
SENSOR CONTROL AND SCHEDULING STRATEGIES
FOR SENSOR NETWORKS

A Dissertation Presented

by

VICTORIA U. MANFREDI

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2009

Department of Computer Science



c© Copyright by Victoria U. Manfredi 2009

All Rights Reserved



SENSOR CONTROL AND SCHEDULING STRATEGIES
FOR SENSOR NETWORKS

A Dissertation Presented

by

VICTORIA U. MANFREDI

Approved as to style and content by:

Jim Kurose, Chair

Andrew G. Barto, Member

Deepak Ganesan, Member

Weibo Gong, Member

Don Towsley, Member

Andrew G. Barto, Department Chair
Department of Computer Science



For my mother, father, and brother.
Res ipsa loquitur.



ACKNOWLEDGMENTS

I extend my deepest gratitude to Jim Kurose who has been an outstanding advisor

and role model. His lucid insights into complex problems have been a continual

inspiration. It has been my great pleasure to work with him.

I am also indebted to my committee members: Don Towsley for his insightful

questions, Deepak Ganesan for encouraging my research forays into sensor networks,

Andy Barto for providing a machine learning perspective, and Weibo Gong for his

enthusiasm for varied research problems. I also thank Robert Hancock, Naceur Mal-

ouch, and Mike Zink for lively and interesting research collaborations. I am grateful

to Patrick Thiran and Matt Grossglauser for hosting me at EPFL and focusing my

research, and to Matt for his valiant efforts at punctuality. I also thank Sridhar

Mahadevan for introducing me to the rich world of statistical machine learning.

My life at UMass was made immeasurably easier by the cheerful efficiency of

Laurie Connors, Susan Lanfare, Leanne Leclerc, and Tyler Trafford.

I thank the members of the Networks and ALL labs at UMass, and of CASA, for

the wonderful research discussions and camaraderie over the years, particularly Yung-

Chih Chen, Daniel Figueiredo, Majid Ghaderi, Mohammad Ghavamzadeh, Yu Gu,

Bo Jiang, Ramin Khalili, George Konidaris, Patrick Lee, Junning Liu, Eric Lyons,

Daniel Menasche, Giovanni Neglia, Sarah Osentoski, Dave Pepyne, Bruno Ribeiro,

Guto Rocha, Khash Rohanimanesh, Elisha Rosensweig, Suchi Saria, Ash Shah, Özgür

Şimşek, Pablo Serrano, Suddu Vasudevan, Bing Wang, David Westbrook, Pippin

Wolfe, Sookhyun Yang, and Chun Zhang. Finally, I thank Lisa Friedland, Ann Guo,

Emily Horrell, Geetika Lakshmanan, Natasha Mohanty, Audrey St· John, Frosso

Seitaridou, and Elif Tosun for their constant encouragement and support.

v



ABSTRACT

SENSOR CONTROL AND SCHEDULING STRATEGIES
FOR SENSOR NETWORKS

SEPTEMBER 2009

VICTORIA U. MANFREDI

B.A., SMITH COLLEGE

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Jim Kurose

We investigate sensor control and scheduling strategies to most effectively use the

limited resources of an ad hoc network or closed-loop sensor network. In this context,

we examine the following three problems.

Where to focus sensing? Certain types of sensors, such as cameras or radars, are

unable to simultaneously collect high fidelity data from all environmental locations,

and thus require some sort of sensing strategy. Considering a meteorological radar

network, we show that the main benefits of optimizing sensing over expected future

states of the environment are when there are multiple small phenomena in the en-

vironment. Considering multiple users, we show that the problem of call admission

control (i.e., deciding which sensing requests to satisfy) in the context of a virtualized

private sensor network can be solved in polynomial time when sensor requests are

vi



divisible or fixed in time. When sensor requests are indivisible but may be shifted in

time, we show that the call admission control problem is NP-complete.

How to make sensing robust to delayed and dropped packets? In a closed-loop

sensor network, data collected by the sensors determines each sensor’s future data

collection strategy. Network delays, however, constrain the quantity of data received

by the time a control decision must be made, and consequently affect the quality of

the computed sensor control. We investigate the value of separate handling of sensor

control and data traffic, during times of congestion, in a closed-loop sensor network.

Grounding our analysis in a meteorological radar network, we show that prioritizing

sensor control traffic decreases the round-trip control-loop delay, and thus increases

the quantity and quality of the collected data and improves application performance.

How to make routing robust to network changes? In wireless sensor and mobile

ad-hoc networks, variable link characteristics and node mobility give rise to changing

network conditions. We propose a routing algorithm that selects a type of routing

subgraph (a braid) that is robust to changes in the network topology. We analytically

characterize the reliability of a class of braids and their optimality properties, and

give counter-examples to other conjectured optimality properties in a well-structured

(grid) network. Comparing with dynamic source routing, we show that braid rout-

ing can significantly decrease control overhead while only minimally degrading the

number of packets delivered, with gains dependent on node density.

vii



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiii

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Where to focus sensing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 How to make sensing robust to delayed and dropped packets? . . . . . . . . . . 3
1.3 How to make routing robust to network changes? . . . . . . . . . . . . . . . . . . . . . 5
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. MYOPIC VS. LOOKAHEAD SENSING STRATEGIES . . . . . . . . . . . 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Primer on Meteorological Radars and Sensing . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Meteorological Radar Control Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Quality Function for Scanning a Phenomenon . . . . . . . . . . . . . . . . . 14
2.4.3 Quality Function for Scanning a Sector . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Sensing Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Sit-and-spin Sensing Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Myopic Sensing Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.3 Limited Lookahead Sensing Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.4 Full Lookahead Sensing Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

viii



2.5.4.1 MDP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.4.2 Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Meteorological Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.1 Storm Cell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6.2 Radar Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.1 Limited Lookahead Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7.2 Full Lookahead Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7.3 Scaling Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3. CALL ADMISSION CONTROL IN VIRTUALIZED PRIVATE
SENSOR NETWORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Virtualized Private Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 What do we mean by a virtualized private sensor network? . . . . . 42
3.3.2 Call Admission Control Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Indivisible Sensor Requests, No Shifting . . . . . . . . . . . . . . . . . . . . . . 44
3.4.2 Divisible Sensor Requests, No Shifting . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.3 Indivisible Sensor Requests, Shifting . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.4 Divisible Sensor Requests, Shifting . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4. SEPARATION OF SENSOR CONTROL AND DATA
TRAFFIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Closed-Loop Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 More Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.2 Better Quality Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Meteorological Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

ix



4.4.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.2 Radar Meteorology Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.2.1 Number of Voxels Scanned . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.2.2 Reflectivity Standard Deviation . . . . . . . . . . . . . . . . . . . . . 63
4.4.2.3 Tracking Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.3 Storm-Tracking Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.1 Simulation Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5.2 Data Quantity and Quality Results . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5.3 Storm-Tracking Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5. ROBUST ROUTING IN AD HOC NETWORKS . . . . . . . . . . . . . . . . . 78

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 What do we mean by robust? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Robustness in Terms of Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.2 The k-Hop Braid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.3 Braid Routing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.1 1-Hop Braids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4.2 Comparison With Disjoint Path Routing . . . . . . . . . . . . . . . . . . . . . 91

5.5 Reliability Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5.2 Link Failure Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5.3 Node Failure Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6 Routing Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6.1 Constant T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6.1.1 Naive Braid Routing Implementation . . . . . . . . . . . . . . . . 99
5.6.1.2 Simulation Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.6.2 Variable T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

x



5.6.2.1 Efficient Braid Routing Implementation . . . . . . . . . . . . . 105
5.6.2.2 Stationary Network Results . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6.3 MANET Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xi



LIST OF TABLES

Table Page

2.1 Linear Sarsa(λ) reinforcement learning algorithm. Adapted from
[85, 88, 89]. Qs,a is the action-value for state s and action a. wf,a
is the set of weights used to linearly combine the basis functions
obtained for features f and action a. α is the learning rate: it
represents the rate at which the weights are updated. γ is the
discount factor: it represents how much importance is placed on
the future versus the present. Eligibility traces are used to
incorporate state history when later updating the action-values:
the more recently and frequently a state was visited, the higher
will be the value of its eligibility trace. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Parameter settings for variables. Additionally, for Sarsa(λ) we use a
single tiling for each state variable: we use a granularity of 1.0 for
the (x, y) location and radius tilings, while we use a granularity of
0.1 for the (x, y) velocity, phenomenon confidence, and radar
sector confidence tilings. To obtain the penalty Pm = 15.5667 for
each unobserved storm cell we assume that any unobserved storm
cell is observed with quality 0, hence u = 0, and then sum over
(1− u)V max/ρ for all attributes. Using Pr = 200 ensures that if a
storm cell has not been rescanned within the appropriate amount
of time, this part of the cost function will dominate. . . . . . . . . . . . . . . 28

3.1 Algorithm to solve the call admission control problem in VPSNs
when sensor requests are indivisible and cannot be shifted in time;
adapted from the algorithm for interval scheduling found in [3]. . . . . . 45

5.1 Reliability computation for Figure 5.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Reliability computations for Figure 5.4. The product of each of the
first 3 rows times each of the last 9 rows gives the 27 terms
(ignoring scaling factors) of the full reliability computation. For
each of the 27 products, the “using black node” product is ≥ the
“using grey nodes” product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xii



LIST OF FIGURES

Figure Page

2.1 Radar and storm cell definitions. (a) Top view of two radars. (b) Side
view of radar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 The Fc(·), Fw(·), and Fd(·) step functions from [48, 71, 72] used by
the Up and Us quality functions, from [48, 71, 72]. . . . . . . . . . . . . . . . . . 16

2.3 Radar setup for simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Comparing the sensing strategies based on quality two radars (two
radar scenario). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Comparing the sensing strategies based on re-scan interval (two radar
scenario). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Example convergences of the full lookahead sensing strategy,
Sarsa(λ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Comparing the sensing strategies based on (a) scan quality, (b) cost,
and (c), (d) re-scan intervals (two radar scenario). . . . . . . . . . . . . . . . . 33

2.8 Scaling behaviour of sensing strategies. The simulation results in (a)
and (b) vary the number of radars, while the results in (c) and (d)
are for four radars. Radars are arranged as in Figure 2.3. Error
bars are over 1500 runs; each run is 500 decision epochs long. . . . . . . . 36

3.1 Notation for the call admission control problem. Requests that are
the same colour, are requesting to use the sensor in the same
way. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Computational complexity of the call admission control problem in
VPSNs assuming different constraints on the utility functions. . . . . . . 44

4.1 A closed-loop sensor network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xiii



4.2 Timing of the control loop when (a) αk ≈ βk and (b) αk > βk. We
assume wireless links: thus, sensor control and data packets must
compete for access to links and so can be modeled as if they share
the same queue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 (a) Model of the bottleneck queue in the network. (b) The 2-state
Markov modulated Poisson process used to model the “other”
traffic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Radar definitions. (a) Side view of radar. (b) Top view of radar. . . . . . . 63

4.5 CDFs of the measured αk + βk delays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 (a) Number of times more voxels V scanned under priority scheduling
than under FIFO; 95% bootstrap confidence intervals over 10
simulation runs are shown. (b) CDFs of the number of pulses, N .
(c) CDFs of the normalized number of pulses. (d) CDFs of the
normalized reflectivity standard deviation. . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 Packet loss under different arrival rates. Capacity is 1000 pkts/sec;
when arrivals exceed capacity, packets are lost. We assume for
these results that when capacity is exceeded, all sensor control
packets are lost for FIFO scheduling, but no sensor control
packets are lost for priority scheduling. During times of packet
loss, however, both FIFO and priority scheduling lose data
packets. Note that the data contained in the data packets are
reflectivity measurements per scanned voxel, not storm cell
location measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.8 RMSE from tracking application for (a) idx = 1, (b) idx = 25, and
(c) idx = 55. Boxplots are over 10 runs. Boxes show the median
and first and third quartiles; +’s indicate outliers, i.e., data values
more than 1.5 times greater (smaller) than the third (first)
quartile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Example network with source S and destination D. Top row:
selecting the shortest path as the routing sub-graph. Middle row:
selecting the two shortest disjoint paths as the routing subgraph.
Bottom row: selecting the entire network as the routing subgraph.
Crosses indicate link failures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Example best path, 1-hop braid, and 2-hop braid between a source
(s) and destination (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xiv



5.3 Model used in Section 5.4, comprising source (s) and destination (d)
on a line in a bounded half-plane grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Graphs used in Lemma 1. We decompose the graph in (a) into the
subgraphs in (b) so we need only compute the reliability for the
subgraphs of interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 (a) Two topologies, both using 18 nodes. (b) Reliability is averaged
over 100 runs of 10,000 time-steps each. 95% bootstrap confidence
intervals over the runs are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Counterexamples when adding links rather than nodes. . . . . . . . . . . . . . . . 91

5.7 Link failure simulations. Reliability of different routing subgraphs.
Reliability is averaged over 500 runs of 100 time-steps. 95%
confidence intervals over the runs are shown. As not all sets of
samples were normally distributed, bootstrap confidence intervals
were computed using Matlab (hence the error bars are not
symmetric). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.8 Overhead of 1-hop braid vs. that of the shortest path, the two
shortest disjoint paths, and the entire graph. Reliability was
estimated experimentally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.9 Node failure simulations. (a), (b) Reliability of different routing
subgraphs. Reliability is averaged over 1000 runs of 100
time-steps. 95% confidence intervals over the runs are shown. As
not all sets of samples were normally distributed, bootstrap
confidence intervals were computed using Matlab (hence the error
bars are not symmetric). (c), (d) Overhead of 1-hop braid vs.
that of the shortest path, the two shortest disjoint paths, and the
entire graph. Reliability was estimated experimentally. . . . . . . . . . . . . 98

5.10 Comparison of 1-hop braid with AODV under (a), (c), (f) random
waypoint and (b), (d), (f) Gauss-Markov mobility. 95% bootstrap
confidence intervals over 10 simulation runs are shown. . . . . . . . . . . . 102

5.11 Transmission of (a) route requests (RREQ) from the source s to the
destination d and (b) route replies (RREP) from the destination
to the source. The source route associated with each RREQ or
RREP is indicated in parentheses. The route caches contain the
routes extracted from the RREQs and RREPs; the routes are
assumed bi-directional. Note that because node a is within range
of node d, node a will overhear d’s reply, RREP(d,s), although the
reply is not destined for a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xv



5.12 5x5 node grid network used to obtain the simulation results shown in
Figures 5.14 to 5.13. Edges represent wireless links, where R is
the distance in meters between each pair of connected nodes. . . . . . 108

5.13 Performance of braid routing vs dynamic source routing in a
stationary wireless network: (a) total control overhead, (b) route
errors, (c) route requests, (d) route replies, (e) percentage of
packets delivered, and (f) delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.14 Stationary wireless network: link failures and braid attempts. . . . . . . . . . 112

5.15 Statistics computed from the Gauss-Markov mobility traces obtained
using BonnMotion [34]. (a) Average node degree. (b) Average
number of partitions in the network. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.16 Performance of braid routing vs dynamic source routing under
Gauss-Markov mobility: (a) total control overhead, (b) route
errors, (c) route requests, (d) route replies, (e) percentage of
packets delivered, and (f) delay. 95% confidence intervals are
shown, computed over 10 simulation runs. . . . . . . . . . . . . . . . . . . . . . . 116

5.17 MANET: link failures and braid attempts. . . . . . . . . . . . . . . . . . . . . . . . . . 117

xvi



CHAPTER 1

INTRODUCTION

While many sensor networks are resource-constrained due to limited power or

bandwidth, certain types of sensors, such as cameras or radars, have additional con-

straints due to their inability to simultaneously collect high fidelity data from all

environmental locations. For such sensors, a sensing strategy is necessary to decide

where to focus sensing. In a closed-loop sensor network, the data collected by the sen-

sors determines each sensor’s future data collection strategy. If the sensed data and

subsequent sensor controls must be transmitted over the network, however, packet

delays are incurred. These delays constrain the quantity of data received by the time

a control decision must be made, and consequently affect the quality of the computed

sensor control. Thus, network constraints may further exacerbate existing constraints

on the sensing resources. In wireless and mobile ad-hoc networks, changing network

conditions due to variable link characteristics or node mobility, can also constrain

network resources. This thesis focuses on the design and analysis of network proto-

cols to accommodate the limited resources and changing network conditions present

in closed-loop sensor networks and wireless and mobile ad-hoc networks. In this

context, we examine the following three problems.

1.1 Where to focus sensing?

We first consider the problem of controlling sensors, such as cameras and radars,

that cannot simultaneously collect high fidelity data from all environmental locations.

Any effective sensing strategy for such sensors must balance collecting high fidelity

1



data from some locations (thus implicitly collecting lower fidelity data from other

locations), to ensure that the phenomena in those locations are correctly identified,

with surveillance scans collecting low fidelity data from all environmental locations, to

ensure that all new phenomena are eventually observed. Focusing on the CASA mete-

orological radar network [19, 62, 101], we compare the advantages of a myopic sensing

strategy (i.e., optimizing the radar sensing strategy at each decision epoch over only

the current state of the environment) with those of a lookahead sensing strategy (i.e,

additionally optimizing the radar sensing strategy over expected future states). We

show that the main benefits of considering expected future states of the environment

are when there are multiple meteorological phenomena in the environment, and when

the maximum radius of any phenomenon is sufficiently smaller than the radius of the

radar’s footprint. We also show that there is a trade-off between the average quality

with which a phenomenon is scanned and the number of decision epochs before which

a phenomenon is rescanned. Considering only scan quality, we find that a simple

lookahead sensing strategy can achieve approximately the same quality as that of

a full lookahead strategy.1 In contrast to other work on radar control that focuses

on hard targets such as airplanes [46], our work focuses on tracking meteorological

phenomena and the time frame over which to evaluate control decisions.

Inspired by the GENI Project [27], we next consider the problem of call admission

control (i.e., deciding which sensing requests to satisfy) in the context of a virtual-

ized private sensor network (VPSN).2 Although multiple users may share the sensing

resources of a virtualized network, in a VPSN each user works with the abstraction

of having its own private network. Unlike traditional virtualized resources such as

1See Section 2.3 for a primer on meteorological radars and sensing and Section 2.4.2 for a formal
definition of quality.

2The GENI project [27] is developing a shared testbed for investigating future internets and
is including sensor networks as part of the shared testbed: hence multiple users will compete for
sensing resources.

2



memory, bandwidth, or CPU cycles, however, the sensor requests made by one user

may completely or partially satisfy those of another user. We note that while other

work has also considered the idea of a virtual sensor network [35], their focus is on how

to adaptively select a subset of nodes in the sensor network to construct a “virtual

sensor network” for a particular task, rather than virtualizing the sensing resources of

the individual sensors. We particularly investigate a model in which a user’s sensing

strategy can be represented as a temporal sequence of sensor requests distributed

across a time interval. We define a sensor request as a request to use a sensor in

a particular way, possibly at a particular time, with some associated user utility.

The call admission control problem for VPSNs is to select a non-interfering subset of

sensor requests with maximum utility from among all of the sensing strategies. We

show that the call admission control problem in VPSNs can be solved in polynomial

time when sensor requests are divisible or fixed in time. When sensor requests are

indivisible but may be shifted in time, we show that the VPSN call admission control

problem is NP-complete.

1.2 How to make sensing robust to delayed and dropped

packets?

We next consider the problem of transmitting both sensor control and data packets

in the presence of network congestion. In a sensor network, congestion can arise

due to bursty and high-bandwidth data traffic, combined with wireless links and

many-to-one data routing to a sink. Delayed and dropped packets then degrade

the performance of the sensing application. In a closed-loop sensor network, the

sensed data transmitted through the network may have considerable redundancy in

both time and space, making application performance somewhat insensitive to data

packet loss and delay. Conversely, performance is typically much more sensitive to

loss or delay of sensor control packets, since these packets carry the application’s

3



sensor commands generated in response to received data. We investigate the value

of separate handling of sensor control and data traffic, during times of congestion, in

a closed-loop sensor network. While previous work, e.g., [50], focuses on the effects

of prioritizing network control packets, we focus on the effects of prioritizing sensor

control packets. Whereas network control affects what data is transmitted and at

what rate, sensor control additionally affects what data is sensed and thus available

to be transmitted.

We first show that prioritizing sensor control traffic over data traffic decreases the

round-trip control-loop delay, and consequently increases the quantity and quality of

the data collected by the network. We then ground our analysis in a storm-tracking

application in the context of the CASA radar network [19, 62, 101]. The application

measures reflectivity (a measure of the number of scatterers in a unit volume of

atmosphere known as a voxel) and tracks storms (i.e., regions of high reflectivity)

using a Kalman filter. Considering data quantity, we show that prioritizing sensor

control traffic increases the number of voxels, V , that can be scanned given a constant

number of reflectivity samples, Nc, obtained per voxel. Considering data quality,

we show that prioritizing sensor control traffic increases the number of reflectivity

samples, N , that can be obtained per voxel given a constant number of voxels, Vc,

to scan. Since as N increases, sensing accuracy improves only as a function of
√
N ,

the gain in accuracy for the reflectivity estimate per voxel is relatively small except

when prioritizing sensor control increases N significantly (such as when sensor control

packets suffer severe delays). Since prioritizing sensor control traffic also reduces the

number of control packets dropped, enabling sensors to execute “correct” rather than

default controls, data degradation is mitigated. Considering the performance of the

tracking application, we show that during times of severe congestion, not prioritizing

sensor control traffic can actually lead to tracking errors accumulating over time.

4



1.3 How to make routing robust to network changes?

Finally, we consider the problem of routing in bandwidth-constrained networks

such as wireless sensor and mobile ad-hoc networks, which are additionally charac-

terized by time-varying network topology. In such an environment, the network must

accommodate link changes, providing end-end packet delivery while at the same time

incurring low control overhead. Yet this is difficult to do in practice: end-end delivery

requires some form of end-end (potentially global) coordination, and frequent changes

make adaptation to each and every change costly. Link and mobility characteristics

may also be difficult to estimate a priori, making proactive or predictive routing ap-

proaches difficult to implement in practice. We specifically investigate an approach

towards MANET routing, which we refer to as “braid routing,” that is robust to

changes in link characteristics and network topology.3 Informally, braid routing oper-

ates at two timescales. At the longer time-scale, a routing subgraph (i.e., a braid) is

constructed that connects a source and destination. At the shorter time-scale, local

forwarding decisions are made to select the “best” next hop out of all possible next

hops within the braid routing subgraph.

Unlike many existing “backup routing” approaches that pre-compute disjoint

paths, e.g., [43], or partially disjoint paths, e.g., [25], a braid does not impose such

requirements on the subgraph. Like approaches such as [25], braid routing performs

local adaptation in response to link and topology changes. But unlike approaches

that route packets over the entire network topology to achieve robustness (e.g., [92]),

the braid subgraph over which packets are forwarded is purposefully constrained to

limit control overhead (e.g., for braid construction and state maintenance).

We analytically characterize the reliability (the probability that the source and

destination nodes have an instantaneous path, see [12]) of a class of braids, their

3We note that the term braided routing originates with [25]. The braid routing we propose in this
thesis differs from that of [25] in the structure and usage of the braid (i.e., the routing subgraph).

5



optimality properties, and counter-examples to conjectured optimality properties in

a well-structured (grid) network. Through simulation, we compare the reliability of

braid, disjoint-path, and full-network routing in both torus and random networks,

and show that while braids incur significantly less overhead, they can also achieve re-

liability close to that of using the full-network. Finally, we compare the performance

of braid routing to that of other MANET routing protocols. Considering the percent-

age of packets delivered, we show that braid routing can deliver more packets than

Ad-hoc On-Demand Distance Vector (AODV) [74] routing without significantly in-

creasing overhead. Considering control overhead, and comparing with dynamic source

routing [36], we show that braid routing can significantly decrease control overhead

while only minimally degrading the number of packets delivered, with gains depen-

dent on node density. In addition to quantifying the gains and overheads of braid

routing, our simulations also illustrate how performance results can change rather

dramatically depending on the underlying network model.

1.4 Contributions

We summarize here the contributions of this thesis.

• Where to focus sensing? Considering a meteorological radar network, we show

that the main benefits of optimizing sensing over expected future states of the

environment are when there are multiple small phenomena in the environment.

We also show that there is a trade-off between the average quality with which

a phenomenon is scanned and the number of decision epochs before which a

phenomenon is rescanned. Considering only scan quality, we find that a simple

lookahead sensing strategy is sufficient. For multiple users, we show that the

problem of call admission control in the context of a virtualized private sensor

network can be solved in polynomial time when sensor requests are divisible or

6



fixed in time. When sensor requests are indivisible but may be shifted in time,

we show that the call admission control problem is NP-complete.

• How to make sensing robust to delayed and dropped packets? We show that

prioritizing sensor control traffic over data traffic during times of congestion in a

closed-loop sensor network reduces the number of sensor control packets dropped

and thereby mitigates data degradation. Considering tracking performance, we

show that during times of severe congestion, not prioritizing sensor control

traffic can actually lead to tracking errors accumulating over time.

• How to make routing robust to network changes? We propose a routing algo-

rithm that selects a type of routing subgraph (a braid) that is robust to changes

in the network topology. We analytically characterize the reliability of a class

of braids and their optimality properties, and give counter-examples to other

conjectured optimality properties in a well-structured (grid) network. Through

simulation, we compare the reliability of braid, disjoint-path, and full-network

routing in both torus and random networks, and show that while braids incur

significantly less overhead, they can also achieve reliability close to that of us-

ing the full-network. Considering the percentage of packets delivered, we show

that braid routing can deliver more packets than Ad-hoc On-Demand Distance

Vector (AODV) [74] routing without significantly increasing overhead. Consid-

ering control overhead, and comparing with dynamic source routing [36], we

show that braid routing can significantly decrease control overhead while only

minimally degrading the number of packets delivered, with gains dependent on

node density.

7



1.5 Outline of Thesis

The rest of this thesis is organized as follows. In Chapter 2, we examine the

benefits of sensing strategies that consider expected future states of the environment.

In Chapter 3, we consider the problem of how to mediate among conflicting sensing

strategies when there are multiple users. In Chapter 4, we consider how to best use

network bandwidth in a meteorological radar network, investigating the value of pri-

oritizing sensor control traffic over data traffic during times of congestion. In Chapter

5, we examine the problem of routing in networks with bandwidth-constraints due to

changing network conditions. Finally, in Chapter 6, we summarize the contributions

of this thesis and discuss future research directions.

8



CHAPTER 2

MYOPIC VS. LOOKAHEAD SENSING STRATEGIES

2.1 Introduction

In this chapter, we examine the problem of controlling sensors, such as cameras

and radars, that cannot simultaneously collect high fidelity data from all locations in

the environment. For such sensors, a sensing strategy is necessary to decide where to

focus sensing. Any effective sensing strategy for such sensors must balance collecting

high fidelity data from some locations (thus implicitly collecting lower fidelity data

from other locations), to ensure that the phenomena in those locations are correctly

identified, with surveillance scans collecting low fidelity data from all environmental

locations, to ensure that all new phenomena are eventually observed. We focus on

a meteorological radar network and compare the advantages of a myopic sensing

strategy (i.e., optimizing the radar sensing strategy at each decision epoch over only

the current state of the environment) with those of a lookahead sensing strategy (i.e,

additionally optimizing the radar sensing strategy over expected future states).

Meteorological radars, such as the National Weather Service NEXRAD system,

are traditionally tasked to always scan 360◦. In contrast, the Collaborative Adaptive

Sensing of the Atmosphere (CASA) Engineering Research Center [48] is developing

a new generation of small, low-power but agile radars that can perform sector scan-

ning, targeting sensing when and where the user needs are greatest. Since now all

meteorological phenomena cannot be observed all of the time with the highest degree

of fidelity, the radar controllers must decide how best to sense.

9



Given the ability of a network of radars to perform sector scanning, how should

sensing be adapted over time? Any sensing strategy must consider, for each scan

action, both the expected quality with which phenomena would be observed, and

the expected time until phenomena would be first observed (for new phenomena)

or rescanned, since not all regions are scanned all of the time under sectored scan-

ning. Another consideration is whether to optimize myopically only over current and

possibly past environmental state, or whether to additionally optimize over expected

future states.

In this work, we examine the sensing benefits of considering expected future states

of the environment in a sensing strategy. We specifically compare four sensing strate-

gies for the CASA meteorological radars. The strategies differ in the amount of

information they use to select a scan configuration at each decision epoch. The

sit-and-spin strategy of always scanning 360◦ is independent of any external infor-

mation. The myopic strategy uses the current environmental state but does not

estimate future states when making control decisions. The limited lookahead strate-

gies additionally use the expected environmental state k decision epochs in the future

in their decisions. Finally, the full lookahead strategy uses all expected future states

by casting the problem as a Markov decision process and using reinforcement learning

to estimate the optimal sensing strategy. All sensing strategies, excluding sit-and-

spin, work by optimizing the “quality” (a term we will define precisely shortly) of

the sensed information about phenomena in the environment, while penalizing long

re-scan intervals.

We show that the main benefits of considering expected future states in a radar

sensing strategy are when there are multiple meteorological phenomena in the envi-

ronment, and when the maximum radius of any phenomenon is sufficiently smaller

than the radius of the radars (see Section 2.3 for radar and phenomenon definitions).

We also show that there is a trade-off between the average quality with which a phe-

10



nomenon is scanned and the number of decision epochs before which a phenomenon is

rescanned. Finally, we show that for some environments, a limited lookahead sensing

strategy is sufficient. In contrast to other work on radar control (see Section 2.2),

we focus on tracking meteorological phenomena and the time frame over which to

evaluate control decisions.

The rest of this chapter is organized as follows. In Section 2.2, we review related

work on controlling adaptive sensors. In Section 2.3, we describe the meteorological

radar control problem. In Section 2.4, we discuss the sensing strategies we consider.

In Section 2.5, we describe our meteorological application. In Section 2.6, we overview

our simulation results. Finally, in Section 2.7, we summarize our results.

2.2 Related Work

Work by [46] examines the problem of lookahead scheduling of agile radars on air-

planes for detecting and tracking ground targets. They show that lookahead sensing

strategies for radar tracking of a ground target outperform myopic strategies. In com-

parison, we consider the problem of tracking meteorological phenomena using ground

radars. Thus, our work differs from [46] in the speed and attributes of the objects

being tracked (meteorological phenomena versus ground targets such as cars). Un-

like [46], our work also considers coordination among multiple different radars, rather

than focusing on a single radar on a plane. [46] uses an information-theoretic measure

to define the reward metric and then proposes both an approximate solution to solv-

ing the MDP Bellman equations as well as a reinforcement learning-based solution to

obtain a lookahead policy. We note that [46] uses an off-policy reinforcement learning

algorithm Q-learning, while we use an on-policy algorithm Sarsa(λ). Off-policy al-

gorithms update the action-value function using the currently maximal action, while

on-policy algorithms use the action that was actually executed; this has implications

for function approximation, see [75, 89] for further information.

11



Work by [90] examines the problems of where to target the radar beams and which

waveform to use for electronically steered phased array radars. They maintain a set

of error covariance matrices and dynamical models for existing targets, as well as

track existence probability density functions to model the probability that targets

appear. They then choose the scan mode for each target that has both the longest

revisit time for scanning a target and error covariance below a threshold. They show

that considering the environment two decision epochs ahead outperforms a one-step

look-ahead for tracking multiple targets.

Within sensor networks, [57] examines the use of game theory and reinforcement

learning to allocate resources in a sensor network. They focus on actions, using

reinforcement learning to learn the profit associated with different actions, rather than

the profit associated with different state-action pairs. Besides sensor networks, other

reinforcement learning applications in large state spaces include robot soccer [85],

helicopter control [67] and planetary rovers [99].

2.3 Primer on Meteorological Radars and Sensing

In this section, we give a primer on meteorological radars and the model of mete-

orological phenomena, specifically storms, that we use.

Figure 2.1(a) illustrates two radars whose footprints are overlapping, and shows an

example 90◦ scan sector in the right radar. The radius of a radar refers to the farthest

distance from the radar for which it is still possible to obtain useful measurements,

and thus bounds the extent of the radar footprint. A radar operates by sending out

pulses at a given rate as it sweeps through the sector it is scanning. From the radar

pulses transmitted, reflectivity values are estimated for each voxel (a unit volume of

atmosphere, see Figure 2.1). Reflectivity is a measure of the number of scatterers

(such as water droplets or insects) in a voxel. For a given time duration, the smaller

12



Radar radius

Storm radius

90◦ scan 
sector

Geometric 
center of storm

(a)

Ground

Voxel

(b)

Figure 2.1. Radar and storm cell definitions. (a) Top view of two radars. (b) Side
view of radar.

the sector scanned, to some minimum sector size, the better the estimated reflectivity

value for a voxel (since the radar can transmit more pulses per voxel, see [20]).

Meteorological algorithms use reflectivity values to identify meteorological phe-

nomena such as storms or tornados. For instance, a storm corresponds to a region

of high reflectivity. The meteorological phenomena that we focus on in this work

are storms. Figure 2.1(a) shows our storm cell model, comprising a circle with some

radius. For specific storm cell parameters, see Section 2.6.1.

2.4 Meteorological Radar Control Problem

As described in the previous section, meteorological radar sensing characteristics

are such that the smaller the sector that a radar scans (until a minimum sector size

is reached), the higher the quality of the data collected, and thus, the more likely it

is that phenomena located within the sector are correctly identified [20]. We define

a radar configuration to be the start and end angles of the sector to be scanned by

an individual radar for a fixed interval of time. We define a scan action to be a

set of radar configurations (one configuration for each radar in the meteorological

13



radar network). We define a sensing strategy to be an algorithm for choosing scan

actions over time. Suppose that we have a network of radars, with fixed locations

and possibly overlapping footprints. The meteorological radar control problem is to

determine a sensing strategy for the radars.

In the rest of this section, we first discuss our performance metrics, allowing us

to formally define the meteorological radar control problem. We then describe the

quality functions used by the different sensing strategies.

2.4.1 Performance Metrics

We evaluate the performance of different sensing strategies using three metrics:

quality, re-scan interval, and cost. Quality measures how well a phenomenon is ob-

served; quality depends on the amount of time a radar spends sampling a voxel in

space, the degree to which a meteorological phenomena is scanned in its (spatial)

entirety, and the number of radars observing a phenomenon; higher quality scans are

better. We define quality formally in Section 2.4.2. Re-scan interval is the number of

decision epochs before a phenomenon is either first observed or rescanned; we would

like this value to be below some threshold. Cost is a metric that combines quality

with the re-scan interval, and that additionally considers whether a phenomenon was

never scanned. We define cost formally in Section 2.5.4. The meteorological radar

control problem is formally the problem of how to dynamically select scan actions over

time to maximize quality while minimizing the re-scan interval.

2.4.2 Quality Function for Scanning a Phenomenon

The quality function for scanning a phenomenon under a given scan action was

proposed by radar meteorologists in [48, 71, 72]. Specifically, a scan action Sr specifies

a radar configuration sr for each radar r in the radar network under consideration.

Hence Sr is a set of radar configurations where |Sr| corresponds to the number of

14



radars in network. The quality Up(p, Sr) of scanning a phenomenon p using scan

action Sr can be computed as follows,

Up(p, sr) = Fc (c(p, sr))×
[
βFd (d(r, p)) + (1− β)Fw

(
w(sr)

360

) ]
Up(p, Sr) = maxsr∈Sr [Up(p, sr)] (2.1)

where

w(sr) = size of sector sr scanned by r

a(r, p) = minimal angle that would allow r to cover p

c(p, sr) =
w(sr)

a(r, p)
= coverage of p by r scanning sr

h(r, p) = distance from r to geometric center of p

hmax(r) = range of radar r

d(r, p) =
h(r, p)

hmax(r)
= normalized distance from r to p

β = tunable parameter

Up(p, Sr) is the maximum quality obtained for scanning phenomenon p over all pos-

sible radars and their associated radar configurations sr. Up(p, sr) is the quality

obtained for scanning phenomenon p using a specific radar r and radar configuration

sr. The functions Fc(·), Fw(·), and Fd(·) from [48, 71, 72] are plotted in Figure 2.2.

Fc captures the effect on quality due to the percentage of the phenomenon covered; to

usefully scan a phenomenon, at least 95% of the phenomenon must be scanned. Fw

captures the effect of radar rotation speed on quality; as rotation speed is reduced,

quality increases. Fd captures the effects of the distance from the radar to the geo-

metrical center of the phenomenon on quality; the further away the radar center is

from the phenomenon being scanned, the more degraded will be the scan quality due

15



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Fc

c

Fc Function

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Fw

w/360

Fw Function

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2

Fd

d

Fd Function

Figure 2.2. The Fc(·), Fw(·), and Fd(·) step functions from [48, 71, 72] used by the
Up and Us quality functions, from [48, 71, 72].

to attenuation. Due to the Fw function, the quality function Up(p, sr) outputs the

same quality for scan angles of 181◦ to 360◦.

Whenever a phenomenon p is scanned with scan action sr, we can compute the

quality for the scanned phenomenon, up = Up(p, sr). If the phenomenon is not res-

canned at the next decision epoch, however, we decay the quality up over time. Specif-

ically, we assume that for those previously observed phenomena that the radars do

not scan at decision epoch t, that the associated qualities are decayed by a fixed

amount κp,

If up ≥ κp up = up − κp (2.2)

else up = 0

16



Our goal is to ensure that all phenomena continue to have high quality values asso-

ciated with them, even after the phenomena are initially observed.

2.4.3 Quality Function for Scanning a Sector

While the previous section defines the quality function for scanning a phenomenon

under a given scan action, this section defines the quality function for scanning a sec-

tor, again as defined in [48, 71, 72]. Defining a function that indicates the quality with

which a sector has been scanned gives a way to evaluate how well each area of the

environment has been observed, regardless of whether there are currently any phe-

nomena in the area. More specifically, the quality Us(ri, sr) for scanning a subsector

i of radar r using configuration sr is,

Us(ri, sr) = Fw

(
w(sr)

360

)
(2.3)

where the functions w(sr) and Fw(·) are as defined previously.

As with the phenomenon quality, we decay the quality us = Us(ri, sr) for scanning

a subsector i of radar r when that subsector is not immediately rescanned at the next

decision epoch. Now we assume that for those sectors that the radars do not scan at

decision epoch t, that the associated qualities are decayed by a fixed amount κs,

If us ≥ κs us = us − κs (2.4)

else us = 0

As with the phenomenon quality, we would like to ensure that all scan sectors continue

to have high quality values associated with them.

17



2.5 Sensing Strategies

We have now defined the quality functions Up and Us. The quality function that

is actually optimized, however, depends on the individual sensing strategy. In this

section, we describe the different sensing strategies that we consider.

Generally, any effective radar sensing strategy must balance scanning small sectors

(thus implicitly not scanning other sectors), to ensure that phenomena are correctly

identified, with scanning a variety of sectors, to ensure that no phenomena are missed.

Intuitively, a sensing strategy that scans sectors, rather than always 360◦, is only

preferable when the quality gained for scanning a sector is greater than the quality

lost for not scanning another sector.

We specifically compare the performance of four radar sensing strategies: (i) sit-

and-spin, (ii) myopic, (iii) limited look-ahead, and (iv) full look-aheaad. The strate-

gies differ in whether they consider only current or also expected future states of the

environment when selecting scan actions. For example, suppose a storm cell is about

to move into a high-quality multi-doppler region (i.e., the area where multiple radar

footprints overlap). By considering expected future states, a lookahead strategy can

anticipate this event and have all radars focused on the storm cell when it enters the

multi-doppler region, rather than expending resources (with little “reward”) to scan

the cell before it enters this region. We now describe each of the sensing strategies in

more detail.

2.5.1 Sit-and-spin Sensing Strategy

In the sit-and-spin strategy, all radars always scan 360◦. This is our baseline

sensing strategy and corresponds to how meteorological radars, such as those in the

National Weather Service NEXRAD system, are traditionally tasked to scan.

18



2.5.2 Myopic Sensing Strategy

In the myopic sensing strategy, only the current state of environment is considered.

We compute the myopic quality, represented by Um(Sr|Tr), for different sets of radar

configurations Sr with the following equation based on the Up quality function defined

in Section 2.4.

Um(Sr|Tr) =
∑
p

Up(p, Sr|Tr) (2.5)

The optimal set of radar configurations is given by S∗r = argmaxSr
Um(Sr|Tr). To

account for the decay of quality for unscanned sectors and phenomena, and to consider

the possibility of new phenomena appearing, we restrict Sr to be those scan actions

that ensure that every sector has been scanned at least once in the last Tr decision

epochs. Tr is a tunable parameter whose purpose is to satisfy the meteorologists’

request, as specified in [73], that all sectors be scanned, for instance by a 360◦ scan,

at most every 5 minutes.

2.5.3 Limited Lookahead Sensing Strategy

In the limited look-ahead strategy we consider a limited number of expected future

states of the environment when deciding how to scan. We examine both a 1-step and

a 2-step look-ahead sensing strategy. Although we do not have an exact model of the

dynamics of different phenomena, to perform the look-ahead we estimate the future

attributes of each phenomenon using a separate Kalman filter. For each filter, the

true state x is a vector comprising the (x, y) location and velocity of the phenomenon,

and the measurement y is a vector comprising only the (x, y) location. The Kalman

filter assumes that the state at time t is a linear function of the state at time t − 1

plus some Gaussian noise, and that the measurement at time t is a linear function of

the state at time t plus some Gaussian noise. In particular, xt = Axt−1 + N [0,Q]

and yt = Bxt +N [0,R].

19



Following work by [60], we initialize each Kalman filter as follows. The A matrix

reflects that storm cells typically move to the north-east. The B matrix, which when

multiplied with xt returns yt, assumes that the observed state yt is directly the true

state xt plus some Gaussian noise. The Q matrix assumes that there is little noise

in the true state dynamics. Finally, the measurement error covariance matrix R is

a function of the quality Up with which phenomenon p was scanned at time t. We

discuss how to compute the σt’s in Section 2.6. We use the first location measurement

of a storm cell y0, augmented with the observed velocity, as the the initial state x0.

We assume that our estimate of x0 has little noise and use .0001 ∗ I for the initial

covariance P0. The Kalman filter parameters are thus given by,1

A =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 , Q =


.0001 0 0 0

0 .0001 0 0
0 0 .0001 0
0 0 0 .0001



B =

[
1 0 0 0
0 1 0 0

]
, R =

[
σt 0
0 σt

]

We then compute the k-step look-ahead quality for different sets of radar config-

urations Sr with,

UK(Sr,1|Tr) =
K∑
k=1

φk−1
Np∑
i=1

Up(pi,k, Sr,k|Tr)

where Np is the number of phenomena in the environment in the current decision

epoch, pi,0 is the current set of observed attributes for phenomenon i, pi,k is the k-

step set of predicted attributes for phenomenon i, Sr,k is the set of radar configurations

for the kth decision epoch in the future, and φ is a tunable discount factor between

1We note that with these parameters the Kalman filter model can be further simplified, see
Section 4.4.3.

20



0 and 1. The optimal set of radar configurations is S∗r,1 = argmaxSr,1
UK(Sr,1|Tr). As

with the myopic sensing strategy, to account for the decay of quality for unscanned

sectors and phenomena, and to consider the possibility of new phenomena appearing,

we restrict Sr to be those scan actions that ensure that every sector has been scanned

at least once in the last Tr decision epochs.

2.5.4 Full Lookahead Sensing Strategy

Finally, we consider a full look-ahead sensing strategy, optimizing over all expected

future states of the environment. To obtain the full look-ahead sensing strategy, we

formulate the meteorological radar control problem as a Markov decision process

(MDP) and use reinforcement learning as a solution technique. While a POMDP

(partially observable MDP) could be used to model the environmental uncertainty,

due to the cost of solving a POMDP with a large state space [66], we choose to formu-

late the meteorological radar control problem as an MDP with quality (or uncertainty)

variables as in an augmented MDP [49].

2.5.4.1 MDP Formulation

Our MDP formulation of the meteorological radar control problem is as follows.

• State space. We define S to be the observed state of the environment. The

observed state comprises the observed number of storm cells, the observed x, y

velocities of each storm cell, and the observed dimensions of each storm cell given

by x, y center of mass and radius. To model the uncertainty in the environment,

we additionally define as part of the state quality variables up and us based on

the Up and Us quality functions defined in Equations 2.1 and 2.3. up is the

current quality Up(·) of each observed storm cell, and us is the current quality

Us(·) of each 90◦ subsector, starting at 0◦, 90◦, 180◦, or 270◦.

21



• Action space. We define A to be the set of actions available to the radars.

This is the set of radar configurations for a given decision epoch. We restrict

each radar to scanning subsectors that are a multiple of 90◦, starting at 0◦, 90◦,

180◦, or 270◦. Thus for each radar there are 13 possible actions, and so with N

radars there are 13N possible actions at each decision epoch.

• Transition function. The transition function T (S × A× S)→ [0, 1] encodes

the observed environment dynamics: specifically the appearance, disappearance,

and movement of storm cells and their associated attributes. For meteorological

radar control, the next state really is a function of not just the current state but

also the action executed in the current state. For instance, if a radar scans 180◦

rather than 360◦, then any new storm cells that appear in the un-scanned areas

will not be observed. Thus, the new storm cells that will be observed depend

on the scanning action of the radar.

• Cost function. The cost function C(S,A, S) → R encodes the goals of the

radar sensing network. C is a function of the error between the true state and

the observed state, whether all storms have been observed, and a penalty term

for not rescanning a storm within Tr decision epochs. More precisely,

C =

No
p∑

i=1

Nd∑
j=1

|doij − dij|+ (Np −N o
p )Pm +

Np∑
i=1

I(ti)Pr (2.6)

where N o
p is the observed number of storms, Nd is the number of attributes per

storm, doij is the observed value of attribute j of storm i, dij is the true value

of attribute j of storm i, Np is the true number of storms, Pm is the penalty

for missing a storm, ti is the number of decision epochs since storm i was last

scanned, Pr is the penalty for not scanning a storm at least once within Tr

decision epochs, and I(ti) is an indicator function that equals 1 when ti ≥ Tr.

22



The quality with which a storm is observed determines the difference between

the observed and true values of its attributes.

2.5.4.2 Learning Algorithm

We use the linear Sarsa(λ) reinforcement learning algorithm [89] as a solution

technique to solve the MDP we defined for the meteorological radar control problem.

Dynamic programming could also be used to solve the MDP, since we have access to

a transition function and a cost function. We choose to use reinforcement learning

instead of dynamic programming, however, since our transition and cost functions

consider only a small part of the possible meteorological states (e.g., only storm cells,

and focusing only on certain storm characteristics), and since we would ultimately

like to learn over real traces of radar data, with phenomena features extracted from

the data, rather than using a model.

In Table 2.1 we show the Sarsa(λ) algorithm. The algorithm estimates the action-

value function Qs,a, representing the expected value of taking action a in state s, by

keeping track of the actual sequence of costs received as actions are taken. The heart

of the algorithm is lines 20-22 in Table 2.1. In particular, based on the cost received

for taking action a in state s, an error δ is computed and the weights are updated.

The intuition here is that there is an old estimate for the value of taking action a in

state s, represented by the action-value Qs,a. There is also a new estimate given by

the immediate cost just received for taking action a in state s plus the expected value

of taking action a′ in state s′ (where s′ is the next state to which we transition). The

error δ is then the difference between these two estimates.

Due to the continuous-valued state variables, such as a storm’s location, we use

function approximation and approximate Qs,a as a linear combination of basis func-

tions. To obtain the basis functions, we use tile coding [33, 87, 88]. Tile coding

works by partitioning the state space into a set of tiles. For example, suppose our

23



1 Initialization:
2 F ← set of all features
3 A← set of all actions
4 wf,b = 0, ef,b = 0,∀f ∈ F,∀b ∈ A
5 s = initial state
6 a = initial action (E.g., scan 360◦)
7
8 Repeat until error δ is sufficiently small
9 Update eligibility traces:
10 Fs ← set of on features for state s
11 ef,b ← λef,b,∀f ∈ F,∀b ∈ A
12 ef,a ← ef,a + 1,∀f ∈ Fs

13 Environment step:
14 Take action a, observe cost c and next state s′

15 Choose next action:
16 Fs′ ← set of on features for state s′

17 Qs′,b ←
∑

f∈Fs′ wf,b,∀b ∈ A
18 With probability 1− ε: a′ ← arg minbQs′,b

19 With probability ε: a′ ← random action
20 Learn:
21 δ = c−Qs,a + γQs′,a′

22 wf,b = wf,b + αδef,b,∀f ∈ F,∀b ∈ A
23 Update current state and action:
24 a = a′, s = s′

Table 2.1. Linear Sarsa(λ) reinforcement learning algorithm. Adapted from [85, 88,
89]. Qs,a is the action-value for state s and action a. wf,a is the set of weights used
to linearly combine the basis functions obtained for features f and action a. α is
the learning rate: it represents the rate at which the weights are updated. γ is the
discount factor: it represents how much importance is placed on the future versus the
present. Eligibility traces are used to incorporate state history when later updating
the action-values: the more recently and frequently a state was visited, the higher
will be the value of its eligibility trace.

state space consists only of one state variable, the x-location of the storm cell. Then

in the simplest case, we would choose some number of bins into which to partition

the values that x-location can take on. This would result in one single-dimensional

tiling. If we had multiple variables, we could also tile the cross-product of variables

to get multi-dimensional tilings. Tilings allow us to extract features from the state as

follows. A given assignment of values to the state variables (i.e., a given state) maps

to a unique “on” tile in each tiling. This gives a binary vector for each tiling, with

a 1 for the feature (tile) that is on and 0’s for the remaining features. In this way

24



we obtain a basis function from each tiling. Because of this function approximation,

however, the error δ is not used to directly update the action-value function, but is

instead used to update the weights. By appropriately adjusting the weights, the rein-

forcement learning algorithm learns how best to linearly combine the basis functions

and thus approximate the action-value function Qs,a.

Given the action-value function Qs,a, then the best action to execute in a state is

the action with the lowest action-value for the state. If the cost received for taking

an action in a state is a function of the difference between the true state of the

environment and the observed state, then implicitly the value for taking an action in

a state represents the action that will best let the true state be observed. Unlike the

k-step look-ahead Kalman filter algorithms, however, the linear Sarsa(λ) algorithm

does not directly predict the next state of the environment.

2.6 Meteorological Application

In this section, we describe the meteorological application that we use to evaluate

the different sensing strategies. We consider up to four overlapping radars, arranged

as in Figure 2.3, with 10 and 30km radii as in [48, 93]. Following [48], we use a

30-second decision epoch. In the rest of this section, we first describe the storm cell

model we use to model meteorological phenomena. We then describe the radar model

we use to determine how well a scan action is able to observe a storm cell.

2.6.1 Storm Cell Model

Due to a limited amount of real storm track data, we use the following storm cell

model to generate traces of storm cell movement through the environment. In our

storm cell model, we assume that a new storm cell can appear anywhere within the

radar footprints and that a maximum number of cells can be present on any decision

epoch. When the (x, y) center of a storm cell is no longer within range of any radar,

25



Radar 1 Radar 2 Radar 3 Radar 4

Figure 2.3. Radar setup for simulations.

the cell is removed from the environment. We derive the maximum storm cell radius

from [79], which uses 2.83km as “the radius from the cell center within which the

intensity is greater than e−1 of the cell center intensity.” A storm cell’s radius can

then range from 1 to 4 km.

To determine the distribution of storm cell velocities, we use 39 real storm cell

tracks obtained from the National Severe Storms Laboratory courtesy of Kurt Hondl

and the WDSS-II software [31]. Each track is a series of (latitude, longitude) co-

ordinates. We first compute the differences in latitude and longitude, and in time,

between successive pairs of points. This gives us data on the latitude and longitude

velocities. We then fit the latitude velocity data with a Gaussian distribution, and fit

the longitude velocity data with another Gaussian distribution. Given that the length

of a latitude degree at 40◦ latitude equals 111.04 km and the length of a longitude

degree at 40◦ latitude equals 85.39 km, we obtain that the latitude (or x) velocity

has mean 9.1 km/hr and standard deviation of 35.6 km/hr and that the longitude (or

y) velocity has mean 16.7 km/hr and standard deviation of 28.8 km/hr. To obtain a

storm cell’s (x, y) velocity, we sample the Gaussian distributions.

To simulate the environment transitions we use a stochastic model of rainfall

in which storm cell arrivals are modeled using a spatio-temporal Poisson process,

see [79, 15]. To determine the number of new storm cells to add during a decision

epoch, we sample a Poisson random variable with rate ληδaδt with λ = 0.075 storm

26



cells/km2 and η = 0.006 storm cells/minute from [79]. From the radar setup we have

δa = r(N+1)2r, where N is the number of radars and r is the radar radius. From the

30-second decision epoch we have δt = 0.5 minutes. New storm cells are uniformly

randomly distributed in the r(N +1) km × 2r km region and we uniformly randomly

choose new storm cell attributes from their range of values. This simulates the true

state of the environment over time.

2.6.2 Radar Model

The following simplified radar model determines how well the radars observe the

true environmental state under a given set of radar configurations. If a storm cell p

is scanned using a set of radar configurations Sr, the location, velocity, and radius

attributes are observed as a function of the Up(p, Sr) quality defined in Section 2.4.2.

Up(p, Sr) returns a value u between zero and one. Then the observed value of the

attribute is the true value of the attribute plus some Gaussian noise distributed with

mean zero and standard deviation (1−u)V max/ρ. V max is either the average value of

the attribute (in the case of the storm velocity attributes) or the maximum value of

the attribute (in the case of the storm location attributes); ρ is a scaling factor that

allows us to adjust the noise variability. As 1/ρ increases, the amount of Gaussian

noise added to the true state to obtain the observations also increases. For example,

when 1/ρ = 0.1, the standard deviation of the Gaussian noise can be at most 10%

of the average storm velocity. Since u depends on the decision epoch t, for the k-

step look-ahead sensing strategy we also use σt = (1 − ut)V
max/ρ to compute the

measurement error covariance matrix, R, in our Kalman filter.

We distinguish the true environmental state known only to the simulator from

the observed environmental state used by the sensing strategies for several reasons.

Although radars provide measurements about meteorological phenomena, the true

attributes of the phenomena are unknown. Poor overlap in a dual-Doppler area, scan-

27



Variable Meaning Value
β Weighting term in quality function .5
κp Decay rate of phenomenon quality .25
κs Decay rate of sector quality .25
α Learning rate for Sarsa(λ) .0005
ε Exploration rate for Sarsa(λ) .01
γ Discount factor for Sarsa(λ) .9
λ Eligibility decay for Sarsa(λ) .3
φ Discount factor for k-step strategy .75
Tr # of decision epochs within which storm should be re-scanned 5
Pr Penalty for not re-scanning storm within Tr decision epochs 200
Pm Penalty for not observing a storm 15.5667

Table 2.2. Parameter settings for variables. Additionally, for Sarsa(λ) we use a
single tiling for each state variable: we use a granularity of 1.0 for the (x, y) location
and radius tilings, while we use a granularity of 0.1 for the (x, y) velocity, phenomenon
confidence, and radar sector confidence tilings. To obtain the penalty Pm = 15.5667
for each unobserved storm cell we assume that any unobserved storm cell is observed
with quality 0, hence u = 0, and then sum over (1−u)V max/ρ for all attributes. Using
Pr = 200 ensures that if a storm cell has not been rescanned within the appropriate
amount of time, this part of the cost function will dominate.

ning a subsector too quickly or slowly, or being unable to obtain a sufficient number

of elevation scans will degrade the quality of the measurements. Consequently, mod-

els of previously existing phenomena may contain estimation errors such as incorrect

velocity, propagating error into the future predicted locations of the phenomena. Ad-

ditionally, when a radar scans a subsector, it obtains more accurate estimates of the

phenomena in that subsector than if it had scanned a full 360◦, but less accurate

estimates of the phenomena outside the subsector.

2.7 Simulation Results

In this section, we compare the performance of the different sensing strategies from

Section 2.5 using the meteorological application described in the previous section. The

simulation parameters are summarized in Table 2.2. All sensing strategies are always

compared over the same true environmental state. We first examine the performance

of the limited lookahead sensing strategies. We then examine the performance of

28



0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Radar Radius = 10km, Max 1 Storm

1/ρ

A
vg

 D
iff

er
en

ce
 in

 Q
ua

lit
y 

(2
50

,0
00

 s
te

ps
)

 

 

2step − sitandspin
2step − myopic
2step − 1step

(a)

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Radar Radius = 10km, Max 8 Storms

1/ρ

A
vg

 D
iff

er
en

ce
 in

 Q
ua

lit
y 

(2
50

,0
00

 s
te

ps
)

 

 

2step − sitandspin
2step − myopic
2step − 1step

(b)

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Radar Radius = 30km, Max 1 Storm

1/ρ

A
vg

 D
iff

er
en

ce
 in

 Q
ua

lit
y 

(2
50

,0
00

 s
te

ps
)

 

 

2step − sitandspin
2step − myopic
2step − 1step

(c)

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Radar Radius = 30km, Max 8 Storms

1/ρ

A
vg

 D
iff

er
en

ce
 in

 Q
ua

lit
y 

(2
50

,0
00

 s
te

ps
)

 

 

2step − sitandspin
2step − myopic
2step − 1step

(d)

Figure 2.4. Comparing the sensing strategies based on quality two radars (two radar
scenario).

the full lookahead strategy. Finally, we examine the scaling behaviour of the sensing

strategies.

2.7.1 Limited Lookahead Performance

Scan Quality. Figure 2.4 shows the average difference in per-storm quality between

the 2-step lookahead strategy and the sit-and-spin, myopic, and 1-step lookahead

strategies. For both 10 km and 30 km radii, the sit-and-spin strategy has the lowest

scan quality relative to the 2-step, the myopic strategy has the next lowest relative

quality, and the 1-step strategy has the highest (or the same) relative quality. As

29



the maximum number of storms in the environment increases from one to eight, the

scan quality also increases for the sit-and-spin sensing strategy: since there are now

more possible storms, it is more likely that a storm cell is close to a radar. Thus, the

Fd term of the quality function, see Section 2.4.2, is more likely to be large. Finally,

notice that decreasing the radar radius decreases the differences in quality of the

different sensing strategies, although the overall trends remain the same. For instance,

with a 10 km radius, in Figures 2.4 (a) and (d), the 1-step quality is essentially the

same as the 2-step quality. We hypothesize that this is a consequence of the large

maximum storm cell radius, 4 km, relative to the 10 km radar radius: larger scan

sectors will be needed to fully cover any storm, thereby decreasing the scan quality.

This indicates that there may be some maximum number of storms above which it

is best to sit-and-spin. In summary, Figure 2.4 indicates that the 2-step lookahead

sensing strategy can slightly outperform the 1-step lookahead sensing strategy in how

well it scans storms, and more significantly outperforms the sit-and-spin and myopic

sensing strategies. The performance gains depend in part on the number of storms

present in the environment, and on the size of maximum storm cell radius relative to

the radar radius.

Re-scan interval. Next, Figure 2.5 shows the cumulative distribution functions

(CDFs) of the number of decision epochs before a storm cell is first observed or re-

scanned for the sit-and-spin, 1-step lookahead, and 2-step lookahead sensing strate-

gies. Figures 2.5(a) and (b), show that regardless of the size of the radar radius,

if there is at most one storm in the environment, and 1/ρ = 0.001 (i.e., little mea-

surement noise), the 1-step lookahead and 2-step lookahead sensing strategies re-scan

storms with approximately the same frequencies. Figures 2.5(a) and (b), also show

that the size of the re-scan interval is typically slightly smaller for a 30 km radius

than for a 10 km radius. We hypothesize that this is a consequence of the 4 km storm

cell radius: since there is a maximum of one storm cell in the environment, a sector

30



0 2 4 6 8 10
0.994

0.995

0.996

0.997

0.998

0.999

1
Max # of Storms = 1, Radar Radius = 10km

x = # of decision epochs between storm scans

P
[X

 ≤
 x

]

 

 

1/ρ=0.001, sit−and−spin
1/ρ=0.001, 1−step
1/ρ=0.001, 2−step

(a)

0 2 4 6 8 10
0.994

0.995

0.996

0.997

0.998

0.999

1
Max # of Storms = 1, Radar Radius = 30km

x = # of decision epochs between storm scans

P
[X

 ≤
 x

]

 

 

1/ρ=0.001, sit−and−spin
1/ρ=0.001, 1−step
1/ρ=0.001, 2−step

(b)

0 2 4 6 8 10

0.88

0.9

0.92

0.94

0.96

0.98

1
Max # of Storms = 8, Radar Radius = 10km

x = # of decision epochs between storm scans

P
[X

 ≤
 x

]

 

 

1/ρ=0.001, sit−and−spin
1/ρ=0.001, 1−step
1/ρ=0.001, 2−step
1/ρ=0.1, sit−and−spin
1/ρ=0.1, 1−step
1/ρ=0.1, 2−step

(c)

0 2 4 6 8 10

0.88

0.9

0.92

0.94

0.96

0.98

1
Max # of Storms = 8, Radar Radius = 30km

x = # of decision epochs between storm scans

P
[X

 ≤
 x

]

 

 

1/ρ=0.001, sit−and−spin
1/ρ=0.001, 1−step
1/ρ=0.001, 2−step
1/ρ=0.1, sit−and−spin
1/ρ=0.1, 1−step
1/ρ=0.1, 2−step

(d)

Figure 2.5. Comparing the sensing strategies based on re-scan interval (two radar
scenario).

scan of a 30 km radius is more likely to cover at least 95% of the storm. Thus with

a 30 km radius, a sensing strategy is less likely to attempt to scan a storm and fail

(i.e., scan less than 95% of a storm).

Figures 2.5(c) and (d) then show that when there are at most eight storm cells

in the environment, that the 1-step lookahead sensing strategy re-scans more storms

within zero decision epochs (i.e., immediately) than does the 2-step lookahead strat-

egy. This is shown by the higher values taken on by the 1-step CDF for x = 0.

Figures 2.5(c) and (d) also show that the size of the re-scan interval is typically

smaller for a 10 km radius than for a 30 km radius, unlike the situation when there

31



0 0.5 1 1.5 2 2.5 3

x 10
5

2

4

6

8

10

12
Radar Radius = 30km, Max 1 Storm

Episode

A
vg

 C
os

t P
er

 E
pi

so
de

 o
f 1

00
0 

S
te

ps

 

 

sit−and−spin
full lookahead

(a)

0 1 2 3 4 5 6

x 10
4

14

16

18

20

22

24

26
Radar Radius = 30km, Max 4 Storms

Episode

A
vg

 C
os

t P
er

 E
pi

so
de

 o
f 1

00
0 

S
te

ps

 

 

sit−and−spin
full lookahead

(b)

Figure 2.6. Example convergences of the full lookahead sensing strategy, Sarsa(λ).

is at most one storm cell in the environment. We hypothesize that this is again a

consequence of the 4 km storm cell radius: the size of the sector scans will be larger

with a 10 km rather than a 30 km radius, consequently, multiple storms will more

likely be covered, thereby decreasing the re-scan time. Note that for the sit-and-spin

CDF, P [X ≤ 1] is not 1; due to noise, for example, the measured location of a storm

cell may be (expected) outside of any radar footprint and consequently the storm cell

will not be observed.

2.7.2 Full Lookahead Performance

Figure 2.6 shows example convergence profiles for the Sarsa(λ) reinforcement

learning algorithm used to learn a full lookahead sensing strategy. When there are

a maximum of four storms, we restrict the full lookahead strategy to scanning only

180◦ or 360◦ sectors to reduce the time needed for convergence.

Scan quality. Figure 2.7(a) again examines scan quality, now showing the aver-

age difference in per-storm scan quality between the full lookahead sensing strategy

and the sit-and-spin and 2-step lookahead strategies. When 1/ρ = 0.001, the full

lookahead strategy has the same or higher relative quality than does sit-and-spin, but

32



0 0.02 0.04 0.06 0.08 0.1

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Radar Radius = 30km

1/ρ

A
vg

 D
iff

er
en

ce
 in

 Q
ua

lit
y 

(2
50

,0
00

 s
te

ps
)

 

 

max 1 storm,  full lookahead − sitandspin
max 4 storms,  full lookahead − sitandspin
max 1 storm, full lookahead − 2step
max 4 storms,  full lookahead − 2step

(a)

0 0.02 0.04 0.06 0.08 0.1

−6

−5

−4

−3

−2

−1

0
Radar Radius = 30km

1/ρ

A
vg

 D
iff

er
en

ce
 in

 C
os

t (
25

0,
00

0 
st

ep
s)

 

 

max 1 storm, 2step − full lookahead
max 4 storms, 2step − full lookahead
max 1 storm, sitandspin − full lookahead
max 4 storms, sitandspin − full lookahead

(b)

0 2 4 6 8 10
0.8

0.85

0.9

0.95

1

x = # of decision epochs between storm scans

P
[X

 ≤
 x

]

Max # of Storms = 1, Radar Radius = 30km

 

 

1/ρ=0.1, sit−and−spin
1/ρ=0.1, 1−step
1/ρ=0.1, 2−step
1/ρ=0.1, full lookahead

(c)

0 2 4 6 8 10
0.8

0.85

0.9

0.95

1
Max # of Storms = 4, Radar Radius = 30km

x = # of decision epochs between storm scans

P
[X

 ≤
 x

]

 

 

1/ρ=0.1, sit−and−spin
1/ρ=0.1, 1−step
1/ρ=0.1, 2−step
1/ρ=0.1, full lookahead

(d)

Figure 2.7. Comparing the sensing strategies based on (a) scan quality, (b) cost,
and (c), (d) re-scan intervals (two radar scenario).

significantly lower relative quality (0.05 to 0.15) than does the 2-step. This reflects in

part the difficulty of learning to perform as well as or better than Kalman filtering.

Additionally, the full lookahead strategy is learning to minimize cost, not maximize

quality.2 Examining the learned strategy when there is at most one storm and little

2Recall that cost is a function of quality, the re-scan interval, and a penalty for not observing
or re-scanning a storm within the re-scan interval. While the full lookahead strategy minimizes
cost, the limited lookahead strategy instead maximizes quality but is constrained to re-scan all scan
sectors within the re-scan interval. Unlike for the limited lookahead strategy, however, the cost
penalty is needed for the full lookahead strategy so that it learns how frequently storms should be
rescanned. As shown in Figure 2.7(c) and (d) the full lookahead strategy actually learns to re-scan
storms more frequently than is dictated by the re-scan interval. One way to directly compare the

33



observation noise (i.e., 1/ρ = 0.001), the full lookahead strategy learns to simply

sit-and-spin, since sector scanning confers little benefit. As the observation noise in-

creases, the relative difference increases for the sit-and-spin strategy, and decreases

for the 2-step lookahead strategy.

Cost. Next, Figure 2.7(b) shows the average difference in cost (defined as in

Equation 2.6) between the full lookahead sensing strategy and the sit-and-spin and

2-step lookahead strategies for a 30 km radar radius. The full lookahead sensing

strategy has the lowest average cost.

Re-scan interval. Finally, Figures 2.7(c) and (d) examine the the size of the re-

scan intervals for the full lookahead sensing strategy. Figures 2.7(c) and (d) show

that, as a consequence of the penalty for not scanning a storm within Tr = 5 decision

epochs, while the full lookahead sensing strategy may rescan fewer storm cells within

one, two, or three decision epochs than do the other sensing strategies, it also scans

almost all storm cells within four decision epochs.

Overall, depending on the environment in which the radars are deployed, there

are decreasing marginal returns for considering more than one or two future expected

states. The 2-step and full-lookahead sensing strategies perform similarly in part

because storms move relatively slowly. More generally, the performance gains from

considering expected future states of the environment depend on the speed and pre-

dictability of storm movement over a given time scale, the number of storms in the

environment, and the maximum radius of a storm relative to the radar radius. In-

stead, the primary value of the full lookahead reinforcement learning strategy here

for the radar control problem is balancing multiple conflicting goals, i.e., maximizing

scan quality while minimizing the size of the re-scan interval. Additionally, imple-

menting the full lookahead sensing strategy using reinforcement learning in a real

limited and full lookahead strategies in terms of cost would be to integrate learning into the limited
lookahead strategy by considering a limited lookahead version of the full lookahead strategy.

34



meteorological radar network requires addressing the differences between the offline

environment in which the learned strategy is trained, and the online environment in

which the strategy is deployed. Given the slow convergence time for Sarsa(λ) (on

the order of days), training solely online is likely infeasible, although the time com-

plexity could be mitigated by using hierarchical reinforcement learning methods and

semi-Markov decision process. Some online training could be achieved by treating

360◦ scans as the true environment state. Then when unknown states are entered,

learning could be performed, alternating between 360◦ scans to gauge the true state

of the environment and exploratory scans by the reinforcement learning algorithm.

2.7.3 Scaling Behaviour

Figure 2.8 examines the scaling behaviour of the sensing strategies. For these

results we restrict the radars to scanning 180◦ sectors and 360◦ due to the cost of

computing the limited lookahead strategies. Figures 2.8 (a) and (b) show the average

per-storm quality as the number of radars in the network increases. For a maximum

of one storm in the environment, Figure 2.8(a) shows that there are gains in quality

going from one radar to two radars in the environment for all sensing strategies and

then the quality levels off with an increasing number of radars. This is because now

it is more likely that a storm will be close to a radar, with at least two radars, and

so the Fd term of the quality function, see Section 2.4.2, is more likely to be large.

Figure 2.8(a) also shows that the 1-step and 2-step lookahead strategies achieve the

same average quality when there is at most one storm in the environment.

For a maximum of eight storms in the environment, Figure 2.8(b) shows that the

quality increases as the number of radars increases, although the size of the gains

is decreasing. This is because the maximum number of storms is fixed, but the

number of radars in the network is increasing. When there are many storms but

few radars, scan sectors must typically be larger (since there are now more storms

35



1 2 3 4
0.4

0.45

0.5

0.55
Radar Radius = 30km, Max 1 Storm

# of Radars in Network

A
ve

ra
ge

 Q
ua

lit
y

 

 

2−Step Lookahead
1−Step Lookahead
Myopic
Sit−and−spin

(a)

1 2 3 4
0.4

0.45

0.5

0.55
Radar Radius = 30km, Max 8 Storms

# of Radars in Network
A

ve
ra

ge
 Q

ua
lit

y

 

 

2−Step Lookahead
1−Step Lookahead
Myopic
Sit−and−spin

(b)

0 1 2
0.4

0.45

0.5

0.55
Radar Radius = 30km, Max 1 Storm

# of Radars Away Optimizing Over

A
ve

ra
ge

 Q
ua

lit
y

 

 

1−Step Lookahead
Myopic
Sit−and−spin

(c)

0 1 2
0.4

0.45

0.5

0.55
Radar Radius = 30km, Max 8 Storms

# of Radars Away Optimizing Over

A
ve

ra
ge

 Q
ua

lit
y

 

 

1−Step Lookahead
Myopic
Sit−and−spin

(d)

Figure 2.8. Scaling behaviour of sensing strategies. The simulation results in (a)
and (b) vary the number of radars, while the results in (c) and (d) are for four radars.
Radars are arranged as in Figure 2.3. Error bars are over 1500 runs; each run is 500
decision epochs long.

36



in each radar’s footprint), thereby decreasing the quality with which each storm is

individually scanned. Also observe that with fewer than four radars in the network,

the two-step lookahead strategy achieves slightly higher average per-storm quality

than the one-step lookahead strategy; for four radars, the one-step and two-step

lookahead strategies achieve essentially the same quality.3

Next, Figures 2.8 (c) and (d) show the average per-storm quality as the number of

radars over which each sensing strategy optimizes increases. For example, when the

number of radars away that each sensing strategy optimizes over is zero, each radar

only considers itself when computing its sensing strategy. When the number of radars

away is one, each radar considers itself plus all radars one hop away when computing

its sensing strategy. When the number of radars away is two, each radar considers

itself plus all radars two hops away: with four radars in the network arranged as

in Figure 2.3, this corresponds to optimizing over all radars. If a radar appears in

multiple sub-sets over which to optimize, we determine the radar’s sensing strategy in

one subset, and then condition on that radar’s sensing strategy in the other sub-sets.

Note that Figures 2.8(a) and (b) show that the 1-step and 2-step lookahead strategies

achieve the same average quality. Consequently, due to the computational cost, we

compare with only the 1-step lookahead sensing strategy, not the 2-step strategy, in

Figures 2.8(c) and (d).

For a maximum of one storm in the environment, Figure 2.8(c) shows that re-

gardless of the number of radars over which strategies optimize, for a given sensing

3While the results shown in Figure 2.8 are for N radars arranged in an N × 1 strip, we also
consider arranging the radars in a 2 × 2 grid. For a 2×2 radar arrangement, we find that the
average quality achieved by each sensing strategy is slightly higher than that achieved for the 1× 4
arrangement. This is because it is even more likely with the 2 × 2 arrangement, versus the 1 × 4
arrangement, that a storm will be close to a radar and so will increase the Fd term of the quality.
Depending on the strategy, the increases range from ∼ 0.007 to ∼ 0.016 for a maximum of one storm
and from ∼ 0.0067 to ∼ 0.012 for a maximum of eight storms. Like the results in Figure 2.8 for a
1× 4 radar arrangement, we also find for a 2× 2 arrangement that there is little difference between
the quality achieved by the 1-step and 2-step lookahead strategies for both a maximum of one storm
and a maximum of eight storms.

37



strategy, the average per-storm quality is very similar. For a maximum of eight storms

in the environment, Figure 2.8(d) shows for the myopic and one-step lookahead strate-

gies that there are decreasing gains in quality when optimizing over more radars. For

example, the gain in quality for the 1-step lookahead strategy going from optimizing

over one radar away to two radars away is about half that of going from optimizing

over zero radars away to one radar away. Hence, as the network size increases, sensing

strategies do not necessarily need to optimize over all radars in the network.

2.8 Summary

In this chapter, we compared the performance of myopic and lookahead sensing

strategies to address the problem of meteorological radar control. We showed that

the main benefits of using a lookahead sensing strategy are when there are multiple

meteorological phenomena in the environment, and when the maximum radius of any

phenomenon is sufficiently smaller than the radius of the radars. More generally, the

performance gains from considering expected future states of the environment de-

pend on the speed and predictability of storm movement over a given time scale. We

also showed that there is a trade-off between the average quality with which a phe-

nomenon is scanned and the number of decision epochs before which a phenomenon

is rescanned. Overall, considering only scan quality, we find that a simple lookahead

sensing strategy can perform as well as a full lookahead strategy in our simulation

scenarios. To additionally consider the size of the re-scan interval (or to optimize over

multiple metrics of interest), a full lookahead strategy is useful.

One interesting direction for future work is to compute an upper bound on the

quality that can be achieved for a given storm track trace and re-scan interval. This

could potentially be done by using a limited lookahead sensing strategy and assuming

deterministic storm movements.

38



CHAPTER 3

CALL ADMISSION CONTROL IN VIRTUALIZED
PRIVATE SENSOR NETWORKS

3.1 Introduction

In Chapter 2, we examined the benefits of considering current and expected future

states of the environment when adapting sensing strategies over time. In this chapter,

we investigate how to mediate among different sensing strategies within the same

sensor network, corresponding to different users that may make possibly conflicting

requests of the sensing resources. We focus on limited lookahead sensing strategies,

where users make (expected) sensor requests over some finite time horizon.

Consider again sensors with sensing constraints, such as cameras or radars that

cannot simultaneously collect high fidelity data from all environmental locations.

When such sensors are shared among multiple users, further sensing constraints are

imposed on the sensors. In the CASA radar network [19, 62, 101], for instance, the

radars are shared by meteorologists, emergency managers, and academic researchers

although they have different needs. For example, once a tornado has been observed, an

emergency manager may have no further need to observe the tornado’s development

and may wish to scan elsewhere, while an academic researcher may still be interested

in further scans of the tornado. Thus, for such constrained sensors, not only are there

sensing trade-offs when there is only a single user of the sensor network, but there

are further trade-offs when there are multiple users.

Inspired by the GENI Project [27], we specifically consider the problem of call

admission control (i.e., deciding which sensing requests to satisfy) in the context of

39



a virtualized private sensor network (VPSN).1 Although multiple users may share

the sensing resources of a virtualized network, in a VPSN each user works with the

abstraction of having its own private network. Unlike traditional virtualized resources

such as memory, bandwidth, or CPU cycles, however, the sensor requests made by

one user may completely or partially satisfy those of another user. While other work

has also considered the idea of a virtual sensor network [35], their focus is on how

to adaptively select a subset of nodes in the sensor network to construct a “virtual

sensor network” for a particular task, rather than virtualizing the sensing resources

of the individual sensors.

We investigate a model in which a user’s sensing strategy can be represented as

a temporal sequence of sensor requests distributed across a time interval of length

T . We define a sensor request as a request to use a sensor in a particular way,

possibly at a particular time, with some associated user utility. Suppose that we

have a set of sensing strategies, corresponding to different users, to schedule on the

same set of sensors. The call admission control problem in VPSNs is to select a

non-interfering subset of sensor requests with maximum utility from among all of the

sensing strategies.

We show that the call admission control problem in VPSNs can be solved in

polynomial time when sensor requests are divisible or fixed in time. When sensor

requests are indivisible but may be shifted in time, we show that the VPSN call

admission control problem is NP-complete, but that polynomial-time approximation

schemes are possible.

The remainder of this chapter is structured as follows. In Section 3.2, we overview

related work on virtual sensor networks and scheduling. In Section 3.3, we discuss

1The GENI project [27] is developing a shared testbed for investigating future internets and
is including sensor networks as part of the shared testbed: hence multiple users will compete for
sensing resources.

40



what we mean by a VPSN and formally define the call admission control problem in

VPSNs. In Section 3.4, we present theoretical results and outline exact and approx-

imate algorithms for the call admission control problem. Finally, in Section 3.5, we

summarize our results.

3.2 Related Work

Although other work has also considered the idea of a virtual sensor network [35],

their focus is on how to adaptively select a subset of nodes in the sensor network to

construct a “virtual sensor network” for a particular task, rather than virtualizing

the sensing resources of the individual sensors. Like our work, [54] also considers data

sharing among users in a meteorological radar network. The work of [54], however,

focuses on how to transmit data that has already been collected to maximize user

utility, while our work focuses on what data should be collected. The idea of amor-

tizing bandwidth usage over multiple users interested in the same data also arises in

the multicast literature [18, 45, 97], but again, our focus is on data collection rather

than data transmission.

Other work has looked at scheduling tasks in parallel and distributed systems

[22, 21], real-time systems [77], and real-time control systems [81]. Such scheduling

problems are usually NP-complete [21, 77, 84]. Project scheduling, where tasks have

precedence constraints and start-time dependent costs, is solvable in polynomial-

time when there are no resource constraints [63]. With resource constraints, project

scheduling is also NP-hard [64]. The scheduling work most closely related to ours is

that of interval scheduling [3, 44, 83] and is discussed in more detail in Section 3.4.

3.3 Virtualized Private Sensor Networks

In this section, we define what we mean by a virtualized private sensor network

and formally define the call admission control problem in VPSNs.

41



Sensing Strategy for User 1

T

 

Request R1,1

R2,1Sensing Strategy for User 2

request r1,2

R2,2 R2,n2

Time0

Request R1,2 Request R1,n1

Figure 3.1. Notation for the call admission control problem. Requests that are the
same colour, are requesting to use the sensor in the same way.

3.3.1 What do we mean by a virtualized private sensor network?

Consider a sensor network shared among multiple users. Users may have certain

data that they would like collected by the network. As with running processes on a

compute cluster, however, users do not necessarily care how their data is collected as

long as the relevant data actually is collected. Consequently, the sensing resources can

be virtualized, leading us to the idea of a virtualized private sensor network (VPSN).

In a VPSN, each user has a virtual slice of the sensing resources available on the

sensors. Although multiple users may share the sensing resources of the virtualized

network, each user works with the abstraction of having its own private network.

One benefit of virtualization here is to reduce the complexity of sharing the sensor

resources among multiple users.

3.3.2 Call Admission Control Problem

We now formally define the call admission control problem in VPSNs. Suppose

that there are N users of a VPSN and that each user has an associated sensing

strategy. As shown in Figure 3.1, we define the sensing strategy for user i to be a

temporal sequence of ni sensor requests distributed over a time interval of length T .2

2The user sensing strategies that we consider in this chapter correspond to the finite lookahead
sensing strategies of Chapter 2. In particular, the time interval of length T over which sensor
requests are distributed corresponds to the finite horizon of a lookahead strategy. The sensor requests
correspond to the current and expected radar sensing actions under consideration by a lookahead
sensing strategy.

42



Informally, we define a sensor request to be a request that a sensor sense in a particular

way (e.g., scan a specified 90◦ radar sector), possibly during a particular interval of

time, and with some associated user utility. For example, a user’s sensing strategy

may be for a radar to scan a particular storm once every minute, with sensor requests

corresponding to storm scans at the appropriate points in time. More formally, sensor

request j of user i’s sensing strategy, given by Rij, has an associated start time tsij

and finish time tfij. Since the sensor requests made by one user may satisfy those

of another user, we define the utility ui
′
ij for satisfying sensor request j of user i for

all users 1 ≤ i′ ≤ N . The call admission control problem in VPSNs is to select a

non-interfering subset of sensor requests with maximum utility from among all of the

sensing strategies.

Whether the call admission control problem in VPSNs can be optimally solved ef-

ficiently depends on the constraints imposed on how and when utility may be received

for executing a sensor request. As illustrated in Figure 3.2, the primary constraints

on the utility function are as follows.

1. Are the sensor requests of the sensing strategies divisible, i.e., must all of a

sensor request be executed to receive utility? For example, if the user requests

that multiple elevations of a storm be scanned, utility is still received even when

not all elevations are scanned. Alternatively, if the user requests that only a

single elevation of a storm be scanned, there is no utility for scanning only part

of the storm within that elevation.

2. Can the sensor requests specified by a sensing strategy be shifted in time, i.e.,

must a sensor request be executed at the requested start time to receive utility?

For example, if a phenomenon is expected at a particular location at a particular

time, and the sensor request is to scan that location at that time, there is no

utility to scanning the location at another time. Alternatively, if the sensor

43



Yes

YesYes NoNo

No

Divisible requests?

Shifting permitted? Shifting permitted?

PolynomialPolynomial NP-CompletePolynomial

Figure 3.2. Computational complexity of the call admission control problem in
VPSNs assuming different constraints on the utility functions.

request is a surveillance scan, the user will still receive utility if the surveillance

scan is executed at a time other than the time requested.

3.4 Theoretical Results

We now examine the complexity of the call admission control problem in VP-

SNs under the different utility constraints discussed in Section 3.3.2; our results are

summarized in Figure 3.2. As defined, the call admission control problem in VPSNs

corresponds to the problem of interval scheduling [3, 44, 56, 83], and so we can lever-

age results from the interval scheduling literature to solve certain versions of the call

admission control problem in VPSNs.

3.4.1 Indivisible Sensor Requests, No Shifting

Suppose that sensor requests are indivisible and that sensor requests are fixed in

time. Then the call admission control problem in VPSNs can be solved in polynomial

time by leveraging results from the interval scheduling literature [3]. Specifically, in

the version of interval scheduling addressed in [3], a set of intervals is given where

each interval represents a job to execute on a machine and has a fixed start time,

end time, and utility. The goal is to select the set of non-interfering intervals that

maximize utility. Sensor requests can be directly mapped to intervals. We then

44



Table 3.1. Algorithm to solve the call admission control problem in VPSNs when
sensor requests are indivisible and cannot be shifted in time; adapted from the algo-
rithm for interval scheduling found in [3].

1 Input
2 N sensing strategies:
3 Each sensing strategy 1 ≤ i ≤ N is comprised of ni sensor requests, Ri1, . . . Rini

4 Each sensor request Rij , 1 ≤ j ≤ ni, has start time tsij , finish time tfij , and utility uij

5
6 Initialization
7 Identify all maximal sets of interfering sensor requests, q1, . . . , qr, from sensing strategies
8 Set maxq =maximum{|q1|, . . . , |qr|}
9
10 Algorithm
11 Create directed graph G:
12 Add nodes and arcs representing the maximal sets q1, . . . , qr
13 Add nodes v0, . . . , vr

14 Add arcs (vi, vi−1) with zero cost and infinite capacity, i = 1, . . . , r
15 For each sensor request Rij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni

16 If Rij is in sets qk, . . . , qk+1, add arc (vk−1, vk+1) with cost uij and capacity 1
17 For each maximal set qk, 1 ≤ k ≤ r
18 If |qk| < maxq, add arc (vk−1, vk) with zero cost and capacity (maxq − |qk|)
19
20 Formulate and solve minimum cost flow problem in graph G:
21 Select source v0 and sink vr

22 Fix flow size to be (maxq − 1)
23 Solution is least cost path from v0 to vr that can accommodate flow
24
25 Output
26 For each sensor request Rij

27 If minimum cost flow uses arc representing sensor request Rij , do not execute Rij

28 Otherwise, execute Rij

define uij =
∑N
i′=1 u

i′
ij to be the utility of satisfying sensor request j of user i. These

uij utilities can be directly mapped to the interval utilities. Thus, we can use the

polynomial-time algorithm given in [3] to solve the call admission control problem in

VPSNs when sensor requests are indivisible and fixed in time.

We present the algorithm from [3] in Table 3.1. As discussed in [3], the time com-

plexity of the algorithm is O(n2 log n), where n is the number of jobs. In the context

of our call admission control problem, by summing over all sensor requests from all

sensing strategies, we have n =
∑N
i=1 ni. Dependencies among sensor requests can be

45



dealt with as follows. Treat each set of dependent sensor requests as a single sensor

request by modifying how maximal sets of interfering sensor requests are identified in

line 7 in Table 3.1. Specifically, we would say that a sensor request r interferes with

a sensor request r′, if either r or any sensor request on which r depends overlaps in

time with either r′ or any sensor request on which r′ depends.

3.4.2 Divisible Sensor Requests, No Shifting

Now suppose that sensor requests are divisible but that requests are still fixed

in time. Then this version of the call admission control problem in VPSNs can be

formulated as an integer programming problem. We first sort the start times, tsij

and finish times, tfij, of all n =
∑N
i=1 ni sensor requests in increasing order to obtain

the sequence of times t1, . . . , t2n where t1 is the earliest start time and t2n is the

latest finish time. We then find the maximum utility interleaving of sensor requests

by finding the sensor request that maximizes the utility achieved during each time

interval tk to tk+1 with,

Maximize
2n−1∑
k=1

N∑
i=1

ni∑
j=1

xkij

N∑
i′=1

ui
′
ij

∆tk

where

xkij =


1 if request Rij is executed during time interval tk to tk+1

0 otherwise

∆tk =


tfij − tk if finish time tfij of request Rij is less than tk+1

tk+1 − tk otherwise

The time complexity of finding the maximum utility interleaving of sensor requests

can then be computed as follows. Sorting the start times of the sensor requests

takes time O(n log n), or can be done in linear time if the requests are already sorted

46



within each sensing strategy. Finding the maximum utility sensor request within each

time interval takes time O(nN). Since there are at most 2n time intervals, the time

complexity is O(n2N).

3.4.3 Indivisible Sensor Requests, Shifting

Suppose now that the sensor requests are indivisible, but that the time at which a

sensor request is started may be shifted in time, with the last request being executed

by time T . We assume that the utility of a request is independent of its starting time.

We can then formulate this version of the call admission control problem in VPSNs

as the following integer programming problem,

Maximize
N∑
i=1

ni∑
j=1

xij
N∑
i′=1

ui
′

ij

subject to
N∑
i=1

ni∑
j=1

(tfij − tsij)xij ≤ T

where

xij =


1 if request Rij is executed

0 otherwise

This formulation of the call admission control problem corresponds to the 0-1 knap-

sack problem [41]. We thus show that this version of the call admission control

problem in VPSNs is NP-complete as follows. First, given a specified subset of the

sensor requests to execute, we can check whether the requests are feasible (i.e., do not

overlap in time) by comparing the start and finish times of each sensor request with

that of every other request in polynomial time. Consequently, this version of the call

admission control problem is in NP.

We then use the 0-1 knapsack problem [41] to perform the reduction. An instance

of the knapsack problem consists of a knapsack with integer capacity C, and a set of

47



N objects with integer weights w1, w2, . . . , wN and values v1, v2, . . . , vN . The goal is

to select the set of objects with maximum value whose total weight does not exceed

the capacity of the knapsack. We reduce an instance of the knapsack problem to an

instance of this version of the call admission control problem in VPSNs in polynomial-

time as follows. We first set T = C. We then convert each knapsack object i directly

to a sensing strategy (comprising only one sensor request) where the weight of object

i becomes the time duration occupied by the sole sensor request of the new sensing

strategy. The utility for executing the sole request of sensing strategy i is then vi,

regardless of the time at which the request is started. Thus, this version of the call

admission control problem in VPSNs is NP-complete. To approximately solve this

version of the call admission problem, one of the polynomial time approximation

schemes for the single-dimensional knapsack problem [41] could be used.

We note that this version of the call admission control problem in VPSNs can also

be formulated as an interval scheduling problem in which the intervals have a range

of starting times, see [5, 83]; [5] also gives a pseudo-polynomial time algorithm.

3.4.4 Divisible Sensor Requests, Shifting

Finally, suppose that the sensor requests are divisible and that the time at which a

sensor request is started may be shifted in time, with the last request being executed

by time T . We assume that the sensor requests are arbitrarily divisible and that the

utility associated with each new sub-request equals the utility of the original request

times the fraction of time of the original request that the new request occupies. Then

this version of the call admission control problem in VPSNs is exactly the fractional

knapsack problem [41] where rather than maximizing utility per unit volume, we are

maximizing utility per unit time. Since the fractional knapsack problem can be solved

in polynomial time [41], this version of the call admission control problem in VPSNs

can be solved in polynomial time. The intuition for the polynomial time algorithm is

48



as follows. First, order requests by their utility per unit time. Then, select requests

occupying up to time T in total, starting with those requests with highest utility per

unit time, and successively selecting requests with lower and lower utility per unit

time. Finally, the last request selected may not necessarily be fully executed.

We note that if the utility of a sensor request were dependent on the starting time

of the request, unlike what we assumed here, we do not expect that that the call

admission control problem in VPSNs could be solved in polynomial time.

3.5 Summary

In this chapter, we examined how to accommodate different sensing strategies

within the same sensor network, corresponding to different users who may make pos-

sibly conflicting requests of the sensing resources. We specifically considered the

problem of call admission control (i.e., deciding which sensing requests to satisfy) in

the context of a virtualized private sensor network. We showed that the call admis-

sion control problem in virtual private sensor networks can be solved in polynomial

time when sensor requests are divisible or fixed in time. When sensor requests are

indivisible but may be shifted in time, we showed that the call admission control

problem in virtualized private sensor networks is NP-complete.

In future work, rather than assuming that all sensor requests are known a priori,

we are interested in online versions of the call admission control problem where new

sensor requests appear over time. Here there is related literature on online interval

scheduling [44, 56]. We are also interested in decentralized methods to solve the call

admission control problem. For example, rather than requiring the call admission

controller to have global knowledge (particularly knowledge of all user utility func-

tions), the controller could instead iterate back and forth with users to converge upon

an acceptable solution (e.g., as is possible for routing [24]). Finally, there are inter-

esting trade-offs between maximizing the utility of the sensor requests executed and

49



user fairness: one way to address the problem of fairness would be to require users to

pay to have their requests satisfied.

50



CHAPTER 4

SEPARATION OF SENSOR CONTROL AND DATA
TRAFFIC

4.1 Introduction

In Chapters 2 and 3, we focused on sensing strategies for sensor networks with con-

straints on the sensing resources. In this chapter, we examine how network constraints

such as limited bandwidth due to network congestion impact sensing performance. In

a sensor network, congestion can arise due to bursty and high-bandwidth data traf-

fic, combined with wireless links and many-to-one data routing to a sink. Suppose

then that data collected by the sensors must be transmitted over the network to a

control center which computes new sensor controls (such as the radar scan actions in

Chapter 2 or the user sensor requests in Chapter 3) based on the received data. If

the control center receives insufficient data by the time a new sensor control must be

computed, for instance due to network congestion, how does that impact the quality

of the computed sensor control, the subsequent data collected under that control, and

future sensor controls?

We examine these questions in the context of a closed-loop sensor network. In a

closed-loop sensor network, sensors send data to a control center and sensor controls

flow back to the sensors. The sensed data transmitted through the closed-loop sensor

network may have considerable redundancy in both time and space making appli-

cation performance somewhat insensitive to data packet loss and delay. Conversely,

performance is typically much more sensitive to loss or delay of sensor control packets,

since these packets carry the application’s sensor commands generated in response

51



to received data. As delayed and dropped packets degrade the performance of the

sensing application, network constraints may further exacerbate existing sensing con-

straints. Consequently, there are potential advantages to separate handling of sensor

control and data traffic.

In this chapter, we specifically investigate the value of separate handling of sensor

control and data traffic, during times of congestion, in a closed-loop sensor network.

We first show that prioritizing sensor control traffic over data traffic decreasses the

round-trip control-loop delay, and consequently increases the quantity and quality of

the data collected by the sensor network. We then ground our analysis in a closed-loop

meteorological sensor network [19, 62, 100], focusing on a storm-tracking application

running over a network of X-band radars. The storm-tracking application measures

reflectivity in the atmosphere and tracks storms (i.e., regions of high reflectivity) using

a Kalman filter as in [59]; reflectivity is a measure of the number of scatterers in a

unit volume of atmosphere known as a voxel. The reflectivity data are transmitted

from the radars over a shared wireline [62, 100] or wireless [19] network to a control

center that periodically generates radar targeting (sensor control) commands based

on features detected in the data.

To evaluate the utility of separate handling of sensor control and data traffic in

our storm-tracking application, we compare the performance of aggregate FIFO for

both sensor control and radar data packets with that of priority forwarding of sensor

control packets. Considering data quantity, we show that prioritizing sensor control

traffic increases the number of voxels, V , that can be scanned given a constant number

of reflectivity samples, Nc, obtained per voxel. Considering data quality, we show that

prioritizing sensor control traffic increases the number of reflectivity samples, N , that

can be obtained per voxel given a constant number of voxels, Vc, to scan. Since as N

increases, sensing accuracy improves only as a function of
√
N , the gain in accuracy

for the reflectivity estimate per voxel is relatively small except when prioritizing

52



sensor control increases N significantly (such as when sensor control packets suffer

severe delays). Since prioritizing sensor control traffic also reduces the number of

control packets dropped, enabling sensors to execute “correct” rather than default

controls, data degradation is mitigated. Considering the performance of the tracking

application, we show that during times of severe congestion, not prioritizing sensor

control traffic can actually lead to tracking errors accumulating over time.

In one sense, our results mirror those in [23] regarding differential traffic han-

dling and network-based (rather than sensor-application-based) performance metrics:

“that performance is generally satisfactory in a classical best effort network as long

as link load is not too close to 100%,” and that “there appears little scope for service

differentiation beyond the two broad categories of ‘good enough’ and ‘too bad.’” How-

ever, unlike some other network applications, the sensing application can still perform

well during times of severe congestion, when sensor control packets are given priority,

because (i) sensor controls are not dropped, so sensors execute “correct” rather than

default sensor controls, and (ii) sensing accuracy both improves and degrades slowly

in the number of sensed data samples obtained.

While previous work [4, 7, 13, 38, 50] focuses on prioritizing network control pack-

ets, our focus here is on prioritizing sensor control packets. Whereas network control

affects what data are transmitted and at what rate, sensor control additionally affects

what data are actually sensed and thus available to be transmitted. Consider object

tracking and suppose that the sensor controller incorrectly asks to sense data from

one location in the environment when the object is at a different location. The data

that should have been collected from sensing the different location cannot be collected

retroactively, as the environmental conditions may have changed (i.e., the object may

have moved) during the time that the incorrect location was sensed. Thus, in a

closed-loop sensor network, the issue is not just that data may be received late, but

that the opportunity to ever sense some data may be missed completely. Other work

53



in sensor networks has considered service differentiation [6, 39, 91], including during

times of congestion [47], but does not specifically look at the effects of prioritizing

sensor control nor consider closed-loop sensor networks.

The remainder of this chapter is structured as follows. In Section 4.2, we overview

related work. In Section 4.3, we discuss general characteristics of a closed-loop sensor

network. In Section 4.4, we describe our meteorological sensing application. In Sec-

tion 4.5, we present simulation results comparing the performance of FIFO with that

of priority forwarding of sensor control packets. Finally, in Section 4.6, we summarize

our results.

4.2 Related Work

The notion of separate handling of control and data packets in a network has a

long history. The SS7 signaling system [13] that carries control packets in telephone

networks is a packet-switched control network that is physically separate from the

circuit-switched network carrying voice traffic. In ATM networks, Q2931 signaling

packets for virtual circuit management are carried over connections that are logically

separated from data traffic [7]. For IP networks, it is possible for operators to configure

routers to provide prioritized service for “control” protocols such as BGP or SNMP.

In wireless networks, [50] advocates for a separate control channel for controlling

access to a shared medium. Proposals for priority handling of TCP acknowledgments

[4, 38] can also be considered as providing a different level of service to control packets

(ACKs) than data packets. While this previous work focuses on prioritizing network

control packets, our focus here is on prioritizing sensor control packets.

Other work, in sensor networks, has considered service differentiation for different

classes of traffic. [6] assigns priority levels to packets, forwarding higher-priority

packets more frequently over more paths to achieve higher probability of delivery.

[39] allocates rates to flows based on the class of traffic being sent and the estimated

54



load on the network. [91] considers bandwidth reservation for high-priority flows in

wireless sensor networks. [47] proposes congestion-aware routing in sensor networks,

providing differential service to high priority data traffic versus low-priority data

traffic in congested areas of the network. None of these approaches, however, considers

the effects of prioritizing only sensor control in a closed-loop sensor network.

Control theory considers the effects of a network within the control loop in the

field of “Networked Control Systems” [30]. As in a closed-loop sensor network, data

and sensor control are sent over a network. Unlike in a closed-loop sensor network,

however, the sensor control and data packets in a Networked Control System are con-

strained to be the feedback (sensor control) and measurements (data) of a classical

control system. Consequently, the ratio of data to control is much smaller than that

of a closed-loop sensor network such as our radar network [62, 100]. Since any data

packet (i.e., measurement) in a Networked Control System may now be as important

as any sensor control packet (i.e., feedback), it is not necessarily beneficial to always

give higher priority to sensor control. Instead, packets are scheduled to optimize

expected performance using the control equations, for instance by incorporating the

error incurred due to network delays directly into the control equations [96], or by

optimally dropping selected data measurements during times of overload by analyz-

ing the effect of the resulting missing measurements on the control equations [53].

Networked Control Systems can thus be considered a specific sub-class of the more

general closed-loop sensor networks we consider in this work.

4.3 Closed-Loop Sensor Networks

A generic closed-loop sensor network is shown in Figure 4.1: data are streamed

from sensors to a control center, while sensor commands flow from the control center

back to the sensors. The control center closes the system’s main control loop by

ingesting data, computing statistics from the data, and selecting each sensor’s future

55



Figure 4.1. A closed-loop sensor network.

data collection strategy based on the statistics. As shown in Figure 4.2, a closed-loop

sensor network periodically computes a new sensor control. We assume wireless links

for the analysis in Figure 4.2: thus, sensor control and data packets must compete

for access to links and so can be modeled as if they share the same queue. At the

start of the kth update interval, tk, the control center issues a command to the sensor

specifying how to collect data. After a delay of βk, the command is received at the

sensor. The sensor then begins transmitting back measured data; αk is the delay of

data from the sensor to the control center before the kth control update interval. After

time ∆, the sense-and-response cycle then repeats. We assume that the duration, ∆,

of each control update interval is fixed, but the length of ∆ could also depend on time

or another metric.

From Figure 4.2, the sensor control computed at time tk is based on data that

the sensor sent by time tk − αk. The sensor control is then applied at the sensor

at time ck = tk + βk. When computing sensor control ck+1, we assume that it is

preferable to use only the most recent data, obtained with sensor control ck. Thus,

while data obtained under sensor control ck−1 could continue to be transmitted by the

radars during time dk−1 to time ck, and could additionally be used to compute sensor

control ck+1, this data is now out-of-date, and we assume that it is not transmitted.

While not considered here, such out-of-date data could also be sent as low priority

background traffic.

56



(a) αk ≈ βk

(b) αk > βk

Figure 4.2. Timing of the control loop when (a) αk ≈ βk and (b) αk > βk. We
assume wireless links: thus, sensor control and data packets must compete for access
to links and so can be modeled as if they share the same queue.

Suppose now that packets are delayed: then αk and βk will increase and the

total amount of data from control ck received by time tk+1 at the control center will

decrease. Since the ratio of data to sensor control traffic is large, it should be possible

to provide significantly better performance to sensor control traffic (e.g., lower end-

to-end delays and lower loss) with only a minimal performance degradation of the

data traffic, as illustrated in Figure 4.2(b) and in keeping with queueing theoretic

conservation laws [42]. This then decreases the “round trip” delay for the control

loop - the summed delay of sensed data from a sensor to the control center and the

delay of sensor control packets back to the sensor. Lower round-trip delays enable

the control center to examine more data before making a control decision, resulting

in more accurate estimates of the sensed quantity of interest, which should then give

better application-level performance. Consequently, prioritizing sensor control in a

closed-loop sensor network should produce both more data and better quality data.

We explore these two benefits in more detail below.

57



4.3.1 More Data

One benefit of prioritizing sensor control is to allow more data to be collected in

time to compute the next sensor control. The additional data collected when sensor

control is prioritized can, for instance, be collected from additional environmental

locations that would not have been sensed if sensor control were not prioritized. In a

meteorological sensing network, sensing more environmental locations results in the

radar sensing more voxels. Equivalently, in a camera network [2] comprised of pan-

tilt-zoom cameras, sensing more environmental locations translates to the camera

collecting images from more locations. In both the radar and camera networks, this

additional data increases the probability that an object of interest (storm, person,

car, etc.) is detected. From p. 35 of [14] “the data processing inequality can be used

to show that no clever manipulation of the data can improve the inferences that can

be made from the data”: i.e., further processing of the data will not produce more

information than that contained in the original data. Assuming utility depends on

the amount of information contained in the data, we expect that the utility gain from

additional data is at most a linear function of the amount of additional data obtained.

Note that some minimum amount of (additional) data may be needed before this or

any non-zero utility is achieved.

To quantify the amount of additional data obtained when prioritizing sensor con-

trol, consider the effect of the length of the control update interval ∆. For FIFO

scheduling, data are collected during a time interval of length ∆− αk − βk, while for

priority scheduling, data are collected during a time interval of at most length ∆−αk.

Consequently, priority scheduling has a percentage gain of at most βk/(∆− αk − βk)

more time over FIFO. As ∆ decreases, the percentage gains from priority scheduling

thus increase. As ∆ increases, although the total amount of data that is collected

will increase, the gains from priority scheduling will decrease.

58



4.3.2 Better Quality Data

Another use of the additional data obtained by prioritizing sensor control is to im-

prove data quality. In this case, rather than collecting data from more environmental

locations, additional data samples would be collected from the same environmental

location. In a meteorological sensing network, more data samples from the same

environmental location translates to more reflectivity samples per voxel, thereby de-

creasing the standard deviation of the reflectivity estimate for the voxel, see Section

4.4.2. Equivalently, in an acoustic sensor network, more signals from the same envi-

ronmental location can be used to perform signal averaging to reduce noise [17], while

in a camera sensor network, more images from the same environmental location can

be used to perform image averaging to reduce noise [9].

To quantify the gain in data quality when prioritizing sensor control, consider the

set of i.i.d. data samples X1, . . . , Xn collected during time t = ∆−αk−βk. Increasing

t linearly increases the number of samples n collected. Suppose, however, that we use

those samples to compute an unbiased estimator W (X) of some parameter θ (such

as reflectivity or temperature). The Cramer-Rao bound [10] says that the standard

deviation of W (X) from θ, SDθ(W (X)), can be lower bounded as follows,

SDθ(W (X)) ≥ 1√
n I

(4.1)

where I is the Fisher information, representing the information a sample contains

about the estimator W (X). As SDθ(W (X)) decreases only at the rate of 1/
√
n, sens-

ing accuracy improves slowly in the number of sensed data values obtained. For our

meteorological radar network (and for acoustic [17] and camera [9] sensor networks),

the reflectivity standard deviation when averaging over n i.i.d data samples decreases

as a function of
√
n.

Even during times of packet loss, not just packet delays, prioritizing sensor control

improves data quality. Consider an overloaded network in which packets may be

59



dropped. Since prioritizing sensor control limits the number of sensor control packets

dropped, suppose that only data packets are dropped. As the number of i.i.d. data

samples, n, decreases, the standard deviation of any estimator increases only at the

rate of 1/
√
n. Thus, sensing accuracy also degrades slowly (i.e., the standard deviation

increases slowly) as the number of data samples, n, decreases. Additionally, because

sensor control packets are not dropped, sensors are able to execute the “correct” sensor

controls (instead of executing a default control such as having a radar scan 360◦ or

a camera take low-quality images of all environment locations), thereby obtaining

even better quality data. Consequently, the sensing application may still perform

well during times of network overload, if data packets, but not sensor control packets,

are dropped.

4.4 Meteorological Application

In this section, we describe the networked meteorological remote sensing applica-

tion, in the context of the CASA radar network [11, 48], that we use to illustrate and

quantitatively explore the effect of prioritizing sensor control on data quantity and

quality, and on application-level performance. As shown in Figure 4.1, remote X-band

radars transmit measured reflectivity values to a control center. The Meteorological

Command and Control (MC&C) [100] component at this control center identifies

meteorological features from the radar data, reports the features to end-users, and

determines each radar’s future scan strategy (i.e., the volume of the atmosphere to

be scanned by each radar). A 4-node system has been developed and deployed in

southwestern Oklahoma as part of the CASA project [11]. As shown in Figure 4.2,

the system operates on a ∆=30-second control update interval. We now describe our

network and radar meteorology models, and the storm-tracking application running

over the network.

60



4.4.1 Network Model

In this section, we describe how we model the effect of prioritizing sensor control

on the data delay, αk, and sensor control delay, βk, during congestion, as well as how

we model packet drops. To model packet delays, we assume a wireless network where

data is sent from radars (sources) to a control center (the sink), and sensor control

commands are sent back to the radars from the control center. We analyze the packet

delays incurred at a bottleneck link, assuming other network delays are small enough

to be ignored. In a wireless sensor network, the bottleneck link might be the last hop

node before the sink. We consider two scheduling mechanisms: (1) aggregate FIFO

service of sensor control and data packets and (2) nonpreemptive priority forwarding

of sensor control packets. For instance, when using 802.11, priority forwarding over

the wireless links could be done as in [69] by assigning queuing, waiting, and back-off

times based on priority level.

Figure 4.3(a) shows our queue model of the bottleneck link. We group traffic

contending for the bottleneck queue into three flows: sensor control traffic destined

for some node r, data traffic generated by node r, and other traffic including data

and sensor control traffic either generated by or destined for nodes other than node r.

Although data and sensor control packets might always travel in opposite directions

in a sensor network, due to the wireless links, data and sensor control packets will still

compete against each other for access to the wireless link; consequently, we model the

bottleneck link as a single queue. For wired links, data and sensor control packets

may end up in the same outgoing queue when there are, e.g., (i) multiple control

centers, (ii) multiple sensor applications using the same network, or (iii) asymmetric

routing.

Since data and sensor control are generated at deterministic intervals in the CASA

network, we assume that sensor control and data packets have deterministic arrivals

with rates λc and λd respectively. “Other” packets arrive according to a two-state

61



λc(ontrol)

λo(ther)

µ
λd(ata)

(a)

λ1 λ2

r

r

1 2

2

1

(b)

Figure 4.3. (a) Model of the bottleneck queue in the network. (b) The 2-state
Markov modulated Poisson process used to model the “other” traffic.

Markov-modulated poisson process, see Figure 4.3(b), where packets arrive on average

at rate λo; in state 1 packets arrive at rate λ1, in state 2 packets arrive at rate λ2,

and transitions from states 1 to 2 and from states 2 to 1 occur at rates r1 and

r2 respectively. To vary the burstiness, as measured using the index of dispersion,

see [29], we vary the values of λ1 and λ2 while keeping λo constant. Finally, we assume

that the packet service time is exponentially distributed with rate µ. To compute the

delays through the bottleneck queue, we use the ns-2 simulator [1], see Section 4.5.

To model packet drops, e.g., due to overload, we compare the worst-case and

best-case scenarios. For the worst-case scenario, we assume that all sensor control

packets are dropped and that the default sensor control must be used. For the best

case scenario, we assume that no sensor control packets are dropped and that the

scan strategy specified by the sensor controls always collect data that is optimal for

the application performance metrics defined in the next section.

4.4.2 Radar Meteorology Model

In this section, we describe the radar meteorology model we use to evaluate the

effect of prioritizing sensor control on application performance. A radar operates by

sending out pulses at a given rate as it sweeps through the sector it is scanning. For

a given time duration, the smaller the sector scanned, to some minimum sector size,

the better the estimated reflectivity values, since the radar can send more pulses per

62



Side view 
of radar

δΦ
Ground

Voxel

(a)

Top view of 
radar footprint

δθ

(b)

Figure 4.4. Radar definitions. (a) Side view of radar. (b) Top view of radar.

volume of atmosphere, see [20]. Meteorological algorithms use reflectivity values to

identify, e.g., storms and tornados. For a more detailed primer on meteorological

radars, see Section 2.3. We now describe the application performance metrics of

interest.

4.4.2.1 Number of Voxels Scanned

Suppose that the number of pulses, Nc, transmitted per voxel is fixed, where a

voxel is a unit volume of atmosphere. Then the simplest metric of interest is the

number of voxels, V , that can be scanned during time ∆− αk − βk, given by,

V =
(∆− αk − βk)fp

Nc

(4.2)

where fp = 3 kHz is the pulse repetition frequency. We ignore here how the voxels

are distributed to form a sector scan. As ∆−αk−βk increases, the number of voxels

V that can be scanned, each with Nc pulses, increases linearly.

4.4.2.2 Reflectivity Standard Deviation

We now relax the assumption that the number of pulses transmitted per voxel is

constant. We focus here on the quality of the reflectivity metric estimated from the

63



data. The number of pulses, N , transmitted per voxel given a constant number of

voxels, Vc, and during a time interval of length ∆− αk − βk is [20],

N =
(∆− αk − βk) fp

Vc
(4.3)

where fp = 3 kHz is the pulse repetition frequency, Vc = δθ δφ
θ φ

, δθ is the size of the

sector scanned in degrees, see Figure 4.4, θ = 1.8◦ is the antenna beamwidth, δφ = 12◦

is the elevation height, and φ = 2◦ is the elevation step (i.e., the increase in elevation

after a horizontal scan). Following Equation 4.3, as the sector size δθ decreases, more

pulses can be transmitted per voxel.

Each pulse transmitted per voxel returns an estimate of the reflectivity for that

voxel. Reflectivity is a measure of the number of scatterers in a volume of atmosphere.

Averaging over more samples increases the confidence in the estimated reflectivity

value. Given N samples for a voxel, the reflectivity standard deviation, σ̂r, for the

voxel is [20]:

σ̂r = 1 +

√√√√ 1

N

((
1 +

1

Sn

)2

+
(

1

Sn

)2
)

(4.4)

where Sn is the signal to noise ratio and has a typical value of 10dB. Computing

σr = 10log10(σ̂r), we obtain the reflectivity standard deviation in decibels (dB). While

increasing ∆ − αk − βk linearly increases the number of samples N collected, the

standard deviation of the estimated reflectivity value of the voxel decreases only at

the rate of 1/
√
N , exemplifying the Cramer-Rao result seen in Section 4.3.

4.4.2.3 Tracking Error

Both the number of voxels scanned and the reflectivity standard deviation evaluate

system performance only within a single control update interval, ∆. To capture

whether per-interval gains accumulate across multiple intervals, we look to simulations

64



tracking a storm (i.e., a region of high reflectivity). We first discuss how we convert

the standard deviation of reflectivity to the standard deviation of the location of

peak reflectivity (i.e., the location of the storm centroid). We then describe how the

standard deviation of the location of the storm centroid affects the root mean-squared

error (RMSE) when tracking the centroid.

The reflectivity standard deviation, σr, depends, through N in Equation (4.3),

on the scan sector size, δθ, and the time spent scanning the sector, ∆ − αk − βk.

An increase in σr should translate into an increase in the standard deviation of the

location of the peak reflectivity, σz. As there are many algorithms for detecting

peak reflectivity, and the uncertainty associated with the location depends on the

algorithm, we adopt a simple approach here and set the value of σz along a radial

from the radar as,

σz =
σrDr

30dB
(4.5)

where Dr is the distance of the object from the radar and 30dB is a mid-range

reflectivity value. This assumes that uncertainty in the reflectivity estimate translates

into an equivalent amount of uncertainty in the location of peak reflectivity.

We use the standard deviation in the location of peak reflectivity in the covariance

matrix of the Kalman filter used to track storms, described in the next section.

For meteorological algorithms, it is not sufficient to scan only the storm centroid.

Instead, reflectivity data from the surrounding area (i.e., the entire storm cell) is also

needed [100]. Hence our experiments will perform tracking based on the location

of the storm centroid, but will also scan the surrounding area, corresponding to the

expected storm radius.

65



4.4.3 Storm-Tracking Application

In this section we describe a storm-tracking application. Due to a limited amount

of real storm track data, we use the following model to generate traces of storm

movement through the environment. Let xk be the true location of the storm centroid

at time k and let yk be noisy measurements of the location. A Kalman filter [98]

assumes that the true location at time k is a linear function of the true location at

time k − 1 plus Gaussian noise, and that the noisy measurements at time k are a

linear function of the true location at time k plus Gaussian noise. I.e.,

xk = Axk−1 +N [0,Qk] (4.6)

yk = Cxk +N [0,Rk] (4.7)

We now describe our Kalman filter model of the movement of a storm centroid. We

use xk = [x1, x2, x3, x4]T , where x1 is the true x-location of the storm centroid, x2 is

the true y-location, x3 is the true x-velocity, and x4 is the true y-velocity. For the

noisy measurements, we use yk = [y1, y2]T , where y1 is the measured x-location and

y2 is the measured y-location. Then,

A =


1 0 ∆ 0
0 1 0 ∆
0 0 1 0
0 0 0 1

 , Q =


0 0 0 0
0 0 0 0
0 0 q3 0
0 0 0 q4



C =

[
1 0 0 0
0 1 0 0

]
, Rk =

[
r1 0
0 r2

]
k

We obtain the covariance matrix Q as follows. First, we assume that the latitude

and longitude noises are uncorrelated and set the off-diagonal elements of Q to zero.

We also assume that there is no noise in the latitude and longitude locations. We

then compute the noise in the latitude and longitude velocities from 39 existing storm

66



tracks from the National Severe Storms Laboratory courtesy of Kurt Hondl and the

WDSS-II software [31]. Each track is a series of (latitude, longitude) coordinates. We

first compute the differences in latitude and longitude, and in time, between successive

pairs of points. This gives us data on the latitude and longitude velocities. We then fit

the latitude velocity data with a Gaussian distribution, and fit the longitude velocity

data with another Gaussian distribution. Since the length of a latitude degree at 40◦

latitude equals 111.04 km and the length of a longitude degree at 40◦ latitude equals

85.39 km, we obtain, in units of km/hour, that the latitude velocity is ∼ N(9.1, 1268)

and that the longitude velocity is ∼ N(16.7, 836). For example, the latitude velocity is

on average 9.0 km/hr with one standard deviation of
√

1268 = 35.6 km/hr. Working

in seconds, we set q3 = 0.0001 and q4 = 0.00006. While the process noise Q is not a

function of time k, the measurement noise Rk is, as it depends both on the radar scan

strategy at time k, and on the delay given by αk + βk. Thus, at time k, we compute

σz as in Equation (4.5) and set r1 = r2 = σ2
z .

We note that due to the A and B matrices that we use in the Kalman filter, it is

possible to further simplify the Kalman filter update equations from [98] as follows.

Simplifying Equations 4.6 and 4.7 we have that,

x1
k+1 = x1

k + ∆x3
k + w1

k (4.8)

x2
k+1 = x2

k + ∆x4
k + w2

k (4.9)

x3
k+1 = x3

k + w3
k (4.10)

x4
k+1 = x4

k + w4
k (4.11)

where wk = [w1
k, w

2
k, w

3
k, w

4
k]
T , vk = [v1

k, v
2
k], wk ∼ N [0,Qk], vk ∼ N [0,Rk]. We can

then compute, for instance, the estimate of the first component of the state vector,

x1
k|k, at time k using Equation 4.16 derived as follows. We use the notation xik|k′

to indicate that the estimate of the ith component of the state vector at time k is

67



conditioned on all observations up to and including time k′.

x1
1|0 = x1

0 + ∆x3
0 + w1

0 (Predict)

x1
1|1 = x1

1|0 + K1
0(y0 − x0) (Update) (4.12)

x1
2|1 = x1

1|1 + ∆x3
1 + w1

1 (Predict)

x1
2|2 = x1

2|1 + K1
1(y1 − x1|1) (Update) (4.13)

x1
k|k−1 = x1

k−1|k−1 + ∆x3
k + w1

k (Predict)

x1
k|k = x1

k|k−1 + K1
k−1(yk − xk−1|k−1) (Update) (4.14)

where x0 is the initial state estimate, which we assume to directly be the observations

y0. Kk is the Kalman gain at time k, see [98], which does not depend on the state or

observations. Thus, the full machinery of the Kalman filter is not needed to model

the storm dynamics that we assume. To allow this work to generalize to other storm

dynamics, however, we will continue to use the Kalman filter model in this work.

We use the Kalman filter parameters described above in the tracking algorithm

used in Section 4.5. As the system is not directly observable, it can be difficult to

exactly obtain the covariance matrices in practice. Consequently, to parameterize the

Kalman filter used to generate the trajectory of the storm centroid, we use the same

parameters as the Kalman filter used for tracking, but we perturb the covariance

matrices as follows.

Q =


1 0 0 0
0 1 0 0
0 0 q3 0
0 0 0 q4

 , Rk =

[
5r1 0
0 5r2

]
k

68



We now describe the storm-tracking application. Assume that the radar is located

at the origin, that the radar radius is 40km (e.g., as with the CASA radars [100]), and

that the radar stops tracking a storm when it exits the radar’s footprint. We represent

a storm as a circle with a 3km radius based on work by [79] on storm cells which gives

2.83km as “the radius from the cell center within which the intensity is greater than

e−1 of the cell center intensity”; the initial location of the storm centroid is chosen

randomly and subsequent movement is governed by Equation 4.6. To compute the

measured location of the storm centroid, yk, we use Equation 4.7, using ∆− αk − βk

and the procedure described earlier to obtain the parameters for the covariance matrix

Rk. To compute the estimated true location x̂k from yk, and to compute the predicted

true location x̂−k+1 and covariance matrix P−k+1, we use the filtering equations, e.g.,

see [98]. To compute the area that contains x̂−k+1 with 99% confidence, we use its

covariance matrix P−k+1. The 99% confidence area is an ellipse centered at the point

(x̂1
k+1, x̂

2
k+1) whose semi-axes are given by the submatrix P−k+1[1, 2; 1, 2]. x̂1

k+1 and

x̂2
k+1 are, respectively, the x- and y-locations of the storm centroid and are the first

two components of the vector x̂k+1. To account for the storm radius, we expand the

confidence ellipse by 3km (since the ellipse gives the area in which the storm centroid

will be found 99% of the time, but does not include the storm radius). We compute

the radar’s next scan sector to be the smallest scan angle that covers the expanded

confidence ellipse. The radar then scans this sector for ∆−αk+1−βk+1 seconds during

the next update interval; the radar scans 360◦ initially, whenever the true location

lies outside of the scanned area, and when αk + βk ≥ ∆.

4.5 Simulation Results

In this section, we use the models described in Section 4.4 to investigate the value

of prioritizing sensor control traffic over data traffic in our illustrative closed-loop

meteorological sensing network. We first examine the effect of prioritizing sensor

69



control on data quantity and quality, and then examine the effect on the performance

of the tracking application.

4.5.1 Simulation Set-up

Delayed packets. To obtain the control-loop delays we use the ns-2 simulator [1].

We set the queue size to be large enough that no packets are dropped. The data

delay is the delay incurred by the last packet that is processed at the bottleneck node

by the start of each update interval. The corresponding control delay is the delay of

the associated sensor control packet for that update interval. Based on experimental

results from the CASA radar testbed, we use λc

λc+λd
= 0.0005 and ∆ = 30 sec, setting

λc = 1
30

pkts/sec and λd = 2000
30

pkts/sec. We also use ∆ = {5, 15} sec, setting

λc = 1
∆

pkts/sec while leaving λd unchanged; such ∆s are feasible for a phased array

radar [80]. For the “other” traffic, we set λo = 2000
30

pkts/sec, with λ1 = pλo and

λ2 = (1− p)λo, for p = {0.5, 0.2, 0.05}. We set the transition rates r1 and r2 for the

Markov modulated Poisson process to each be 1.0 sec on average. Computing the

index of dispersion (idx), see [29],

idx = 1 +
2(λ1 − λ2)2r1r2

(r1 + r2)2(λ1r2 + λ2r1)
(4.15)

shows that our parameters consider idx ≈ {1, 25, 55}. idx = 1 corresponds to a

Poisson process while larger values correspond to increased traffic burstiness. Finally,

since λc + λd + λo ≈ 133.37 pkts/sec we set µ = 148.5 pkts/sec achieving a load of

about 0.90. Even with (λc+λd+λo)
µ

< 1, however, the bursty “other” traffic introduces

temporary overload conditions. Using this network model, for each parameter setting,

we perform 10 simulation runs, of 100,000 sec each. This gives, for instance, 20,000

update intervals per run for ∆ = 5 sec. For each run we obtain a time-varying series

of αk + βk delays. Figure 4.5 shows the delay distributions for ∆ = 30 sec; we plot

the data from all runs to obtain the CDF for each scheduling mechanism and idx

70



0 5 10 15 200

0.2

0.4

0.6

0.8

1
Measured Delays (ns−2 Simulation)

x = αk + βk (seconds)

1

F(
x)

 

 

Priority, idx ≈ 1, ∆=30sec
FIFO, idx ≈ 1, ∆=30sec
Priority, idx ≈ 55, ∆=30sec
FIFO, idx ≈ 55, ∆=30sec

(a)

Figure 4.5. CDFs of the measured αk + βk delays.

pair. Although not shown, we also find that on average, the αk +βk delay for priority

scheduling is about half that of FIFO, regardless of ∆ (we observe a maximum average

delay of ∼ 0.9 sec for FIFO with ∆ = 5 sec and idx = 55). While we expect that

increasing λo will increase the αk +βk delays, recall from Section 4.3 that prioritizing

sensor control has a percentage gain of at most βk/(∆ − αk − βk) more time over

FIFO. Consequently the relative performance gain of priority over FIFO should be

bounded regardless of λo.

Dropped packets. To model packet drops only, we compare the worst-case (all

sensor control dropped) and best-case (no sensor control dropped) scenarios. We

assume that the sensor control packets always tell the radar to scan 45◦ and two

elevation angles within that sector (i.e., the smallest sector that would be scanned

by the CASA radars, and correspondingly, the highest quality data that would be

obtained). Consequently N45 samples per voxel would be collected in the specified

45◦ sector. As a result of overload, we assume that a fraction ploss of packets are lost.

For both FIFO and priority scheduling, a fraction of the data samples will be lost.

Additionally for FIFO, however, since we assume the worst case, all sensor control

packets will be lost, and the radars will always use the default strategy of scanning

71



360◦ and all six elevation angles (i.e., the largest volume of space that the CASA

radars would scan), collecting N360 samples per voxel.

4.5.2 Data Quantity and Quality Results

Effect of packet delays on number of voxels scanned. Substituting the delays

generated from ns-2 into Equation 4.2, Figure 4.6(a) shows the number of times

more voxels scanned under priority scheduling than under FIFO. Figure 4.6(a) shows

that as ∆ decreases and burstiness increases, the benefits of prioritizing increase: for

∆ = 5 sec and idx = 55, priority scheduling scans about 1.15 times as many voxels

as FIFO.

Effect of packet delays on reflectivity standard deviation. Substituting the delays

generated from ns-2 into Equation 4.3, for δθ = 360◦ we obtain a time-varying series

of Ns. The empirical CDFs for N are shown in Figure 4.6(b), using the data from all

10 runs for each CDF: we see that FIFO and priority each achieve about 6× as many

pulses for ∆ = 30 sec as for ∆ = 5 sec and that the total number of pulses gained

over FIFO from using priority is independent of ∆. Figure 4.6(c) plots the ratio of

each FIFO CDF in Figure 4.6(b) with that of the corresponding priority CDF. Figure

4.6(c) shows that for idx = 1 or ∆ = 30 sec, FIFO achieves at least 90% as many

pulses as priority, more than 95% of the time. Only for idx = 55 and ∆ = 5 sec (very

bursty traffic and a small update interval), does FIFO perform significantly worse

(achieving ∼ 80% as many pulses as priority ∼ 80% of the time).

Substituting the time-varying series of Ns into Equation 4.4, we obtain the cor-

responding series of reflectivity standard deviation σr values. Figure 4.6(d) plots the

ratio of each priority σr CDF with that of the corresponding FIFO σr CDF, again us-

ing the data from all runs. Due to the 1/
√
N behavior in Equation 4.4, Figure 4.6(d)

shows that the gains in N from prioritizing sensor control are diminished: e.g., now

for idx = 55 and ∆ = 5 sec, priority scheduling has at least 90% as much uncertainty

72



5 10 15 20 25 301

1.02

1.04

1.06

1.08

1.1

1.12
Number of Voxels (V)

∆ (seconds)

V Pr
io

rit
y / 

V FI
FO

 

 

idx ! 55
idx ! 25
idx ! 1

(a)

0 20 40 60 800

0.2

0.4

0.6

0.8

1
Number of Pulses (N)

x=N
F(

x)

 

 

∆=5sec ∆=30sec

FIFO, idx ≈ 55, δθ=360°

Priority, idx ≈ 55, δθ=360°

FIFO, idx ≈ 1, δθ=360°

Priority, idx ≈ 1, δθ=360°

(b)

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1
Number of Pulses (N)

x=NFIFO/NPriority

F(
x)

 

 

∆=5, idx ≈ 55, δ θ=360°

∆=30, idx ≈ 55, δ θ=360°

∆=5, idx ≈ 1, δ θ=360°

∆=30, idx ≈ 1, δ θ=360°

(c)

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1
Reflectivity Standard Deviation (σr)

x=σr,Priority/σr,FIFO

F(
x)

 

 

∆=5, idx ≈ 55, δ θ=360°

∆=30, idx ≈ 55, δ θ=360°

∆=5, idx ≈ 1, δ θ=360°

∆=30, idx ≈ 1, δ θ=360°

(d)

Figure 4.6. (a) Number of times more voxels V scanned under priority scheduling
than under FIFO; 95% bootstrap confidence intervals over 10 simulation runs are
shown. (b) CDFs of the number of pulses, N . (c) CDFs of the normalized number
of pulses. (d) CDFs of the normalized reflectivity standard deviation.

73



0 1000 2000 3000 40000

2

4

6

8

10

12
Change in σr Due to Packet Loss

λ = packet arrivals per second
σ r( N

′ )  
/  

σ r ( 
N 45

)

 

 

FIFO
Priority

Figure 4.7. Packet loss under different arrival rates. Capacity is 1000 pkts/sec;
when arrivals exceed capacity, packets are lost. We assume for these results that
when capacity is exceeded, all sensor control packets are lost for FIFO scheduling,
but no sensor control packets are lost for priority scheduling. During times of packet
loss, however, both FIFO and priority scheduling lose data packets. Note that the
data contained in the data packets are reflectivity measurements per scanned voxel,
not storm cell location measurements.

as FIFO about 90% of the time. To summarize, Figures 4.5 and 4.6 show while the

αk +βk delays for priority scheduling are about half of those for FIFO, these gains do

not translate into equivalent % gains in N or σr, and the gains are greater for smaller

∆s and more overloaded links.

Effect of packet drops on reflectivity standard deviation. From our simulation

setup for dropped packets, FIFO will have N ′ = N360 × (1 − ploss) data samples per

scanned voxel reach the control center while priority will have N ′ = N45 × (1− ploss)

data samples per scanned voxel reach the control center. From [20] we use N360 = 750

and N45 = N360 × 3× 8 = 18000. Figure 4.7 plots the reflectivity standard deviation

when N ′ samples reach the control center (i.e., there is loss), normalized by the

reflectivity standard deviation when N45 samples reach the control center (i.e., there

is no loss). We assume that the network delivers packets at its capacity and that

traffic beyond network capacity is lost. Hence, N ′ = N45 for both FIFO and priority

when arrivals are less than capacity; when arrivals exceed capacity, N ′ = N360× (1−

74



ploss) for FIFO and N ′ = N45 × (1 − ploss) for priority. Figure 4.7 shows that as

the system goes into overload, σr degrades gracefully for priority scheduling, as the

offered load increases (i.e., the fraction of lost data samples increases). These results

show that by prioritizing sensor control, the sensing system is robust to network

overload conditions, and suggest that in times of congestion, it is preferable for the

end-to-end data transfer protocol to ignore lost data samples, rather than adopting

an ARQ protocol for retransmission, that would then increase the data delays to RTT

timescales.

4.5.3 Storm-Tracking Results

Effect of packet delays on tracking error. We plug the delays generated from ns-2

into the tracking application in Section 4.4.3. At each control update we compute the

next scan sector which becomes the new sensor control. We note that the data packets

here that are transmitted to the control center still contain reflectivity samples, not

tracking location information; tracking information is extracted from this reflectivity

data at the control center.

Figure 4.8 shows the RMSE under FIFO relative to that of priority. The RMSE is

computed over the differences between the true, xk, and estimated true, x̂k, locations

of the storm centroid. As ∆ decreases and burstiness increases, Figure 4.8 shows that

the benefits of prioritizing increase: for ∆ = 5 sec and idx = 55, FIFO has a median

of about 1.06 times the RMSE of priority scheduling. We also see some outliers:

e.g., for ∆ = 5 sec and idx = 55, when FIFO has about 4.17 times the RMSE of

priority. For this outlier run, the average scan angle was about 56◦ while for the

other 9 runs, the average scan angle ranged from 36◦ to 46◦. Hence, once the scan

angle (and consequently the measurement noise) is sufficiently large, the Kalman filter

less effectively filters out the noise when estimating the true location. As it is not

possible by prioritizing sensor control to gain even 4x more data (let alone 4x better

75



1

1.002

1.004

1.006

1.008

1.01

1.012

RM
SE

FI
FO

 / 
 R

M
SE

Pr
io

rit
y

∆=5sec ∆=15sec ∆=30sec

RMSE: idx = 1

(a)

1

1.02

1.04

1.06

1.08

1.1

1.12

RM
SE

FI
FO

 / 
 R

M
SE

Pr
io

rit
y

RMSE: idx = 25

∆=5sec ∆=15sec ∆=30sec

(b)

1

1.5

2

2.5

3

3.5

4

RM
SE

FI
FO

 / 
 R

M
SE

Pr
io

rit
y

RMSE: idx = 55

∆=5sec ∆=15sec ∆=30sec

(c)

Figure 4.8. RMSE from tracking application for (a) idx = 1, (b) idx = 25, and
(c) idx = 55. Boxplots are over 10 runs. Boxes show the median and first and third
quartiles; +’s indicate outliers, i.e., data values more than 1.5 times greater (smaller)
than the third (first) quartile.

reflectivity standard deviation) within a single update interval, then at least some of

the outliers are due to errors accumulating over multiple intervals. Thus, for tracking,

it is possible for per-interval performance gains or losses to accumulate across multiple

update intervals, unlike with the voxel and reflectivity standard deviation metrics.

4.6 Summary

In this chapter, we examined the value of prioritizing sensor control traffic over

data traffic during times of network congestion in closed-loop sensor networks. Ground-

76



ing our analysis in a meteorological radar network, we showed that prioritizing sensor

control traffic decreases the round-trip control-loop delay, and thus increases the

quantity and quality of the collected data and improves application performance.

One interesting direction for future work is to reduce the amount of sensor data

that must be transmitted over the network. This could be done by summarizing or

compressing the data, or by changing the sensing strategy so that less data is actually

collected. For instance, it may not make sense to collect data if there is insufficient

bandwidth to transmit the data to a control center. We also assumed that when

sensor control packets are dropped, that the default sensing strategy was to scan

360◦. Thus, another direction for future work is to instead assume that radars have

some intelligence and are not solely reliant on the control center for sensor controls.

77



CHAPTER 5

ROBUST ROUTING IN AD HOC NETWORKS

5.1 Introduction

In Chapter 4, we examined how limited network bandwidth impacts the perfor-

mance of the sensing application. In this chapter, we consider the problem of routing

in networks with bandwidth constraints due to changing network conditions. We

focus on wireless and mobile ad-hoc networks (MANETs), which are distinguished

by time-varying link characteristics and network topology. In such dynamic envi-

ronments, the network must accommodate the changes, providing end-end packet

delivery while at the same time incurring low control overhead. Yet this ideal is diffi-

cult to meet in practice: end-end delivery requires some form of end-end (potentially

global) coordination, and frequent changes make adaptation to each and every change

costly. Link and mobility characteristics may also be difficult to estimate a priori,

making proactive or predictive routing approaches difficult to implement in practice.

We specifically consider the problem of robust routing in MANETs. By “robust”

we mean that although a particular routing configuration may not be optimal for a

single specific configuration (e.g., specific network topology and link characteristics),

it will perform well over a larger set of likely network configurations: i.e., it is robust

to changes without requiring global recomputation. The issues of local versus global

adaptation to link/topology changes, and the timescale(s) at which this adaptation

occurs (and the concomitant overhead incurred) are central to the MANET routing

problem. The approach to MANET routing explored in this chapter is based on the

intuition that a global routing configuration should be determined at a coarse time-

78



scale (e.g., periodically, every T time units), with local adaptation to link or topology

changes occurring at a finer time-scale within the current global configuration.

We examine here an approach towards MANET routing, which we refer to as

“braid routing,” that is robust to changes in link characteristics and network topol-

ogy.1 Informally, braid routing operates at two timescales. At the longer time-scale,

a routing subgraph (i.e., a braid, defined formally in Section 5.3.2) is constructed

that connects a source and destination. At the shorter time-scale, local forward-

ing decisions are made to select the “best” next hop out of all possible next hops.

Unlike many existing “backup routing” approaches that pre-compute disjoint paths,

e.g., [43], or partially disjoint paths, e.g., [25], a braid does not impose such require-

ments on the subgraph. Like approaches such as [25], braid routing performs local

adaptation in response to link and topology changes. But unlike approaches that

route packets over the entire network topology to achieve robustness (e.g., [92]), the

braid subgraph over which packets are forwarded is purposefully constrained to limit

control overhead (e.g., for braid construction and state maintenance). The tradeoff

between the control overhead incurred (which depends on the width of the braid and

the interval at which the braid is re-computed), and packet delivery performance is

of principal concern to us.

We analyze braid routing from several different perspectives in order to fully ex-

plore and understand its properties. We analytically characterize the reliability (the

probability that the source and destination nodes have an instantaneous path, see [12])

of a class of braids, their optimality properties, and counter-examples to conjectured

optimality properties in a well-structured (grid) network. Through simulation, we

compare the reliability of braid, disjoint-path, and full-network routing in both torus

and random networks, and show that while braids incur significantly less overhead,

1We note that the term braided routing originates with [25]. The braid routing we propose in this
chapter differs from that of [25] in the structure and usage of the braid (i.e., the routing subgraph).

79



they can also achieve almost the same reliability as using the full-network. Finally,

we investigate the performance of braid routing versus other MANET routing pro-

tocols. Considering the percentage of packets delivered, we show that braid routing

can deliver more packets than Ad-hoc On-Demand Distance Vector (AODV) [74]

routing without significantly increasing overhead. Considering control overhead, and

comparing with dynamic source routing [36], we show that braid routing can sig-

nificantly decrease control overhead while only minimally degrading the number of

packets delivered, with gains dependent on node density. In addition to quantifying

the gains and overheads of braid routing, our simulations also illustrate how perfor-

mance results can change rather dramatically depending on the underlying network

model.

The remainder of this chapter is structured as follows. In Section 5.2, we discuss

related work on routing. In Section 5.3 we describe the reliability metric we use as a

measure of robustness, formally define what we mean by a braid, and describe how

we use a braid for routing. We then present analytical results, in Section 5.4, and

simulation results, in Section 5.5, evaluating braid performance in terms of reliability.

In Section 5.6, we present simulation results evaluating the utility of the braid for

routing. Finally, in Section 5.7, we summarize our results.

5.2 Related Work

A variety of other work has considered the use of disjoint routes in ad hoc networks,

including [52, 61, 70, 78]. In addition to the overhead cost of finding disjoint paths,

if any link in a path breaks then the path itself breaks. Detection and recovery from

failures is also expensive since it cannot be carried out locally. These considerations

have thus motivated research on the use of non-disjoint paths.

Considering non-disjoint paths, backup routing [51] reinforces the path selected by

AODV [74] by allowing nodes that overhear AODV control messages to become part

80



of the routing subgraph, to be used only when links on the AODV path break. [82]

proposes duct routing in mobile packet radio networks, allowing nodes neighbouring

the primary path to be used. When sending packets to the ith node along the primary

path, one of either the ith node or one of its neighbours will hear the transmission first.

The first node that hears the transmission will forward the packet to the (i + 1)st

node; the other nodes will overhear the forwarding transmission and refrain from

transmitting. For underwater networks, [68] proposes a geo-routing mesh using only

nodes within a given distance from the vector from the source or current forwarding

node to the sink. Finally, braided multipaths are proposed in [25] to protect against

node failure. A braided multipath consists of the primary path plus an additional path

for each node i on the primary path that does not use node i, possibly reusing parts

of the primary path. We note that [82] (when all nodes neighbouring the primary

path are used) and [51, 68] build routing subgraphs which structurally correspond

to what we will describe in Section 5.4 as a 1-hop braid. Our work generalizes that

of [51, 68, 82] since we consider k-hop braids, with k ≥ 1. Our work also differs from

[51, 68, 82] in how we use a braid, since we focus on leveraging the braid structure

to decrease control overhead by updating routes less frequently. Our work differs

from [25] in the construction and structure of the routing subgraph.

For changing network topology, [94] show for a class of graphs that it is possible

to maintain paths whose lengths are within a constant factor of the shortest path

while limiting overhead. Focusing on reliability, [65] argues for the reliability benefits

of using non-disjoint paths in wireless mesh networks, showing gains over disjoint

paths. Also focusing on reliability, [26] considers the problem of finding the most

reliable subgraph for routing. Due to the #P-hardness of this problem, they propose a

method to approximately compute reliability and leverage known contact probabilities

between node pairs to select a routing subgraph. Finally, [86] proposes a routing

algorithm that first selects the most reliable path and then locally reinforces those

81



links whose probability of being up is lower than a threshold. Unlike [26, 86], our work

focuses on identifying properties of a routing subgraph which make it reliable, and

then efficiently identifying such a subgraph without actually computing reliability.

5.3 What do we mean by robust?

Any protocol used in a wireless network or MANET must typically adapt to

the changing network structure. If there are frequent network changes, however,

then adapting to every change can be costly in terms of control overhead. Ideally,

however, a protocol would not need to adapt to every change (thereby reducing control

overhead), but would still perform “well enough.” More generally, we say that the

solution specified by a protocol is robust if the solution performs well over many

scenarios. In the rest of this section, we first define what we mean by robust routing

and describe a type of routing sub-graph that we propose, which we call a braid, to

provide such robustness. We then describe how we use a braid for routing.

5.3.1 Robustness in Terms of Reliability

Informally, we say that a routing subgraph is robust if there is at least one path

available between a source and destination with high probability, even as links appear

or disappear in the network. Consider the four-node network in Figure 5.1: as time

passes, indicated by the T values, links may fail or re-appear. Figure 5.1 shows that

if the shortest path is chosen as the routing subgraph, there is a path from the source

to the destination 50% of the time, while the two shortest disjoint paths have a path

75% of the time, and the entire network has a path 100% of the time. Thus, routing

over the entire network here ensures that a path is available even as links fail, without

needing to re-compute the subgraph. Generally, however, we would prefer not to route

over the entire network as this incurs high control overhead. Instead, we would like

82



Figure 5.1. Example network with source S and destination D. Top row: selecting
the shortest path as the routing sub-graph. Middle row: selecting the two shortest
disjoint paths as the routing subgraph. Bottom row: selecting the entire network as
the routing subgraph. Crosses indicate link failures.

to select some small number of additional nodes to include in the routing sub-graph

to provide robustness to changes in network topology.

We formalize our definition of routing sub-graph robustness using reliability the-

ory. Consider a graph G = (V,E) with IID edges up with probability p, and specify

source and destination nodes. From reliability theory [12], the 2-terminal reliability

R(G, p) is the probability that there exists an instantaneous path between the source

and destination in G,

R(G, p) =
|E|∑
i=0

Nip
i(1− p)|E|−i (5.1)

where Ni is the number of pathsets with i edges, and pi(1− p)m−i is the probability

that a pathset with i edges is up. A pathset is defined as a subset of the edges in G

for which there is a path between the specified source and destination nodes. Thus,

pi(1− p)|E|−i is the probability that a subgraph with i edges, and containing a path

from the source to the destination, is up. Taking the product of pi(1−p)|E|−i and the

83



number of pathsets with i edges, Ni, gives the reliability contribution from pathsets

with i edges. Summing over all 1 ≤ i ≤ |E| considers all possible pathset sizes. Thus,

Equation 5.1 computes 2-terminal reliability by summing over the probabilities of the

different way a path could exist between the source and the destination. We will use

2-terminal reliability to evaluate the robustness of different routing subgraphs and

provide intuition about what types of graphs are “highly” reliable.

5.3.2 The k-Hop Braid

For a given source and destination, the most robust routing subgraph is the sub-

graph that has maximum 2-terminal reliability while using at most a specified amount

of overhead. Computing reliability exactly, however, is generally #P -complete [12],

as is solving the corresponding optimization problem [26]. For all-terminal reliability

(the probability that a graph is connected), [40] gives a randomized fully polynomial

time approximation scheme. [40] shows that for very reliable graphs only small cuts

are likely to fail and there are only a polynomial number of such cuts; otherwise

Monte Carlo simulation may be used to compute reliability. The approach in [40]

could presumably be used to approximate 2-terminal reliability, but this does not

efficiently solve the optimization problem, nor lend itself easily to theoretical com-

parisons of the reliability of different subgraphs. Thus, in this work, we focus on

identifying structural properties of graphs that make them reliable, and efficiently

finding subgraphs with such properties.

Consider Equation (5.1): in the small p limit, reliability is dominated by terms

from shorter paths, and so the shortest path (i.e., most reliable path) is an appropriate

part of the routing subgraph. Conversely, [12, 76] give an alternative expression for

reliability as a polynomial in q = 1− p with source, s, and destination, d, as follows,

R(G, p) = 1−
∑
Ci∈C

P (Ei) (5.2)

84



s
Best Path 1-Hop Braid 2-Hop Braid

d

s

d

s s

d d

Figure 5.2. Example best path, 1-hop braid, and 2-hop braid between a source (s)
and destination (d).

P (Ei) = q|Ci|

1−
∑

Cj∈L(Ci)

P (Ej)

q|Ci∩Cj |



where Ci is the set of edges in minimal cut i (partitioning s and d), C is the set of

all Ci, and, informally, L(Ci) is the set of minimal cuts lying entirely between node s

and edges in cut Ci. In the small q limit, the unreliability 1− R(G, p) is dominated

by the smallest cuts. Thus, in this limit, a good routing subgraph will have a large

minimum cut: i.e., the subgraph should widen uniformly along the shortest path. We

use this analysis to propose a type of routing sub-graph that we call a “braid”, shown

in Figure 5.2: a k-hop braid comprises the “best” path (e.g., most reliable or shortest

path) between a source and destination, plus all nodes within k hops of nodes on the

best path. If there is a tie among several paths for the best path, there are several

options. One option is to select the best path randomly from among the tied paths.

Another option is to select the path around which the best braid (i.e., the k-braid

with highest reliability for some k) can be built; we leave this for future work.

5.3.3 Braid Routing Algorithm

In this section, we describe how to use our proposed braid sub-graph to perform

routing. Our braid routing algorithm contains the following steps:

85



Global adaptation every T time-steps:

1. Identify shortest path in network

2. Build k-hop braid around shortest path

3. Perform local forwarding within braid

Rather than re-build the braid routing sub-graph every time a link breaks, we

only re-construct the braid every T time-steps. If a link failure occurs, a braid can

potentially adapt to the change by locally routing packets around the failure, with

the scope of the forwarding constrained by the braid. Consequently, network-wide

flooding of control messages to alert nodes about the link failure and to repair the

route need not be (immediately) incurred. We will focus on a simple, single-copy local

forwarding mechanisms in Sections 5.6.1 and 5.6.2, but other ways to implement local

forwarding include flooding and backpressure routing [92]. While the braid sub-graph

changes every T timesteps, local forwarding decisions are computed by nodes every

timestep. The key idea is that by using a braid for routing, routes can be re-computed

less frequently, and so less control overhead will be incurred.

5.4 Theoretical Analysis

In this section, we characterize the reliability properties of braids, concentrating

on well-structured grid networks. Our goal is to analyze how well a braid performs

with respect to 2-terminal reliability given a fixed number of nodes or links in the

subgraph. These results then provide insight into more general network topologies,

which are analytically intractable.

5.4.1 1-Hop Braids

A 1-hop braid comprises the shortest path between a source and a destination plus

all nodes within 1-hop of nodes on the shortest path. For the idealised network model

86



s d
N

Figure 5.3. Model used in Section 5.4, comprising source (s) and destination (d) on
a line in a bounded half-plane grid.

shown in Figure 5.3, we show in Lemma 1 that a reliable routing subgraph should

widen uniformly along the shortest path, as in a 1-hop braid. Informally, Lemma 1

says that when incrementally adding nodes (one or two at a time), adding all nodes

one hop away from the shortest path before adding any nodes that are two hops away

maximizes reliability.

Lemma 1: Assume the network structure in Figure 5.3: the source, s, and

destination, d, are connected by a shortest path, P , comprising N nodes; links are

IID and up with probability 0 < p < 1. Let G be the sub-graph formed by P plus

0 < n < N additional 1-hop nodes, (where a k-hop node is a node k hops away from

P ). Using one additional 1-hop node (and its associated edges) that is also adjacent

to another 1-hop node, increases the reliability of G strictly more than does using any

two additional 2-hop nodes (and their associated edges).

Proof: Figure 5.4(a) shows the general structure of the graphs we consider. Suppose

we can add either one of the grey nodes or the black node. Adding only one of the

grey nodes does not affect the reliability from s to d, as no additional (disjoint or

non-disjoint) paths will be created from s to d. Adding the black node increases

the probability of getting from nodes d0 and d1 to node d, and so will increase the

probability of getting from node s to node d.

87



P (d|s) = P (d|s0s1)P (s0s1|s) + P (d|s0s̄1)P (s0s̄1|s) + P (d|s̄0s1)P (s̄0s1|s)

P (d|s0s1) = P (d|d0d1)P (d0d1|s0s1) + P (d|d0d̄1)P (d0d̄1|s0s1) + P (d|d̄0d1)P (d̄0d1|s0s1)
P (d|s0s̄1) = P (d|d0d1)P (d0d1|s0s̄1) + P (d|d0d̄1)P (d0d̄1|s0s̄1) + P (d|d̄0d1)P (d̄0d1|s0s̄1)
P (d|s̄0s1) = P (d|d0d1)P (d0d1|s̄0s1) + P (d|d0d̄1)P (d0d̄1|s̄0s1) + P (d|d̄0d1)P (d̄0d1|s̄0s1)

P (d0d1|s0s1) = P (d0d1|q0q1)P (q0q1|s0s1) + P (d0d1|q0q̄1)P (q0q̄1|s0s1) + P (d0d1|q̄0q1)P (q̄0q1|s0s1)
P (d0d̄1|s0s1) = P (d0d̄1|q0q1)P (q0q1|s0s1) + P (d0d̄1|q0q̄1)P (q0q̄1|s0s1) + P (d0d̄1|q̄0q1)P (q̄0q1|s0s1)
P (d̄0d1|s0s1) = P (d̄0d1|q0q1)P (q0q1|s0s1) + P (d̄0d1|q0q̄1)P (q0q̄1|s0s1) + P (d̄0d1|q̄0q1)P (q̄0q1|s0s1)
P (d0d1|s0s̄1) = P (d0d1|q0q1)P (q0q1|s0s̄1) + P (d0d1|q0q̄1)P (q0q̄1|s0s̄1) + P (d0d1|q̄0q1)P (q̄0q1|s0s̄1)
P (d0d̄1|s0s̄1) = P (d0d̄1|q0q1)P (q0q1|s0s̄1) + P (d0d̄1|q0q̄1)P (q0q̄1|s0s̄1) + P (d0d̄1|q̄0q1)P (q̄0q1|s0s̄1)
P (d̄0d1|s0s̄1) = P (d̄0d1|q0q1)P (q0q1|s0s̄1) + P (d̄0d1|q0q̄1)P (q0q̄1|s0s̄1) + P (d̄0d1|q̄0q1)P (q̄0q1|s0s̄1)
P (d0d1|s̄0s1) = P (d0d1|q0q1)P (q0q1|s̄0s1) + P (d0d1|q0q̄1)P (q0q̄1|s̄0s1) + P (d0d1|q̄0q1)P (q̄0q1|s̄0s1)
P (d0d̄1|s̄0s1) = P (d0d̄1|q0q1)P (q0q1|s̄0s1) + P (d0d̄1|q0q̄1)P (q0q̄1|s̄0s1) + P (d0d̄1|q̄0q1)P (q̄0q1|s̄0s1)
P (d̄0d1|s̄0s1) = P (d̄0d1|q0q1)P (q0q1|s̄0s1) + P (d̄0d1|q0q̄1)P (q0q̄1|s̄0s1) + P (d̄0d1|q̄0q1)P (q̄0q1|s̄0s1)

Table 5.1. Reliability computation for Figure 5.4.

Using Grey Nodes Using Black Node
P (d|d0d1) p ≥ p+ p3 − p4

P (d|d0d̄1) p p+ p3 − p4

P (d|d̄0d1) p2 2p2 − p4

P (q0q1|s0s1) = P (q0|s0)P (q1|s1) p(p+ p3 − p4) p · p
P (q0q̄1|s0s1) = P (q0|s0)P (q̄1|s1) p(1− p− p3 + p4) p(1− p)
P (q̄0q1|s0s1) = P (q̄0|s0)P (q1|s1) (1− p)(p+ p3 − p4) (1− p)p
P (q0q1|s0s̄1) = P (q0|s0)P (q1|s̄1) 0 0
P (q0q̄1|s0s̄1) = P (q0|s0)P (q̄1|s̄1) p p
P (q̄0q1|s0s̄1) = P (q̄0|s0)P (q1|s̄1) 0 0
P (q0q1|s̄0s1) = P (q0|s̄0)P (q1|s1) 0 0
P (q0q̄1|s̄0s1) = P (q0|s̄0)P (q̄1|s1) 0 0
P (q̄0q1|s̄0s1) = P (q̄0|s̄0)P (q1|s1) p+ p3 − p4 p

Table 5.2. Reliability computations for Figure 5.4. The product of each of the first
3 rows times each of the last 9 rows gives the 27 terms (ignoring scaling factors) of
the full reliability computation. For each of the 27 products, the “using black node”
product is ≥ the “using grey nodes” product.

88



s d
N

s1 q1

q0s0 d0

d1

(a)

s d

s1

s0s0

s1 q1

q0 q0

q1

d0

d1

d0

d1

(b)

Figure 5.4. Graphs used in Lemma 1. We decompose the graph in (a) into the
subgraphs in (b) so we need only compute the reliability for the subgraphs of interest.

Now consider adding two nodes at a time. Again consider the topologies in Fig-

ure 5.4. We partition the graph in Figure 5.4(a) into the sub-graphs shown in Fig-

ure 5.4(b); each edge appears only once, although nodes may be repeated (which

will not affect the reliability). Using sub-graph decompositions we decompose the

reliability by conditioning on the intermediate nodes as follows. We first condition

on intermediate nodes s0 and s1 to obtain,

P (d|s) = P (d|s0s1)P (s0s1|s) + P (d|s0s̄1)P (s0s̄1|s) + P (d|s̄0s1)P (s̄0s1|s) (5.3)

where e.g., P (d|s0s̄1) is the probability that node d can be reached given that node

s0 but not s1 can be reached, and P (s0s̄1|s) is the probability that node s0 but not

s1 can be reached given that node s can be reached. We recursively condition on

nodes {d0, d1} and {q0, q1} to obtain an equation for P (d|s) as the sum of 27 terms,

shown in Table 5.1. We use the resulting equation to compute both the reliability

when adding both of the grey nodes in Figure 5.4 and when adding the black node.

Ignoring those terms that correspond to subgraphs that are identical for both we need

only compute the reliability for the {s0, s1} → {q0, q1} and {d0, d1} → d subgraphs.

These calculations are shown in Table 5.2. Examining Table 5.2 shows that for each

P ({q0, q1}|{s0, s1})P (d|{d0, d1}) product, adding the black node to the end of the

2 × N node strip gives the same or higher reliability as compared with adding the

two grey nodes anywhere on top of the strip. ♦

89



Strip Pyramid

s d
N = 6

s d
N = 6

(a)

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
18−Node Strip vs. 18−Node Pyramid

p

re
lia

bi
lity

 

 

strip
pyramid

(b)

Figure 5.5. (a) Two topologies, both using 18 nodes. (b) Reliability is averaged
over 100 runs of 10,000 time-steps each. 95% bootstrap confidence intervals over the
runs are shown.

While we used the half-plane network model shown in Figure 5.3 (in which a 1-hop

braid corresponds to a 2×N node strip) to prove Lemma 1, we could also generalize

Lemma 1 to a full 1-hop braid by using the full-plane and a similar proof method

as that used to prove Lemma 1. Doing so would result in, however, an equation for

P (d|s) even more complex than the equation shown in Table 4.1.

Lemma 1 is more general than stated as it does not depend on the form of the

{s0, s1} → {q0, q1} and {d0, d1} → d subgraphs. These results suggest that k-hop

braids have several desirable reliability properties, at least in this well-structured en-

vironment and with uniform p, giving confidence in studying k-hop braids in scenarios

where the optimum subgraph cannot be determined. In Figure 5.3, the k × N node

strip from s to d is a (k − 1)-hop braid. We close with two conjectures:

Conjecture 1: Given N additional nodes (and their associated edges) plus the

shortest path, the 2 × N node strip is the most reliable subgraph. It follows from

Lemma 1 that for N ≤ 5 additional nodes, reliability is maximized by the 2×N node

strip (to see this, consider the ways 5 extra nodes could be arranged).

90



A1

B1

A2

B2

ds

s d ds

s d
N = 4 N = 4

N = 3 N = 3

Figure 5.6. Counterexamples when adding links rather than nodes.

Conjecture 2: Given 2N additional nodes (and their associated edges) plus the

shortest path, the 3 × N node strip is more reliable than the corresponding pyramid.

Comparing the 3 × N node strip for N = 6 versus the pyramid that can be built

using 18 nodes, see Figure 5.5 (a), we find experimentally2 that the strip has higher

reliability than the pyramid, as shown in Figure 5.5(b).

5.4.2 Comparison With Disjoint Path Routing

A degenerate case of a 1-hop braid, where all internal links are missing, is a

pair of disjoint paths which use neighbouring nodes. Does the optimal braid with a

constraint on the number of links contain holes of this type? The answer depends on

the measure of overhead and the value of p. Consider the examples in Figure 5.6 of a

partial braid and a pair of disjoint paths. Graphs A1 and A2 both use six links total.

Suppose we compute the reliabilities R(A1) and R(A2) of graphs A1 and A2. We find

(by considering the different ways that a path can exist),

2Given the difficulty of exactly computing reliability, except for relatively simple networks, we
also use Monte Carlo simulation to estimate reliability. In a discrete-time simulation of a time-
varying network, we can check whether there is a path from the source to the destination at each
time-step. The ratio of the number of time-steps when there is a path and the total number of
time-steps simulated is then an estimate of the probability that there exists an instantaneous path
from source to destination. We refer to computing the reliability in this way as “computing the
reliability experimentally.”

91



R(A1) = p2(1− p3) + p4(1− p) + p5

= p2 + p4 − p5 (5.4)

R(A2) = p2(1− p4) + p4(1− p2) + p6

= p2 + p4 − p6 (5.5)

Since R(A1) is always less than R(A2), graph A2 is more reliable than graph A1 for

all values of p. Similarly, suppose we compare the reliabilities of graphs B1 and B2,

which both use eight links total. We compute,

R(B1) =
[
p(p(1− p2) + p2(1− p) + p3)2 + (1− p)(p2(1− p4) + p4(1− p2) + p6)

]
p

=
[
p(p+ p2 − p3)2 + (1− p)(p2 + p4 − p6)

]
p

= p3 + 3p5 − 2p6 − 3p7 + 2p8 (5.6)

R(B2) = p3(1− p5) + p5(1− p3) + p8

= p3 + p5 − p8 (5.7)

We can then compute when R(B1) is greater than R(B2),

R(B1) ≥ R(B2)

p3 + 3p5 − 2p6 − 3p7 + 2p8 ≥ p3 + p5 − p8

2p5 − 2p6 ≥ 3p7 − 3p8

2(1− p) ≥ 3p2(1− p)√
2

3
≥ p (5.8)

Thus, graph B2 is only more reliable than graph B1 when p >
√

2/3, i.e., the two-

disjoint paths are only more reliable than the partial braid for large values of p (i.e.,

for more reliable links). Work in [58] extends our results here and show that the

92



regime in which the braid is more reliable becomes larger for larger networks. This

assumes that “links used” is the right overhead metric; an alternative metric is “nodes

used,” for which the appropriate comparison is between the disjoint paths and the

1-hop braid, and the latter is always more reliable.

5.5 Reliability Simulations

In this section, we use simulation to compare the reliability properties of braids

with those of other types of routing subgraphs. This lets us examine the reliability

properties of braids in network structures more general than the bounded half-plane

grid model considered in Section 5.4. We first describe our network model and then

present results.

5.5.1 Network Model

Consider a graph G = (V,E) with nodes V and edges E. We examine (i) a√
|V | ×

√
|V | torus where |E| comprises the set of all edges in the torus and (ii) a

random model, where |V | nodes are placed uniformly randomly and independently

in the plane, and edges exist between those nodes within a communication radius L

of each other. We consider both link and node failures. To model the link (node)

failures, we assume links (nodes) are IID; to model link (node) changes, we use a two-

state Markov model where links (nodes) stay up with probability p and stay down

with probability q at each time-step.3 When a node fails, all of its links also fail.

In our experiments, we use (i) a 10 × 10 torus and (ii) 100 nodes distributed

randomly in an area of size 10×10 using a communication radius L = 2. We perform

500 simulation runs in the case of link failures, and 1000 runs in the case of node

failures. Each run comprises 100 timesteps. At the start of each run, a random

3Note that this link (node) failure model differs from, and is more general than, the link failure
model used in Section 5.4, where we assumed that links were IID and up with probability p.

93



source-destination pair is selected; if there is no path between the selected source and

destination, another random source-destination pair is selected for the run. At each

time-step, we check which links (nodes) are up. For the two-state Markov model we

use p = {0.75, 0.85, 0.95} and q = 0.5. We use the steady-state probability that a link

(node) is up to select which links (nodes) are initially up. The routing sub-graph for

each algorithm is recomputed every T timesteps, using only links (nodes) that are up

in the graph at the time of re-computation. All algorithms were evaluated on identical

network topologies, and we estimate the sub-graph reliability experimentally.

5.5.2 Link Failure Results

In this section, we consider link failures. Figure 5.7 shows that for all p, that as

the size of the route update interval T increases, the reliability of the selected routing

subgraph decreases and eventually reaches steady-state. For the torus, Figure 5.7(a)

shows that for p = 0.75, the reliability of the 1-hop braid, 2-shortest-disjoint paths,

and shortest path are all within a range of 0.1. Increasing p to 0.85 in Figure 5.7(c)

shows a larger gap in reliability between the 1-hop braid and the 2-shortest disjoint

paths, and also a larger gap between the braid and the full graph. Using p = 0.95

in Figure 5.7(e) shows an even larger gap in reliability between the 1-hop braid and

the 2-shortest disjoint paths, but now a much smaller gap between the braid and the

full graph. For the random model, Figures 5.7(b), (d), and (f) again show that for

all p examined, the 1-hop braid has consistently higher reliability than the shortest

path or 2-shortest disjoint paths, now as much as 0.4 greater than the 2-shortest

disjoint paths when p = 0.75 or p = 0.85. This is in part a consequence of there not

always being 2 disjoint paths in the graph (unlike in the torus). When p = 0.95, in

Figure 5.7(f), the reliability achieved by the 1-hop braid is almost identical to that

achieved by the full graph.

94



0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Torus, p=0.75, q=0.5

T

R
el

ia
bi

lit
y

 

 

Full Graph
1−Hop Braid
2−Disjoint Paths
Shortest Path

(a) Torus

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Random, p=0.75, q=0.5

T

R
el

ia
bi

lit
y

 

 

Full Graph
1−Hop Braid
2−Disjoint Paths
Shortest Path

(b) Random

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Torus, p=0.85, q=0.5

T

R
el

ia
bi

lit
y

 

 

Full Graph
1−Hop Braid
2−Disjoint Paths
Shortest Path

(c) Torus

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Random, p=0.85, q=0.5

T

R
el

ia
bi

lit
y

 

 

Full Graph
1−Hop Braid
2−Disjoint Paths
Shortest Path

(d) Random

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Torus, p=0.95, q=0.5

T

R
el

ia
bi

lit
y

 

 

Full Graph
1−Hop Braid
2−Disjoint Paths
Shortest Path

(e) Torus

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Random, p=0.95, q=0.5

T

R
el

ia
bi

lit
y

 

 

Full Graph
1−Hop Braid
2−Disjoint Paths
Shortest Path

(f) Random

Figure 5.7. Link failure simulations. Reliability of different routing subgraphs. Re-
liability is averaged over 500 runs of 100 time-steps. 95% confidence intervals over
the runs are shown. As not all sets of samples were normally distributed, bootstrap
confidence intervals were computed using Matlab (hence the error bars are not sym-
metric).

95



0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Torus, p=0.85, q=0.5

# of Nodes Used in Addition to Shortest Path

G
ai

n 
in

 R
el

ia
bi

lit
y 

O
ve

r 
S

ho
rt

es
t P

at
h

 

 

2−Disjoint Paths

1−Hop Braid

Full Graph

2−Disjoint Paths
1−Hop Braid
Full Graph

(a) Torus, T=5, Link Failures

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Random, p=0.85, q=0.5

# of Nodes Used in Addition to Shortest Path

G
ai

n 
in

 R
el

ia
bi

lit
y 

O
ve

r 
S

ho
rt

es
t P

at
h

 

 

2−Disjoint Paths
1−Hop Braid
Full Graph

(b) Random, T=5, Link Failures

Figure 5.8. Overhead of 1-hop braid vs. that of the shortest path, the two shortest
disjoint paths, and the entire graph. Reliability was estimated experimentally.

Figure 5.8 plots the reliability gain given the number of additional nodes used

over the shortest path by the 2-shortest disjoint paths, 1-hop braid, and full graph.

Each point represents a simulation run (i.e., a selected source destination pair); for

clarity we show only results for when T = 5. For the torus, Figure 5.8(a) indicates

that the 1-hop braid provides an increase in reliability while using fewer than 20 extra

nodes. For the random model, Figure 5.8(b) indicates that while the braid provides

consistent and significant (up to about 0.4) gains in reliability, it also uses around 40

more nodes than the shortest path, but fewer than half the nodes used by the full

graph.

To summarize, the torus results indicate that the 1-hop braid can achieve reliabil-

ity greater than that of the shortest path and the 2-shortest disjoint paths, and that

the gains increase as p increases. We expect, however, that using a 2-hop braid would

increase the reliability gain of the braid for small p. The results from the random

model indicate that while using more nodes, the 1-hop braid can achieve reliability

close to that of the full graph, and that the gain increases as p decreases.

96



5.5.3 Node Failure Results

In this section, we consider node failures. Figures 5.9(a) and (b) show that for

p = 0.85, node failures (or perfectly correlated link failures) significantly impact the

reliability gains that can can be achieved over the shortest path by using additional

disjoint or non-disjoint paths. This is also reflected in the overhead plots in Fig-

ures 5.9(c) and (d). Compared with the link failure results in Figure 5.8, the node

failure results in Figures 5.9(c) and (d) indicate that while the 2-disjoint paths or

1-hop braid do not use significantly fewer additional nodes than in the case for link

failures, significantly lower reliability gains are achieved from the additional nodes

used. For example, in Figure 5.8(b), the 1-hop braid can achieve reliability gains of

almost 0.7 with link failures, but with node failures, in Figure 5.9(d), the 1-hop braid

achieves reliability gains of at most about 0.4. In practice, we do not expect link

failures to be either perfectly correlated or independent, and so would expect some

reliability gain from using additional disjoint or non-disjoint paths.

5.6 Routing Simulations

In this section, we investigate the amount of control overhead incurred by braid

routing in a mobile scenario via simulation. We also investigate the trade-off between

control overhead and the percentage of packets delivered and packet delay. The

analysis in Section 5.4 and the reliability simulations in Section 5.5 gave us insight

into the trade-off between connectivity and overhead (in terms of nodes or links used).

In comparison, the routing simulations in this section let us (i) examine more general

network scenarios, specifically mobile networks where link failures are typically neither

perfectly independent nor perfectly correlated as with node failures, (ii) investigate

braid overhead in terms of routing control packets incurred, not just nodes or links

used, and (iii) investigate routing performance in terms of the percentage of packets

delivered and delay, not just braid connectivity. In the rest of this section, we first

97



0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Torus, p=0.85, q=0.5

T

R
el

ia
bi

lit
y

 

 

Full Graph
1−Hop Braid
2−Disjoint Paths
Shortest Path

(a) Torus

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Random, p=0.85, q=0.5

T

R
el

ia
bi

lit
y

 

 

Full Graph
1−Hop Braid
2−Disjoint Paths
Shortest Path

(b) Random

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Torus, p=0.85, q=0.5

# of Nodes Used in Addition to Shortest Path

G
ai

n 
in

 R
el

ia
bi

lit
y 

O
ve

r 
S

ho
rt

es
t P

at
h

 

 

2−Disjoint Paths

1−Hop Braid

Full Graph

2−Disjoint Paths
1−Hop Braid
Full Graph

(c) Torus, T=5

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Random, p=0.85, q=0.5

# of Nodes Used in Addition to Shortest Path

G
ai

n 
in

 R
el

ia
bi

lit
y 

O
ve

r 
S

ho
rt

es
t P

at
h

 

 

2−Disjoint Paths

1−Hop Braid

Full Graph

2−Disjoint Paths
1−Hop Braid
Full Graph

(d) Random, T=5

Figure 5.9. Node failure simulations. (a), (b) Reliability of different routing sub-
graphs. Reliability is averaged over 1000 runs of 100 time-steps. 95% confidence
intervals over the runs are shown. As not all sets of samples were normally dis-
tributed, bootstrap confidence intervals were computed using Matlab (hence the error
bars are not symmetric). (c), (d) Overhead of 1-hop braid vs. that of the shortest
path, the two shortest disjoint paths, and the entire graph. Reliability was estimated
experimentally.

98



present routing simulation results for when the routing update interval T , described

in Section 5.3.3, is constrained to be a constant value. We then relax this constraint

in Section 5.6.2.

5.6.1 Constant T

When T is constant, we constrain braid routing as well as any other routing

algorithm with which we compare to all re-compute their routes at the same fixed

update interval T . We expect when T is constant that braid routing would incur

about the same amount of control overhead as, for instance, shortest path routing,

since both would re-compute routes at the same rate. We would also expect braid

routing to have a higher delivery packet ratio, since braid routing would be more

likely to have a path than shortest path routing during the interval T during which

routes are not recomputed. In the rest of this section, we first describe our naive

implementation of braid routing and then present simulation results in a MANET

environment.

5.6.1.1 Naive Braid Routing Implementation

In our naive implementation of braid routing we use AODV [74] to construct the

shortest path around which the braid is built. We construct a 1-hop braid around

the AODV shortest path as follows. When a node receives data to forward along the

AODV path, it broadcasts a braid request for the associated destination (if one has

not yet been sent). When a node receives a braid request for a destination, it groups

the request with other requests for that destination. If it can hear at least two nodes

on the path, it sends a braid reply to all nodes it can hear (except to the node closest

to the destination).

To tear the braid down, a braid node sends error messages to nodes it can hear

on the AODV path when either one of its links to the AODV path breaks (i.e., drops

a packet) and T has elapsed, or when it receives a more recent braid request for

99



the destination (indicating that the current AODV path has been replaced). A node

deletes its next hop braid for a destination when either (i) its next hop or later link

on its AODV best path has dropped a packet for that destination, or (ii) a node for

that destination is updated in its AODV routing table. A node marks a link as “bad”

whenever the node attempts to use a link and has a packet dropped. The AODV

path and/or braid will be recomputed only when T has elapsed. Whenever routes

are recomputed, links are marked as “good.”

Nodes perform local forwarding within the braid as follows. Nodes on the AODV

path select their AODV next hop with probability 1 if it is “good” or if there is

no next hop braid node, and with probability 0.1 if it is “bad.” If the AODV next

hop was not selected, then the node iterates through its braid links. A braid link is

selected with probability 1 if it is good or probability 0.1 if it is bad. If the node

iterates through all of its braid links without selecting a next hop, then by default

the AODV next hop is returned. If the node is a braid node, then it iterates through

the nodes it can hear on the AODV path, selecting the AODV path node that is

currently both closest to the destination and good. To ensure that bad links are also

attempted, any AODV path node can be selected with probability 0.1. If the node

iterates through all of its AODV path nodes without selecting a next hop, then by

default the first AODV path node in its list is returned.

5.6.1.2 Simulation Set-up

We perform our simulations when T is constant using GloMoSim [95]. We use

60 nodes, moving according to the following mobility models. (1) Random waypoint :

the pause time was 0 sec and node speeds were uniformly chosen between 4km/hr and

10km/hr. (2) Gauss-Markov [55]: average node speed was 7.2km/hr with standard

deviation of 1.08km/hr and we use α = 0.2 and ∆t = 100. We use a 1.5km x 1.5km

area for the random waypoint experiments and a 1km x 1km area for the Gauss-

100



Markov experiments. Traces of node mobility were generated using BonnMotion [34]

and fed into GloMoSim, letting us evaluate braid routing and AODV on identical

mobility scenarios. We use a constant bit rate flow between two nodes for which

data was generated every 0.5 sec and a total of 5 million packets were generated. We

performed 10 simulation runs, each for the duration of the flow (about 29 simulated

days). To address the problem of a long transient phase, the length of the flow was

selected by examining the packet drop rate for progressively longer flows; when the

change in % of packets dropped was sufficiently small (< 0.05%), we assumed that

steady-state had been reached. A better method would be to e.g., implement the

“perfect simulation” method of Le Boudec and Vojnovic [8]; we leave this for future

work. The MAC protocol used was 802.11 and the transmission radius was about 250

meters (from setting the radio transmit power to 7.9dBM).

5.6.1.3 Results

Figure 5.10 compares AODV and braid routing with respect to throughput, over-

head, and links used. Figures 5.10(a) and (b) show for both mobility models that

the braid achieves a maximum of about 5% higher throughput than AODV for

T = 50, 100, 200. Figures 5.10(c) and (d) show for both mobility models that the

braid uses about the same amount of AODV overhead when building its best path

as AODV (as measured by the number of path requests and replies transmitted by

AODV); under Gauss-Markov mobility, however, this overhead is about 2.7×106 fewer

packets, likely due in part to the smaller, 1km x 1km, area used. Figures 5.10(c) and

(d) also show that while the braid incurs overhead from braid requests and replies,

this overhead is about 1/4 of the AODV overhead under random waypoint, and about

1/2 of the AODV overhead under Gauss-Markov; the total braid overhead, however,

for both mobility models is similar. Figures 5.10(c) and (d) also show that the total

number of error packets transmitted for braid routing (aggregating error packets for

101



0 50 100 150 2000

0.2

0.4

0.6

0.8

1
Random Waypoint

T (seconds)

Pe
rc

en
ta

ge
 o

f p
ac

ke
ts

 d
el

ive
re

d

 

 

aodv
braid

(a)

0 50 100 150 2000

0.2

0.4

0.6

0.8

1
Gauss−Markov

T (seconds)

Pe
rc

en
ta

ge
 o

f p
ac

ke
ts

 d
el

ive
re

d

 

 

aodv
braid

(b)

0 50 100 150 2000

0.5

1

1.5

2 x 107 Random Waypoint

T (seconds)

Nu
m

be
r o

f l
in

ks

 

 

aodv − attempted
aodv − broken
braid − attempted
braid − broken
braid − attempted braid

(c)

0 50 100 150 2000

0.5

1

1.5

2 x 107 Gauss−Markov

T (seconds)

Nu
m

be
r o

f l
in

ks

 

 

aodv − attempted
aodv − broken
braid − attempted
braid − broken
braid − attempted braid

(d)

0 50 100 150 2000

1

2

3

4

5

6

7

8 x 106 Random Waypoint

T (seconds)

Nu
m

be
r o

f c
on

tro
l p

ac
ke

ts

 

 aodv − req+rep
aodv − error
braid − aodv req+rep
braid − braid req+rep
braid − error

(e)

0 50 100 150 2000

1

2

3

4

5

6

7

8 x 106 Gauss−Markov

T (seconds)

Nu
m

be
r o

f c
on

tro
l p

ac
ke

ts

 

 

aodv − req+rep
aodv − error
braid − aodv req+rep
braid − braid req+rep
braid − error

(f)

Figure 5.10. Comparison of 1-hop braid with AODV under (a), (c), (f) random
waypoint and (b), (d), (f) Gauss-Markov mobility. 95% bootstrap confidence intervals
over 10 simulation runs are shown.

102



both AODV and the braid) is perhaps five times greater than AODV error packets,

in part because the braid involves more nodes in routing. As in Figure 5.10, other

work, e.g., [16], has also observed that AODV can use as much (or more) control over-

head as data transmitted, so we focus here on the additional overhead incurred by

the braid. Since the braid construction is independent of the “best” path algorithm,

another routing algorithm besides AODV could be used. Finally, Figures 5.10(e) and

(f) show for both mobility models that the braid algorithm attempts to use more

links than AODV (where “attempt” indicates that the routing algorithm attempted

to transmit a packet over a link, but may not have been successful), in part because

it may use a longer path. The braid, however, also has fewer links broken on average

than does AODV.

In summary, Figure 5.10 indicates that the 1-hop braid gains about 5% more

throughput while using significantly less overhead than, for instance, would be needed

to construct a second disjoint AODV path. The gains in throughput, however, are not

as significant as the gains in reliability shown in the Matlab experiments in Section 5.5.

We conjecture that this discrepancy is in part a consequence of (1) building the braid

around the shortest path rather than the most reliable path, and (2) the different

network models, particularly in how they differ with respect to the rate at which links

appear/disappear, and the temporal and spatial correlations among links changes.

Note that since the braid construction is independent of the “best” path algorithm,

a routing algorithm that identifies the most reliable path could be used rather than

AODV.

Comparing the different network models, consider first the rate at which links

appear/disappear. Results from [28] indicate that the inter-meeting times for two

nodes using the random waypoint model are “well-approximated by an exponential

distribution, at least for small to moderate transmission radii (with respect to the size

of the area).” Using Lemma 1 in [28], we compute that for the transmission radius

103



and random waypoint model considered here, the expected inter-meeting time for two

nodes is given by 1/λ with λ = 2.65/hr. Hence, on average, two nodes will meet once

every 22.7 minutes. Thus, in our random waypoint GloMoSim experiments, when a

link breaks (due to mobility) it likely stays down for an interval significantly longer

than T . Conversely, the probability of transitioning from down to up during T was

0.5 in the models used in the Matlab experiments in Section 5.5. Long inter-meeting

times limit the throughput gains achieved by the braid since when braid links fail it

is unlikely that they will re-appear before the remaining time in the interval T has

elapsed.

Next consider correlations among links. In the Matlab experiments we assumed

links failed independently. Conversely, we would expect that outgoing links of a given

node would tend to have correlated failures when links break due to mobility. We

would also expect that since all link failures are varying functions of how much time

t of the interval T has elapsed, that link failures among different nodes would also

be dependent due to the shared dependence on t. Correlated link failures limit the

throughput gains achieved by the braid since if a link on the AODV path fails, it is

also more likely that one of the links routing around the failed link will also fail soon

(if it has not already).

5.6.2 Variable T

In Section 5.6.1, we presented simulation results for when the routing update

interval T , described in Section 5.3.3, is constrained to be a constant value. In this

section, we present simulation results for when the value of T is allowed to vary

in response to the failure of all paths within the braid. When T is variable, we

allow braid routing as well as any other routing algorithms with which we compare

to re-compute their routes at whatever frequency is necessary to ensure a route to

the destination. We expect when T is variable that braid routing would incur less

104



control overhead than, for instance, shortest path routing, since braid routing would

re-compute routes less frequently (assuming the network is sufficiently dense that a

braid can be built). We would also expect braid routing to have about the same

delivery packet ratio, since braid routing would be no more likely to have a path

than shortest path routing, since both would be recomputing routes as frequently as

necessary (for the respective algorithms) to ensure a path. In the rest of this section,

we first describe how we implement braid routing efficiently and then present results

for both a stationary wireless network and a MANET environment.

5.6.2.1 Efficient Braid Routing Implementation

Consider how reactive routing algorithms such as Ad-hoc On-Demand Distance

Vector Routing (AODV) [74] or Dynamic Source Routing (DSR) [36] identify the

shortest path between a source and destination. Such routing algorithms typically

have the source send out route requests; route replies are then propagated back from

the destination to the source specifying a path to the destination. Regardless of

how the respective routing algorithms subsequently use this routing information, the

algorithms must all incur the control overhead of these route requests and replies.

Suppose that overheard route requests and replies only contain information about

nodes that are 1-hop away, such as in AODV. To construct a 1-hop braid then, like in

backup routing [51], a node must incur some additional control overhead to determine

which of its 1-hop neighbours to use to forward a packet when the node’s next hop

link on the best path breaks. Conversely, now suppose that overheard route requests

and replies may contain information about nodes that are multiple hops away, such as

with source routing and DSR. Then to construct a 1-hop braid, no additional control

overhead is necessary. Thus, to efficiently implement braid routing, we use DSR [36]

to construct the shortest path around which the braid is built. We show in Figure

5.11 a simple example of how 1-hop braid information is contained in overheard route

105



s

d

a

RREQ (s)

RREQ (s)

RREQ (s,a)

Route Cache

Route Cache

Route Cache
s-a s-a-d

s-da-d

s-a

(a)

s

d

a
RREP (d,a,s)

RREP (d,s)

RREP (d,a,s)

Route Cache

Route Cache

Route Cache
s-a s-a-d

s-d

s-a s-a-d

s-a s-a-d
s-d

a-d

a-d

a-d

s-d

(b)

Figure 5.11. Transmission of (a) route requests (RREQ) from the source s to the
destination d and (b) route replies (RREP) from the destination to the source. The
source route associated with each RREQ or RREP is indicated in parentheses. The
route caches contain the routes extracted from the RREQs and RREPs; the routes
are assumed bi-directional. Note that because node a is within range of node d, node
a will overhear d’s reply, RREP(d,s), although the reply is not destined for a.

requests and replies when source routing is used. We note that to build a k-hop braid

for k > 1, we expect some additional control overhead will be necessary, since there is

no guarantee that all k-hop braid information will be contained in the route requests

and replies transmitted to construct the path around which the braid is built.

To provide a bit of detail of how forwarding is actually done in a braid, suppose

that a node i experiences a link break to a node j while transmitting a packet. In

DSR, the following steps occur.

1. Any routes in node i’s route cache that use the link from node i to j would be

deleted.

2. A route error is broadcast indicating that the link from node i to j is broken.

3. Finally, node i will attempt to salvage the packet by checking for an alternate

path to the destination.

In comparison, braid routing performs the following steps. (i) As in DSR, any routes

in node i’s route cache that use the link from node i to j would be deleted.

106



1. Unlike in DSR, node i would check its route cache for a braid path to any of

the remaining nodes on the source route contained in the packet (not just for

an alternate path to the destination).

2. If no braid path is available, braid routing defaults to the DSR procedure of

broadcasting errors (and re-constructing the path, if there are further packets

to send). The frequency with which this occurs determines T .

3. If a braid path is available, the packet is sent out over the first hop of the braid

path. The packet will still contain the broken source route, but the packet itself

will be flagged as a braid packet (by setting the time to live to a large value) so

that the source route contained in the packet is not added to the route caches

of nodes overhearing or receiving the packet. A node k recognizes that it is a

“braid node” for a packet whenever it receives a packet destined for itself and

node k is not included on the source route contained in the packet. Whenever

node k recognizes that it is being used as a braid node, node k will forward the

packet to the appropriate next hop on the source route contained in the packet.

Thus, unlike in DSR, in braid routing a route error is sent only if there is no

path to the destination within the 1-hop braid, rather than whenever the shortest

path breaks. Consequently, we expect braid routing to incur both fewer route errors

than DSR, and fewer route requests and replies since once a source route has been

constructed, such messages will be sent only when the source receives a route error.

We do not expect braid routing to deliver more packets than DSR, however, since

for both algorithms, if a path breaks, a new path will be found: either a new DSR

shortest path, or an existing path in the 1-hop braid built around the broken path.

Thus, the primary difference between braid routing and DSR is in the control overhead

incurred to find this new path.

107



R

s d

Figure 5.12. 5x5 node grid network used to obtain the simulation results shown in
Figures 5.14 to 5.13. Edges represent wireless links, where R is the distance in meters
between each pair of connected nodes.

5.6.2.2 Stationary Network Results

In this section we present simulation results examining the performance of braid

routing in a stationary network when T is variable. Examining a stationary wireless

network gives us insight into how the reliability results from Section 5.5, for grids and

random graphs, translate into control overhead and percentage of packets delivered.

We first describe our simulation set-up and then discuss our results.

To perform our stationary network simulations, we use the QualNet simulator,

version 4.5. We consider the 5x5 node grid network shown in Figure 5.12; links

are wireless and R is the distance in meters between nodes. The MAC protocol is

802.11b. The length of each simulation run is 2,500,000s. To model network traffic,

we create a constant bit rate flow between the source (s) and destination (d) nodes,

shown in Figure 5.12; one packet is generated every 0.25s (so 10,000,000 packets are

transmitted in total). For this setup, we compare the performance of (i) DSR and (ii)

the braid routing algorithm described in Section 5.6.2.1 using local forwarding over a

1-hop braid built around the shortest path found by DSR.

Figures 5.13(a) to (d) compare the control overhead for DSR and braid routing.

Figure 5.13(a) shows the total control overhead incurred for each algorithm, while Fig-

ures 5.13(b) through (d) show the breakdown of the total control overhead incurred

108



400 405 410 415 420
0

5

10

15
x 10

6

R = Number of Meters Between Nodes

N
um

be
r 

of
 C

on
tr

ol
 P

ac
ke

ts
 S

en
t

 

 

dsr
braid

(a)

400 405 410 415 420
0

5

10

15
x 10

6

R = Number of Meters Between Nodes

N
um

be
r 

of
 R

ou
te

 E
rr

or
s 

S
en

t

 

 

dsr
braid

(b)

400 405 410 415 420
0

5

10

15
x 10

6

R = Number of Meters Between Nodes

N
um

be
r 

of
 R

ou
te

 R
eq

ue
st

s 
S

en
t

 

 

dsr
braid

(c)

400 405 410 415 420
0

5

10

15
x 10

6

R = Number of Meters Between Nodes

N
um

be
r 

of
 R

ou
te

 R
ep

lie
s 

S
en

t

 

 

dsr
braid

(d)

400 405 410 415 420
0

0.2

0.4

0.6

0.8

1

R = Number of Meters Between Nodes

P
er

ce
nt

ag
e 

of
 P

ac
ke

ts
 D

el
iv

er
ed

 

 

dsr
braid

(e)

400 405 410 415 420
0

1

2

3

4

5

6

7

R = Number of Meters Between Nodes

D
el

ay
 (

se
co

nd
s)

 

 

dsr
braid

(f)

Figure 5.13. Performance of braid routing vs dynamic source routing in a stationary
wireless network: (a) total control overhead, (b) route errors, (c) route requests, (d)
route replies, (e) percentage of packets delivered, and (f) delay.

109



for each algorithm, according to route errors, route requests, and route replies. Figure

5.13(b) shows that when R is less than about 407m, that the braid routing proto-

col incurs fewer route errors than DSR. One reason for this is that since nodes are

stationary, the possible paths from the source to the destination are not changing;

instead it is when a possible path is available that is changing. Consequently, if a

braid path is available and successfully used whenever the DSR shortest path fails, it

is possible for the same DSR path to fail and then recover without incurring any route

errors. Conversely, Figure 5.13(b) shows that when R is greater than about 407m,

DSR incurs fewer route errors than braid routing. One reason for this is that as the

network becomes more disconnected, braid routing is more likely to attempt braid

paths which eventually fail: consequently route errors will need to be sent both for a

link failure in the braid path that failed, and for a link failure in the DSR shortest

path.

Figures 5.13(c) and (d) then show that the number of route requests and replies

first increases for both DSR and braid routing as the network becomes more dis-

connected, and then eventually decreases (around R = 410m) as the network starts

becoming too disconnected to be likely to contain a path from the source to the des-

tination. Figures 5.13(c) and (d) also show for both DSR and robust routing that

fewer route replies than route requests are sent (about 50% fewer), presumably due

in part to DSR’s mechanism for minimizing redundant route replies [37].

Next, Figure 5.13(e) compares the percentage of packets delivered for DSR and

braid routing. Figure 5.13(a) shows that as nodes become more weakly connected,

the percentage of packets delivered decreases for both DSR and braid routing. Braid

routing is, however, better able to leverage weak connectivity: when nodes are sepa-

rated by R = 407m, braid routing delivers about 2× as many packets as DSR. When

the network is too weakly connected for there to be many paths, let alone successful

braid paths, the percentage of packets delivered also drops for braid routing: e.g.,

110



when nodes are separated by R = 415m, both DSR and braid routing deliver the

same (small) percentage of packets.

Figure 5.13(f) then compares the average packet delay for DSR and braid routing.

Figure 5.13(f) shows that as nodes become more weakly connected, the average packet

delay increases. Figure 5.13(f) also shows that when there is sufficient connectivity

for successful braid paths while simultaneously sufficient numbers of link breaks in

the DSR shortest path so that braid paths are attempted (from about R = 405m

to about R = 415m), that the braid routing algorithm has lower average delay than

DSR (e.g., as much as 1s less than DSR for R = 407m). Since we would assume braid

routing to use longer routes on average than DSR, why then does braid routing incur

lower average delay? One reason for the lower average delay is that if the first hop link

of the DSR shortest path breaks when transmitting a packet, with DSR, subsequent

packets would be delayed waiting for a new route to be found. In comparison, with

braid routing, a braid path may be available and immediately used.

Finally, Figure 5.14 compares the number of link failures for DSR and braid rout-

ing, and also shows the number of braid paths attempted by braid routing. As the

distance R between pairs of nodes increases (i.e., as node density decreases), Fig-

ure 5.14 shows that the number of link failures increases for both DSR and braid

routing, peaking around R = 410m. After R = 410m, the number of link failures

begins to decrease, presumably due to pairs of nodes beginning to be too far apart

for there to exist a link. We observe that around R = 405m, braid routing starts

attempting noticeable numbers of braid paths (∼595,000 attempts for R = 405m

versus ∼42,000 attempts for R = 400m when examining the data). We also see that

starting around R = 407m, braid routing starts to both have more link failures than

DSR, and to attempt even more significant numbers of braid paths (∼2,108,000 at-

tempts). Since braid routing attempts both DSR shortest path links and braid links,

braid routing will incur more link failures than DSR when the probability of link

111



400 405 410 415 420
0

1

2

3

4

5

6
x 10

7

R = Number of Meters Between Nodes
N

um
be

r 
of

 L
in

k 
F

ai
lu

re
s 

or
 B

ra
id

 A
tte

m
pt

s
 

 

braid: link failures
dsr: link failures
braid: braid attempts

Figure 5.14. Stationary wireless network: link failures and braid attempts.

failure is sufficiently high (i.e., when R is sufficiently large). Observe that the shape

of the total control overhead plots in Figure 5.13(a) and the plots for route errors in

Figure 5.13(b) are similar in shape to the link breakage plots in Figure 5.14. Thus,

link breakages significantly determine how much control overhead is incurred by an

algorithm.

To summarize, Figures 5.13 and 5.14 show that as the stationary wireless network

becomes less dense, braid routing starts to outperform DSR, incurring lower control

overhead, higher throughput, and lower delays. More generally, we can characterize

the regimes in which braid routing achieves its greatest performance gains. When

the network is sufficiently dense (i.e., for R ≤ 400m in Figures 5.14 and 5.13), braid

routing essentially defaults to DSR. As the network becomes less dense and the prob-

ability of link breakage increases (i.e., from about R = 400 to about R = 410), braid

routing starts to attempt alternative paths through the braid. As the network is still

sufficiently dense for these alternative paths to succeed for some period of time, braid

routing is able to outperform DSR. As the network becomes even less dense (i.e.,

from about R = 410 to about R = 420) and the alternative paths become likely to

fail quickly, however, braid routing starts to incur more control overhead than DSR

without gains in throughput. Finally, when the network is too sparse for alternative

112



20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9

Number of Nodes

A
ve

ra
ge

 N
od

e 
D

eg
re

e

 

 

2000 x 2000 area, Gauss−Markov

(a)

20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

Number of Nodes

A
ve

ra
ge

 N
um

be
r 

of
 P

ar
tit

io
ns

 

 

2000 x 2000 area, Gauss−Markov

(b)

Figure 5.15. Statistics computed from the Gauss-Markov mobility traces obtained
using BonnMotion [34]. (a) Average node degree. (b) Average number of partitions
in the network.

paths to exist even if a DSR shortest path exists (i.e., for R > 420), braid routing

again defaults to DSR.

5.6.3 MANET Results

In this section we present simulation results examining the performance of braid

routing in a MANET when T is variable. These MANET routing simulations let us

consider mobile networks where link failures are typically neither perfectly indepen-

dent nor perfectly correlated as with node failures. We first describe our simulation

set-up and then discuss our results.

To perform our MANET simulations, we use the QualNet simulator, version 4.5.

We use N nodes moving in a 2000m×2000m area according to the Gauss-Markov

mobility model [55]. Traces of node mobility were generated using BonnMotion [34]

and fed into QualNet: we set the angle standard deviation to 1 radian, the maxi-

mum node speed to 2 m/s, the minimum node speed to 0.5 m/s, the speed standard

deviation to 0.2 m/s, and the speed and angle update frequency to 100s. We also

113



have nodes bounce at boundaries. Figure 5.15 shows the average node degree and the

average number of partitions computed from the Gauss-Markov mobility traces.

In our simulations, we vary the number of nodes N while holding the area fixed:

we expect that increasing the node density (and correspondingly increasing the av-

erage node degree and decreasing the average number of partitions, see Figure 5.15)

should increase the number of alternative braid paths available when a link fails. Our

simulation runs are of 1,000,000s, where an additional initial 200,000s was removed

for the transient phase. 95% bootstrap confidence intervals (over 10 runs) are shown.

To model network traffic, we create a constant bit rate flow between two nodes; one

packet is generated every 0.25s (thus, 4,000,000 packets are transmitted in total). The

MAC protocol is again 802.11b and the connectivity range is as in Figures 5.14 to

5.13, where good connectivity is achieved when nodes are within 400m of each other.

In our simulations, we vary the number of nodes N while holding the area fixed:

increasing the node density (and thus increasing the average node degree and decreas-

ing the average number of partitions, see Figure 5.15) should increase the number of

alternative braid paths available when a link fails.

Figure 5.16 compares the control overhead for DSR and braid routing. Fig-

ure 5.16(a) shows the total control overhead incurred for each algorithm, while Fig-

ures 5.16(b) through (d) show the breakdown of the total control overhead incurred

for each algorithm according to route errors, route requests, and route replies. Fig-

ure 5.16(a) then shows for N ≤ 40 that DSR and braid routing incur about the

same amount of control overhead. As node density further increases, however, Fig-

ure 5.16(a) shows that DSR incurs increasingly more control overhead than braid

routing, with DSR incurring about 25% more control overhead for N = 80. Examin-

ing Figure 5.16(b) to (d) indicates where the control overhead savings of braid routing

occurs: Figures 5.16(b) to (d) indicate that braid routing reduces not just route er-

rors, but also route requests and replies. Figures 5.16(c) and (d) then show for both

114



algorithms that as node density increases, route requests decrease while route replies

increase.

Next, Figure 5.16(e) compares the delivery ratios for DSR and braid routing.

Figure 5.16(e) shows that for both algorithms, as the node density increases, the

percentage of packets delivered increases. For higher node densities, braid routing

delivers slightly fewer packets than DSR: this is due in part to braid routing’s use of

longer braid paths which also eventually fail. We believe this gap could be removed by

more efficiently implementing when and how braid routes are used, particularly more

carefully deciding when source routes extracted from overheard packets are added

to the route cache (since packets traversing a braid route still contain the original

broken route). We note that the goal of braid routing was to maintain network

connectivity while decreasing control overhead. Consequently, we did not incorporate

any sophisticated packet recovery mechanisms, although doing so would potentially

increase the packet delivery ratio of braid routing. Additionally, we consider only one

flow in these simulations. We hypothesize that when there are multiple flows and the

network is sufficiently loaded, decreasing the control overhead incurred by routing

will allow more network capacity to be used to deliver packets, and ultimately let

braid routing deliver more packets than DSR. We leave exploring the case when there

are multiple flows in the network for future work.

Figure 5.16(f) then compares the average packet delay for DSR and braid routing.

Figure 5.16(f) shows that for both algorithms, as node density increases, the average

delay decreases. The average delay, however, decreases significantly more for DSR

than it does for braid routing: again we believe this is due to braid routing’s use of

longer braid paths.

Finally, Figure 5.17 compares the number of link failures for DSR and braid rout-

ing, and also shows the number of braid paths attempted by braid routing. As the

node density increases, Figure 5.17 shows that the number of link failures increases

115



20 30 40 50 60 70 80
0

1

2

3

4

5
x 10

6

Number of Nodes

N
um

be
r 

of
 C

on
tr

ol
 P

ac
ke

ts
 S

en
t

 

 

dsr
braid

(a)

20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

Number of Nodes

N
um

be
r 

of
 R

ou
te

 E
rr

or
s 

S
en

t

 

 

dsr
braid

(b)

20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

Number of Nodes

N
um

be
r 

of
 R

ou
te

 R
eq

ue
st

s 
S

en
t

 

 

dsr
braid

(c)

20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

Number of Nodes

N
um

be
r 

of
 R

ou
te

 R
ep

lie
s 

S
en

t

 

 

dsr
braid

(d)

20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Number of Nodes

P
er

ce
nt

ag
e 

of
 P

ac
ke

ts
 D

el
iv

er
ed

 

 

dsr
braid

(e)

20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Number of Nodes

D
el

ay
 (

se
co

nd
s)

 

 

dsr
braid

(f)

Figure 5.16. Performance of braid routing vs dynamic source routing under Gauss-
Markov mobility: (a) total control overhead, (b) route errors, (c) route requests,
(d) route replies, (e) percentage of packets delivered, and (f) delay. 95% confidence
intervals are shown, computed over 10 simulation runs.

116



20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

x 10
6

Number of Nodes
N

um
be

r 
of

 L
in

k 
F

ai
lu

re
s 

or
 B

ra
id

 A
tte

m
pt

s
 

 

braid: link failures
dsr: link failures
braid: braid attempts

Figure 5.17. MANET: link failures and braid attempts.

for both algorithms and that braid routing also attempts more braid paths. Fig-

ure 5.17 also shows that braid routing has more link failures: we believe that this

is due to braid routing attempting braid paths which eventually fail, in addition to

attempting links on the DSR shortest path which also fail. Observe again that the

shape of the total control overhead plots in Figure 5.16(a) and the plots for route

errors in Figure 5.16(b) are similar in shape to the link breakage plots in Figure 5.17.

This is because link breakages significantly determine the amount of control overhead

incurred by an algorithm.

To summarize, Figures 5.16 and 5.17 show that as node density increases, braid

routing starts to outperform DSR, incurring significantly lower control overhead while

slightly degrading the number of packets delivered and increasing packet delays. We

note that at least 40 nodes in the 2000 × 2000 area seems to be the minimum node

density needed to obtain useful braid paths; from Figure 5.15(a), this corresponds to

an average node degree of at least four nodes.

5.6.4 Discussion

Additional control overhead beyond that needed to initially construct a route

arises for several reasons. First, as would be expected, whenever a route breaks,

117



control overhead is incurred to tear-down the old route and to construct a new route.

Specifically, some packets find that their route is broken and must force route re-

construction. Consequently, these packets are responsible for more control overhead

than other packets. In the worst case, every packet finds its route broken. Rather

than attempting to re-construct a route while connectivity is still poor, however, it

may be better to delay route re-construction until network connectivity is expected

to improve (and control overhead can be amortized over multiple packets).

Second, some control overhead is due to (soft) routing state whose expiration time

is improperly set. Suppose it were possible to predict when a route would break. Then

nodes could stop using the route before it breaks, thereby reducing the route errors

incurred. The risk of such predictions, however, is that routes may be prematurely

torn down, resulting in additional route requests and replies being sent.

5.7 Summary

In this chapter, we described a braid routing algorithm to improve routing robust-

ness in wireless sensor networks and MANETs. We proposed a routing algorithm that

selects a type of routing subgraph (a braid) that is robust to changes in the network

topology. We analytically characterized the reliability of a class of braids and their

optimality properties, and gave counter-examples to other conjectured optimality

properties in a well-structured (grid) network. Comparing with dynamic source rout-

ing, we showed that braid routing can significantly decrease control overhead while

only minimally degrading the number of packets delivered, with gains dependent on

node density.

For future work, rather than using a fixed braid width, we are interested in tech-

niques to locally widen the braid to meet a robustness target. While we focused on a

single network flow in this work, we would also like to consider multiple flows, and to

explore rate control mechanisms such as backpressure routing [92] for local forwarding

118



to achieve a solution that is robust in throughput as well as connectivity. It would

also be interesting to incorporate link changes observed at the link layer both into

the braid structure and into how rate control is performed within the braid. This

could be done, for instance, by locally re-constructing the braid when link failures

are observed instead of just performing local forwarding. Finally, we would generally

like to investigate how network characteristics impact the control overhead needed

for routing.

119



CHAPTER 6

CONCLUSIONS

6.1 Thesis Summary

This thesis examined sensor control and scheduling strategies to most effectively

use the limited resources of an ad hoc network or closed-loop sensor network.

We first examined the question of where to focus sensing in a sensor network

containing sensors, such as cameras and radars, that cannot simultaneously collect

high fidelity data from all environmental locations. In Chapter 2, we specifically

showed that the main benefits of considering expected future states of the environment

in a sensing strategy for such sensors are when there are multiple meteorological

phenomena in the environment, and when the maximum radius of any phenomenon is

sufficiently smaller than the radius of the radar’s footprint. We also showed that there

is a trade-off between the average quality with which a phenomenon is scanned and

the number of decision epochs before which a phenomenon is rescanned. Considering

only scan quality, we found that a simple lookahead sensing strategy was sufficient.

Next, in Chapter 3, we considered the problem of call admission control (i.e.,

deciding which sensing requests to satisfy) in the context of a virtualized private

sensor network. We showed that the call admission control problem in virtual private

sensor networks can be solved in polynomial time when sensor requests are divisible

or fixed in time. When sensor requests are indivisible but may be shifted in time, we

showed that the call admission control problem in virtual private sensor networks is

NP-complete.

120



In Chapter 4, we then considered the problem of transmitting both sensor control

and data packets in the presence of network congestion. We investigated the value

of separate handling of sensor control and data traffic, during times of congestion,

in a closed-loop sensor network. Grounding our analysis in a meteorological radar

network, we showed that prioritizing sensor control traffic decreases the round-trip

control-loop delay, and thus increases the quantity and quality of the collected data

and improves application performance.

Finally, in Chapter 5, we examined how to make routing robust to network

changes. We considered the problem of routing in bandwidth-constrained networks

such as wireless and mobile ad-hoc networks, which are additionally characterized by

time-varying network topology. We specifically proposed a braid routing algorithm

that is robust to changes in the network topology. We analytically characterized the

reliability of a class of braids, their optimality properties, and counter-examples to

conjectured optimality properties in a well-structured (grid) network. Comparing

with dynamic source routing, we showed that braid routing can significantly decrease

control overhead while only minimally degrading the number of packets delivered,

with gains dependent on node density.

6.2 Future Work

Consider the problem of where to focus sensing. For future work, rather than iden-

tifying a policy that chooses the best action to execute in a state for a single decision

epoch, as in Chapter 2, it may be useful to consider actions that cover multiple epochs,

as in semi-Markov decision processes or to use controllers from robotics [32]. Another

direction for future work is to compute an upper bound on the quality that can be

achieved for a given storm track trace and re-scan interval. This could potentially be

done by using a limited lookahead sensing strategy and assuming deterministic storm

movements.

121



Next, while the work in Chapter 3 assumed that all sensor requests are known a

priori, in future work, we are interested in online versions of the call admission control

problem in virtualized private sensor networks, where new sensor requests appear over

time. Here there is related literature on online interval scheduling [44, 56]. We are also

interested in decentralized methods to solve the call admission control problem. For

example, rather than requiring the call admission controller to have global knowledge

(particularly knowledge of all user utility functions), the controller could instead

iterate back and forth with users to converge upon an acceptable solution (e.g., as is

possible for routing [24]). Finally, there are interesting trade-offs between maximizing

the utility of the sensor requests executed and user fairness: one way to address the

problem of fairness would be to require users to pay to have their requests satisfied.

Considering the problem of transmitting both sensor control and data packets in

the presence of network congestion studied in Chapter 4, it would be interesting to

see whether other sensor network applications, besides tracking, have performance

metrics for which gains can accumulate across multiple decision epochs when sensor

control traffic is prioritized over data traffic. Another direction for future work is

to reduce the amount of sensor data that must be transmitted over the network.

This could be done by summarizing or compressing the data, or by changing the

sensing strategy so that less data is actually collected. For instance, it may not

make sense to collect data if there is insufficient bandwidth to transmit the data to a

control center. While this work assumed that each sensed value is equally valuable,

in practice, sensed data from areas of interest, such as areas of high reflectivity in the

meteorological application, are likely to be more important to a sensing application,

e.g., see [54]. These data values could be handled at higher priority, while other data

values could be transmitted at lower priority or discarded in times of congestion. We

also assumed that when sensor control packets are dropped, that the default sensing

strategy was to scan 360◦. Thus, another direction for future work is to instead assume

122



that radars have some intelligence and are not solely reliant on the control center for

sensor controls. The more general challenge is to define an overall architecture for

pushing application-level performance considerations down into the lower layers of

the system stack in an application-independent manner.

Finally, with respect to to the problem of how to make routing robust to network

changes studied in Chapter 5, there are several directions for future work. Rather

than using a fixed braid width, we are interested in techniques to locally widen the

braid to meet a robustness target. While we focused on a single network flow in

this work, we would also like to consider multiple flows, and to explore rate control

mechanisms such as backpressure routing [92] for local forwarding to achieve a solution

that is robust in throughput as well as connectivity. It would also be interesting to

incorporate link changes observed at the link layer into both the braid structure

and into how rate control is performed within the braid. This could be done, for

instance, by locally re-constructing the braid when link failures are observed instead

of just performing local forwarding. Finally, we would generally like to investigate

how network characteristics impact the control overhead incurred when routing in

dynamic environments, and in using the resulting insights to design robust routing

algorithms. Given a model of how network characteristics are expected to change over

time, how routing is performed can then be adapted to decrease the amount of control

overhead incurred. For example, as network connectivity decreases, it may eventually

become preferable to flood (rather than route) packets to their destinations. Route

re-construction and the associated control overhead could then be postponed until

network connectivity improves. By additionally choosing routing state that is robust

to network changes, and by understanding how accurate routing state must be to

achieve performance goals, unnecessary state updates can be avoided and control

overhead can be further decreased.

123



BIBLIOGRAPHY

[1] The network simulator ns-2. In http://www.isi.edu/nsnam.

[2] Akyildiz, I., Melodia, T., and Chowdhury, K. A survey on wireless multimedia
sensor networks. Computer Networks 51 (2007).

[3] Arkin, E., and Silverberg, E. Scheduling jobs with fixed start and end times.
Discrete Applied Mathematics 18 (1987), 1–8.

[4] Balakrishnan, H., Padmanaban, V., Fairhurst, G., and Sooritabandara, M. TCP
performance implications of network path asymmetry. Request for Comment,
RFC 3449 (Dec. 2002).

[5] Berman, P., and Dasgupta, B. Mult-phase algorithms for throughput max-
imization for real-time scheduling. Journal of Combinatorial Optimization 4
(2000), 307–323.

[6] Bhatnagar, S., Deb, B., and Nath, B. Service differentiation in sensor net-
works. In Fourth International Symposium on Wireless Personal Multimedia
Communications (2001).

[7] Black, U. ATM: Foundation for Broadband Networks. Prentice Hall, 1995.

[8] Boudec, J.-Y. Le, and Vojnovic, M. The random trip model: Stability, station-
ary regime, and perfect simulation. IEEE/ACM Transactions on Networking
(2006), 1153–1166.

[9] Boyce, J. Noise reduction of image sequences using adaptive motion compen-
sated frame averaging. In ICASSP (1992).

[10] Casella, G., and Berger, R. Statistical Inference. Duxbury, 2002.

[11] Center for Collaborative Adaptive Sensing of the Atmosphere.
http://www.casa.umass.edu.

[12] Colbourn, C. J. The Combinatorics of Network Reliabiilty. Oxford University
Press, New York, 1987.

[13] Consortium, International Engineering. Signaling system 7 (ss7).
http://www.iec.org/online/tutorials/ss7/ (2006).

[14] Cover, T., and Thomas, J. Elements of Information Theory. Wiley Interscience,
2006.

124



[15] Cox, D., and Isham, V. A simple spatial-temporal model of rainfall. Proceedings
of the Royal Society of London. Series A, Mathematical and Physical Sciences
415:1849 (1988), 317–328.

[16] Das, S., Perkins, C., and Royer, E. Performance comparison of two on-demand
routing protocols for ad hoc networks. In Infocom (2000).

[17] D’Costa, A., and Sayeed, A. Data versus decision fusion for classification in
sensor networks. In International Conference of Information fusion (2003).

[18] Deering, S., and Cheriton, D. Multicast routing in datagram internetworks and
extended lans. ACM Transactions on Computer Systems 8 (1990), 85–110.

[19] Donovan, B., Hopf, A., Trabal, J. M., Roberts, B. J., McLaughlin, D. J., and
Kurose, J. Off-the-grid radar networks for quantitative precipitation estimation.
In Proc. European Radar Conference (2006).

[20] Donovan, B., and McLaughlin, D. J. Improved radar sensitivity through limited
sector scanning: The DCAS approach. In Proc. AMS Radar Meteorology (2005).

[21] El-Rewini, H., Lewis, T., and Ali, H. Task scheduling in multiprocessing sys-
tems. IEEE Computer Society Press (1995).

[22] Feitelson, D., Rudolph, L., and Schwiegelshohn, U. Parallel job scheduling a
status report. Springer Verlag, pp. 1–16.

[23] Fredj, S. Ben, Bonald, Thomas, Proutiere, A., Regnie, G., and Roberts, J.
Statistical bandwidth sharing: A study of congestion at flow level. In Proc.
ACM Sigcomm (August 2001).

[24] Gallager, R. A minimum delay routing algorithm using distributed computa-
tion. IEEE Transactions on Communications 25, 1 (1977), 73–85.

[25] Ganesan, D., Govindan, R., Shenker, S., and Estrin, D. Highly-resilient, energy-
efficient multipath routing in wireless sensor networks. Mobile Computing and
Communications Review 4, 5 (2001).

[26] Ghosh, J., Ngo, H., Yoon, S., and Qiao, C. On a routing problem within
probabilistic graphs and its application to intermittently connected networks.
In Infocom (2007).

[27] Global Environment for Network Innovations (GENI) Project,
http://www.geni.net/.

[28] Groenevelt, R., Nain, P., and Koole, G. The message delay in mobile ad hoc
networks. Tech. Rep. RR-5372, INRIA Sophia Antipolis, Nov. 2004.

[29] Heffes, H., and Lucantoni, D. A markov modulated characterization of pack-
etized voice and data traffic and related statistical multiplexer performance.
IEEE Journal on Selected Areas in Communication 4:6 (1986).

125



[30] Hokayem, P. F., and Abdallah, C. T. Inherent issues in networked control
systems: A survey. In Proc. American Control Conference (2004).

[31] Hondl, K. Capabilities and components of the warning decision and support
system - integrated information (WDSS-II). In Proc. American Meteorological
Society Annual Meeting (2003).

[32] Huber, M., and Grupen, R. A feedback control structure for on-line learning
tasks. Robotics and Autonomous Systems 22(3-4) (1997), 303–315.

[33] III, W. T. Miller, Glanz, F., and III, L. G. Kraft. CMAC: An associative neural
network alternative to backpropagation. Proceedings of the IEEE 78:10 (1990),
1561–1567.

[34] Institute of Computer Science IV, University of Bonn. BonnMotion: A
mobility scenario generation and analysis tool. http://web.informatik.uni-
bonn.de/IV/Mitarbeiter/dewaal/BonnMotion/ (2005).

[35] Jayasumana, A. P., Han, Q., and Illangasekare, T. Virtual sensor networks
- a resource efficient approach for concurrent applications. In International
Conference on Information Technology: New Generations (2007).

[36] Johnson, D. B., and Maltz, D. A. Dynamic source routing in ad hoc wireless
networks. Mobile Computing (1996).

[37] Johnson, D. B., Maltz, D. A., and Broch, J. DSR: The Dynamic Source Rout-
ing in Ad Hoc Wireless Networks (Chapter 5). In Ad-Hoc Networking (2001),
pp. 139–172.

[38] Kalampoukas, L., Varma, A., and Ramakrishnan, K. Improving TCP through-
put over two-way asymmetric links: Analysis and solutions. In Proc. ACM
Sigmetrics (1998), pp. 78–89.

[39] Karenos, K., Kalogeraki, V., and Krishnamurthy, S. V. A rate control frame-
work for supporting multiple classes of traffic in sensor networks. In 26th IEEE
International Real-Time Systems Symposium (2005).

[40] Karger, D. A randomized fully polynomial time approximation scheme for the
all-terminal network reliability problem. SIAM Review 43:3 (2001).

[41] Kellerer, H., Pfershy, U., and Pisinger, D. Knapsack Problems. Springer, New
York, 2004.

[42] Kleinrock, L. Queueing Systems Volume II. Wiley Interscience, 1976.

[43] Kodialam, M., and Lakshman, T. V. Dynamic routing of restorable bandwidth-
guaranteeed tunnels using aggregated network resource usage information.
Transactions on Networking 11:3 (2003).

126



[44] Kolen, A., Lenstra, J., Papadimitriou, C., and Spieksma, F. Interval scheduling:
a survey. Naval Research Logistics 54, 5 (2007).

[45] Kompella, Vachaspathi P., Pasquale, Joseph C., and Polyzos, George C. Mul-
ticast routing for multimedia communication. IEEE/ACM Transactions on
Networking 1 (1993), 286–292.

[46] Kreucher, C., and III, A. O. Hero. Non-myopic approaches to scheduling agile
sensors for multistage detection, tracking and identification. In Proc. IEEE
International Conference on Acoustics, Speech, and Signal Processing (2005),
pp. 885–888.

[47] Kumar, R., Crepaldi, R., Rowaihy, H., Harris III, A. F., Cao, G., Zorzi, M.,
and La Porta, T. F. Mitigating performance degradation in congested sensor
networks. IEEE Transactions on Mobile Computing 7:6 (2008).

[48] Kurose, J., Lyons, E., McLaughlin, D., Pepyne, D., Phillips, B., Westbrook, D.,
and Zink, M. An end-user-responsive sensor network architecture for hazardous
weather detection, prediction and response. AINTEC (2006).

[49] Kwok, C., and Fox, D. Reinforcement learning for sensing strategies. In IROS
(2004).

[50] Kyasanur, P., Padhye, J., and Bahl, V. On the efficacy of separating control
and data into different frequency bands. In Proc. Broadnets (2005).

[51] Lee, S-J., and Gerla, M. AODV-BR: Backup routing in ad hoc networks. In
IEEE Wireless Communications and Networking Conference (2000).

[52] Lee, S-J., and Gerla, M. Split multipath routing with maximally disjoint paths
in ad hoc networks. In IEEE ICC (2002).

[53] Lemmon, M., Ling, Q., and Sun, Y. Overload management in sensor-actuator
networks used for spatially-distributed control systems. In SenSys (2003).

[54] Li, M., Yan, T., Ganesan, D., Lyons, E., Shenoy, P., Venkataramani, A., and
Zink, M. Multi-user data sharing in radar sensor networks. In SenSys (2007).

[55] Liang, B., and Haas, Z. Predictive distance-based mobility management for
multidimensional pcs networks. Transactions on Networking 11, 5 (2003).

[56] Lipton, R., and Tomkins, A. Online interval scheduling. In Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms (1994).

[57] Mainland, G., Parkes, D., and Welsh, M. Decentralized, adaptive resource
allocation for sensor networks. In NSDI (2005).

[58] Manfredi, V., Hancock, R., and Kurose, J. Robust routing in dynamic
MANETs. Tech. Rep. 08-25, U of Massachusetts Amherst, Department of Com-
puter Science, 2008.

127



[59] Manfredi, V., and Kurose, J. Scan strategies for adaptive meteorological radars.
In Advances in Neural Information Processing Systems 21 (2007).

[60] Manfredi, V., Mahadevan, S., and Kurose, J. Switching kalman filters for pre-
diction and tracking in an adaptive meteorological sensing network. In Proc.
IEEE International Conference on Sensor and Ad Hoc Communications and
Networks (SECON) (2005).

[61] Marina, M., and Das, S. On-demand multipath distance vector routing in ad
hoc networks. In IEEE ICNP (2001), pp. 14–23.

[62] McLaughlin, D., Chandrasekar, V., Droegemeier, K., Frasier, S., Kurose, J.,
Junyent, F., Philips, B., Cruz-Pol, S., and Colom, J. Distributed collaborative
adaptive sensing (DCAS) for improved detection, understanding, and predict-
ing of atmospheric hazards. In Proc. American Meteorological Society Annual
Meeting (2005).

[63] Mohring, R. H., Schulz, A. S., Stork, F., and Uetz, M. On project scheduling
with irregular starting time costs. Operations Research Letters 28 (2001).

[64] Mohring, R. H., Schulz, A. S., Stork, F., and Uetz, M. Solving project scheduling
problems by minimum cut computations. Management Science 49, 3 (2003).

[65] Mosko, M., and Garcia-Luna-Aceves, J. J. Multipath routing in wireless mesh
networks. In IEEE Workshop on Wireless Mesh Networks (2005).

[66] Murphy, K. A survey of POMDP solution techniques. Tech. Rep. Technical
Report, U.C. Berkeley, 2000.

[67] Ng, A., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E.,
and Liang, E. Inverted autonomous helicopter flight via reinforcement learning.
In International Symposium on Experimental Robotics (2004).

[68] Nicolaou, N., See, A., Xie, P., Cui, J-H., and Maggiorini, D. Improving
the robustness of location-based routing for underwater sensor networks. In
MTS/IEEE OCEANS conference (2007).

[69] Pallot, X., and Miller, L. Implementing message priority policies over and
802.11 based mobile ad hoc network. In Milcom (2001).

[70] Papadimitratos, P., Haas, Z., and Sirer, E. Gun. Path set selection in mobile
ad hoc networks. In MOBIHOC (2002).

[71] Pepyne, D., Westbrook, D., Philips, B., Lyons, E., Zink, M., and Kurose, J.
Distributed collaborative adaptive sensor networks for sensing applications. In
American Control Conference (2008).

[72] Pepyne, D. et al. Defining and Optimizing Utility in NetRad: a Collaborative
Adaptive Sensor Network for Hazardous Weather Detection. CASA Technical
Report (2006).

128



[73] Pepyne et al., D. Defining and optimizing utility in NetRad, a collaborative
adaptive sensor network for hazardous weather detection, CASA technical re-
port.

[74] Perkins, C. E., and Royer, E. M. Ad-hoc on-demand distance vector routing.
In IEEE Workshop on Mobile Computing Systems and Applications (1999).

[75] Perkins, Theodore, and Precup, Doina. A convergent form of approximate
policy iteration. In NIPS (2002).

[76] Provan, J.S., and Ball, M. O. Computing network reliability in time polynomial
in the number of cuts. Operations Research 32:3 (1984).

[77] Ramamritham, K., and Stankovic, J. Scheduling algorithms and operating
systems support for real-time systems. In Proceedings of the IEEE (1994),
pp. 55–67.

[78] Reeve, A. Resilient real-time communications across meshed networks under
adverse conditions. In 1st SEAS DTC Technical Conference (2005).

[79] Rodrigues-Iturbe, I., and Eagleson, P. Mathematical models of rainstorm events
in space and time. Water Resources Research 23:1 (1987), 181–190.

[80] Sanchez-Barbetty, M., and Jackson, R. Architecture for low cost electronically
steered phased arrays. In IEEE MTT International Microwave Symposium
(2008).

[81] Seto, D., Lehoczky, J.P., Sha, L., and Shin, K.G. On task schedulability in
real-time control systems. In Real-Time Systems Symposium, 1996., 17th IEEE
(1996).

[82] Shacham, N., Craighill, E., and Poggio, A. Speech transport in packet-radio
networks with mobile nodes. IEEE Journal on Selected Areas in Communica-
tions SAC-1:6 (1983).

[83] Spieksma, F. On the approximability of an interval scheduling problem. Journal
of Scheduling 2 (1999), 215–227.

[84] Stankovic, J., Spuri, M., Di Natale, M., and Buttazzo, G. Implications of
classical scheduling results for real-time systems. IEEE Computer 28 (1995),
16–25.

[85] Stone, P., Sutton, R., and Kuhlmann, G. Reinforcement learning for robocup-
soccer keepaway. Adaptive Behavior 3 (2005).

[86] Su, X., Chan, S., and Chan, K.-S. RLAR: Robust link availability routing
protocol for mobile ad hoc networks. In ICC (2007).

[87] Sutton, R. Tile coding software. http://rlai.cs.ualberta.ca/RLAI/RLtoolkit/tiles.html .

129



[88] Sutton, R. Generalization in reinforcement learning: Successful examples using
sparse coarse coding. In NIPS (1996).

[89] Sutton, R., and Barto, A. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, Massachusetts, 1998.

[90] Suvorova, S., Musicki, D., Moran, B., Howard, S., and Scala, B. La. Multi step
ahead beam and waveform scheduling for tracking of manoeuvering targets in
clutter. In Proceedings of ICASSP (2005), pp. 889–892.

[91] Tan, W. L., Yue, O., and Lau, W. C. Performance evaluation of differentiated
services mechanisms over wireless sensor networks. In Vehicular Technology
Conference (2006).

[92] Tassiulas, L., and Ephremides, A. Stability properties of constrained queueing
systems and scheduling policies for maximum throughput in multihop radio
networks. IEEE Transactions on Automatic Control 37:12 (1992).

[93] Trabal, J., Donovan, B., Vega, M., Marrero, V., McLaughlin, D., and Colom, J.
Puerto Rico student test bed applications and system requirements document
development. In Proceedings of the 9th International Conference on Engineering
Education (2006).

[94] Tschopp, D., Diggavi, S., and Grossglauser, M. Hierarchical routing over dy-
namic wireless networks. In Sigmetrics (2008).

[95] UCLA Computer Science Department Parallel Computing Laboratory
and Wireless Adaptive Mobility Laboratory. GloMoSim: A scal-
able simulation environment for wireless and wired network systems.
http://pcl.cs.ucla.edu/projects/glomosim/ .

[96] Walsh, G. C., and Ye, H. Scheduling of networked control systems. IEEE
Control Systems Magazine (2001).

[97] Wang, B., and Hou, J. Multicast routing and its qos extension: problems,
algorithms, and protocols. IEEE Network 14 (2000), 22–36.

[98] Welch, G., and Bishop, G. An introduction to the Kalman filter. Tech. Rep.
TR95-041, U of North Carolina at Chapel Hill, Dept. of Computer Science,
1995.

[99] Zilberstein, S., Washington, R., Bernstein, D., and Mouaddib, A. Decision-
theoretic control of planetary rovers. In Plan-Based Control of Robotic Agents,
LNAI (2002).

[100] Zink, M., Lyons, E., Westbrook, D., Kurose, J., and Pepyne, D. Closed-loop
architecture for distributed collaborative adaptive sensing of the atmosphere:
Meteorological command and control. International Journal of Sensor Networks
(to appear).

130



[101] Zink, M., Westbrook, D., Abdallah, S., Horling, B., Lakamraju, V., Lyons, E.,
Manfredi, V., Kurose, J., and Hondl, K. Meteorological command and control:
An end-to-end architecture for a hazardous weather detection sensor network.
In ACM Mobisys Workshop on End-end Sense-and-Response Systems (2005).

131


