated, given that the hierarchy and resource allocation

in upper levels does not change. However, applications under the same leaf node can still

71

interfere with each other (depending on the allocation algorithm used), and changing the

hierarchy can easily undermine the guarantees.

Resource Partitioning:

Some systems have the ability to dedicate a portion of their resources into a partition,

and isolate the applications running in it from others. For example, the zones used by So-

laris Containers [90] are configured to act as completely isolated servers, containing their

own resources, even their own portion of the file system hierarchy. Virtualization [13]

goes even further, allowing each partition to run its own operating system. Such systems

provide very strong isolation among different partitions, ensuring that applications in dif-

ferent partitions never interfere with each other. However, due to the dynamic nature and

complex interdependence of interactive workloads, it is very difficult to divide applications

into disjoint groups and put them into different partitions. Plus, within a single zone or

virtual machine, the similar problem of managing multiple interactive applications still ex-

ists. Furthermore, it requires a substantial amount of knowledge and effort to configure and

maintain such a system, making them not suitable for daily use in interactive environments.

6.2.3 Design Considerations

When extending an existing commodity operating system to provide appropriate sup-

port for interactive workloads, there are several important things that have to be considered

in the system design.

• Some extra information is required from the user to inform the system as to which

applications are interactive, as well as their rough resource requirements. Such in-

formation should be concise and simple enough for the user to manage on a daily

basis.

• The system should be able to make full use of resources to support as many inter-

active applications as possible. It needs to achieve high resource utilizataion while

72

avoiding unnecessary over-provisioning of resources. It also has to prevent exces-

sive resource contention from disrupting responsiveness. The fundamental trade-off

between resource utilization and performance guarantees is the key.

• The system should orchestrate various resource managers without undermining their

modularity. The interfaces and information propagated among them should be min-

imal, so that these resource managers can still be reasoned about and managed indi-

vidually.

• The system should be backward compatible, so that most legacy applications can

take advantage of the new feature without changing their source code.

6.3 An Overview of the Redline System

We present Redline, a system that integrates resource management (memory manage-

ment and disk I/O scheduling) with the CPU scheduler, orchestrating these resource man-

agers to maximize the responsiveness of interactive applications. It works with unaltered

interactive applications, providing strong isolation for them while ensuring high system

utilization. Figure 6.2 presents an overview of the Redline system, focusing on its support

for two types of applications: interactive and best-effort.

1. Interactive (Iact): response-time sensitive tasks that provide services in response to

external requests/events. These include not only tasks that interact with users, but

also tasks that serve requests from other tasks, such as kernel daemons; and

2. Best-effort (BE): tasks whose performance is not critical from the user’s perspective,

such as background software updates and virus scanners.

6.3.1 Specification Management

At the top, specification management allows a system administrator to provide spec-

ifications for a set of important applications. Redline loads each specification from a file

73

Load
Monitor

CPU
Scheduler

spec related

sys. calls

Memory ManagementI/O Management

revoke

reactivate

memory

usage

cpu usage

Admission Control
load

info

specs

task

information

Specification
Management

accept

responsive tasks

b
e

s
t-

e
ff
o

rt
reject

spec loader

Figure 6.2. The Redline system. Combining integrated resource management with appro-
priate admission and load control, Redline provides strong isolation for interactive appli-
cations while ensuring high system utilization. It maintains system responsiveness, even
under heavy resource contention.

whenever the corresponding application is launched. Redline treats any application without

a specification as a best-effort task.

6.3.2 Admission and Load Control

Whenever a new task is launched, Redline performs admission control to determine

whether the system can accommodate it. Specifically, Redline dynamically tracks the load

consumed by the active interactive tasks, and then uses the new task’s specification to

determine whether enough resources are available to support it as an interactive task.

Unlike real-time systems, which pessimistically reject jobs if the combined specifi-

cations would exceed system capacity, Redline optimistically accepts new jobs based on

the actual usage of the system, and adapts to overload if necessary. When Redline de-

74

tects an overload—that the interactive tasks are trying to consume more resources than are

available—then the load monitor selects a victim to downgrade, making it a best-effort

task. This victim is the task that acts least like an interactive task (i.e., it is the most CPU-

intensive). This strategy allows other interactive tasks to continue to meet their response-

time requirements. Whenever more resources become available, Redline will promote the

downgraded task, again making it interactive.

6.3.3 Integrated Resource Management

Once the admission control mechanism accepts a task, Redline propagates its specifi-

cation to the memory manager, the disk I/O manager, and the CPU scheduler. The memory

manager uses the specification to protect the task’s working set, preferentially evicting ei-

ther non-working-set pages or pages from best-effort tasks. It also maintains a specially

controlled pool of free pages for interactive tasks, thus isolating them from best-effort

tasks that allocate aggressively. The disk I/O manager assigns higher priorities to inter-

active tasks, ensuring that I/O requests from interactive tasks finish as quickly as possible.

Finally, Redline’s extended CPU scheduler provides the required CPU resources for the

interactive tasks.

By integrating resource management with appropriate admission and load control, Red-

line effectively maintains interactive responsiveness even under heavy resource contention.

In the following chapters, we will describe Redline’s specification management, and then

present its CPU, memory, and disk I/O managers. We then evaluate our prototype imple-

mentation by stressing the system with various extreme workloads.

75

CHAPTER 7

REDLINE SPECIFICATIONS

Existing commodity operating systems usually take only a priority parameter (e.g., via

nice in Linux and FreeBSD, priority in Windows) for running an application. This param-

eter is used by the system to infer how resources should be allocated to the application.

Usually, higher priority indicates more resource allocation. While this approach works

quite well when the system attempts to maximize overall throughput by sharing resources,

it is not a good match for handling interactive workloads.

In order to provide better responsiveness, the system boosts the priorities of certain

I/O bound processes heuristically in the belief that these are likely to be interactive tasks.

However, it becomes almost ineffective in the face of extreme overload. Furthermore,

most applications are launched with the same default priority, and ordinary users have very

restricted access to use higher priority than that, limiting their ability to protect interactive

applications from resource contention.

The fact is that a single parameter is far from adequate to express an application’s re-

sponse time requirements. For the purpose of maintaining responsiveness, the system needs

to be informed of at least two pieces of information: which applications are interactive and

what are their resource requirements. We believe users generally have much better infor-

mation about these than the system itself, since they may have different preferences and

requirements under different environments.

Therefore, Redline adopts a different approach, more resembling real-time systems. In

Redline, the system administrator selects a set of applications and writes their resource

requirements in the form of lightweight specifications. These specifications are stored in

76

a file, and loaded automatically by the system when starting an applications (even if the

application is launched by an ordinary user). The system applies the specification to the

application if it passes the admission test. Unlike real-time systems, Redline does not

treat a specification as a strict contract that requires hard performance guarantees. Instead,

Redline allows resource over-commitment and addresses overload dynamically to achieve

better resource utilization.

In this chapter, we discuss what kind of applications should be considered as interac-

tive in Redline; how to choose specifications for interactive applications; and how Redline

manages these specifications.

7.1 Selecting Interactive Applications

Redline is designed to maintain the responsiveness of the system as a whole, rather

than to protect just a few individual applications. Therefore, under Redline, the concept

of interactive applications covers a wide range. Any application or process that may im-

pact the user’s experience, either directly or indirectly, should be considered as potentially

interactive:

• Each application that interacts directly with user (e.g., a text editor, a movie player, or

a web browser) should have a specification to ensure its responsiveness, depending on

the user’s preference. However, the application itself depends on other applications

and processes that must also be responsive.

• The graphical user interface subsystem (e.g., the X Window server, the window/desk-

top manager) comprises a set of tasks that are heavily used by most GUI applications,

and which interact with users directly. Therefore, these tasks must be given specifi-

cations to ensure that the user interface remains responsive.

• Many kernel threads and service daemons are critical to the system. They deliver

events, process interrupts, handle inter-process communication, and perform back-

77

ground jobs, such as page laundering and page swapping, most of which are latency

sensitive and functionally important. Therefore, they must be considered interactive

in Redline to ensure that the system remains stable.

• A range of administrative tools (e.g., bash, top, ls, and kill) should be considered

as interactive, so that it is possible for user to diagnose the system and manage the

workload whenever necessary, even under extreme load.

Selecting interactive applications can be tricky, due to interdependencies among them.

For example, starting bash invokes grep and id several times. If these applications are not

marked as interactive, then launching the shell may take an unacceptable amount of time

under extreme CPU overloading. Luckily, designating interactive applications need to be

done only once. Although we manually select the interactive applications in this work, we

expect specifications to be delivered with the system.

7.2 Specification Management

After selecting the set of interactive applications, the system administrator needs to

write a lightweight specification for each of them, informing the system of their estimated

resource requirements, including CPU, memory, and disk I/O. Redline propagates the spec-

ification to different resource managers and uses it to coordinate their resource allocations,

in an attempt to satisfy as many interactive applications as possible.

7.2.1 Specification Fields

A lightweight specification in Redline is an extension of a CPU reservation [74], and

most of its fields are self-explanatory. A specification consists of the following fields:

〈pathname : type : C : T : flags : π : io 〉

1. pathname: the complete pathname to the executable. Redline uses this field to find

the matching record for the application at exec() time.

78

2. type: the type of the application. In Redline, it is either interactive (Iact) or best-effort

(BE). Redline launches any application without a specification as BE.

3. CPU reservation (C:T): These parameters allow an interactive task to reserve C mil-

liseconds of computation time out of every T milliseconds. This reservation is han-

dled by Redline’s CPU scheduler (see Chapter 8).

4. flags: A set of flags that used by Redline to manipulate specifications. Two important

flags include I, which determines whether the specification can be inherited by a child

process, and R, which indicates if the specification may be revoked when the system

is overloaded.

5. memory protection period (π): Redline protects the memory used by interactive ap-

plications for a period of time, so that the system does not reclaim their memory too

fast simply because of their low memory reference speed (See Chapter 9).

6. Disk I/O priority (io): the priority that should be used in scheduling disk I/O requests

(See Chapter 10). Redline by default gives higher priority to interactive applications,

and preferably schedules their request earlier.

To be more concrete, here is an example specification for mplayer, an interactive movie

player:

〈/usr/bin/mplayer : Iact : 5 : 30 : IR : - : -〉
This specification indicates that mplayer is an interactive task that reserves 5 ms out of each

30 ms period, whose specification is inheritable, that its interactive status can be revoked

if necessary, and whose memory protection period and I/O priority are chosen by Redline

automatically.

7.2.2 How to Load Specifications

Redline stores its specifications in a file (/etc/spec/spec.tab). An interactive task

either uses the specification loaded from this file when exec() is invoked, or it adopts the

79

exec() fork()

copy spec

from parentparent has spec? N

Y

calls exec()

within 1ms?

parent has the

inheritable flag set?

matching spec

in /etc/spec.tab?

To admission test Launch as BE

Y

N

N

Y

Y

load spec

Y
N

Figure 7.1. Loading specifications in Redline

one inherited from its parent. Figure 7.1 shows how Redline loads the specification for

each task.

In practice, most tasks that invoke exec() do so shortly after being forked. Therefore,

when a new task is forked, Redline gives it a 1 ms execution window to perform an exec().

If it does so, and if the parent task is itself an interactive task, then Redline searches the

specification file for an entry with a matching path name. If a match is found, the specifi-

cation provided is adopted for this new task.

If there is no entry for the application, or if the task does not invoke exec() during that

initial 1 ms window, then Redline examines whether the task should inherit its parent task’s

specification. If that specification is marked as inheritable, then it is applied to the new

task. Under all other circumstances, the new task is classified as best-effort.

One thing worth mentioning is that Redline prohibits best-effort tasks from launching

interactive tasks, i.e., any task forked by a best-effort task is considered best-effort. The

system strictly enforces this rule to prevent users from deliberately overloading the system.

80

Otherwise, a user can easily push the system beyond the edge by writing a simple program

or script that repeatedly executes some applications that have specifications.

If the new task’s specification classifies it as interactive, then Redline will submit the

task to admission control. If Redline determines that the load is low enough to support the

resource needs of this new interactive task, then it is admitted; otherwise, it is demoted to

be a best-effort task.

Note that in the absence of any specifications, all tasks become best-effort tasks, and

Redline acts like a standard system without special support for interactivity.

7.2.3 How to Choose Specifications

Setting specifications in Redline does not require precise, a priori application informa-

tion. CPU reservations only need to give a rough estimate of the application’s CPU require-

ment, and it is not necessary to consider the worst-case scenario. Redline also attempts to

infer other information (i.e., π and io) as much as possible and uses those inferences as its

default.

We derived specifications for a range of applications by following several simple rules.

Because most administrative tools are short-lived, reserving a small percentage of the CPU

bandwidth over hundreds of milliseconds is sufficient to ensure responsiveness. While

most kernel threads and daemons are not CPU intensive, they tend to be highly response-

time sensitive, so their reservation period should be in the tens of milliseconds and a small

percentage of the CPU bandwidth should satisfy them. Finally, for interactive applications

like a movie player, the reservation period should be around 30 ms to ensure 30 frames

per second, which implies that the X server and window/desktop manager should also use

the same reservation period. Most of the time, users should be able to select both C and

T intuitively based on their preference. Another possibility we have not expolored here

would be to provide a simple tool that would allow a user to adjust the reservations, both C

and T experimentally, finding the minimal requirements for acceptable performance.

81

Setting the flags demands more care to ensure that the system behaves normally. For

instance, although the command shell (i.e., sh, bash) itself is an interactive application,

its specification should not be inherited by any of its children. Otherwise, Redline would

treat all applications launched from the command shell as interactive. Furthermore, some

applications are so critical to the system’s functionality and responsiveness that their spec-

ifications should never be revoked, such as init, events, and the X server.

Overall, we found that setting specifications was straightforward. It took the author a

single work day to generate a set of specifications manually for about 100 applications in

a Linux system using the K Desktop Environment (KDE). Because the specification file

is portable, specifications for a wide variety of applications could easily be shipped with

an operating system distribution. In an actual deployment, we expect these to be supplied

by application developers or system vendors, and the system administrator only needs to

choose which of them to enable.

7.3 Discussion

Specification management in Redline is designed to be simple, so that users can man-

age specifications without deep knowledge. A specification itself is concise and does not

require precise application information. Therefore, modest over-specification or under-

specification is acceptable, making choosing specifications much easier.

Storing specifications away from applications eliminates any need to modify legacy

code, and thus even ordinary users can launch unaltered applications that use the services

provided by Redline, making it more usable in practice. Furthermore, Redline acts like a

standard system if no specification is provided.

The current implementation is quite naı̈ve. The specification is loaded from a file during

exec() and compared for a match, which introduces one extra disk I/O. More importantly, it

requires restarting the application once its specification is changed. An alternative approach

would use an in-memory hash table loaded during the system startup. We could allow each

82

application to have multiple specifications, each used in different situations, and we could

even allow ordinary users to adjust the specifications within a given range, rather than

relying totally on the system administrator.

83

CHAPTER 8

REDLINE: CPU MANAGEMENT

The time-sharing schedulers used by commodity operating systems to manage both

interactive and best-effort tasks neither protect against overload nor provide consistent in-

teractive performance. To address these limitations, Redline employs admission control to

protect it against overload in most cases, and uses load control to recover quickly from sud-

den bursts of activity. Redline also uses an Earliest Deadline First (EDF)-based scheduler

for interactive tasks to ensure that they receive CPU time as required by their specifications.

8.1 Admission and Load Control

Admission control determines whether a system has sufficient free resources to support

a new task. It is required by any system that provides response time guarantees, such as

real-time systems, though it is typically absent from commodity operating systems.

In real-time systems, admission control works by conservatively assuming that each

task will always consume all of resources indicated in its specification. If the addition

of a new task would cause the sum of the specified CPU bandwidths for all active tasks

to exceed the available CPU bandwidth, then the new task will be rejected. This conser-

vative approach overestimates the CPU bandwidth actually consumed by aperiodic tasks,

which often use much less CPU time than their specifications would indicate. Thus, real-

time admission control often rejects tasks that could actually be successfully supported,

pessimistically reducing system utilization.

To increase system utilization, Redline uses a more permissive admission control pol-

icy. If the CPU bandwidth actually consumed by current interactive tasks is not too high,

84

then it may admit new interactive tasks. Because this approach could lead to an overloaded

system if interactive tasks begin to consume more CPU bandwidth, Redline employs load

control that allows it to recover quickly from such overload. Consequently, Redline does

not provide the inviolable guarantees of a real-time system, but in exchange for allowing

short-lived system overloads, Redline ensures far higher utilization than real-time systems

could provide.

To maximize utilization while controlling load, Redline strives to keep the CPU band-

width consumed by interactive tasks within a fixed range. It tracks the actual CPU load,

which it uses to drive its admission and load control policies. We describe here how Redline

tracks load and how it manages interactive tasks.

8.1.1 Load Tracking

Redline maintains two values that reflect CPU load. The first, Rload, represents the

actual, recent CPU use. Once per second, Redline measures the CPU bandwidth consumed

during that interval by interactive tasks. Rload is the exponentially decayed average of

these CPU bandwidth samples, and is calculated using the following equations:

diff = Load−Rload

d = (1+diff
2)× (dmax−dmin)+dmin

Rload= (1−d)×Rload+d×Load

where dmin= 0.05 and dmax= 0.95. The rationale behind these equations is to smooth out

the load fluctuation and give a conservative estimation. When load increases, the lastest

sample (i.e., the higher load) contributes more to the average. When load decreases, the

older value contributes more to the average, so that an exceptionally low sample does not

lead to significantly under-estimated Rload.

Redline keeps the most recent four samples of Rload to determine whether the system is

overloaded or underloaded to trigger necessary load control. This four-second observation

85

window is long enough to smooth short-lived bursts of CPU use, and is short enough that

longer-lived overloads are quickly detected.

The second value, Sload, projects expected CPU load. When an interactive task i is

launched, the task’s specified CPU bandwidth, Bi = Ci
Ti

, is added to Sload. Since speci-

fications are conservative, Sload may overestimate the load. Therefore, over time, Sload

is exponentially decayed toward Rload. Additionally, for short-lived interactive tasks that

terminate within the observation window, their contribution to Sload is subtracted from that

value, thus updating the projection.

8.1.2 Management Policies

Redline uses the most recent Rload and Sload to conduct its admission control, and the

samples of Rload in the observation window to determine whether dynamic load control

is necessary. Based on these CPU load values, Redline controls interactive tasks through a

set of three policies:

Admission

When a new interactive task i is submitted, admission control must determine whether

accepting the task will force the CPU load above a threshold Rhi, thus placing too high a

load on the system. If

max(Rload,Sload)+Bi <Rhi

then i is admitted as an interactive task; otherwise it is placed into the best-effort class. In

this way, Redline avoids overloading the system, but does so based on measured system

load, thus allowing higher utilization than real-time systems.

Revocation

Because of Redline’s permissive admission control, it is possible for some interactive

tasks to increase their CPU consumption and overload the system. Under these circum-

86

stances, Redline revokes the interactive classification of some tasks, demoting them to the

best-effort class, thus allowing the remaining interactive tasks to remain responsive.

Specifically, if all the samples in the observation window (i.e. the past four seconds)

satisfy

Rload>Rmax

where Rmax>Rhi, then Redline considers the system is overloaded, and revokes tasks until

Rload falls below Rhi. Redline prefers to revoke a task that exhausted its reservation during

the observation window, indicating that the task may be more CPU-bound and less inter-

active. However, if there are no such tasks, Redline revokes the task with the highest CPU

bandwidth consumption. Certain tasks are set to be invulnerable to revocation to preserve

overall system responsiveness, such as kernel threads and the graphical user interface tasks.

Reactivation

When Redline finds that the system has plenty of resources, it will attempt to reactivate

a task. Similar to revocation, if all the samples in the observation window satisfy

Rload<Rlo

then Redline will reactivate previously-revoked tasks, promoting them from the best-effort

class to the interactive class. A task is eligible for reactivation if both (a) it passes the

usual admission test, and (b) its virtual memory size minus its resident size is less than free

memory currently available (i.e., it will not immediately induce excessive swapping). We

further constrained Redline to reactivate only one task per period of an observation window

to avoid reactivating tasks too aggressively.

8.2 The EDF Scheduling Class

Redline extends the Linux system with a new EDF scheduling class in addition to its fair

queueing proportional share scheduler, CFS [97], and uses it to handle CPU reservations for

interactive tasks. Redline’s EDF scheduler has its own set of per-CPU run queues just as the

87

CFS scheduler does. Redline inserts interactive tasks into the run queues of both the CFS

and EDF schedulers so that each interactive task can receive any unused CPU bandwidth

after consuming its reserved bandwidth. The EDF scheduler has precedence over the CFS

scheduler. During a context switch, Redline first invokes the EDF scheduler. If the EDF

scheduler has no runnable tasks to schedule, then Redline invokes the CFS scheduler.

8.2.1 Scheduling Algorithm

Redline’s EDF scheduler allocates CPU cycles to interactive tasks in terms of periods.

Each period has a startTime and deadline, where deadline− startTime = T (the reservation

period in its specification). At the begin of each period, an interactive task is entitled to have

computation time C, as given in its specification. As a task executes, the EDF scheduler

keep track of its CPU usage and deducts the amount consumed. The remaining entitled

computation time is kept as budget.

Suppose the current time is now. An interactive task is eligible to use its CPU reserva-

tion, only if startTime≤ now. Its status can be categorized into the following cases:

• budget > 0 ∧ deadline > now: The task still has budget and the deadline is not

reached yet. This is the most common case, in which the task can continue to con-

sume its reserved bandwidth.

• budget ≤ 0 ∧ deadline > now: The task has consumed its entitled reservation before

the deadline is reached. It is not eligible for more CPU bandwidth, and is not allowed

to perticipate in EDF scheduling until its next period starts.

• budget > 0 ∧ deadline≤ now: The task still had budget remaining at the end of a pe-

riod. It could be that the task does not have enough work or the system is overloaded,

making it misses the deadline.

• budget ≤ 0 ∧ deadline ≤ now: The task has missed a deadline, and consumed its

entitled reservation after the period ended.

88

Listing 2 Assign a new reservation period to task p
1: // has budget, deadline not reached
2: if (budget > 0) && (now < deadline) then
3: return; // continue to use the current period
4: end if
5: // has budget, deadline is reached
6: if (budget > 0) && (now ≥ deadline) then
7: if has no interruptible sleep then // there is no voluntary sleep
8: return; // continue to use the current period
9: end if

10: end if
11:
12: // no budget left: assign a new period
13: dequeue(p) // remove from the runqueue
14: startTime ← max(now, deadline) // set a new startTime
15: deadline ← startTime + T // set a new deadline
16: budget ← max(budget + C, C) // refill the budget
17: enqueue(p) // put back into the runqueue

If the task has consumed its budget or passes its deadline, the EDF scheduler assigns

a new reservation period to the task. The EDF scheduler checks the status of a task and

determines whether to assign a new reservation period at the following places using the

algorithm in Listing 2.

1. when a new task is initialized,

2. every timer interrupt after a task’s budget is updated, and

3. when a task wakes up from sleep.

A task may reach its deadline before expending its budget (see line 6) for the following

reasons: it did not actually have enough computation work to exhaust the budget in the past

period; it ran into a CPU overload; or it experienced non-discretionary delays, such as page

faults or disk I/O. The EDF scheduler differentiates these cases by checking whether the

task voluntarily gave up the CPU during the past period (i.e., had at least one interruptible

sleep, see line 7). If so, the EDF scheduler considers that it has at least served one CPU

89

request for the task, and assigns a new period to it. Otherwise, it considers that the task

missed a deadline and pushes its work through as soon as possible.

If a task consumes its budget before reaching the deadline, it will receive a new reser-

vation period. But the start time of this new period is later than the current time (see line

14). The EDF scheduler considers a task eligible for using reserved CPU time only if

startTime≤ now. Therefore, it will not pick this task for execution until its new reservation

period starts. This mechanism prevents an interactive task from consuming more than its

entitlement and thereby interfering with other interactive tasks.

As we can see, the EDF scheduling algorithm itself does not guarantee that every task

will meet its deadline. It uses only deadlines to determine the execution order. Missing

deadlines caused by short bursts of CPU requests do not significantly impact the user ex-

perience. However, if the system is indeed overloaded, i.e., too many interactive tasks are

exhausting their reservations resulting in many missed deadlines, then the CPU bandwidth

consumed by the EDF scheduling class will stay very high for a substantial amount of time.

Redline is able to react to such conditions and trigger dynamic load control to resolve the

overload.

8.2.2 EDF Scheduler Data Structure and Complexity

At any context switch, the EDF scheduler always picks for execution the eligible task

that has the earliest deadline. We implemented its run queue using a tagged red-black

tree similar to the binary tree structure proposed in EEVDF [123]. The red-black tree is

sorted by the start time of each task. Each node in the tree has a tag recording the earliest

deadline in its subtree. The complexity of its enqueue, dequeue, and select operations are

all O(logn), where n is the number of runnable tasks.

The run queue of the Linux CFS scheduler also uses a red-black tree, which is sorted by

the virtual time of each task (i.e., the amount of CPU time received divided by the weight

of a task). The CFS scheduler always picks the task that has the smallest virtual time for

90

execution. Therefore, Redline’s EDF scheduler has the same complexity as the default CFS

scheduler, and should have comparable scheduling overhead.

The scheduling overhead mainly consists of two parts: (1) selecting a new task for

execution, and (2) maintaining the status of the running task. When the EDF scheduler

needs to pick the next task for execution, it first locates the subtree containing the earliest

deadline of all eligible tasks. It then traverses this subtree looking for the task with the

earliest deadline by following the tag on each node. The CFS scheduler can pick the next

task within constant time in most of the cases, if the left-most node of the red-black tree is

cached.

Both the EDF and CFS schedulers update the status of the running task once every timer

interrupt, and then decide whether to schedule a new one. The Redline EDF scheduler only

needs to dequeue/enqueue a task after assigning a new reservation period, while the CFS

scheduler has to dequeue/enqueue a task every time its virtual time is updated (i.e., at least

once every timer interrupt).

8.3 SMP Load Balancing

Load balancing in Redline is quite simple, because the basic CPU bandwidth needs of

an interactive task will be satisfied once it is accepted on a CPU. It is not necessary to

move an accepted task unless that CPU is overloaded. The only thing Redline has to do is

select a suitable CPU for each new interactive task during calls to exec(). Redline always

puts a new task on the CPU that has the lowest Rload at the time. Once the task passes

the admission test, it stays on the same CPU as long as it remains accepted. If the CPU

becomes overloaded, Redline will revoke at least one interactive task tied to that CPU.

Once turned into best-effort tasks, revoked tasks can be moved to other CPUs by the load

balancer. When a revoked task wakes up on a new CPU, Redline will attempt to reactivate

its specification if there are adequate resources there.

91

Redline also prohibits an idle CPU from stealing interactive tasks from other CPUs to

avoid unnecessary risk of overloading. For example, suppose CPU1 is 90% busy and CPU2

is 70% busy. If CPU1 steals one interactive task that needs 20% bandwidth from CPU2,

then CPU1 will suddenly become overloaded and the task will not be satisfied. Stealing

interactive tasks complicates load balancing significantly, but does not offer much benefit.

Balancing best-effort tasks to consumed non-reserved bandwidth is good enough for most

systems.

Furthermore, in Linux, the load indicator for balancing best-effort tasks is the total

weight of all runnable tasks on each CPU. This approach is not appropriate for Redline,

since a fraction of CPU bandwidth is dedicated to reservations. For example, a CPU spend-

ing 80% of its bandwidth on reservations should support fewer best-effort tasks than a CPU

spending 30% on reservations. Therefore, Redline scales the load indicator for each CPU

for a fair comparison when balancing best-effort tasks:

∑weight/(1−Rload)

8.4 Discussion

Since Redline’s admission control takes the current CPU load into account, a user or

system administrator can modestly over-specify a task’s resource needs. The only danger in

over-specification is that a newly-launched task may be rejected by the admission control if

the system is sufficiently loaded with other interactive tasks. Once admitted, an interactive

task is managed according to its real usage, negating the impact of the over-specification. If

an interactive task is under-specified, it will at least make steady progress with the reserved

CPU bandwidth allocated to it. Furthermore, if the system is not heavily loaded, an under-

specified interactive task will also be allocated some of the remaining CPU bandwidth

along with the best-effort tasks. Thus, even under-specified tasks become poorly responsive

only if the system load is high.

92

Redline revokes tasks on a per-thread basis when it detects overload, not on a per-

process basis. Therefore, a multi-threaded application may have some of its threads re-

voked, while others remain interactive. This makes sense for applications that have multi-

ple threads working independently, such as a web browser that uses one thread to handle

each tab. However, revoking threads individually can lead to a phenomenon called priority

inversion where a higher priority task is blocked for a long period of time waiting for a

lower priority task. For example, in Redline, an interactive task may wait for a best-effort

task to release a lock, but the best-effort task has little chance to run and blocks the in-

teractive task. This problem can be solved by allowing the best-effort task temporarily to

borrow the specification from the waiting interactive task [93]. Ideally, the specification

could have a flag indicating whether an application should be revoked as a whole or on

per-thread basis.

93

CHAPTER 9

REDLINE: VIRTUAL MEMORY MANAGEMENT

The goal of existing virtual memory managers (VMM) in commodity operating sys-

tems is to maximize overall system throughput. Most VMMs employ “use-it-or-lose-it”

policies under which memory referencing speed determines allocation: the more pages a

task references per second, the larger its main memory allocation.

A task that blocks on I/O is more vulnerable to losing its allocation and then later being

forced to page-swap when it awakens. Furthermore, typical VMMs do not isolate each

task’s allocation, and thus a single memory-intensive task can “steal” the allocations of

other tasks that are not actively using their pages, causing the other tasks to page-swap

more often. Worse, page swapping itself is the kind of blocking I/O operation that can

cause a task to lose more of its allocation, exacerbating the problem.

Because interactive tasks routinely block on user input, they are especially susceptible

to allocation loss. If an interactive task has an insufficient allocation, its execution is likely

to be interrupted by lengthy page-swap operations, leaving it unresponsive, and making it

even more susceptible to further allocation loss. The Redline VMM is designed to keep

interactive tasks responsive even after blocking on input. We now describe what modifica-

tions Redline has made to the VMM system to achieve this, starting from an overview of

its page reclamation mechanism.

9.1 Redline Page Reclamation

In order to keep interactive tasks responsive under memory contention, the VMM must

have several important capabilities. First, it has to cache enough pages for interactive tasks,

94

Is p an Iact task?

Normal Pass:

+ reclaim best-effort
and expired pages

reclaimed enough?

Is p a Iact task?

Additional Pass:

+ flush best-effort pages
into the inactive list

+ book best-effort pages
during scan

+ reclaim best-effort

and expired pages
run out of

best-effort pages?

Can p use Iact reserve?

Enough reserved pages?

Revoke at least

one interactive task

Return

N

N

Y

Y

Y

N

N

Y

Y

Y

N

Figure 9.1. Redline VMM page reclamation flow graph. The gray components are ad-
ditions unique to Redline. Redline protects the working set of interactive applications by
skipping unexpired pages; provides limited isolation among them using a rate-controlled
reserve; and further reduces the memory reference speed of best-effort application by set-
ting speed-bumps.

so that they do not frequently run into page swapping. It needs to address the conflicts

among interactive tasks when not all of them can be satisfied. It has to serve the mem-

ory allocation requests coming from interactive tasks as fast as possible, and ensure that

best-effort tasks cannot prevent them from getting memory. To achieve these capabilities,

Redline extends the standard VMM with several additional mechanisms.

Figure 9.1 gives an overview of Redline’s page reclamation algorithm, in which the gray

components are additions made by Redline. To be specific, Redline extends the standard

95

VMM with the following mechanisms to serve the needs of interactive tasks, which we will

discuss in detail in the remainder of this chapter:

• Protecting working sets: Redline protects the working sets of interactive tasks from

being arbitrarily reduced by the VMM, and thus they retain their responsiveness in

the face of memory contention. When it cannot cache the working sets of all interac-

tive applications, Redline will dynamically demotes one task to best-effort.

• Rate-controlled reserve: Redline uses a small memory reserve to isolate interactive

tasks from best-effort tasks, and it further controls the rate of consumption of reserved

pages to provide additional limited isolation among interactive tasks.

• Speed-bump pages: Redline deliberately slows down the memory reference speed

of best-effort tasks under heavy memory pressure to ensure that interactive tasks

never lose the battle when competing for pages.

9.2 Protecting working sets

The Linux VMM uses a page replacement algorithm that approximates a global least

recently used (gLRU) policy. Pages are approximately ordered by recency of use, without

consideration of the task to which each page belongs. The VMM cleans and selects for

reclamation the least-recently used pages. The implicit goal of this policy is to minimize

the total number of page swaps performed by the system, irrespective of how any one

process performs.

For an interactive task to remain responsive, a VMM must keep its working set—those

pages that are currently in active use—resident in memory. Recall the working set defini-

tion given by Denning [49]:

The working set W (t,τ) of a process at time t is the collection of pages
referenced by the process during the process time interval (t− τ, t).

96

This model indicates that the working set of a process highly depends on the parameter

τ. The gLRU policy determines the working set by scanning the list of memory pages. A

page is considered not in the working set if it has not been referenced since the last scan,

and thus it is subjected to eviction. This means that the interval between two scans of the

page list is in fact the working set parameter τ. When memory pressure becomes high, the

VMM repeatedly scans through the page list at high frequency, looking for pages to evict,

which effectively sets τ to be very small. As a result, it significantly under-estimates the

memory needed by those processes that have relatively low memory reference speed.

Consequently, under gLRU a portion of a task’s working set may be evicted from main

memory if the system-wide demand for main memory is large enough, and if a task does

not reference its pages rapidly enough. In the face of such memory pressure, interactive

tasks can quickly lose their pages and become non-responsive. In practice, the GUI subsys-

tem usually gets affected first, rather than batch-style background tasks, which is exactly

opposite to what users expect and desire.

In Redline, each interactive task can specify a memory protection period π. The VMM

will evict a page only if it has not been referenced for at least π seconds1—that is, if the page

has expired. By default, π = 30×60, or 30 minutes if π is not supplied by the specification.

This default period requires that a user ignore an interactive application for a substantial

period of time before the VMM can evict its working set.

In essence, the Redline VMM attempts to use a fixed working set parameter τ for each

interactive task, which is just the memory protection period π. In general, a larger π protects

more pages for longer time, behaving closer to locking memory pages, while a smaller π

makes the VMM treat a task more like a best-effort one. Instead of using the default, users

can choose a suitable π depending on their own needs, and write it in the specification as

presented in Chapter 7.

1In order to minimize overhead, our Redline implementation actually tracks the last time a page’s refer-
enced bit was cleared, rather than tracking the last time the page was referenced.

97

9.2.1 Page Reclamation Algorithm

The Redline VMM handles the pages of interactive tasks and best-effort tasks differ-

ently, as shown in Figure 9.1. If page reclamation is caused by a best-effort task, then

the VMM reclaims pages using the system’s default VMM mechanism, but with a slight

modification: only pages belonging to best-effort tasks and expired pages belonging to in-

teractive tasks may be reclaimed. Among these two types of pages eligible for reclamation,

the VMM selects the least recently used pages.

However, if page reclamation is caused by an interactive task, then the VMM first tries

to use the rate-controlled memory reserve (described in more detail below). If this reserve

provides insufficient space, reclamation proceeds as above for best-effort tasks, reclaiming

not recently used pages from best-effort tasks and expired pages form interactive tasks.

If this attempt at reclamation is also insufficient, the VMM then performs an additional

scanning pass which takes all the pages used by best-effort tasks under consideration, and

reclaims more recently used pages from them.

9.2.2 Dynamic Load Control

If even the aggressive reclamation performed in the additional scanning pass is insuf-

ficient, then there is not enough memory to cache the working sets of all of the interactive

tasks. In this case, the Redline VMM demotes some interactive tasks to best-effort tasks.

For multi-threaded applications, the VMM will demote the whole process, rather than a

portion of its threads. This is because it is unlikely to keep the remaining threads respon-

sive when the working set of the entire process is not cached. After taking this step, the

VMM starts the whole page reclamation process over again, attempting to reclaim suffi-

cient main memory space.

Which task to demote is a policy question, whose answer changes depending on system

and user preferences. Redline tries to support as many interactive applications simultane-

ously as possible, therefore the policy it uses is to demote the task that consumes the largest

98

amount of memory so that the remaining ones stay satisfied. Later, Redline will attempt to

reactivate the demoted task when memory becomes plentiful.

9.3 Rate-controlled reserve

The Linux VMM forces the allocating task to reclaim pages when the amount of free

memory falls below a threshold, which leaves enough memory only for emergency kernel

allocations. As a result, a single memory demanding task is able to eat up all of the free

memory and to force other tasks to reclaim pages, even if they need to allocate only a

small amount of memory. This approach does not provide any isolation among tasks, and

therefore it is not desirable for maintaining good response time. Many interactive tasks

do repeatedly allocate small memory chunks throughout their lifetime, including the X

server, media player, etc. Should such an interactive task fault, it would block during the

potentially lengthy reclamation process.

To solve this problem, the Redline VMM maintains a small free-memory reserve (about

8 MB in our implementation) dedicated for interactive tasks, so that they can allocate small

memory chunks from it without blocking. Furthermore, the Redline VMM controls the rate

at which this reserve is consumed by each interactive task to ensure that it is not exhausted

by a single task. This mechanism allows Redline to serve small infrequent memory allo-

cations from interactive tasks much faster, preserving their responsiveness in the face of

memory contention. Although an interactive task still may block during reclamation, the

reserve makes that situation significantly less likely.

The Redline VMM gives each interactive task a reserve budget b (the default is 256

pages) and records the time t f when the first page in its budget is consumed. For each page

consumed from the reserve, the Redline VMM reduces the budget of the consuming task

and then triggers a kernel thread to reclaim pages in background if necessary. We do not

want any one task quickly to exhaust the reserve and then affect other tasks, so the rate

at which a task consumes reserved pages should not be faster than the rate at which the

99

system can reclaim them. Therefore, the Redline VMM charges each reserved page a cost

c that is roughly the overhead of one disk access operation (5 ms in Redline). When a task

expends its budget, the VMM evaluates the inequality

t f +bc < now

where now is the current time. If the inequality is true, then the VMM adds b to the task’s

budget. If the inequality is false, the task is consuming reserved pages too quickly. Thus,

the VMM prevents the task from using the reserve until b pages are reclaimed or the reserve

resumes its full capacity.

This is a typical example of the trade-off between resource utilization and isolation

that we have to face during the design of Redline. Standard VMMs allow high memory

utilization, but fail to provide the isolation needed by interactive tasks. Reserving memory

a priori would provide strong isolation, but could lead to significant over-provisioning. The

small rate-controlled reserve in Redline offers limited isolation between interactive and

best-effort tasks, as well as among interactive tasks themselves, while allowing almost full

utilization of the system memory. It serves the needs for the system quite well in practice.

We show the effect of this limited isolation in Chapter 11.

9.4 Setting speed-bump pages

A VMM can reclaim only a clean (unmodified) page; dirty (modified) pages must be

copied to the backing store, thus cleaning them, before they can be reclaimed. Sometimes,

a best-effort task may dirty pages faster than the VMM can clean them, thus preventing

the VMM from reclaiming those pages. The VMM keeps writing its pages back to swap,

but makes no actual progress in reclaiming them. If there are too many such unreclaimable

pages, the VMM may be unable to cache the working sets of interactive tasks, thus allowing

one best-effort task to degrade interactivity.

To prevent best-effort tasks from “locking” memory in this manner, whenever the Red-

line VMM is aggressively searching for pages to reclaim (in the additional scanning pass

100

shown in Figure 9.1) and it finds a page belonging to a best-effort task, it removes access

permissions to that page and marks it as a speed-bump page. If the task then references

that page, execution traps into the kernel and the VMM notices that the referenced page

is a speed bump. Before restoring access permissions and resuming execution, Redline

suspends the task briefly (e.g., 100 ms). The VMM therefore slows the task’s memory

reference rate, giving the VMM enough time to reclaim more of its pages.

Redline sets speed-bump pages only when it fails to make reasonable progress while

there are still plenty of pages used by best-effort tasks. Furthermore, it does not need to

set many speed bump pages. Usually a few speed-bumps (32 pages in our implementation)

allow the VMM to reclaim enough pages. As a consequence, best-effort tasks are forced to

take page faults repeatedly in their later execution, making their memory reference speed

even lower. Combining this mechanism with working set protection, Redline ensures that

interactive tasks never lose the battle when competing for memory pages.

9.5 Discussion

For any task to be responsive, the operating system must cache its working set in main

memory. Many real-time systems conservatively “pin” all pages of a task, preventing their

removal from main memory to ensure that the working set is cached. In contrast, Redline

protects any page used by an interactive task within the last π seconds, thus protecting the

task’s working set while allowing its inactive pages to be evicted. In choosing a value for

π, it is important not to make it too small, causing the system to be behave like a standard,

commodity OS. It is safer to overestimate π, although doing so makes Redline behave more

like a conservative real-time system. This method of identifying the working set works well

under many circumstances with reasonable choices of π.

However, there are other mechanisms that estimate the working set more accurately.

By using such mechanisms, Redline could avoid the dangers caused by setting π poorly.

One such alternative is the working set measurement used in CRAMM [134]. CRAMM

101

maintains reference distribution histograms to track each task’s working set on-line with

low overhead and high accuracy. While we believe that this approach is likely to work well,

it does not guarantee that the working set is always properly identified, given the seemingly

random behavior of interactive applications. Specifically, if a task performs a phase change,

altering its reference behavior suddenly and significantly, this mechanism will require a

moderate period of time to recognize the change. During this period, CRAMM could

substantially under- or over-estimate application working set sizes. However, we believe

such behavior is likely to be brief and tolerable in the vast majority of cases.

102

CHAPTER 10

REDLINE: DISK I/O MANAGEMENT

The disk I/O management subsystem of existing operating systems is quit complicated.

Typically, an I/O request has to go through several layers in the system before its data can

be actually read from or written to a disk. Each of these layers takes care of part of the job:

• Caching: The system usually caches disk files in memory to avoid unnecessary I/O

operations, in what is referred to as a page cache in Linux. The page cache can

also buffer some file updates and later flush them to disk en masse to achieve higher

throughput.

• File system and journaling: The file system organizes the files on disk and deter-

mines the allocation of their data. Journaling ensures that the updates are written to

disk in a consistent manner, so that the file system can be restored after a crash.

• Block device layer: This layer first transforms application’s I/O requests to a low-

level disk representation, and then determines in which order they should be dis-

patched to the device driver to carry out actual I/O operations.

Like the VMM, these components of the I/O management of a general-purpose oper-

ating system do not distinguish between interactive and best-effort tasks. The policies that

determine when and in what order pages are read from and written to disk are designed

to optimize system throughput and are oblivious to CPU scheduler goals. This oblivious-

ness can lead the I/O manager to schedule the requests for best-effort tasks before those

of interactive tasks in a way that substantially increases response times. Similarly, these

103

components work independently without any coordination, and thus, negative interactions

among them can easily disrupt responsiveness.

In this chapter we present the problems caused by isolation of these components and de-

scribe how the Redline I/O manager coordinates these components so that interactive tasks

can finish their I/O operations as quickly as possible. We present necessary background

knowledge to help understand both the problems we identify as well as their solutions.

Although the discussion in this chapter is specifically tied to the current Linux implemen-

tation, the general principles should apply to many general purpose operating systems,

where similar problems exist.

10.1 Page Cache and Journaling

Normally, Linux buffers data from write operations in its page cache. This is called

buffered I/O. The page cache is allowed to cache a certain number of dirty file pages, which

is controlled by a single threshold. When this threshold is reached, any task that attempts

to perform write operations has to launder enough dirty pages before it can put its own data

in the page cache. As a result, a single best-effort task can pollute the page cache with

enough dirty pages so that interactive tasks have to perform lengthy page laundering when

they want to write, reducing their responsiveness. However, compared to this, things can

get much worse when file system journaling is involved.

10.1.1 Compound Transactions in Journaling

The ext3 journaling file system is the default for most Linux distributions. Like many

journaling file systems, ext3 commits its updates as atomic transactions, each of which

writes a group of cached, dirty pages along with their new metadata. Its implementa-

tion is designed to maximize system-wide throughput, sometimes to the detriment of CPU

scheduling goals. We describe here a particular problem with this file system’s implemen-

tation that Redline fixes. Although this particular problem is specific to Linux’s ext3, it is

104

representative of the way in which any operating system component that manages system

resources can undermine interactivity.

Consider two tasks: an interactive task Pi, and a best-effort task Pbe, which simultane-

ously use the write() system call to save data to some file on the same ext3 file system.

These system calls will not immediately initiate disk activity. Instead, the data written via

this mechanism will be buffered as a set of dirty pages in the file system cache. Critically,

these pages will also be added to a single, global, compound transaction by ext3. This

transaction will thus contain dirty pages from any file written by any task, including pages

written by both Pi and Pbe.

Consider the case that Pbe writes a large amount of data through write(), while Pi writes

a small amount. Furthermore, after both tasks have performed these write() operations,

suppose that Pi performs an fsync() system call to ensure that its updates are committed to

disk. Because of the compound transactions used by ext3, Pi will block until both its own

dirty pages and those of Pbe are written to disk.

If the system caches too many pages written by Pbe, then the fsync() operation will

force Pi to become noticeably unresponsive. This poor interaction between compound

transactions and fsync() occurs not only for ext3, but also for Reiser FS [107]. Under

Linux, the dirty threshold d is a system-wide parameter that determines what percentage

of main memory may hold dirty pages—pages that may belong to any task—before a disk

transfer is initiated to “clean” those pages. By default, d = 10%, making it possible on a

typical system for 100 – 200 MB of dirty pages to be cached and then written synchronously

when fsync() is called. Worse, during committing the journaling process has to compete

for I/O bandwidth with other processes that are laundering dirty pages, making Pi wait even

longer.

Redline takes a number of steps to limit these effects. First, Redline assigns different

dirty thresholds for each type of task (RT:10%, Iact:5%, BE:2MB), which relieves inter-

active tasks from performing unnecessary page laundering. Redline further restricts the

105

threshold for best-effort tasks to a constant limit of 2MB, ensuring that no matter the size

of main memory, best-effort tasks cannot fill the compound transactions of some journaling

file system with a large number of dirty pages. Finally, Redline assigns the kernel task that

manages write operations for each file system (in Linux, kjournald) to be an interactive

task, ensuring that time-critical transaction operations are not delayed by other demands on

the system.

10.1.2 Large Direct I/O Operations

In addition to buffered I/O, most operating systems also support direct I/O, which al-

lows a task to manage its own buffer for file data. However, although direct I/O bypasses the

page cache, it can still cause interactive tasks to lose their responsiveness when interacting

with journaling.

To understand how this can happen, we need to go a little deeper into the compound

transaction. The life-time of a transaction in a journaling file system usually consists of

four stages:

• Running: the transaction is open and accepting incoming I/O requests.

• Locked: the transaction is preparing for commit and is waiting for all ongoing oper-

ations to finish. During this period of time, it no longer accepts new I/O operations,

and thus all incoming operations are suspended. The system will not create a new

transaction at this point.

• Committing: the transaction is fully closed and its content is under write-back. As

soon as the previous transaction enters this stage, the system can create a new trans-

action to serve the suspended, as well as newly arrived requests, while committing

the previous one.

• Committed: the data and metadata of the transaction are written back to the disk,

and the commit is finished.

106

The journaling system effectively freezes all the I/O operations as long as the current

transaction stays Locked. Therefore, if the current transaction is held in the Locked stage

for too long, it can significantly degrade the responsiveness of interactive tasks. Unfortu-

nately, this can indeed happen in the current Linux implementation. Linux treats direct I/O

to an existing file as a single operation, while buffered I/O is automatically broken down to

page granularity. As a result, one direct I/O with a huge buffer can cause the system to fail

to respond to I/O requests for a long period of time.

Redline makes a small change in the file system to solve this problem. Every time

the file system locates the next data block, it also checks whether the current transaction

is in the Locked stage. If that is the case, it immediately closes the current operation

and creates another operation for handling the remaining part of the direct I/O request. In

this way, Redline effectively splits the direct I/O operation to smaller pieces so that the

current transaction can quickly enter the committing stage and creates an new transaction

to process later requests.

10.2 Block device layer and I/O scheduler

The Linux block device layer is designed to be extensible, allowing each block device

to have its own I/O scheduler, which is refered to as an elevator, because managing disk

seeks is like scheduling elevator movement. Figure 10.1 presents the structure of the Linux

block device layer. Every I/O operation has to pass congestion control before it can be

accepted (the left part). Accepted requests are stored in a request queue, which is managed

by a specific elevator (the middle part). In our case, Figure 10.1 shows the default elevator,

dubbed Completely Fair Queuing (CFQ). The I/O scheduler determines when and in which

order requests are dispatched to its corresponding device driver. Finally, the device driver

serves dispatched requests using the SCAN (elevator) algorithm.

Much like the journaling file systems described above, a block device layer has unified

data structures, thresholds, and policies that are applied irrespective of the tasks involved.

107

CFQ Service Tree

dispatch

insert

request

Dispatch

Queue

Congestion Control

I/O request

queue is full

Task p

block the task

cfqq

RT BE IDLE
Serve

requests:

SCAN

algorithm
The I/O scheduler dispatches

requests into the dispatch queue

R W
Wait

Queues

Tasks in read/write wait queue

are waked up in FIFO order

Figure 10.1. How I/O requests are organized and processed in block device layer in Linux.

These components are typically designed to maximize system-wide throughput. However,

the unification performed by these components may harm the responsiveness of interactive

tasks. Redline addresses these problems by handling these components of the block device

layer on a per-task-type basis.

10.2.1 Unified Threshold for Congestion Control

Although the request queue of CFQ internally organizes I/O requests into classes (real-

time, best-effort, and “idle”), it has a maximum capacity (128 for read and write each)

that is oblivious to these classes. When a new request is submitted, the congestion control

mechanism examines only whether the request queue is full, with no consideration of the

requesting task’s class. If the queue is full, the submitting task blocks and is placed in a

FIFO-ordered wait-queue. Thus, a best-effort task might rapidly submit a large number of

requests, thus congesting the block device and repeatedly delaying interactive tasks that are

performing I/O operations.

Redline addresses this problem by using multiple request queues, one per task class.

If one of the queues fills, the congestion control mechanism will block processes only

in the class associated with that queue. Therefore, no matter how many requests have

108

been generated by best-effort tasks, those requests alone cannot cause an interactive task to

block.

10.2.2 Shared Queues for I/O Requests

In addition, while the default request queue for CFQ is capable of differentiating be-

tween various request types, it does not provide sufficient isolation for interactive tasks.

Specifically, once a request has been accepted into the request queue, it awaits selection

by the I/O scheduler to be placed in the dispatch queue, where it is scheduled by a typi-

cal elevator algorithm to be performed by the disk itself. The default CFQ scheduler not

only gives preference to requests based on their class, but also respects the priorities that

tasks assign requests within each class. However, each buffered write request—the most

common kind—is placed into a set of shared queues in the best-effort class irrespective of

the task that submitted the request. Therefore, best-effort tasks may still interfere with the

buffered write requests of interactive tasks by submitting large numbers of buffered write

requests.

Redline adds an interactive class Iact to request queue management, matching its CPU

scheduling classes. All write requests are placed into the appropriate request queue class

based on the type of the submitting task. The I/O scheduler prefers requests from the inter-

active class over those in the BE class, thus ensuring isolation of the requests of interactive

tasks from BE tasks.

Additionally, the specification for a task (see Chapter 7) includes the ability to specify

the priority of the task’s I/O requests. If the specification does not explicitly provide this

information, then Redline automatically assigns a higher priority to tasks with smaller T

values. Redline organizes requests on a per-task basis within the given class, allowing the

I/O scheduler to provide some isolation between interactive tasks.

Finally, CFQ by default does not guard against starvation. A task that submits a low-

priority I/O request into one of the lower classes may never have that request serviced.

109

Redline modifies the I/O scheduler to ensure that all requests are eventually served, pre-

venting starvation. Specifically, Redline records the time when each request is accepted

into the request queue and puts them into an additional FIFO list. At the end of each dis-

patch, the I/O scheduler also checks the first request of this list to see whether it has been

there too long. If so, Redline will schedule the request.

10.3 Discussion

Most interactive applications perform a relatively small amount of disk I/O in an in-

frequent manner, which usually does not exceed the system capacity. We believe that a

preemptive priority-driven approach combined with per-process I/O request management

will work well enough for commodity operating systems and will minimize modification

of the kernel. However, many real time systems have their own specialized disk I/O sched-

ulers [81, 126, 60]. These I/O schedulers offer more precise bandwidth control and could

potentially be used by Redline.

110

CHAPTER 11

REDLINE: EXPERIMENTAL EVALUATION

We have implemented the Redline system as an extension to the Linux kernel. We

have also generated a set of specifications for over 100 applications for a Linux system that

uses the K Desktop Environment (KDE). Recall that Figure 1.2 showed that the execution

of a single compilation command (make -j32) significantly degrades responsiveness on a

standard system, while Redline is able to keep the whole system responsive, as well as play

the video smoothly. In this chapter, we further evaluate the effectiveness of our Redline

implementation by stressing the system with a variety of extreme workloads, including

fork “bombs”, memory “bombs”, and bursty, large disk I/O requests.

11.1 Methodology Overview

Platform: We perform all measurements on a system with a 3 GHz Pentium 4 CPU,

1 GB of RAM, a 40GB FUJITSU 5400RPM ATA disk, and an Intel 82865G integrated

graphics card. The processor employs simultaneous multi-threading (SMT) (i.e., Intel’s

HyperThreading), thus appearing to the system as two processors. The processor has a 12

KB L1 instruction and an 8 KB L1 data cache, and an unified 512 KB L2 cache.

We use a Linux kernel (version 2.6.22.5) patched with the CFS scheduler (version 20.3)

as our control. Redline is implemented as a patch to this same Linux version. For all

experiments, the screen resolution was set to 1600 x 1200 pixels. All experiments used

both of the SMT-based virtual CPUs except when measuring the context switch overhead.

Furthermore, we ran each experiment 30 times, taking both the arithmetic mean and the

standard deviation of all timing measurements.

111

Application Settings and Inputs: In order to keep the whole system responsive, Red-

line considers many applications to be interactive. Table 11.1 shows only a subset of the

task specifications that are used in our experiments when evaluating Redline. It includes

the init process, kjournald, the X11 server Xorg, KDE’s desktop/window manager, the bash

shell, and several typical interactive applications. We left the memory protection period (π)

and I/O priority empty in all the specifications, letting Redline choose them automatically.

C:T (ms) C:T (ms)
init 2:50 kjournald 10:100

Xorg 15:30 kdeinit 2:30
kwin 3:30 kdesktop 3:30
bash 5:100 vim 5:100

mplayer 5:30 firefox 6:30

Table 11.1. A subset of the specifications used in the Redline experiments. The memory
protection period and I/O priority are chosen automatically by Redline.

The movie player, mplayer, plays a 924.3 Kb/s AVI-format video at 25 frames per

second (f/s) with a resolution of 520 x 274. To give the standard Linux system the greatest

opportunity to support these interactive tasks, we set mplayer, firefox, and vim to have a

CPU scheduler priority of -20—the highest priority possible. Also note that a pessimistic

admission test, like that of a real-time system, would not accept all of the applications in

Table 11.1, because they would overcommit the system. Redline, however, accepts these

as well as many other interactive tasks.

11.2 CPU Scheduling

Redline extends the Linux CPU scheduler with an EDF scheduling class to serve the

needs of interactive application. For the Redline system to be practical, it CPU scheduler

must have competitive performance with respect to that of Linux (i.e., the CFS scheduler).

Therefore, we first measures the overhead of Redline’s EDF scheduler and then evaluate its

effectiveness.

112

11.2.1 EDF Scheduler Overhead:

We compare the performance of the Redline EDF scheduler with the Linux CFS sched-

uler. Figure 11.1(a) presents the context switch overhead for each scheduler as reported

by lmbench. From 2 to 96 processes, the context switch time for both schedulers is nearly

indistinguishable.

However, when lmbench measures context switching time, it creates a workload in

which exactly one task is unblocked and ready to run at any given moment. This char-

acteristic of lmbench does not actually exercise the data structure for these schedulers

enough, so we further compare these schedulers by running multiple busy-looping tasks,

all of which are ready to run at any moment. We tested workloads of 1, 20, 200, and 2000

tasks. We perform this test twice for Redline, launching best-effort tasks to test its CFS

scheduler, and launching interactive tasks to test its EDF scheduler. In the latter case, we

assigned specification values for C:T as 1:3, 1:30, 1:300 and 1:3000 respectively, thus forc-

ing the Redline EDF scheduler to perform a context switch almost every millisecond. Note

that with these specification values, the Redline EDF scheduler is invoked more frequently

than a CFS scheduler would be, running roughly once per millisecond (whereas the usual

Linux CFS quantum is 3 ms).

The number of loops is chosen so that each run takes approximately 1400 seconds.

Figure 11.1(b) shows the mean total execution time of running these groups of tasks with

Linux CFS, Redline CFS, and Redline EDF. Note that the y-axis starts from 1300 seconds

to make the differences visible, because they are so small. As shown in this graph, in the

worst case the Redline EDF scheduler adds 0.54% to the running time, even when context

switching far more frequently than the CFS schedulers. Also the CFS scheduler in Redline

has almost the same performance compared to its counterparts in Linux. Note that the total

execution time of these experiments was bimodal and, as shown by the error bars, made

the variance in running times larger than the difference between results. The overhead of

using the Redline schedulers is negligible.

113

Figure 11.1. An evaluation of CPU scheduling overhead. Figure (a) shows the context
switching times as evaluated by lmbench. Figure (b) shows the total running time of varying
numbers of CPU intensive tasks. Note the y-axis starts at 1300 to make the minor variation
visible.

114

11.2.2 CPU Overload – Fork Bombs

We now evaluate the ability of Redline to maintain the responsiveness of interactive

tasks. First, we launch mplayer as an interactive task, letting it run for a few seconds.

Then, we simultaneously launch many CPU-intensive tasks, thus performing a fork bomb.

Specifically, one task forks a fixed number of child tasks, each of which executes an infinite

loop. The parent then kills the child tasks after 30 seconds. We performed two tests for

Redline: the first runs the fork bomb tasks as best-effort, and the second runs them as

interactive. In the latter case, the fork bomb tasks were given CPU bandwidth specifications

of 10:100. For the Linux test, the interactive task had the highest possible priority (-20),

while the fork bomb tasks were assigned the default priority (0).

Figure 11.2 shows the frame rate of achieved by mplayer over time during these tests.

In Figure 11.2(a), the fork bomb comprises 50 tasks, while Figure 11.2(b) shows a 2000-

task fork bomb. Both of these figures show, for Redline, best-effort and interactive fork

bombs. Under Linux with 50 tasks, mplayer begins normally. After approximately 10

seconds, the fork bomb begins and mplayer has to share the CPU with 50 more tasks,

receiving less than it needs. Since at that time, it is able to play at only about 10 frames per

second, the user has to watch the video in slow motion. Amusingly, after the fork bomb

terminates at the 40 second mark, mplayer “catches up” by playing frames at more than

triple the normal rate.1

For Linux, the 2000-task fork bomb has a similar effect on mplayer, only much worse.

Figure 11.2((b) shows that mplayer receives so little CPU bandwidth that its frame rate

drops nearly to zero (one frame every 4 or 5 seconds). The load is so high that even the

fork bomb’s parent task is unable to kill all of the children after 30 seconds, delaying

the “catch-up” phase of mplayer until approximately the 190 second mark. In fact, the

1Catching up is one of mplayer’s features that can be turned off at the user’s will. Once it is turned off,
the spikes after the fork-bombs will disappear.

115

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60

F
ra

m
e
s
 p

e
r

S
e

c
o
n

d
 (

fp
s
)

Elapsed Time (Seconds)

(a) Impact of a 50 process fork bomb on mplayer

Linux CFS: BE bomb
Redline: BE bomb
Redline: Iact bomb

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200

F
ra

m
e

s
 p

e
r

S
e

c
o

n
d

 (
fp

s
)

Elapsed Time (Seconds)

(b) Impact of a 2000 process fork bomb on mplayer

Linux CFS: BE bomb
Redline: BE bomb
Redline: Iact bomb

Figure 11.2. Playing a video and launching fork bombs of (a) 50 or (b) 2,000 CPU intensive
tasks. They immediately disrupt the responsiveness of the video in Linux, but have almost
no impact in Redline

116

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 10 15 20 25 30 35 40 45

F
ra

m
e

s
 p

e
r

S
e

c
o

n
d

 (
fp

s
)

Elapsed Time (Seconds)

Impact of moving a window on mplayer

Linux CFS
Redline

Figure 11.3. Playing video while dragging around a window.

whole Linux system becomes unresponsive, with simple tasks like moving the mouse and

switching between windows becoming so slow that human intervention is impossible.

In Redline, these fork bombs, whether run as best-effort or interactive tasks, have a

negligible impact on mplayer. This indicates that Redline successfully isolates interactive

tasks from best-effort ones, and its admission control effectively prevents the system from

accepting too much workload. Only the 2,000 task interactive fork bomb briefly degrades

the frame rate to 20 f/s, which is a barely perceptible effect. This brief degradation is

caused by the 1 ms period that Redline gives to each newly forked task before performing

an admission test, leaving the system temporarily overloaded.

11.2.3 Competing Interactive Tasks

In order to see how interactive tasks may affect each other, we launch mplayer, and

then we have a user drag a window in a circle for 20 seconds. Figure 11.3 shows that,

117

under Linux, moving a window has substantial impact on mplayer. Because we use a high

screen resolution and a weakly powered graphics card, Xorg requires a good deal of CPU

bandwidth to update the screen. However, the CFS scheduler gives the same CPU share to

all runnable tasks, allowing the window manager to submit screen update requests faster

than Xorg can process them. When mplayer wakes up, it has to wait until all other runnable

tasks make sufficient progress before it is scheduled for execution. Moreover, its requests

are inserted at the end of Xorg’s backlogged service queue. Consequently, the frame rate

of mplayer becomes quite erratic as it falls behind and then tries to catch up by submitting

a group of frame updates in rapid succession.

In Redline, mplayer plays the movie smoothly no matter how quickly we move the

window, even though Xorg and all of the tasks comprising the GUI are themselves inter-

active tasks. We believe that this is because Xorg effectively gets more bandwidth (50%

reserved plus proportional sharing with other tasks). One by-product of Xorg’s receiving

more bandwidth is that the desktop or window manager receives less bandwidth, which ef-

fectively suppresses the total number of window updates submitted. Furthermore, the EDF

scheduler causes mplayer add its requests into Xorg’s service queue earlier, causing the

frame to be played on time.

11.3 Memory Management

Redline extends the standard VM system with several mechanisms to ensure better

response time for interactive applications. In this part, we evaluate how well these mech-

anisms work (i.e., protecting working sets, the rate-controlled reserve, and speed-bump

pages) in the face of heavy memory contention.

11.3.1 Memory overload – Memory Bombs

We simulate a workload that has a high memory demand by using memory bombs.

This experiment creates four tasks, each of which allocates 300 MB of heap space and then

118

repeatedly writes to each page in an infinite loop. For Redline, we perform two experi-

ments: the first launches the memory bombs as best-effort tasks, and the second launches

them as interactive ones using specification 10:100.

The upper part of Figure 11.4 shows the frame rate for mplayer over time on Linux

with the memory bomb tasks running. The frame rate is so erratic that the movie is un-

watchable. Both the video and the audio pause periodically. The memory bomb forces the

VMM to swap out many pages used by GUI applications, making the system as a whole

unresponsive. It appears that the erratic frame rate settles somewhat at around the 80 sec-

ond mark. The lower part of Figure 11.4 shows the time at which each frame is played

during the period from second 118 to second 120. We see that although the overall frame

rate during this period is within a normal range, frames are displayed in bursts, still leaving

the user with an undesirable experience.

As shown by Figure 11.4, under Redline mplayer successfully survives both the best-

effort and interactive memory bombs. Each of them leads to only one brief disruption of

the frame rate (less than 3 seconds long), 2 which a user will notice but is likely to tolerate.

Most of the time Redline plays the movie at a steady rate. The system remains responsive,

allowing the user to carry out GUI operations and interact as usual. We additionally tried to

launch firefox during the memory bomb’s execution. Under Linux, this task requires four

minutes to load; under Redline, it requires less than 30 seconds. While this result reveals

some degradation in responsiveness under Redline, it is far less severe than under Linux.

11.3.2 Effectiveness of the Rate-controlled Reserve

In order to demonstrate the importance of the rate controlled reserve, we remove it

from Redline and repeat the interactive memory bomb experiment. Figure 11.5 shows how

mplayer behaves in two different runs. In the first, memory-demanding interactive tasks

2The disruption can be dramatically reduced once logging is turned off. We modified mplayer to record
the time at which a frame is played, which introduces extra memory demand and I/O requests.

119

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160

F
ra

m
e

s
 p

e
r

S
e

c
o

n
d

Elapsed Time (Seconds)

Redline: BE bomb
Redline: Iact bomb

 0

 10

 20

 30

 40

 50

 60

F
ra

m
e

s
 p

e
r

S
e
c
o

n
d

Impact of a 4x300MB memory bomb on mplayer

Linux: BE bomb

 118 118.5 119 119.5 120

Elapsed Time (Seconds)

When each frame is played during (118, 120)

Linux: BE bomb
Redline: BE bomb
Redline: Iact bomb

Figure 11.4. Playing video with 4 x 300 MB memory bomb tasks. The frame rate is
severely erratic under Linux, but is steady under Redline. The lower part shows when each
frame is played during the interval (118s, 120s).

120

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120

F
ra

m
e

s
 p

e
r

S
e

c
o

n
d

Elapsed Time (Seconds)

Redline: Iact bomb: run2

 0

 10

 20

 30

 40

 50

 60

F
ra

m
e

s
 p

e
r

S
e

c
o

n
d

Uncontrolled reserve: 4x300MB interactive memory bomb

Redline: Iact bomb: run1

Figure 11.5. Playing a movie with 4 x 300 MB interactive memory bomb tasks. It show
that, without the rate controlled memory reserve, the Redline system can be disrupted by
various amount of time in the fact of memory contention.

quickly exhaust the free memory, forcing others tasks to reclaim pages when allocating

memory. Therefore, mplayer is unable to maintain its frame rate. At approximately the

90 second mark, the Redline VMM finally demotes an interactive task to the best-effort

class, and then the frame rate of mplayer stabilizes. Depending on when and which tasks

the Redline VMM chooses to revoke, the interactive memory bomb can prevent the system

from being responsive for a long period of time. Here, more than one minute passes before

responsiveness is restored. However, during the second run, mplayer was unresponsive for

only about 10 seconds, thanks to a different selection of tasks to demote. Ultimately, the

limited isolation among interactive tasks provided by this small rate-controlled reserve is

crucial to maintaining a consistently responsive system.

121

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120

rs
s
 (

M
B

)

Elapsed Time (Seconds)

Redline first task: BE
second task: Iact (10:100)

 0

 100

 200

 300

 400

 500

 600

rs
s
 (

M
B

)

Running two 500MB working set processes

Redline

Linux first task: BE
second task: BE (-20)

Figure 11.6. Competing memory bomb tasks. Under Linux, the lower-priority background
task prevents the higher-priority foreground task from caching its working set. In Redline,
the interactive task quickly builds up it working set.

11.3.3 Effectiveness of Setting Speed-bump Pages

To examine the effectiveness of Redline’s speed-bump page mechanism, we first start

one 500 MB memory bomb task. After a few seconds, we launch a second 500 MB memory

bomb. Under Linux, we set this second task’s priority to be -20. Under Redline, we launch

it as an interactive task whose specification is set to 10:100. Figure 11.6 presents the

resident set sizes (RSS)—the actual number of cached pages—for each task over time.

Under Linux, the second task, in spite of its high priority, is never allocated its complete

working set of 500 MB. Here, the first task dirties pages too fast, preventing the Linux

VMM from ever reallocating page frames to the higher priority task. However, under

Redline, the second task is quickly allocated space for its full working set, stealing pages

from the first, best-effort task.

122

 0

 10

 20

 30

 40

 50

 60

 20 40 60 80 100 120 140 160

F
ra

m
e

s
 p

e
r

S
e

c
o

n
d

 (
fp

s
)

Elapsed Time (Seconds)

Impact of large disk reads on mplayer

Linux CFQ
Redline

Figure 11.7. Read: massive reads cause mplayer to display the movie erratically under
Linux, while playback remains smooth in Redline.

As an alternative test of this mechanism, we launched four 300 MB memory bombs, and

then launched the firefox web browser. Under Redline, firefox was ready and responsive

after 30 seconds; under a standard Linux kernel, more than 4 minutes passed before the

browser could be used.

11.4 Disk I/O Management

Finally, we examine the effectiveness of Redline’s disk I/O management by verifying

how interactive tasks are affected by background tasks that perform intensive disk I/O.

11.4.1 Reading

For testing disk reading operations, we play a movie using mplayer in the foreground

while nine background tasks consume all of the disk bandwidth. Each background task

123

Figure 11.8. Write: saving 30 KB in vim or writing 100 MB with a background workload
writing to disk in three modes. Bad interactions among different components can degrade
responsiveness dramatically, and Redline successfully eliminates their effects.

reads 100 MB from disk in 20 MB chunks using direct I/O (bypassing the file system

cache to achieve steady I/O streams, instead of filling up the page cache to trigger page

swapping). Figure 11.7 shows the frame rate of mplayer over time for both Linux and

Redline. Under Linux, mplayer blocks frequently because of the pending I/O requests of

the background tasks, thus making the frame rate severely degraded and erratic. Redline

automatically assigns higher I/O priorities to the interactive task, allowing it to maintain its

frame-rate throughout.

11.4.2 Writing

To test disk writing operations, we launch two background tasks meant to interfere with

responsiveness. Specifically, each task repeatedly writes to an existing 200 MB file using

three different modes: 1) buffered writes (BW); 2) large direct I/O writes with a 200MB

buffer (DW200MB); 3) small direct I/O writes with a 1 page buffer (DW1Page).

124

We then use vim, modified to report the time required to execute its write command,

to perform sporadic write requests of a 30 KB file. We also use a program iowrite to save

a 100 MB file. Both of them are set to the highest priority (-20) under Linux, while they

are launched as interactive tasks with a specification of 5:100 under Redline. Figure 11.8

present the results of these experiments, with vim on the left side and iowrite on the right

side.

Let’s first examine buffered writes (BW). For Linux, each transaction in the journaling

file system is heavily loaded with dirty pages from the background tasks. Thus, the calls

to fsync() performed by vim cause it to block for a mean of 28 seconds, which is almost

the same as saving a 100MB file. Under Redline, the reduced dirty threshold for best-effort

tasks forces the system to flush the dirtied pages of the background task more frequently.

When vim calls fsync(), the transaction committed by the journaling file system takes much

less time because it is much smaller, requiring a mean of only 2.5 seconds.

For the DW200MB case, Linux performs even worse than buffered writes, because

huge direct I/O operations can freeze the current transaction, blocking later I/O requests

for long periods of time. On average, vim need 61 seconds to save the file. In Redline,

large direct I/O operations are broken into smaller pieces, reducing the amount of time

needed to about 1.0 seconds. For the small direct I/O (DW1Page) case, Redline still beats

Linux, because it automatically gives higher priority to I/O requests from interactive tasks.

The results for iowrite are qualitatively similar to those for vim.

125

CHAPTER 12

REDLINE FOR MULTI-THREADED SERVERS

We have presented how Redline can be used to maintain system-wide responsiveness

in desktop environments. In this part of the dissertation, we further explore how multi-

threaded sever applications can make use of the Redline system to achieve better response

time guarantees. As usual, we start by describing the inadequacy of existing operating

systems, then propose the Redline-based server architecture, and finally present a proof-of-

concept evaluation.

12.1 Introduction

Most server applications are now multi-threaded. Multi-threading allows a server to

process multiple requests simultaneously, achieving higher throughput by making better

use of resources (e.g., exploiting multiple CPUs and hiding I/O latencies). Many server

applications are also response-time sensitive, such as game servers and web servers. How-

ever, the proportional-share schedulers used by existing operating systems fail to allow

these multi-threaded server applications to choose an appropriate number of threads, espe-

cially for handling a large burst of requests. Too many threads reduces the CPU bandwidth

received by each of them, which leads to long response time. Too few threads can fail to

hide I/O latencies, causing low throughput.

Proportional-share schedulers attempt to ensure that every thread makes equal progress

by evenly distributing CPU bandwidth to them, which is oblivious to response time require-

ments. If a server uses too many threads, it will have a very long response time in the face

of a large burst of incoming requests.

126

0 15 30 45 50

Time (ms)

T1

T2

T3

T4

T5

Figure 12.1. How the Linux CPU scheduler uses 5 threads to serve 5 requests, where each
request performs 10ms computation work. All requests finish at the end of the 50ms period
due to proportional sharing.

We demonstrate this problem with Linux’s CFS scheduler, whose default scheduling

quantum is 3 ms. Consider the case where a program uses 5 threads to serve 5 requests,

each with 10 ms computation work. As shown in Figure 12.1, the CFS scheduler executes

each thread for 3 ms in turn, and all requests finish at the end of the 50 ms period. Similarly,

when 200 requests are processed by 200 threads simultaneously using the CFS scheduler,

all of them will finish at the end of the 2 second period. If the response time requirement

for these requests is 1 second, then they all miss the deadline, even though 100 of them

could be satisfied. Clearly, the more threads we use, the less CPU bandwidth each of them

receives, and thus the longer response time for each request.

Even worse, a proportional-share scheduler can sometimes also degrade throughput

when disk I/O is involved. We modify the previous example: after 10 ms of computation

work, each request issues a disk I/O that needs about 5 ms to complete. Figure 12.2 demon-

strates what would happen under Linux. At the time when the first disk I/O is issued, the

system has already performed most of the computation work of these requests, leaving very

little to cover the disk I/O latencies. In other words, it fails to overlap disk I/O latencies

with useful computation work, resulting in lower throughput. In this example, with careful

127

0 7130 45 50

Time (ms)

T1

T2

T3

T4

T5

CPU work Disk I/O work

Figure 12.2. How Linux CPU scheduler uses 5 threads to serve 5 requests, where each
request performs 10ms computation work and then issues a disk I/O. Due to proportional-
sharing, when disk I/O starts, there is no enough computation work left to hide their laten-
cies, resulting in lower throughput.

arrangement, the system should be able to process these requests in 55 ms, rather than 71

ms.

In general, a server application should choose a number of threads that is large enough

to maximize the chances of hiding I/O latencies, but small enough to avoid compromis-

ing response time guarantees. This is quite challenging since requests may have varying

workloads. It is difficult for a server application itself to make the right choice dynam-

ically without appropriate support from operating system. However, as we have already

described, existing operating systems do not provide this kind of support, because their

CPU schedulers are non-cooperative and oblivious to response time requirements.

Redline’s specification-driven scheduler has the ability to handle requests with response

time requirements and to isolate them from best-effort ones. A server application can dy-

namically calculate the number of requests it can simultaneously support, based on the

information provided by the underlying CPU scheduler (e.g., average CPU time). It then

chooses the specifications for these requests according to the given response time require-

ment, and feeds them to the CPU scheduler to control request processing. Through this

128

suspended

best-effort

interactive

Thread PoolWork QueuesMain Thread

Specification Tree

Request Dispatcher

Requests with

specification

Requests with no

specification

Specification and

Thread Controller

Statistic Collection,

Adaptive Model

Requests

specification

actio
n

s
req

u
ests

Initial

Parameters

Figure 12.3. Redline server architecture.

cooperation, a server application can maximize the number of requests that meet the de-

sired response time requirement while maintaining high throughput, even when incoming

requests overload the system.

12.2 Redline Sever Architecture

Figure 12.3 presents an overview of the architecture of a Redline server that cooper-

ates with the underlying Redline system. The main thread of a Redline server has two

important components: the specification and thread controller and the request dispatcher.

The controller uses the workload information from the underlying operating system and

user-supplied response time requirements to determine the number of requests the server

can simultaneously support (i.e., the number of interactive threads needed), as well as their

specifications. The dispatcher, upon receiving a request, searches through the specifica-

tions. It attaches the first available specification to the request, and activates an interactive

thread to process the request. If it does not find a specification, it simply hands over the re-

129

quest to a best-effort thread. Before processing a request, an interactive thread first informs

the operating system with the specification attached, so that it can be properly executed by

Redline’s EDF scheduler.

To make later discussion easier, we first present a list of parameters used by the Redline

server, and what they stand for:

• P : the percentage of CPU bandwidth dedicated to interactive threads,

• RT : the desired response time for processing a request, in milliseconds,

• Cavg : the average CPU time for processing a request, in milliseconds

• Cmax : the CPU time large enough for processing 95% of requests,

• N : the number of requests that can be served in every period of RT ,

• NBE : the number of best-effort threads, and

• NIact : the number of interactive threads.

12.2.1 Manging Specifications and Threads

The Redline server takes advantage of the EDF scheduler in the underlying Redline

system to serve requests with response time requirements. It is crucial that it not accept

too many requests, and thus overload the CPU bandwidth allocated to interactive threads.

Therefore, it keeps track of the average CPU time of processing a request (Cavg), and finds

the largest N that satisfies the following equation:

N×Cavg < RT ×P (12.1)

Intuitively, this equation says: within any period of RT , the total amount of computation

work from accepted requests should not be more than the CPU bandwidth allocated to

interactive threads. The Redline server allocates exactly N specification objects to match

130

the number of requests it can serve simultaneously. For each of them, it sets their CPU

reservation C : T to be:

• Reserved amount (C): C ← max(Cavg,Cmax)

• Response period (T): T ← RT

To ensure that the server does not accept an excessive amount of work, a specification

object should not be used more than once during any period of RT . Otherwise, Equa-

tion 12.1 would no longer hold. Therefore, each specification also has a startTime, and

the dispatcher considers it eligible for use only if the current time now ≥ startTime. Once

a specification is used, its next startTime is set to be now + RT . In our implementation,

specifications are organized as a red-black tree, sorted by startTime.

When a request arrives, if there is an eligible specification, the dispatcher will accept the

request and hand over the request (together with its specification) to an interactive thread.

Otherwise, the request is given to a best-effort thread. Hence, the Redline server maintains

a pool of N interactive threads (i.e., NIact = N), and each processes exactly one request

once waked up.1 In this sense, the Redline server is request oriented, because it applies

specifications to requests, not directly to threads. In fact, what is important here is how the

dispatcher gives out specifications, rather than the number of interactive threads used.

Due to the admission and load control in the underlying Redline system, the Redline

server cannot dedicate more than Rhi (i.e., 90%) CPU bandwidth to interactive threads.

Therefore, it also maintains a small pool of best-effort threads (e.g., NBE = 10), so that the

server can make use of any remaining CPU bandwidth, and process requests that are not

accepted.

1Note that the number of interactive threads needed is not always exactly N. When the request arrival
rate is low and the system is underloaded, these threads can be reused. The dispatcher only activates a
new interactive thread when all interactive threads are busy. Thus, if the server is fully loaded, it needs N
interactive threads.

131

12.2.2 Serving a Request

Upon receiving a request, the dispatcher performs a search on the specification tree,

looking for the first eligible specification. If none are eligible, the request is simply ap-

pended to the end of the best-effort workqueue. Otherwise, the dispatcher removes the

specification from the tree, sets its next startTime time to be now + RT , and binds it with

the request. Finally, the dispatcher inserts the request into the interactive workqueue and

wakes up an interactive thread.

After grabbing a request from the workqueue, an interactive thread first retrieves the

corresponding specification and informs the underlying EDF scheduler to get a new start

time and a period. It then starts to process the request. When done, it collects necessary

information (e.g., the amount of CPU time consumed by processing the request), inserts

the specification back in the tree, and finally puts itself back to sleep, waiting for the next

request.

12.2.3 Adapting to Changes

The Redline server keeps a history of the amount of CPU time consumed for process-

ing each request, so that it can dynamically adapt to workload changes or response time

requirement changes. Any of the following events can trigger an adjustment:

• The user changes the response time requirements (RT).

• The user changes the CPU bandwidth dedicated to interactive threads (P).

• A certain number of requests has been processed since the last adjustment.

• A certain amount of time has passed since the last adjustment.

For each adjustment, the controller first re-calculates Cavg and Cmax based on the his-

tory information preserved since the last adjustment. It then determines the new N using

Equation 12.1 and configures the server to have a matching number of specifications and

132

threads. In order to do so, the controller adds an appropriate number of action requests

into the workqueues. Idle threads are then awakened to change their type, and busy threads

are not affected. Finally, it updates the CPU reservation used by these specifications, if

necessary.

12.3 Proof-of-concept Evaluation

We have implemented a prototype of the Redline server that works cooperatively with

our Redline system. We evaluate our implementation on the same hardware platform that

we used in evaluating the Redline system, and compare it against a simple server running

on Linux that is implemented using a thread pool.

Experiment settings: We feed the server (both Redline and Linux version) with a burst

of 200 requests, and set the response time target to be 1 second (1000 ms). We consider two

cases: a CPU intensive case in which each request triggers the server to perform about 10

ms computation work, and a mixture of CPU and I/O case in which each request has a disk

I/O after the computation is finished. For performing the disk I/O, the server side keeps a

pool of 500 one-page files, and every request randomly asks the server to load the content

from one of them using direct I/O. Clearly, this setting overloads the system, and thus not

all requests can be satisfied with respect to the 1 second response time requirement.

The Linux server is configured to process the request burst using 1, 10, 50, 100, and 200

threads. The Redline server is configured to use 90% of the CPU bandwidth for interactive

threads (the default Rhi for Redline) and chooses the number of threads automatically.

As a result, it uses 86 interactive threads and 10 best-effort threads, and 11:1000 as the

specification for them. Table 12.1 summarizes the results of our experiments. For each

of them, we present the number of requests that are satisfied and the total amount of time

elapsed before all the requests are processed.

For the CPU intensive case, the Linux server with 1 thread performs the best, satisfying

98 requests out of 200. Our Redline server satisfies 96, which is nearly optimal. Both of

133

CPU CPU + I/O
Threads Req. Total Threads Req. Total

Satisfied Time (ms) Satisfied Time (ms)
1 98 2035.3 1 69 2677.0

10 91 2037.5 10 86 2112.8
Linux 50 67 2041.0 50 54 2064.1
Server 100 37 2041.3 100 2 2522.3

200 0 2039.1 200 0 3347.9
Redline 86/10 96 2038.9 85/10 91 2053.3
Server

Table 12.1. Using the Linux server and the Redline server to process a burst of 200 re-
quests, each with about 10 ms computation work, and whose response time requirement is
1 second. We also consider a case where the computation is followed by a random disk I/O.
In both cases, the Redline server is able to satisfy more requests while maintaining high
throughput.

them have similar throughput, given that using more threads only adds slight overhead.

However, once disk I/O is involved, the Linux server performs much worse. With 10

threads, it satisfies more requests but has a lower throughput. With 50 threads, it gets

the best throughput, but satisfies far fewer requests. Our Redline sever offers the best

combination of responsiveness (91 requests) and throughput (2053 ms). Adding an extra

I/O operation does not have any significant impact on server performance. To summarize,

the Redline server is able to maximize the number of requests satisfied while maintaining

high throughput and supporting more threads.

12.3.1 CPU Intensive

We next take a closer look at how the Redline and Linux servers process these requests.

Figure 12.4 shows exactly when each request finishes for the CPU intensive case.

The Linux server with 1 thread processes the requests one by one, spreading their finish

times evenly over the entire period. Therefore, the number of requests it satisfies is opti-

mal. As the number of threads increases, each thread receives less CPU bandwidth due to

proportional-share scheduling, and the number of requests satisfied starts to drop. In fact,

requests tend to finish in clusters, whose size is approximately the number of threads used.

134

 0 500 1000 1500 2000 2500 3000

Finish Time (ms)

Redline, 86/10 threads

Linux, 1 thread

Linux, 10 threads

Linux, 50 threads

Linux, 100 threads

Linux, 200 threads

Figure 12.4. Comparing the Redline and Linux servers (CPU only). The Redline server
achieve nearly optimal responsiveness (as does the Linux server with 1 thread) without
sacrificing throughput. Proportional-share scheduling can cause all requests to miss their
deadline, as happens when the Linux server uses a large number of threads.

 0 500 1000 1500 2000 2500 3000

Finish Time (ms)

Redline, 85/10 threads

Linux, 1 thread

Linux, 10 threads

Linux, 50 threads

Linux, 100 threads

Linux, 200 threads

Figure 12.5. Comparing the Redline and Linux servers (CPU + I/O). An additional disk I/O
has almost no impact on the Redline server. It offers the best combination of responsiveness
and throughput (almost the same as in the CPU-only case) in all the configurations tested.

The Linux server with 200 threads performs the worst, since all requests finish towards the

end and miss their 1 second deadline.

The Redline server automatically calculates the number of requests it can satisfy based

on the actual workload, and uses interactive threads to process them. The remaining re-

quests are served by a small pool of best-effort threads (10 in our experiments). As a result,

it behaves very much like the combination of the Linux server with 1 thread and with 10

135

threads. During the first half, all interactive threads are lined up according to their dead-

lines. Redline’s EDF scheduler executes these threads one by one, where each processes

one request. After that, a small set of best-effort threads, handled by the proportional-share

scheduler, processes the remaining requests.

12.3.2 Mixture of CPU and I/O

Similarly, Figure 12.5 shows exactly when each request is finished if they perform an

additional disk I/O after computation. It shows that the extra disk I/O has a huge impact on

the Linux server’s performance, but not on our Redline server.

Interestingly, the Linux server with 1 thread performs badly, but is not the worst. We

believe that this is because the computation work between I/O operations statistically makes

the disk head closer to the location of the next random disk access, and thus hides part of

its rotational latency. Using a small set of threads increases performance substantially,

since it hides I/O latencies better. However, as the number of threads further increases,

the effects of proportional-share scheduling start to dominate, and both the responsiveness

and throughput drop quickly. The worst case happens when serving 200 requests with 200

threads. This is because, at the time when disk I/O starts, there is almost no computation

work left, and thus the mechanical latencies are completely exposed.

The result for our Redline server is quantitatively and qualitatively similar to that of

the CPU intensive case. During the first half, the Redline server uses interactive threads

to process requests. Again, the number of such requests is determined based on the actual

workload and the response time requirement. The Redline’s EDF scheduler executes the

next thread only when the previous one is blocked on I/O, and thus fully covers its I/O

latency with computation work from later requests. Once all interactive threads finish, a

small set of best-effort threads process the remaining requests, which has been proven to be

a good choice under proportional-share scheduling. This combination allows the Redline

server to satisfy more requests than any Linux server, while preserving high throughput.

136

CHAPTER 13

RELATED WORK

13.1 Overview

In this chapter, we investigate the research has been done on managing CPU, memory,

and disk I/O, focusing on the areas that are most relevant to our work, and discuss how our

proposed approach may contribute these areas.

We first present related work on automatic heap size adjustment for garbage collected

applications (Section 13.2). We then discuss CPU scheduling, including general purpose

systems (Section 13.3), real time systems (Section 13.4), and CPU scheduling frameworks

(Section 13.5). Section 13.6 presents related work on memory management, in particu-

lar working set tracking and page replacement mechanisms. Section 13.7 covers disk I/O

management. Finally, Section 13.8 discusses prior integrated resource management ap-

proaches.

13.2 Automatic Heap Sizing for Garbage-collected Applications

Researchers have proposed a number of heap sizing approaches for garbage collection;

Table 13.1 provides a summary. The closest work to CRAMM is by Alonso and Appel, who

also exploit VM system information to adjust the heap size [5]. Their collector periodically

queries the VM for the current amount of available memory and adjusts the heap size in

response. CRAMM differs from this work in several key respects. While their approach

shrinks the heap when memory pressure is high, it does not expand and thus reduce GC

frequency when pressure is low. It also relies on standard interfaces to the VM system that

137

Grow Shrink Stat. Dyna. GC OS
Heap Heap Alloc Alloc Neut Supp Responds to

Alonso et al.[5]
√ √ √ √

memory allocation
Brecht et al.[28]

√ √
pre-defined rules

Cooper et al.[43]
√ √

user supplied target
Page-Level [136]

√ √ √ √
page swapping

Isla Vista [62]
√ √ √ √ √

stalls during allocation
BC [67]

√ √ √ √
page swapping

JRockit [19]
√ √ √ √

throughput/pause time
HotSpot [69]

√ √ √
throughput/pause time

MMTk [23]
√ √ √ √

live ratio and GC load
CRAMM/AHS [135]

√ √ √ √ √ √
memory allocation

Table 13.1. A comparison of approaches to dynamic heap sizing.

provide a coarse and often inaccurate estimate of memory pressure. The CRAMM VM

captures detailed reference information and provides reliable values.

Brecht et al. adapt Alonso and Appel’s approach to control heap growth via ad hoc

rules for two given static memory sizes [28]. Cooper et al. dynamically adjust the heap

size of an Appel-style collector according to a user-supplied memory usage target [43]. If

the target matches the amount of free memory, their approach adjusts the heap to make full

use of it. However, none of these approaches can adjust to dynamic memory allocations.

CRAMM automatically identifies an optimal heap size using data from the VM. Further-

more, the CRAMM model captures the relationship between working set size and heap

size, making its approach more general and robust. Zhang et al. [136] adjust the heap size

in small increments in response to the number of page faults encountered at application

phase boundaries, making the adaptation slow. Similarly, Isla Vista [62] uses allocation

stalls reported by the VM as feedback to trigger garbage collection and adjusts the heap

size gradually, making the adaptation slow also.

The bookmarking collector (BC) is a garbage-collection algorithm that guides a lightly

modified VM system to evict pages that do not contain live objects and installs “book-

marks” in pages in response to eviction notifications [67]. These bookmarks allow BC to

collect the heap without touching already evicted pages, which CRAMM must. One short-

coming of BC is that it currently cannot grow the heap because it responds only to page

138

eviction notifications. CRAMM both shrinks and grows the heap to fit, and can be applied

to a wide range of existing garbage collection algorithms.

13.3 CPU Scheduling for General Purpose Systems

Most existing general purpose operating systems put most of their focus on scheduling

best-effort applications. Their schedulers fall mainly into two categories: time-sharing

schedulers (sometimes also referred to as fair share schedulers) and proportional share

schedulers. However, the distinction between these two kinds of schedulers is not clear,

because ultimately they both attempt to provide proportional sharing of the CPU among

applications. Furthermore, these schedulers do not address response time requirements and

must be extended to support interactive applications better.

13.3.1 Time-sharing Schedulers

Priority-based fair-share schedulers arose from the need to provide proportional shar-

ing among users in a way compatible with UNIX-style time-sharing systems [66, 77, 56].

They are still used by many general purpose operating systems, including Linux [27],

FreeBSD [91], Solaris [90] and Windows [112]. Most of these schedulers use multi-level

feedback with a set of priority queues. Each task has a priority that is adjusted as it ex-

ecutes. The feedback mechanisms used by these schedulers vary. Linux, FreeBSD, and

Windows adjust priorities based on a task’s execution time and average sleep time, while

Solaris uses a predefined priority table. Priority-based schedulers offer different shares with

respect to a task’s priority by effectively running tasks at different frequencies. Usually, a

priority boost is given to I/O bound tasks to provide better responsiveness.

Weighted round robin (WRR) is widely used in both network packet scheduling (e.g.,

DRR [114], SRR [63], StRR [108]) and CPU scheduling (e.g., charge-based [88]). Each

task has a weight indicating its desired CPU share. The scheduler assigns each task a time

slice whose length is proportional to its weight. As opposed to priority-based schedulers,

139

a WRR scheduler achieves proportional share by running tasks with a different amount of

time in each turn.

The lottery scheduler [130] proposed by Waldspurger associates each task with a share.

Each task holds a number of lottery tickets in proportion to its share. At the beginning

of each time slice, a lottery is held and the task holding the winning ticket is selected

for execution. In this way, tasks running in the system statistically receive CPU cycles

proportional to their shares in the long run.

Heuristics are often applied to time-sharing schedulers to handle interactive tasks bet-

ter, which makes the approaches ad hoc and may lead to a phenomenon called the inter-

activity trap [128]. Human-Centered Scheduling (HuC) [57] identifies interactive tasks by

monitoring I/O devices and boosts their priorities, because interactive applications usually

have frequent pauses for user input. Windows Vista introduces a new scheduling class,

MM CLASS. It boosts the priorities of tasks registered in this scheduling class into the real

time region (16–30) for better performance guarantees. The scheduler also monitors the

CPU usage of tasks in this class. If a task uses too much, its priority is lowered back into

the normal range (0–15).

These time-sharing schedulers provide only a reasonable proportional share over rel-

ative large periods. Their proportional fairness guarantees are difficult to formulate, es-

pecially in the short term. In order to provide applications with a desired performance

guarantee, the user has to assign a proper priority to each application. This is extremely

difficult, especially in an open environment where applications may dynamically enter and

leave the system at any time. Overall, time-sharing schedulers are suitable for sharing CPU

bandwidth among batch applications, but do not provide adequate support for handling

response-time sensitive applications.

140

13.3.2 Proportional Share Schedulers

In order to overcome the drawbacks of time-sharing schedulers, researchers have de-

veloped scheduling algorithms that can provide precise proportional shares, even within a

short period of time.

Fair Queuing Schedulers

Parakh and Gallagher proposed the generalized processor sharing model (GPS) [105]

for analyzing network packet scheduling algorithms. In this ideal fluid model, each task

has a weight. All runnable tasks are granted bandwidth proportional to their weights and

execute simultaneously (i.e., scheduling happens conceptually at infinitely small intervals).

The GPS model forms the basis of later developed proportional share schedulers, both for

network packet scheduling and CPU scheduling.

In a real system, the resource is allocated in discrete time quanta and it is not possible

for a task always to receive exactly the service time to which it is entitled (as in the GPS

model). Therefore, the difference between the service time that a task should receive at

a time t, and the service time it actually receives in a scheduling algorithm is called its

lag, which sometimes is also referred to as allocation error. A negative lag means the task

receives more than it should and a positive lag means it receives less than it should. The

main focus of developing a proportional share scheduler is providing tight bounds on lag.

The smaller the lag, the better, since it captures both allocation accuracy as well as fairness.

Demers et al. were the first to apply this notion of fairness to network packet schedul-

ing [45]. The algorithm they proposed is called Weighted Fair Queueing (WFQ), which is

also referred as Packet-to-packet Fair Queueing (PFQ). Later, Waldspurger et al. extended

the same notion to CPU scheduling in their stride scheduler [131]. Since then, a number

of fair queueing schedulers have been developed in the context of both network packet

scheduling (e.g., SCFQ [59], Time-shift FQ [42], and BSFQ [36]), and CPU scheduling

(e.g., SFQ [61], SFS [34], and EEVDF [123, 124]). Most fair queueing schedulers are

141

based on the concept of virtual time introduced by Zhang [137], which serves as a measure

of the degree to which a task has received its proportional share relative to other tasks.

The scheduler keeps a virtual time for each task. When a task executes, its virtual time

advances at a rate inversely proportional to the task’s weight. The scheduler also maintains

a system-wide virtual time which is advanced inversely proportional to the total weight of

all runnable tasks. With the virtual time in hand, a fair queuing algorithm can be either

deadline driven or start-time driven.

Deadline-Driven Fair Queueing: WFQ is a typical example of a deadline-driven fair

queuing scheduler. It schedules tasks using a uniform time unit, the quantum. Given a

task’s current virtual time, the task’s virtual finish time (VFT) is defined as the virtual time

the task would have after executing for one quantum. WFQ maintains an ordered queue of

runnable tasks sorted by VFT in increasing order, and schedules tasks by selecting the task

with the smallest VFT. WFQ provides an O(1) bound for the positive lag, but the bound

for negative lag can be as large as O(n), where n is the number of runnable tasks.

Worst-case Fair Weighted Fair Queueing (WF2Q) proposed by Bennett and Zhang [21,

80] extends WFQ with eligibility control, so that the scheduler considers a task not eligible

for execution if its virtual time is larger than the current system virtual time. Intuitively

speaking, a task that receives more service time than it should in the GPS model is not

eligible for getting more service time. The eligibility control effectively breaks the work

of higher priority tasks into smaller pieces and interleaves them with the work of lower

priority tasks. Therefore, WF2Q offers a tight O(1) lag, which is the size of a quantum.

Almost in parallel, Stoica et al. developed EEVDF [123, 124] in the context of CPU

scheduling, which also provides O(1) lag by using the same eligibility control. However,

EEVDF goes one step further to support non-uniform quanta. Instead of simply using the

uniform quantum selected by the scheduler, EEVDF allows each task to specify a CPU

request size and uses it to calculate the virtual deadline of a task.

142

Start-Time Driven Fair Queueing: SFQ [61] sorts runnable tasks by their virtual start

time and always selects the task with the smallest start time for execution. Its lag is O(n)

in comparison to an ideal GPS system. Chandra et al. showed that SFQ can become not

work conserving in a multiprocessor system, and proposed the Surplus Fair Scheduler [34]

to solve the problem by adjusting weights across different processors. From kernel version

2.6.23.1, Linux switched to a start-time driven fair queueing scheduler, called the Com-

pletely Fair Scheduler (CFS) [97]. It can be considered to be a simpler version of SFQ that

does not support hierarchical scheduling. Therefore it has the same O(n) lag.

Proportionate Fair Schedulers

Proportionate fair schedulers form another class of proportional share schedulers. P-

fairness is based on the notion of proportionate progress proposed by Baruah et al. [15],

which is essentially a discrete variant of GPS intended for running periodic tasks on mul-

tiple processors. In this model, each task in the system is associated with a share, and the

scheduler tracks the progress of each task using a method very similar to that of GPS-based

schedulers. An scheduling algorithm is P-fair if, at any instant, no task is more than on

quantum away from its due share (i.e., has a tight O(1) lag of one quantum).

The first proportionate fair scheduling algorithm is called pseudo-deadlines (PD) [17].

PD achieves P-fairness only in an ideal multiprocessor system: 1) the scheduling points of

all processors are synchronized; 2) all processors use a uniform scheduling quantum; and

3) the set of tasks running in the system is fixed (i.e., tasks do not dynamically join/leave the

system). PD explicitly requires tasks to make progress at steady rates that are proportional

to their shares. Its strict eligibility control makes the algorithm not work conserving (i.e.,

a processor may stay idle while there exist runnable tasks in the system that could be

executed).

Soon PD was extended by its authors to support dynamic join/leave operations while

preserving P-fairness for the single processor case [16]. Anderson and Srinivasan pre-

143

sented PD2 [120], a work conserving variant of PD (also referred to as Early-relase Fair

Scheduling). Furthermore, they analyzed several proportionate fair algorithms and derived

the sufficient conditions for supporting dynamic join/leave operations on multiple proces-

sors [121]. Finally, Deadline Fair Scheduling (DFS) [35] relaxes the notion of strict P-

fairness making it more practical in real systems. DFS allows processors to schedule tasks

at different points and to use variable scheduling quanta. It supports dynamic join/leave

operations, preserves the work conserving property, and also takes processor affinity into

account during scheduling.

Other proportional share schedulers

Another main concern of scheduling algorithms is the scheduling overhead, which de-

termines the scalability of the system. If the scheduling overhead is too high, the system

makes very little progress in the presence of a large number of runnable tasks. The schedul-

ing overhead for most fair queueing and proportionate fair schedulers is O(logn) due to the

fact that they need to maintain one or more sorted queues. Recently, several CPU sched-

ulers have been developed to provide proportional share with constant overhead.

Virtual Time Round Robin [102] developed by Nieh et al. combines the virtual time

concept used by fair queuing algorithms with a round robin scheduling mechanism. The

scheduling overhead of VTRR is mostly O(1) except for resetting counters, which takes

O(n) time but happens infrequently. Empirical results in this work showed that VTRR’s

allocation error is comparable to that of WFQ. Group Ratio Round Robin (GRRR) [32]

extends VTRR to support scheduling on multiple processors. Trio [82] extends the existing

Linux scheduler (the O(1) multi-level queue scheduler used before Linux switched to the

new fair queueing based CFS scheduler) to support precise proportional share. It uses an

algorithm called distributed weighted round robin (DWRR) to achieve a constant allocation

error bound while preserving the O(1) scheduling overhead.

144

Summary

Proportional share schedulers provide more accurate proportional fairness, and some of

them even bound the allocation error within a constant. This forms the necessary condition

for supporting response-time sensitive applications. In a static system, (where the set of

runnable tasks does not change), ensuring the responsive time guarantee of a task becomes

the problem of choosing the proper weight for it. This is not as easy as it may seem, be-

cause choosing a set of weights to satisfy all tasks may not even be possible. Other than

that, constant allocation error is still far from sufficient for ensuring response time guar-

antees, especially for general purpose operating systems, in which no admission control is

conducted and applications may enter/leave at any time.

The critical issue of proportional share schedulers is that they do not provide the nec-

essary performance isolation among tasks. The actual bandwidth received by each task is

relative. The more tasks that are running, the less bandwidth each of them receives. Even

changing the weight of a task could affect the performance guarantees of other running

tasks. As the load in the system increases, response-time sensitive tasks will eventually

fail to retain the bandwidth they need. Hierarchical schedulers such as SFQ [61] partially

solve the problem by dividing tasks into classes and manage them hierarchically. These

schedulers ensure the performance isolation among different classes only as long as the

class hierarchy or weight assignment stays fixed. Also, as shown in [109], determining

the optimal weight assignment for different classes and isolating tasks within a class still

remain challenging problems.

13.3.3 Supporting (Soft) Real Time applications

The most important two things for satisfying the time constraints of (soft) real time

applications in general purpose operating systems are: 1) reducing their scheduling latency

especially for those scheduling algorithms that do not have constant lag; 2) allocating sta-

ble CPU bandwidth to them even if the system is overloaded, which most proportional

145

share algorithms are not capable of. Several schedulers have been proposed to offer better

support for response time sensitive applications by extending existing proportional share

algorithms. Mechanisms used include dynamically adjusting the weight assignment, mod-

ifying virtual times, and adopting the EDF algorithm.

A-SFQ [109] is an adaptive variant of the hierarchical SFQ scheduler, which dynami-

cally changes the weight assignment of application classes to maintain stable CPU band-

width for the class serving soft real time applications. A-SFQ focuses on two application

classes, multimedia (MM) and best-effort (BE). It maintains one performance index for

each application class: the percentage of missed deadlines for the MM class and the total

slowdown for the BE class. At the end of each time interval, the value of these performance

indices are calculated. If the MM class misses too many deadlines, A-SFQ increases the

proportion of CPU bandwidth allocated to it by a chunk (5%). Changing the proportion

allocated to a class is done by re-computing the weights of all classes. The adaptive al-

gorithm used by A-SFQ works quite well for periodic tasks due to their regular execution

pattern, but is not suitable for a large set of co-existing aperiodic tasks. Furthermore, it does

not provide performance isolation for tasks within a class, since there is nothing prevent

users from running too many tasks in the MM class.

Borrowed Virtual Time (BVT) scheduling, proposed by Duda and Cheriton [53], puts

its focus on improving response time guarantees in general purpose operating systems. It

performs the basic scheduling using a start time driven fair queueing algorithm, which is

very similar to SFQ (in fact, it is exactly the same algorithm used by the latest CFS sched-

uler in Linux). However, such a scheduler is proven to have potentially O(n) lag, which

means the work of a response-time sensitive task can be delayed significantly by other tasks

that have the same or smaller virtual time. In order to solve this problem, BVT introduces

the concept of wrap. A response-time sensitive task is allowed to wrap back in virtual time

by a negative value to make it appear earlier and thereby gain dispatch preference. BVT

effectively schedules those tasks with non-zero wrap earlier without changing their propor-

146

tional share. Apparently, if the system is heavily overloaded, response-time sensitive tasks

still cannot obtain their desired CPU bandwidth due to BVT’s proportional share nature.

The authors claimed that BVT can be configured to support a fixed set of real time appli-

cations whose CPU requirements are known in advance, or a dynamic set of best-effort

tasks, or a mix of both using two level scheduling. However, the problem of how to support

a large dynamic set of response-time sensitive tasks with unpredictable CPU loads is not

addressed.

BERT [18] is a scheduler that designed to run a mix of best-effort and real time tasks

using a modified WFQ algorithm. In addition to classifying tasks into best-effort and real

time, it also divides tasks into important and unimportant based on user’s choices. It allows

an important real time task to steal CPU cycles from unimportant tasks dynamically. BVT

attempts to predict the length of each CPU request from real time tasks. If the current share

assigned to a real time task is not sufficient for it to meet the deadline, BVT picks one or

more unimportant tasks and steals cycles from them by modifying their virtual deadlines

(VFT). Suppose, an important real time task Pi with weight wi needs to steal cycles from

another task Pj with weight w j. During the interval of stealing, Pi has weight wi + w j and

Pj has weight 0. Their VFT are then adjusted using:

new VFT(Pi) = old VFT(Pi)− ε×w j/wi

new VFT(Pj) = old VFT(p j)+ ε

where ε is the duration of the stealing interval, which is determined using the work length

and deadline of the stealing task, as well as the weights of all tasks involved. BVT ef-

fectively sacrifices unimportant tasks to maintain the CPU bandwidth needed by real time

tasks. However, it applies only to well-behaved periodic tasks whose CPU request length is

predictable and whose deadline is known, and there is no admission control for preventing

the system from being overloaded by too many real time tasks.

147

SMART [99, 100, 101] is yet another WFQ based scheduler designed to run a mix of

best-effort and real time tasks. It explicitly decouples the importance and response time

constraints. SMART provides a common importance attribute for both real-time and best-

effort tasks based on priorities and virtual finish times as defined in WFQ. SMART then

uses an earliest deadline based planner to optimize the order in which tasks are serviced to

allow real-time tasks to meet their time constraints. In the face of CPU overloading, tasks of

lower importance are sacrificed. In addition, the biased virtual finish time (BVFT) for best-

effort tasks that accounts for their ability to tolerate more varied service latencies is used to

give interactive and real-time tasks better performance during periods of transient overload.

SMART requires applications to supply an estimate of their service time and deadlines so

that its execution planner can optimize the service order. The worst case complexity for the

execution planner to find a feasible schedule is O(N2) where N is the number of active real

time tasks. Therefore, the requirement of precise a priori application information and high

scheduling overhead limit its applicability.

BEST [11] extends a traditional time sharing scheduler with an earliest deadline first

mechanism to support periodic soft real time tasks directly. It detects the period of a pe-

riodic task, p, by monitoring the intervals between the time when the task enters the run

queue. When a periodic tasks enters the run queue at time t, BEST sets its deadline to

be t + p. For non periodic tasks, BEST uses a value larger than a predefined threshold,

pmax = 5.12 seconds, so that their deadlines appear later than those of periodic tasks. BEST

picks the task with the earliest deadline for execution. Once selected, a task is given a time

slice, which determines the length it entitled to execute. The time slice for a periodic task

is the detected period and the time slice for a non-periodic task is determined by its nice

value. A larger nice value yields a larger time slice, which gives a reasonable proportional

share over long intervals. BEST has several issues that limit its practicability. First, it

works only for periodic tasks whose period is smaller than a predefined threshold. Second,

periodic tasks can easily monopolize the CPU due to the time slice assignment. Therefore,

148

BEST can support only a few well behaved periodic tasks that are carefully selected by

the user. Finally, BEST does not actually isolate periodic tasks from other tasks. Here is

an example: Suppose, the period used for non-periodic tasks is pnon = 10 seconds and the

time slice is ts = 10ms. Then launching pnon/ts = 1000 non-periodic tasks is enough to

cause all periodic tasks miss their deadlines. In other words, a simple fork bomb is bad

enough to make the whole system non-responsive.

These schedulers arose as a result of the need to support multimedia applications in gen-

eral purpose systems. Among them, SMART is the best that uses a dynamic load control to

satisfy as many real time applications as possible. Most of the schedulers are specifically

designed to support periodic applications by exploiting their regular execution pattern. This

means that they cannot efficiently handle a dynamic set of co-existing aperiodic applica-

tions. Due to the lack of proper admission control, which is a crucial component for any

practical implementation of such a system, the user is responsible for selecting a limited

number of well behaved periodic applications and supplying necessary application infor-

mation, such as the estimated work length and deadlines.

13.4 CPU Scheduling for (Soft) Real Time Systems

When the set of applications and their periods and worst-case execution times are

known in advance, real-time scheduling can be done using static priority, such as rate

monotonic scheduling, which executes the task with the shortest period first. Most gen-

eral purpose operating systems, such as Linux and Windows, extend their time-sharing

schedulers to support a real-time scheduling class that has strictly higher priorities than any

best-effort tasks. Tasks running in this class alway get executed first and preempt best-effort

tasks. Without regulating the execution of real-time applications, these schedulers suffer a

well-known pathology: starvation of best-effort applications.

Soft real-time scheduling servers [38, 83] take advantage of such a structure. The au-

thors proposed to run a user-level scheduling server at the highest priority in the real-time

149

scheduling class. The scheduling server computes a schedule based using a table-driven

CPU reservation algorithm, and runs real-time applications at other priorities. BeOS [95],

positioned as a multimedia desktop operating system, explicitly ties the task latency re-

quirements to static priorities, with shorter latencies mapping to higher priorities.

Although static priority schedulers are simple and efficient, they fail to isolate applica-

tions from one another if necessary enforcement mechanism are not implemented. Finding

the optimal priority assignment requires coordination across application developers, which

further makes the approach not suitable for an open desktop environment where the set of

applications changes dynamically.

13.4.1 Bandwidth/Execution Rate Control

Jeffay proposed a system based on EDF for serving [71]. At the creation of each re-

quest, its worst-case execution time (WCET) and minimal inter-arrival time (MIT) are de-

cided and then the scheduler uses EDF. While WCET has an upper bound for a periodic

task, MIT does not. Jeffay then proposed Rate Based Execution (RBE) [70] to force each

task to progress at a fixed rate (based on its specification) towards its deadline, so that re-

quests that arrived early are processed as if they arrived at a later time. An admission test

and negotiation of rate were implemented to ensure feasibility.

Deng et al. proposed to support a mix of real-time and non-real-time applications by

regulating execution using servers [46], such as the Constant Utilization Sever (CUS) [47],

the Total Bandwidth Server (TBS) [117, 119, 118], and the Constant Bandwidth Server

(CBS) [1]. Each application is encapsulated in a server. The server then uses the parame-

ters, supplied either by applications or the system administrator, to control execution of the

applications running inside it, and thereby, provides isolation across servers. The underly-

ing scheduler allocates CPU time to servers using an EDF-based algorithm. The creation

of a server must pass an admission test to prevent the system from being overloaded.

150

Later on, this server-based structure was extended to support the uniformly slower pro-

cessor (USP) abstraction in PShED [84] and an open environment for real-time applica-

tions [48]. Such a system guarantees that any application that can be scheduled by a pro-

cessor of speed S can also be scheduled if it is given an USP with rate S/F on a processor

of speed F . Each server restricts the applications running in it to use no more than the

assigned bandwidth, and therefore, the system can potentially be not work conserving.

Feedback-controlled EDF (FC-EDF) [87, 86] and SWiFT [122] take feedback from

applications and dynamically adjust CPU utilization so that the deadline miss rate falls in a

controlled range. In general, they provide no guarantees to individual applications, but they

are able to achieve higher system utilization with few deadline misses over all applications.

In this sense, Redline’s CPU scheduling is similar to them. Redline takes the overall CPU

bandwidth consumed by reservations as feedback, and ensures system responsiveness by

controlling it within a desired range.

13.4.2 CPU Reservations

The CPU reservations mechanism used by Redline allows a task to reserve C units of

CPU time in every period of T . For example, a task could reserve 5ms of CPU time out

of every 30ms. Its implementation requires an admission test to ensure the system is not

overloaded, and an enforcement mechanism to prevent tasks from consuming more than

reserved.

CPU reservations can be implemented in various ways. Nemesis [81], CPU service

class [39], and Coulson et al. [44] use EDF, Linux/RK [103] and Mercer et al. [93, 94]

use RM, the scheduler by Lin et al. [83] is table driven, and Rialto [75] assigns CPU time

intervals using a tree-based data structure.

CPU reservations are capable of support co-existing, possibly misbehaving applica-

tions if an appropriate enforcement mechanism is implemented. They eliminate the need

for global coordination, since application resource requirements are stated in absolute units

151

rather than relative units like priority or share. However, unlike Redline, these schedulers

perform their admission test based strictly on application specifications without taking the

actual load into account. Such admission tests are too pessimistic, seriously limiting the

number of co-existing application that a system can support. Consequently, they are not

suitable for handling a large dynamic set of response-time sensitive applications (both pe-

riodic and aperiodic) that a modern general purpose operating system must support.

13.5 CPU Scheduling Frameworks

Due to the richness of applications that run on modern computer systems, a single CPU

scheduling algorithm is not enough to handle the diverse requirements of these applications.

Most systems now offer scheduling frameworks that allow multiple scheduling policies to

co-exist. A commonly used approach is to organize schedulers in a hierarchical manner.

The root scheduler allocates CPU time to schedulers below it in the hierarchy, which in

turn allocate CPU time to their children, and so on until a leaf is reached.

13.5.1 Two-Level Scheduling Frameworks:

The Linux and Windows schedulers are conceptually hierarchical in the sense that the

root scheduler always allocates CPU time first to the real time scheduler and then to the

time-sharing scheduler. Redline exploits such a framework and extends the system with an

EDF based scheduler that is dedicated to serve interactive applications.

Nemesis [81] uses a two-level scheduling hierarchy with an EDF based root scheduler

inside the kernel and second-level schedulers in user space. Scheduler activations [7] fol-

lows the same architecture, allowing the kernel to notify user-level thread schedulers of

certain events that may affect their scheduling decisions, so that they can react accordingly.

The Spin operating system [22] implements a two-level hierarchy inside the kernel that has

functionality similar to scheduler activations. It has a fixed root scheduler, but allows ap-

plications to load their own second-level schedulers into the kernel at run time. Vassal [31]

152

is another system that provides support for a dynamically loadable scheduler, allowing ap-

plications to select suitable scheduling policies. However, only a single scheduler can be

loaded at a time, in addition to the standard time-sharing scheduler.

RED-Linux [132] proposes a two-level scheduling framework in which tasks are sched-

uled based on effective priority, produced from the task’s scheduling parameters: priority,

start time, finish time and budget. Each task must belong to one of the leaf schedulers,

which may implement different policies. The root scheduler always picks the task with

the highest effective priority and lets the leaf scheduler execute the task using its specific

policy.

The scheduling frameworks developed in PShED [84] and by Deng et al. [48] have an

EDF based root scheduler and various servers as its leaf schedulers. The ideas is to provide

a uniformly slower processor (USP) abstraction to each real time application. This abstrac-

tion ensures that each application will receive a given share of the processor bandwidth as

if it is running on a slower processor. FSF [2] proposed by Aldea et al. goes further to allow

applications to supply requirements using the service contracts, instead of directly using

server scheduling parameters. Based on the contract of an application, the root scheduler

verifies the resources needed and creates a suitable server that encapsulates it. This iso-

lates requirement specification from the detailed system implementation. Therefore FSF

supports various scheduling policies for both the root and leaf schedulers.

13.5.2 Multi-Level Scheduling Frameworks:

Stride [131], proposed by Waldspurger, is a hierarchical fair queueing based scheduler.

It groups the clients hierarchically into a binary tree, and recursively applies the basic stride

scheduling algorithm at each level. BVT [53] can be configured to a hierarchical fashion

such that part of the processor bandwidth is reserved for multimedia applications and best-

effort applications are scheduled in a time-sharing manner using a second-level scheduler.

153

These scheduling frameworks are considered to be homogeneous in the sense that all nodes

in the hierarchy use the same scheduling algorithm.

Goyal et al. developed a proportional share scheduling algorithm, start-time fair queue-

ing (SFQ) [61], and proposed a hierarchical architecture on top of it. In this scheduling

hierarchy, all internal points use SFQ schedulers, and leaf nodes may use arbitrary schedul-

ing algorithms, such as static-priority scheduling or rate monotonic. Such a hierarchical

architecture allows users to group various applications into classes and to achieve quite

strong isolation among classes as long as the scheduling hierarchy stays unchanged. How-

ever, no method for providing isolation for applications running in the class was presented.

CPU Inheritance Scheduling [58] permits any task to act as a scheduler by donating

the CPU to other tasks. The root of the scheduling hierarchy is a special task that the

operating system always donates the CPU to after the occurrence of a scheduling event.

The scheduling hierarchy exists as a set of informal relationships between tasks, requiring

very little support from the kernel. However, it stipulates that all composition issues are

the responsibility of the user. The Exokernel [55] uses a CPU donation primitive similar to

the one used in CPU inheritance scheduling. The difference is that the root scheduler for

Exokernel is a fixed time-sharing scheduler.

The Hierarchical Loadable Scheduler (HLS) [110, 111] is a powerful heterogeneous

framework that allows user-specified scheduling algorithms to exist everywhere in the hi-

erarchy. HLS is capable of providing a collection of hierarchical schedulers, allowing it to

match each application request with a scheduler that can meet its requirement. It allows

various scheduling policies, as well as combinations of them, to be loaded dynamically into

the operating system to meet the scheduling requirements of a particular usage scenario.

Since the authors focused on the abstraction and interface needed for composition of sched-

ulers, they did not discuss the detailed admission control tied to each specific scheduling

algorithm.

154

13.6 Memory Management

In this section, we describe the related work in the area of memory management.

Specifically, we focus on the page replacement mechanisms that are used to resolve mem-

ory contention, starting from general purpose operating systems.

13.6.1 Page replacement in General Purpose Systems

Despite the many replacement algorithm proposed, approximations of Least Recently

Used (LRU) replacement are predominant in actual systems because of its simplicity and

efficiency.

The Linux VMM uses a page replacement algorithm that approximates a global LRU

policy, in which pages of all processes are kept in approximate LRU order in a set of

global queues. Pages used longest ago are cleaned and selected for reclamation. The

Windows VMM adopts a per-process working set model. It uses a kernel thread to steal

least recently used pages away from processes and move them into a standby list. When

there is not enough memory, pages in the standby list are reclaimed. Neither Linux nor

Windows has the ability to protect the working sets of interactive applications under heavy

memory contention, due to their relatively low memory reference rate.

Token-ordered LRU [72] allows one task in the system to hold the token for a period

of time and build up its working set. By default, each task is allowed to hold the token

for 300 seconds and then passes it to the next task. Given the complex interactions among

applications, a single winner is far from enough to keep the system responsive under mem-

ory pressure. For example, most GUI applications rely on the X server, desktop/window

manager, and various communication daemons to work properly. Furthermore, in multi-

processor systems, this mechanism leads to low CPU utilization.

In Zhou et al. [138], the VMM maintains a miss ratio curve for each process, whose

pages are kept in LRU order. Such a curve gives an estimate of the rate of page faults a

process would incur given a memory allocation size k. Using this information, the VMM

155

reclaims pages from the process that incurs the least penalty (i.e., triggers fewest page faults

in the future) in the face of memory pressure. The approach is still throughput oriented,

and oblivious to response time requirements.

EELRU [116] is an adaptive algorithm that uses a simple on-line cost/benefit analysis to

guide replacement decisions. Compressed Caching [133] uses part of the available memory

to hold pages in compressed form, bridging the huge performance gap between memory

and disk. Informed prefetching [106, 76] attempts to pre-load pages that are likely to be

used soon based on the application’s reference behavior. However, none of them addresses

the problem of preventing pages used by interactive applications from being evicted in the

first place.

13.6.2 Application Specific Paging

The user-level external pager in the Mach operating system was originally designed

for writing back evicted pages to disk using application-supplied methods. It was later

extended to support application-specific paging [92, 65, 79]. These systems allow appli-

cations to change the operating system’s replacement decisions by providing alternative

pages based on their own page replacement policies. However, they do not have the ability

to prevent the underlying operating system from reducing an application’s memory alloca-

tion.

ExOS is an extensible library operating system that runs on top of a micro-kernel, the

ExoKernel [55]. ExOS manages most fundamental operating system abstractions at the

application level (i.e., in user space). It provides a rudimentary virtual memory system,

AVM [54], that supports application-specific operations. However, page swapping is not

supported. Nemesis [81], also based on a micro-kernel architecture, pushes most resource

management into user space. Nemesis allocates physical memory to applications according

to their contracts. Applications are allowed to manage allocated physical memory based on

their own policies using a technique called self-paging [64].

156

SPIN [22] is an extensible operating system that can be dynamically specialized us-

ing event-driven extensions. When SPIN’s physical page service needs to reclaim a page,

it raises a recall event on that page. Upon receiving the event, the application specific

handler can then volunteer an alternative page based on its own policy. Unlike the systems

described above, SPIN loads and executes application supplied extensions in kernel address

space, rather than in user address space.

In the Bookmarking GC [67], the VMM informs the garbage collector that it is about

to evict a particular page. The garbage collector then processes the information on that

page and bookmarks it, so that it is not referenced during later garbage collections. The

bookmarking GC is also capable of telling the VMM to evict an alternative page that has

no useful data.

13.6.3 Tracking the Working Set

The CRAMM VM computes stack distances, which were originally designed for trace

analysis. Mattson et al. introduced a one-pass algorithm, based on stack distances, that

analyzes a reference trace and produces cache misses for caches of any size [89]. This

algorithm was later adapted by Kim and Hsu to handle highly-associative caches [78].

However, these algorithms compute stack distance in linear time, making them too slow to

use inside a kernel. Subsequent work on analyzing reference traces used more advanced

dictionary data structures [4, 20, 51, 104, 125]. These algorithms calculate stack distance in

logarithmic time, but do not maintain underlying referenced blocks in order. This order is

unnecessary for trace processing but crucial for page eviction decisions. The CRAMM VM

maintains pages in a list that preserves potential eviction order, and uses a separate AVL tree

to calculate stack distance in logarithmic time. Transparent contribution of memory [41]

uses a similar LRU histogram-based approach to calculate the working sets of applications

in user space.

157

Zhou et al. present a VM system that also tracks LRU reference curves inside the ker-

nel [138]. They use Kim and Hsu’s linear-time algorithm to maintain LRU order and cal-

culate stack distances. To achieve reasonable efficiency, this algorithm requires the use of

large group sizes (e.g., 1024 pages), which significantly degrades accuracy. They also use a

static division between the active and inactive lists, yielding an overhead of 7 to 10%. The

CRAMM VM not only computes stack distance in logarithmic time, but it also can track

reference histograms at arbitrary granularities. Furthermore, its size adjustment algorithm

for the inactive list allows it to collect information accurately from the tail of miss curves

while limiting reference histogram collection overhead to 1%.

13.7 Disk I/O Management

Disk I/O management in modern operating systems stretches through several different

layers. 1) The disk cache layer buffers file data in memory to improve file access time,

which technically belongs to memory management. It has to determine when cached dirty

data should be written back to disk. 2) The file system layer handles how file data are

organized and located on the disk. Its journalling system has responsibility to carry out

file system updates along with their corresponding data such that the consistency of the

file system is not compromised. 3) The device layer interacts with disk devices to perform

actual I/O operations. It transforms the file data into appropriate format, and uses an I/O

scheduler to serve various disk I/O requests.

In order to preserve application responsiveness, all these layers must coordinate with

each other, as well as other resource managers in the system, to respect CPU scheduling

goals. Unfortunately, these components are implemented to work independently without

such necessary coordination in mind, and consequently are completely oblivious to re-

sponse time requirements of applications. The lack of coordination can undermine inter-

activity. For example, the journaling file system can become stuck in committing a large

transaction, blocking interactive tasks for a period of time, and the I/O scheduler may serve

158

requests from best-effort tasks before those of interactive tasks, imposing unnecessary de-

lay on them.

As the demand for supporting real-time tasks increased, researchers put much of their

effort on I/O device management, and proposed a significant number of I/O scheduling

algorithms for real-time and multimedia operating systems. However, there was almost no

attention paid to the disk cache and file system layers, since they are considered irrelevant

to responsiveness. As a result, the related work presented in this section focuses mainly on

the device layer, in particular, the I/O scheduling frameworks and algorithms.

13.7.1 I/O Scheduling in General Purpose Systems

Most general purpose systems handle disk I/O requests using the traditional SCAN

algorithm, which is also referred as the elevator algorithm, or its variants, such as C-SCAN,

LOOK, and C-LOOK [115]. The SCAN algorithm sorts requests in the dispatch queue

according to their physical block locations on the disk, and services them in sorted order

to avoid unnecessarily long seeks. SCAN is designed to maximize overall throughput, but

does not take timing constraints into account. Both FreeBSD and Solaris provide SCAN as

the default I/O scheduling policy to block device drivers, while allowing them to implement

their own.

Linux uses a more flexible elevator based I/O scheduling framework. It allows disk

devices to choose different policies for determining when I/O requests are moved into the

dispatch queue and served in SCAN order. Currently Linux provides four I/O scheduling

policies that can be dynamically changed: 1) Noop: I/O requests are directly moved to

the dispatch queue and served using the SCAN algorithm. 2) Deadline: each I/O request

is associated with a deadline. Once the deadline is passed, the request is moved into the

dispatch queue regardless of its physical location to avoid starving. 3) Anticipatory [68]:

It implements the algorithm proposed by Iyer et al., which further improves throughput by

overcoming the deceptive idleness between I/O requests. It pauses for a short time (a few

159

milliseconds) after a read operation in anticipation of another read request close by. 4)

CFQ: I/O requests are moved into the dispatch queue according to their class (e.g., real-

time, best-effort, and idle) and priorities. It allows the user to set an I/O priority for each

application through a system call (a privileged service). However, it allows I/O requests

from the real-time class to starve requests from other classes, and does not distinguish

requests coming from interactive and best-effort applications.

The disk I/O scheduling in Windows [112] is priority driven. Each application has an

I/O priority in the range of (0–7), which indicates the urgency or importance of its requests.

It also allow applications to reserve I/O bandwidth through a special interface to provide

better support for multimedia applications.

13.7.2 I/O Scheduling in (Soft) Real Time Systems

Traditional SCAN-based I/O schedulers favor the physical block location of I/O re-

quests over their timeliness, which is a poor fit for real time applications. Therefore, most

(soft) real time systems have their own specialized I/O schedulers that take deadline (or

latency) constraints into account.

Molano et al. [96] developed an I/O scheduler that uses the resource reservation abstrac-

tion in RT-Mach [127]. It allows real-time applications to reserve disk I/O bandwidth, and

schedules requests using an EDF algorithm. However, they found this simple mechanism,

that focuses solely on timeliness without taking the current disk head position into account,

can waste a lot of time on disk rotation and seeking, degrading throughput dramatically.

They then improved the algorithm by allowing lower priority requests closer to the current

disk head position to be served as long as they do not cause higher priority requests to miss

their deadlines. They named the algorithm Just In Time Disk Scheduling (JIT).

Deadline Sensitive SCAN (DS-SCAN) [60] adopts a similar approach using a simpler

implementation. DS-SCAN places each I/O request in two queues: one queue ordered by

scan position, and another queue ordered by start deadline, which indicates the latest time

160

a request must be issued to avoid missing its deadline. It services the next request in the

SCAN ordered queue only if this would not cause the first request in the other queue to miss

its deadline. Otherwise it services the request with the earliest start deadline. Both JIT and

DS-SCAN require the scheduler to have reasonably accurate estimates of disk parameters,

such as the disk head location and seek time.

Nemesis [81] has an I/O scheduler that provides rate guarantees to real time applica-

tions (e.g., continuous media), called RSCAN [14]. In Nemesis, applications perform I/O

by sending read or write requests to the Rbufs channels. RSCAN uses a credit scheme based

on “leaky buckets” to control the rate at which the requests of each channel are added to

the underlying dispatch queue. The dispatch queue is serviced using the classical SCAN

algorithm. The bucket size and rate are translated from high level specifications of appli-

cations, which have to pass a pessimistic admission test. The remaining slack time in the

system is evenly distributed to channels with pending requests as extra credits.

The multimedia operating system QLinux has an integrated I/O scheduler, Cello [113],

which also adopts the “leaky buckets” plus SCAN scheme. QLinux divides applications

into classes and manages resources for them using hierarchical proportional share. There-

fore, in Cello, the leaky bucket parameters (e.g., the bucket size and rate) are translated

from the weight of each class, as opposed to the application specifications in RSCAN.

Consequently, the bandwidth provided by Cello is relative, while RSCAN is absolute.

13.8 Multiple Resource Management in Operating Systems

In this section, we discuss the approaches to integrated management of multiple re-

sources in operating systems. They fall into two main categories, depending on their de-

signed purposes: (1) providing coarse granularity performance isolation by partitioning

resources, and (2) supporting (soft) real time applications by managing/reserving resources

needed by individual applications. Table 13.2 presents a brief comparison between Redline

and several representative operating systems discussed in this section.

161

Admission Performance isolation Intg. Mgmt. Without
control inter-class intra-class mem I/O app. mod.

Linux, Windows
√

Eclipse [29] strong
√ √ √

SPU [129] strong
√ √ √

Solaris Containers [90] strong
√ √ √

QLinux [126] strong
√ √

Linux-SRT [37] pessimistic strong
√

RT-Mach [127] pessimistic strict strict
√

Rialto [74] pessimistic strict strict
√

Nemesis [81] pessimistic strict strict
√

Redline load based strong dynamic
√ √ √

Table 13.2. A comparison of representative operating systems to Redline

13.8.1 Performance Isolation

Eclipse [29] uses reservation domains to manage multiple resources (CPU, memory,

and disk I/O). Each domain has a contract in which resource requirements are stated as

a fraction (0%–100%) of the total amount available. Extra resources in the system are

evenly distributed to all the domains. Later, Eclipse evolved into Eclipse/BSD [30, 26]

which manages CPU, disk, and network bandwidth through hierarchical proportional share.

Eclipse/BSD’s CPU scheduler uses the MTR-LS (Move-To-Rear List Scheduling) algo-

rithm, and manages the network and disk I/O bandwidth using a fair queueing algorithm.

(Eclipse uses weighted round robin for handling disk I/O, but does not handle network

bandwidth.) When there is not enough memory in the system, Eclipse/BSD evicts pages

from a domain that holds more memory than the amount stated in its contract.

Verghese et al. proposed an approach very similar to Eclipse for supporting perfor-

mance isolation in shared-memory multiprocessor systems [129]. It manages resources

using software processing units (SPU), each of which also has a contract indicating its re-

source requirements. The system attempts to distribute SPUs onto different processors,

and uses fair-share scheduling to allocate CPU time among SPUs if they have to share one

processor. The amount of memory for each SPU is allocated according to the contract.

For disk I/O, the system uses the C-SCAN algorithm (a variant of SCAN). However, in

162

order to control the shares allocated, the system monitors the I/O bandwidth consumed by

each SPU. Once an SPU consumes more than its entitled share, it is throttled. By con-

trast with Eclipse, in which the resource partition is static, an SPU is allowed to borrow

resources from another under-loaded SPU and return them back when needed. This gives

better sharing and improves overall resource utilization.

Solaris Containers [90] implements light-weight virtual machines within a single oper-

ating system instance. It comprises a combination of system resource control and boundary

separation provided by zones. Zones are configured to act as completely isolated servers,

with their own portion of the file system hierarchy and some duplicated service daemons.

Each zone can be configured to have a fixed amount of resources. It can receive its desired

share via the Solaris fair-share scheduler. Its physical memory allocation can be controlled

by the resource capping daemon. However, Solaris containers do not specify how disk I/O

is handled.

These systems are designed to provide coarse granularity isolation among high-level en-

tities, such as users and application groups, but not to provide response time guarantees for

individual applications. They partition the available resources in the system, and achieve

performance isolation by protecting the resource boundaries among partitions. However,

they all leave unspecified how resources should be allocated to applications within a par-

tition. In essence, they are orthogonal to Redline, which ensures the responsiveness of

individual applications using integrated resource management.

13.8.2 Supporting (Soft) Real-Time Applications

In order to support time critical applications, a real-time system has to schedule multiple

resources, such as CPU, disk I/O, and network bandwidth, so that necessary services are

delivered in a timely fashion.

QLinux [126] is a multimedia operating system that provides integrated resource man-

agement for CPU, disk I/O, and network bandwidth using hierarchical proportional share.

163

The whole system is driven by weights. It allocates CPU and network bandwidth using

the hierarchical SFQ algorithm and allocates disk I/O bandwidth using a rate-controlled

scheduler, Cello [113]. It requires the system administrator to partition the applications

carefully into classes, configure the hierarchy, and assign proper weights to each class as

well as individual applications. Changing the hierarchy or weight assignment can easily

undermine the performance guarantees provided.

Linux-SRT [37] is yet another soft real-time system built on Linux. It extends the

standard Linux with an new scheduling class, SCHED QOS, and a corresponding disk

I/O scheduling class, IO QOS. Linux-SRT handles soft real-time applications using a rate

monotonic algorithm, and its disk I/O scheduler is priority-driven. However, the detailed

implementation of Linux-SRT was not revealed in the paper.

The Integrated Real-time Resource Scheduler (IRS) [60] is a system that performs co-

ordinated allocation and scheduling of multiple resources (CPU, disk, and network) for

periodic soft real-time applications. It has a resource planner that uses a heuristic multi-

resource allocation algorithm to reserve resources needed by applications. In IRS, each

application must be completely self resource aware, so that its planner can heuristically

calculate a schedule for all the resources involved. In particular, every application has to

specify a period, the amount required for each resource, and a task precedence graph (TPG)

presenting the ordering among the uses of resources. Such a complicated model makes IRS

too restrictive for general purpose operating systems.

Resource containers [12] are an operating system abstraction proposed by Banga et

al. to support resource management in server systems. All resources needed for an ac-

tivity (e.g., a process with multiple threads, or processes in a chain) are abstracted into a

container. Applications must have a high degree of knowledge about the resources they

need, which might not be feasible for some interactive applications. For example, a web

browser may not know the amount of memory needed to display a web page. Alicherry et

164

al. developed RCLinux [3], which manages CPU scheduling using resource containers in

Linux.

RT-Mach attempts to support predictable real-time scheduler and provide a uniform

interface to both real-time and non-real-time applications. It uses a time-driven scheduler

based on a rate monotonic scheduling paradigm. Later, Molano et al. extended it with a

real-time file system along with a disk I/O scheduler [96].

Rialto [74] is a light-weight, soft real-time kernel, that offers deadline-based scheduling

to applications in the form of time constraints. Rialto also provides a modular resource

management interface [73] that allows applications to negotiate with the resource planner

to reserve needed resources. The resource reservation is represented by a number between

zero and one, with one indicating 100% of a particular resource. The Rialto virtual memory

system [52] explicitly excludes paging since it “introduces unpredictable latencies”, and

simply reserves and locks pages used by real-time applications.

Nemesis [81] is a real-time operating system based on a micro-kernel architecture, and

thereby pushes the majority of services into user space. It provides a single interface for

resource allocation. Each application has a contract containing its specification of resource

requirements. The Nemesis CPU scheduler is an EDF-based implementation of CPU reser-

vations, and performs an admission test based on the reservation specification. Nemesis re-

serves a fixed amount memory to each application according to the contract. Applications

have to manage the physical memory allocated to them using an application-level paging

technique, called self-paging [64]. Its disk I/O scheduler, RSCAN [14], combines the tra-

ditional SCAN algorithm with a “leaky buckets”-based rate control, whose parameters are

derived from application contracts.

Designed for supporting real-time applications, these systems rely on pessimistic ad-

mission tests that are based solely on application specifications. Such admission tests en-

sure that accepted applications never miss any of their deadlines, but sacrifice resource

utilization significantly, limiting their applicability in general purpose operating systems.

165

Unlike Redline, none of these systems has true integrated resource management. They

either lock pages used by real-time applications in memory, or push the burden to appli-

cations by allocating (or reserving) a fixed amount memory to them. Furthermore, these

systems usually require programmer intervention or sophisticated configuration through

special privileged interfaces. This prevents normal users from conveniently using the ser-

vices, making them less attractive in practice.

166

CHAPTER 14

CONCLUSION

This chapter concludes the dissertation by summarizing its contributions and discussing

avenues for future work.

14.1 Summary of contributions

The emergence of new kinds of applications as well as their diverse needs makes sys-

tem resource management more challenging than ever before. Our experiences show that

coordinating resource managers, both inside and outside the operating system, prevents

them from working at cross purposes, and dramatically improve application performance

in the face of heavy resource contention.

Supporting garbage-collected applications requires cooperation between operating sys-

tem and application run-times (i.e., JVMs). We present CRAMM, a new system that en-

ables cooperation between the virtual memory manager and garbage collector. It combines

a new virtual memory system with a garbage-collector-neutral, analytic heap sizing model

to dynamically adjust heap sizes. In exchange for modest overhead (around 1-2.5% on

average), CRAMM improves performance dramatically by making full use of memory

without incurring paging. CRAMM allows garbage-collected applications to run with a

nearly-optimal heap size in the absence of memory pressure, and adapts quickly to dy-

namic memory pressure changes, avoiding paging while providing high CPU utilization.

Supporting interactive applications requires cooperation between different subsystems

in operating system (i.e., CPU, memory, and disk I/O). We present Redline, a system de-

signed for highly interactive environments. Redline combines lightweight specifications

167

with integrated management of memory, disk I/O, and CPU resources, and uses an adap-

tive mechanism based on actual workloads to control the applications running in the system.

By orchestrating multiple resources, Redline is able to deliver responsiveness to interactive

applications even when the system is extremely overloaded.

Finally, we show how server applications can also leverage the support from the Red-

line system, as an example of cooperation between operating system and applications. The

Redline server coordinates its request processing with the underlying Redline’s CPU sched-

uler. As a result, it is able to maximize responsiveness (i.e., the number of requests meeting

the desired response time requirement) without sacrificing throughput.

14.2 Future Work

Currently, the memory protection mechanism used by Redline is quite simple, and can

easily over-estimate or under-estimate an application’s working set. One solution would be

to integrate the CRAMM VM into Redline, because it provides more precise information

about working sets. This would require some performance tuning of the CRAMM VM,

so that it can properly handle the fast phase changes of interactive applications (e.g., GUI

interfaces, web browsers).

Redline integrates CPU, memory, and disk I/O management. One future project would

be adding network bandwidth management into the integration, which would allow Redline

to offer better handling of network applications like web browsers. One challenge is that

the network traffic of some interactive applications may not be response-time sensitive. For

example, the GUI part of a download manager should be considered interactive, while its

download network traffic should not.

168

BIBLIOGRAPHY

[1] Abeni, Luca, and Buttazzo, Giorgio C. Integrating multimedia applications in hard
real-time systems. In Proceedings of the 19th IEEE Real-Time Systems Symposium
(1998), pp. 4–13.

[2] Aldea, M., Bernat, Guillem, Broster, Ian, Burns, Alan, Dobrin, Radu, Drake,
José M., Fohler, Gerhard, Gai, Paolo, Harbour, Michael González, Guidi, Gia-
como, Gutiérrez, J. Javier, Lennvall, Tomas, Lipari, Giuseppe, Martı́nez, J. M.,
Medina, Julio L., Gutiérrez, J. C. Palencia, and Trimarchi, Michael. FSF: A real-
time scheduling architecture framework. In Proceedings of the 12th IEEE Real-Time
Technology and Applications Symposium (2006), pp. 113–124.

[3] Alicherry, Mansoor, and Gopinath, K. Predictable management of system resources
for Linux. In Proceedings of the 2001 USENIX Annual Technical Conference,
FREENIX Track (2001), pp. 273–283.

[4] Almasi, George, Cascaval, Calin, and Padua, David A. Calculating stack distances
efficiently. In ACM SIGPLAN Workshop on Memory System Performance (Berlin,
Germany, Oct. 2002), pp. 37–43.

[5] Alonso, Rafael, and Appel, Andrew W. An advisor for flexible working sets. In
Proceedings of the 1990 SIGMETRICS Conference on Measurement and Modeling
of Computer Systems (Boulder, CO, May 1990), pp. 153–162.

[6] Alpern, B., Attanasio, C. R., Barton, J. J., Burke, M. G., Cheng, P., Choi, J.-D.,
Cocchi, A., Fink, S. J., Grove, D., Hind, M., Hummel, S. F., Lieber, D., Litvinov,
V., Mergen, M. F., Ngo, T., Sarkar, V., Serrano, M. J., Shepherd, J. C., Smith, S. E.,
Sreedhar, V. C., Srinivasan, H., and Whaley, J. The Jalepeño virtual machine. IBM
Systems Journal 39, 1 (Feb. 2000), 211–238.

[7] Anderson, Thomas E., Bershad, Brian N., Lazowska, Edward D., and Levy,
Henry M. Scheduler activations: Effective kernel support for the user-level man-
agement of parallelism. ACM Trans. Comput. Syst. 10, 1 (1992), 53–79.

[8] Appel, Andrew. Simple generational garbage collection and fast allocation. Software
Practice & Experiences 19, 2 (Feb. 1989), 171–183.

[9] Babaoglu, Ozalp, and Ferrari, Domenico. Two-level replacement decisions in paging
stores. IEEE Transactions on Computers C-32, 12 (Dec. 1983), 1151–1159.

[10] Baker, Henry G. The Treadmill: Real-time garbage collection without motion sick-
ness. ACM SIGPLAN Notices 27, 3 (March 1992), 66–70.

169

[11] Banachowski, Scott A., and Brandt, Scott A. Better real-time response for time-
share scheduling. In Proceedings of the 11th International Workshop on Parallel &
Distributed Real-Time Systems (2003), p. 124.2.

[12] Banga, Gaurav, Druschel, Peter, and Mogul, Jeffrey C. Resource containers: A
new facility for resource management in server systems. In Proceedings of the
3rd USENIX Symposium on Operating Systems Design and Implementation (1999),
pp. 45–58.

[13] Barham, Paul, Dragovic, Boris, Fraser, Keir, Hand, Steven, Harris, Timothy L., Ho,
Alex, Neugebauer, Rolf, Pratt, Ian, and Warfield, Andrew. Xen and the art of virtu-
alization. In Proceedings of 19th ACM Symposium on Operating Systems Principles
(2003), pp. 164–177.

[14] Barham, Paul R. A fresh approach to file system quality of service. In Proceedings
of the 7th Network and Operating System Support of Digital Audio and Video (1997),
pp. 119–128.

[15] Baruah, Sanjoy K., Cohen, N. K., Plaxton, C. Greg, and Varvel, Donald A. Pro-
portionate progress: A notion of fairness in resource allocation. Algorithmica 15, 6
(1996), 600–625.

[16] Baruah, Sanjoy K., Gehrke, Johannes, Plaxton, C. Greg, Stoica, Ion, Abdel-Wahab,
Hussein M., and Jeffay, Kevin. Fair on-line scheduling of a dynamic set of tasks on
a single resource. Information Processing Letters 64, 1 (1997), 43–51.

[17] Baruah, Sanjoy K., Gehrke, Johannes E., and Plaxton, C. Greg. Fast scheduling of
periodic tasks on multiple resources. In Proceedings of the 9th International Parallel
Processing Symposium (1995), pp. 280–288.

[18] Bavier, Andy, Peterson, Larry, and Mosberger, David. BERT: A scheduler for best
effort and realtime tasks. Tech. Rep. TR-587-98, Princeton University, 1999.

[19] BEA WebLogic. Technical white paper JRockit: Java for the enterprise.
http://www.bea.com/content/news events /white papers/BEA JRockit wp.pdf.

[20] Bennett, B. T., and Kruskal, V. J. LRU stack processing. IBM Journal of R & D 19,
4 (1975), 353–357.

[21] Bennett, Jon C. R., and Zhang, Hui. WF2Q: Worst-case fair weighted fair queueing.
In Proceedings of IEEE INFOCOM (1996), pp. 24–28.

[22] Bershad, Brian N., Savage, Stefan, Pardyak, Przemyslaw, Sirer, Emin Gün, Fiuczyn-
ski, Marc E., Becker, David, Chambers, Craig, and Eggers, Susan J. Extensibility,
safety and performance in the SPIN operating system. In Proceedings of the 15th

ACM Symposium on Operating Systems Principles (1995), pp. 267–284.

170

[23] Blackburn, Stephen M., Cheng, Perry, and McKinley, Kathryn S. Oil and Water?
High Performance Garbage Collection in Java with MMTk. In 26th International
Conference on Software Engineering (May 2004), pp. 137–146.

[24] Blackburn, Stephen M., Garner, Robin, Hoffmann, Chris, Khan, Asjad M.,
McKinley, Kathryn S., Bentzure, Rotem, Diwan, Amer, Feinberg, Daniel, Guyer,
Samuel Z., Hosking, Antony, Jump, Maria, Moss, J. Eliot B., Stefanović, Darko,
VanDrunen, Thomas, von Dincklage, Daniel, and Wiedermann, Benjamin. The Da-
Capo benchmarks: Java benchmarking development and analysis. In Proceedings of
the 21st ACM International Conference on Object-Oriented Programming, Systems,
Languages and Applications (2006).

[25] Blackburn, Stephen M., McKinley, Kathryn S., Garner, Robin, Hoffmann, Chris,
Khan, Asjad M., Bentzur, Rotem, Diwan, Amer, Feinberg, Daniel, Frampton,
Daniel, Guyer, Samuel Z., Hirzel, Martin, Hosking, Antony L., Jump, Maria,
Lee, Han, Moss, J. Eliot B., Phansalkar, Aashish, Stefanovic, Darko, VanDrunen,
Thomas, von Dincklage, Daniel, and Wiedermann, Ben. Wake up and smell the cof-
fee: evaluation methodology for the 21st century. Communications of the ACM 51,
8 (2008), 83–89.

[26] Blanquer, J., Bruno, John L., Gabber, Eran., McShea, M., Özden, B., Silberschatz,
Abraham, and Singh, A. Resource management for QoS in Eclipse/BSD. In Pro-
ceedings of the FreeBSD Conference (Berkeley, CA, 1999), pp. 8–14.

[27] Bovet, Daniel P., and Cesati, Marco. Understanding the Linux Kernel, 3rd Edition.
O’Reilly, 2005.

[28] Brecht, Tim, Arjomandi, Eshrat, Li, Chang, and Pham, Hang. Controlling garbage
collection and heap growth to reduce the execution time of Java applications. In Pro-
ceedings of the 2001 ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages & Applications (Tampa, FL, June 2001), pp. 353–366.

[29] Bruno, John, Gabber, Eran, Özden, Banu, and Silberschatz, Abraham. The Eclipse
operating system: Providing quality of service via reservation domains. In Proceed-
ings of the 1998 USENIX Annual Technical Conference (1998), pp. 235–246.

[30] Bruno, John L., Brustoloni, José Carlos, Gabber, Eran, Özden, Banu, and Silber-
schatz, Abraham. Retrofitting quality of service into a time-sharing operating sys-
tem. In Proceedings of the 1999USENIX Annual Technical Conference, General
Track (1999), pp. 15–26.

[31] Candea, George, and Jones, Michael B. Vassal: Loadable scheduler support for
multi-policy scheduling. In Proceedings of the 2nd USENIX Windows NT Symposium
(Seattle, WA, 1998), pp. 157–166.

[32] Caprita, Bogdan, Chan, Wong Chun, Nieh, Jason, Stein, Clifford, and Zheng, Hao-
qiang. Group Ratio Round-Robin: O(1) proportional share scheduling for unipro-
cessor and multiprocessor systems. In Proceedings of the 2005 USENIX Annual
Technical Conference (2005), pp. 337–352.

171

[33] Carr, Richard W., and Henessey, John L. WSClock – a simple and effective algo-
rithm for virtual memory management. In Proceedings of the Eighth ACM Sympo-
sium on Operating Systems Principles (SOSP) (Dec. 1981), pp. 87–95.

[34] Chandra, Abhishek, Adler, Micah, Goyal, Pawan, and Shenoy, Prashant. Surplus
Fair Scheduling: A Proportional-Share CPU scheduling algorithm for symmetric
multiprocessors. In Proceedings of the 4th USENIX Symposium on Operating Sys-
tems Design and Implementation (San Diego, CA, 2000), pp. 45–58.

[35] Chandra, Abhishek, Adler, Micah, and Shenoy, Prashant. Deadline Fair Scheduling:
Bridging the theory and practice of proportionate-fair scheduling in multiprocessor
servers. In Proceedings of the 7th IEEE Real-Time Technology and Applications
Symposium (2001), pp. 3–14.

[36] Cheung, Shun Y., and Pencea, Corneliu S. BSFQ: Bin-sort fair queueing. In Pro-
ceedings of IEEE INFOCOM (2002), pp. 1640–1649.

[37] Childs, Stephen, and Ingram, David. The Linux-SRT integrated multimedia operat-
ing system: Bringing QoS to the desktop. In Proceedings of the 7th IEEE Real-Time
Technology and Applications Symposium (2001), pp. 135–140.

[38] Chu, Hao Hua, and Nahrstedt, Klara. A soft real time scheduling server in UNIX
operating system. In Proceedings of the 4th International Workshop on Interactive
Distributed Multimedia Systems and Telecommunication Services (1997), pp. 153–
162.

[39] Chu, Hao Hua, and Nahrstedt, Klara. CPU service classes for multimedia appli-
cations. In Proceedings of the 6th IEEE International Conference on Multimedia
Computing Systems, Vol. 1 (1999), pp. 296–301.

[40] Chu, W. W., and Opderbeck, H. The page fault frequency replacement algorithm.
In AFIPS Conference Proceedings (Montvale, NJ, 1972), vol. 41(1), AFIPS Press,
pp. 597–609.

[41] Cipar, James, Corner, Mark D., and Berger, Emery D. Transparent contribution of
memory. In USENIX Annual Technical Conference, General Track (2006), pp. 109–
114.

[42] Cobb, Jorge Arturo, Gouda, Mohamed G., and El-Nahas, Amal. Time-shift schedul-
ing: Fair scheduling of flows in high speed networks. IEEE/ACM Trans. Netw. 6, 3
(1998), 274–285.

[43] Cooper, Eric, Nettles, Scott, and Subramanian, Indira. Improving the performance
of SML garbage collection using application-specific virtual memory management.
In Conference Record of the 1992 ACM Symposium on Lisp and Functional Pro-
gramming (San Francisco, CA, June 1992), pp. 43–52.

172

[44] Coulson, Geoff, Campbell, Andrew T., Robin, Philippe, Blair, Gordon S., Papath-
omas, Michael, and Shepherd, Doug. The design of a QoS-controlled ATM-based
communications system in Chorus. IEEE Journal on Selected Areas in Communi-
cations 13, 4 (1995), 686–699.

[45] Demers, Alan J., Keshav, Srinivasan, and Shenker, Scott. Analysis and simulation
of a fair queueing algorithm. In Proceedings of ACM SIGCOMM (1989), pp. 1–12.

[46] Deng, Zhong, and Liu, Jane. Scheduling real-time applications in an open envi-
ronment. In Proceedings of the 18th IEEE Real-Time Systems Symposium (1997),
pp. 308–319.

[47] Deng, Zhong, Liu, Jane, and Sun, J. A scheme for scheduling hard real-time appli-
cations in open system environment. In Proceedings of the 9th Euromicro Workshop
on Real-Time Systems (1997), pp. 191–199.

[48] Deng, Zhong, Liu, Jane, Zhang, Lynn Y., Seri, Mouna, and Frei, Alban. An open
environment for real-time applications. Real-Time Systems 16, 2-3 (1999), 155–185.

[49] Denning, Peter J. The working set model for program behavior. In Proceedings of
the 1st ACM Symposium on Operating Systems Principles (1967), pp. 15.1–15.12.

[50] Denning, Peter J. Working sets past and present. IEEE Transactions on Software
Engineering SE-6(1) (Jan. 1980), 64–84.

[51] Ding, Chen, and Zhong, Yutao. Predicting whole-program locality through reuse dis-
tance analysis. In Proceedings of the 2003 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (San Diego, CA, June 2003), pp. 245–
257.

[52] Draves, Richard P., Odinak, Gilad, and Cutshall, Scott M. The Rialto virtual memory
system. Tech. Rep. MSR-TR-97-04, Microsoft Research, Advanced Technology
Division, 1995.

[53] Duda, Kenneth J., and Cheriton, David R. Borrowed-virtual-time (BVT) scheduling:
Supporting latency-sensitive threads in a general-purpose schedular. In Proceedings
of the 17th ACM Symposium on Operating Systems Principles (1999), pp. 261–276.

[54] Engler, Dawson R., Gupta, Sandeep K., and Kaashoek, M. Frans. AVM:
Application-level virtual memory. In Proceedings of the HOTOS-V (1995), pp. 72–
77.

[55] Engler, Dawson R., Kaashoek, M. Frans, and O’Toole, James. Exokernel: An oper-
ating system architecture for application-level resource management. In Proceedings
of the 15th ACM Symposium on Operating Systems Principles (1995), pp. 251–266.

[56] Essick, R. An event-based fair share scheduler. In Proceedings of the Winter
USENIX Conference (1990), pp. 147–162.

173

[57] Etsion, Yoav, Tsafrir, Dan, and Feitelson, Dror G. Human-centered scheduling of
interactive and multimedia applications on a loaded desktop. Tech. Rep. 2003-3,
Hebrew University, 2003.

[58] Ford, Bryan, and Susarla, Sai. CPU inheritance scheduling. In Proceedings of the
2nd USENIX Symposium on Operating Systems Design and Implementation (1996),
pp. 91–105.

[59] Golestani, S. Jamaloddin. A self-clocked fair queueing scheme for broadband appli-
cations. In Proceedings of IEEE INFOCOM (1994), pp. 636–646.

[60] Gopalan, Kartik, and Chiueh, Tzicker. Multi-resource allocation and scheduing for
periodic soft real-time applications. In Proceedings of the 9th ACM/SPIE Conference
on Multimedia Computing and Networking (Berkeley, CA, 2002), pp. 34–45.

[61] Goyal, Pawan, Guo, Xingang, and Vin, Harrick M. A hierarchical CPU scheduler
for multimedia operating systems. In Proceedings of the 2nd USENIX Symposium on
Operating Systems Design and Implementation (Seattle, WA, 1996), pp. 107–121.

[62] Grzegorczyk, Chris, Soman, Sunil, Krintz, Chandra, and Wolski, Richard. Isla Vista
heap sizing: Using feedback to avoid paging. In Proceedings of the 2007 Interna-
tional Symposium on Code Generation and Optimization (2007), pp. 325–340.

[63] Guo, Chuanxiong. SRR: An O(1) time complexity packet scheduler for flows in
multi-service packet networks. In Proceedings of ACM SIGCOMM (2001), pp. 211–
222.

[64] Hand, Steven M. Self-Paging in the Nemesis operating system. In Proceedings
of the 3rd USENIX Symposium on Operating Systems Design and Implementation
(1999), pp. 73–86.

[65] Harty, Kieran, and Cheriton, David R. Application-controlled physical memory us-
ing external page-cache management. In Proceedings of the 5th Interational Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(1992), pp. 187–197.

[66] Henry, G. The fair share scheduler. AT&T Bell Laboratories Technical Journal 63,
8 (19984), 1845–1857.

[67] Hertz, Matthew, Feng, Yi, and Berger, Emery D. Garbage collection without paging.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (2005), pp. 143–153.

[68] Iyer, Sitaram, and Druschel, Peter. Anticipatory scheduling: A disk scheduling
framework to overcome deceptive idleness in synchronous I/O. In Proceedings of
the 18th ACM Symposium on Operating Systems Principles (2001), pp. 117–130.

[69] JavaSoft. J2SE 1.5.0 documentation: Garbage collector ergonomics.
http://java.sun.com/j2se/1.5.0/docs/guide/vm/ gc-ergonomics.html.

174

[70] Jeffay, Kevin, and Bennett, David. A rate-based execution abstraction for multime-
dia computing. In Proceedings of the 5th Network and Operating System Support of
Digital Audio and Video (1995), pp. 64–75.

[71] Jeffay, Kevin, Stone, Donald L., and Smith, F. Donelson. Kernel support for live
digital audio and video. Computer Communications 15, 6 (1992), 388–395.

[72] Jiang, Song, and Zhang, Xiaodong. Token-ordered LRU: an effective page replace-
ment policy and its implementation in Linux systems. Perform. Eval. 60, 1-4 (2005),
5–29.

[73] Jones, Michael B., Leach, Paul J., and Draves, Richard P. Support for user-centric
modular real-time resource management in the Rialto operating system. In Proceed-
ings of the 5th Network and Operating System Support of Digital Audio and Video
(1995), pp. 53–63.

[74] Jones, Michael B., McCulley, Daniel L., Forin, Alessandro, Leach, Paul J., Rosu,
Daniela, and Roberts, Daniel L. An overview of the Rialto real-time architecture. In
Proceedings of the 7th ACM SIGOPS European Workshop (1996), pp. 249–256.

[75] Jones, Michael B., Rosu, Daniela, and Rosu, Marcel-Catalin. CPU reservations
and time constraints: Efficient, predictable scheduling of independent activities. In
Proceedings of the 16th ACM Symposium on Operating Systems Principles (1997),
pp. 198–211.

[76] Kaplan, Scott F., McGeoch, Lyle A., and Cole, Megan F. Adaptive caching for
demand prepaging. In Proceedings of the 2002 ACM SIGPLAN International Sym-
posium on Memory Management (2002), pp. 221–232.

[77] Kay, J., and Lauder, P. A fair share scheduler. Communications of ACM 31, 1 (1988),
44–55.

[78] Kim, Yul H., Hill, Mark D., and Wood, David A. Implementing stack simulation
for highly-associative memories. In Proceedings of the 1991 SIGMETRICS Confer-
ence on Measurement and Modeling of Computer Systems (San Diego, CA, 1991),
pp. 212–213.

[79] Krueger, Keith, Loftesness, David, Vahdat, Amin, and Anderson, Thomas E. Tools
for the development of application-specific virtual memory management. In Pro-
ceedings of the 8th ACM International Conference on Object-Oriented Program-
ming, Systems, Languages and Applications (1993), pp. 48–64.

[80] Lee, Jeng Farn, Chen, Meng Chang, and Sun, Yeali. WF2Q−M: Worst-case fair
weighted fair queueing with maximum rate control. Computer Networks: The In-
ternational Journal of Computer and Telecommunications Networking 51, 6 (2007),
1403–1420.

175

[81] Leslie, Ian M., McAuley, Derek, Black, Richard, Roscoe, Timothy, Barham, Paul,
Evers, David, Fairbairns, Robin, and Hyden, Eoin. The design and implementation
of an operating system to support distributed multimedia applications. IEEE Journal
on Selected Areas in Communications 14, 7 (1996), 1280–1297.

[82] Li, Tong. http://triosched.sourceforge.net/.

[83] Lin, Chih han, Chu, Hao hua, and Nahrstedt, Klara. A soft real-time scheduling
server on the Windows NT. In Proceedings of the 2nd USENIX Windows NT Sympo-
sium (1998), pp. 149–156.

[84] Lipari, Giuseppe, Carpenter, John, and Baruah, Sanjoy K. A framework for achiev-
ing inter-application isolation in multiprogrammed hard real-time environments. In
Proceedings of the 21st IEEE Real-Time Systems Symposium (2000), pp. 217–226.

[85] Liu, C. L., and Layland, James W. Scheduling algorithms for multiprogramming in
a hard-real-time environment. Journal of ACM 20, 1 (1973), 46–61.

[86] Lu, Chenyang, Stankovic, John A., Son, Sang Hyuk, and Tao, Gang. Feedback
control real-time scheduling: Framework, modeling, and algorithms. Real-Time
Systems 23, 1-2 (2002), 85–126.

[87] Lu, Chenyang, Stankovic, John A., Tao, Gang, and Son, Sang Hyuk. Design and
evaluation of a feedback control EDF scheduling algorithm. In Proceedings of the
20th IEEE Real-Time Systems Symposium (1999), pp. 56–67.

[88] Maheshwari, Umesh. Charge-based proportional scheduling. Tech. Rep. TM-529,
MIT Laboratory for CS, 1995.

[89] Mattson, R. L., Gecsei, J., Slutz, D. R., and Traiger, I. L. Evaluation techniques for
storage hierarchies. IBM Systems Journal 9, 2 (1970), 78 – 117.

[90] Mauro, Jim, and McDougall, Richard. Solaris Internal: Core Kernel Components.
Sum Microsystems Press, A Prentice Hall Title, 2000.

[91] McKusick, Marshall Kirk, and Neville-Neil, George V. The Design and Implemen-
tation of the FreeBSD Operating System. Addison Wesley, August 2004.

[92] McNamee, Dylan, and Armstrong, Katherine. Extending the Mach external pager
interface to accommodate user-level page replacement policies. In Proceedings of
the 1990 USENIX Mach Symposium (1990), pp. 17–29.

[93] Mercer, Clifford W., Savage, Stefan, and Tokuda, Hideyuki. Processor capacity
reserves: An abstraction for managing processor usage. In Proceedings of Workshop
on Workstation Operating Systems (1993), pp. 129–134.

[94] Mercer, Clifford W., Savage, Stefan, and Tokuda, Hideyuki. Processor capacity
reserves: Operating system support for multimedia applications. In Proceedings of
the 1st IEEE International Conference on Multimedia Computing Systems (1994),
pp. 90–99.

176

[95] Meurillon, Cyril. Be engineering insights: The kernel scheduler and
real-time threads. Be Newsletter, 37, August 1996. http://www-
classic.be.com/aboutbe/benewsletter/Issue37.html.

[96] Molano, Anastasio, Juvva, Kanaka, and Rajkumar, Ragunathan. Real-time filesys-
tems - guaranteeing timing constraints for disk accesses in RT-Mach. In Proceedings
of the 18th IEEE Real-Time Systems Symposium (1997), pp. 155–165.

[97] Molnar, Ingo. http://people.redhat.com/mingo/cfs-scheduler/.

[98] Moon, David A. Garbage collection in a large LISP system. In Conference Record
of the 1984 ACM Symposium on Lisp and Functional Programming (1984), pp. 235–
245.

[99] Nieh, Jason, and Lam, Monica S. SMART: A processor scheduler for multimedia
applications. In Proceedings of the 15th ACM Symposium on Operating Systems
Principles (1995), p. 233.

[100] Nieh, Jason, and Lam, Monica S. The design, implementation and evaluation of
SMART: A scheduler for multimedia applications. In Proceedings of the 16th ACM
Symposium on Operating Systems Principles (Saint-Malo, France, 1997), pp. 184–
197.

[101] Nieh, Jason, and Lam, Monica S. A SMART scheduler for multimedia applications.
ACM Trans. Comp. Syst. 21, 2 (2003), 117–163.

[102] Nieh, Jason, Vaill, Christopher, and Zhong, Hua. Virtual-Time Round-Robin: An
O(1) proportional share scheduler. In Proceedings of the 2001 USENIX Annual
Technical Conference (2001), pp. 245–259.

[103] Oikawa, Shuichi, and Rajkumar, Ragunathan. Portable RK: A portable resource
kernel for guaranteed and enforced timing behavior. In Proceedings of the 5th IEEE
Real-Time Technology and Applications Symposium (1999), pp. 111–120.

[104] Olken, F. Efficient methods for calculating the success function of fixed space re-
placement policies. Tech. Rep. LBL-12370, Lawrence Berkeley Laboratory, 1981.

[105] Parekh, Abhay K., and Gallager, Robert G. A generalized processor sharing ap-
proach to flow control in integrated services networks: the single node case. In
Proceedings of IEEE INFOCOM (1992), pp. 915–924.

[106] Patterson, R. H., Gibson, G. A., Ginting, E., Stodolsky, D., and Zelenka, J. Informed
prefetching and caching. In Proceedings of the 15th ACM Symposium on Operating
Systems Principles (New York, NY, USA, 1995), ACM Press, pp. 79–95.

[107] Prabhakaran, Vijayan, Arpaci-Dusseau, Andrea C., and Arpaci-Dusseau, Remzi H.
Analysis and Evolution of Journaling File Systems. In Proceedings of the 2005
USENIX Annual Technical Conference (2005), pp. 105–120.

177

[108] Ramabhadran, Sriram, and Pasquale, Joseph. Stratified round robin: A low complex-
ity packet scheduler with bandwidth fairness and bounded delay. In Proceedings of
ACM SIGCOMM (2003), pp. 239–250.

[109] Rau, Melissa A., and Smirni, Evgenia. Adaptive CPU scheduling policies for mixed
multimedia and best-effort workloads. In Proceedings of the 7th IEEE International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommuni-
cation Systems (Washington, DC, 1999), pp. 252–261.

[110] Regehr, John, and Stankovic, John A. HLS: A framework for composing soft real-
time schedulers. In Proceedings of the 22nd IEEE Real-Time Systems Symposium
(2001), pp. 3–14.

[111] Regehr, John David. Using Hierarchical Scheduling to Support Soft Real-Time Ap-
plications in General-Purpose Operating Systems. PhD thesis, University of Vir-
ginia, Charlottesville, VA, USA, 2001. Adviser-John A. Stankovic.

[112] Russinovich, Mark E., and Solomo, David A. Micrsoft Windows Internals (4th Edi-
tion). Microsoft Press, 2004.

[113] Shenoy, Prashant J., and Vin, Harrick M. Cello: A disk scheduling framework for
next generation operating systems. Real-Time Systems 22, 1-2 (2002), 9–48.

[114] Shreedhar, M., and Varghese, George. Efficient fair queueing using deficit round
robin. In Proceedings of ACM SIGCOMM (1995), pp. 231–242.

[115] Silberschatz, Avi, baer Galvin, Peter, and Gagne, Greg. Operating System Concepts,
Seventh Edition. John Wiley & Sons, Inc., 2004.

[116] Smaragdakis, Yannis, Kaplan, Scott F., and Wilson, Paul R. The EELRU adaptive
replacement algorithm. Performance Evaluation 53, 2 (July 2003), 93–123.

[117] Spuri, Marco, and Buttazzo, Giorgio C. Efficient aperiodic service under earliest
deadline scheduling. In Proceedings of the 15th IEEE Real-Time Systems Symposium
(1994), pp. 2–11.

[118] Spuri, Marco, and Buttazzo, Giorgio C. Scheduling aperiodic tasks in dynamic
priority systems. Real-Time Systems 10, 2 (1996), 179–210.

[119] Spuri, Marco, Buttazzo, Giorgio C., and Sensini, Fabrizio. Robust aperiodic schedul-
ing under dynamic priority systems. In Proceedings of the 16th IEEE Real-Time
Systems Symposium (1995), pp. 210–221.

[120] Srinivasan, Anand, and Anderson, James H. Early-release fair scheduling. In Pro-
ceedings of the 12th Euromicro Conference on Real-Time Systems (2000), pp. 35–43.

[121] Srinivasan, Anand, and Anderson, James H. Fair scheduling of dynamic task sys-
tems on multiprocessors. Journal of System Software 77, 1 (2005), 67–80.

178

[122] Steere, David C., Goel, Ashvin, Gruenberg, Joshua, McNamee, Dylan, Pu, Calton,
and Walpole, Jonathan. A feedback-driven proportion allocator for real-rate schedul-
ing. In Proceedings of the 3rd USENIX Symposium on Operating Systems Design
and Implementation (1999), pp. 145–158.

[123] Stoica, Ion, and Abdel-Wahab, Hussein. Earliest eligible virtual deadline first: A
flexible and accurate mechanism for proportional share resource allocation. Tech.
Rep. TR-95-22, Old Dominion University, 1995.

[124] Stoica, Ion, Abdel-Wahab, Hussein, Jeffay, Kevin, Baruah, Sanjoy, Gehrke, Jo-
hannes, and Plaxton, C. Greg. A proportional share resource allocation algorithm for
real-time, time-shared systems. In Proceedings of the 17th IEEE Real-Time Systems
Symposium (Dec. 1996), pp. 288–299.

[125] Sugumar, Rabin A., and Abraham, Santosh G. Efficient simulation of caches under
optimal replacement with applications to miss characterization. In Measurement and
Modeling of Computer Systems (Santa Clara, CA, 1993), pp. 24–35.

[126] Sundaram, Vijay, Chandra, Abhishek, Goyal, Pawan, Shenoy, Prashant J., Sahni,
Jasleen, and Vin, Harrick M. Application performance in the QLinux multimedia
operating system. In Proceedings of the 8th ACM Multimedia (2000), pp. 127–136.

[127] Tokuda, Hideyuki, Nakajima, Tatsuo, and Rao, Prithvi. Real-time Mach: Towards
a predictable real-time system. In Proceedings of the 1990 USENIX MACH Sympo-
sium (1990), pp. 73–82.

[128] Tsafrir, Dan, Etsion, Yoav, and Feitelson, Dror G. Secretly monopolizing the CPU
without superuser privileges. In Proceedings of the 16th USENIX Security Sympo-
sium (2007), pp. 1–18.

[129] Verghese, Ben, Gupta, Anoop, and Rosenblum, Mendel. Performance isolation:
Sharing and isolation in shared-memory multiprocessors. In Proceedings of the 8th

Interational Conference on Architectural Support for Programming Languages and
Operating Systems (1998), pp. 181–192.

[130] Waldspurger, Carl A., and Weihl, William E. Lottery scheduling: Flexible
proportional-share resource management. In Proceedings of the 1st USENIX Sym-
posium on Operating Systems Design and Implementation (1994), pp. 1–11.

[131] Waldspurger, Carl A., and Weihl, William E. Stride scheduling: Deterministic
proportional-share resource management. Tech. Rep. TR-528, MIT Laboratory of
CS, 1995.

[132] Wang, Yu-Chung, and Lin, Kwei-Jay. Implementing a general real-time scheduling
framework in the RED-Linux real-time kernel. In Proceedings of the 20th IEEE
Real-Time Systems Symposium (1999), pp. 246–255.

179

[133] Wilson, Paul R., Kaplan, Scott F., and Smaragdakis, Yannis. The case for com-
pressed caching in virtual memory systems. In Proceedings of the 1999 USENIX
Annual Technical Conference (1999), pp. 101–116.

[134] Yang, Ting, Berger, Emery D., Kaplan, Scott F., and Moss, J. Eliot B. CRAMM:
Virtual memory support for garbage-collected applications. In Proceedings of the
7th USENIX Symposium on Operating Systems Design and Implementation (2006),
pp. 103–116.

[135] Yang, Ting, Hertz, Matthew, Berger, Emery D., Kaplan, Scott F., and Moss, J.
Eliot B. Automatic heap sizing: Taking real memory into account. In Proceed-
ings of the 2004 ACM SIGPLAN International Symposium on Memory Management
(Vancouver, Canada, Oct. 2004), pp. 61–72.

[136] Zhang, Chengliang, Kelsey, Kirk, Shen, Xipeng, Ding, Chen, Hertz, Matthew, and
Ogihara, Mitsunori. Program-level adaptive memory management. In Proceed-
ings of the 2004 ACM SIGPLAN International Symposium on Memory Management
(2006), pp. 174–183.

[137] Zhang, Lixia. Virtualclock: A new traffic control algorithm for packet-switched
networks. ACM Trans. Comput. Syst. 9, 2 (1991), 101–124.

[138] Zhou, Pin, Pandy, Vivek, Sundaresan, Jagadeesan, Raghuraman, Anand, Zhou,
Yuanyuan, and Kumar, Sanjeev. Dynamic tracking of page miss ratio curves for
memory management. In Proceedings of the 11th Interational Conference on Archi-
tectural Support for Programming Languages and Operating Systems (Boston, MA,
Oct. 2004), pp. 177–188.

180

