
IMPROVED NETWORK CONSISTENCY AND CONNECTIVITY
IN MOBILE AND SENSOR SYSTEMS

A Dissertation Presented

by

NILANJAN BANERJEE

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 28, 2009

Computer Science

c© Copyright by Nilanjan Banerjee 2008

All Rights Reserved

IMPROVED NETWORK CONSISTENCY AND CONNECTIVITY
IN MOBILE AND SENSOR SYSTEMS

A Dissertation Presented

by

NILANJAN BANERJEE

Approved as to style and content by:

Mark D. Corner, Chair

Brian Neil Levine, Member

Donald F. Towsley, Member

Kevin Fall, Member

Dennis Goeckel, Member

Andy Barto, Department Chair
Computer Science

ACKNOWLEDGMENTS

I would first take this opportunity to thank my academic advisor Prof. Mark D. Corner

without whose able guidance I would not be a doctorate. When I joined UMass I was

inclined towards theoretical computer science and had little idea of what computer systems

research looked like. In these five years, Mark has completely and successfully converted

me from a theorist to a researcher who applies strong theoretical foundations to build real

systems which impact real people.

Next, I am indebted to Prof. Brian Levine who has been my (unofficial) co-advisor for

the last five years. His insights into the design of the Throwbox and Epsilon systems were

invaluable. Moreover, personally he has always encouraged me (as his other students) to

follow my personal intuition towards solving research problems. I would also like to thank

Prof. Don Towsley, Dr. Kevin Fall, Prof. Sami Rollins, Dr. Sharad Agarwal, and Prof.

Deepak Ganesan with whom I have worked very closely on various projects which have

(and will) lead to many high quality research papers. I would also like to thank Prof. Dennis

Goeckel whose insight and comments on my thesis have been invaluable.

I would like to thank my colleagues Jacob Sorber and Hamed Soroush with whom I

have worked on several projects which form part of this dissertation. Jacob and I developed

the Turducken and Triage systems. Hamed and I developed the Epsilon system described in

this thesis. I am obliged to my mother and my fiancee Neha Raikar without whose personal

support “hanging on” these four and a half years as a masters and Ph.D. student would have

been impossible. Finally, I would like to thank all the PRISMSers (present and past) for

being great friends and lab mates.

iv

ABSTRACT

IMPROVED NETWORK CONSISTENCY AND CONNECTIVITY
IN MOBILE AND SENSOR SYSTEMS

August 28, 2009

NILANJAN BANERJEE

B.Tech (Hons), INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

M.S, UNIVERSITY OF MASSACHUSETTS, AMHERST

Computer Science, UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Mark D. Corner

Edge networks such as sensor, mobile, and disruption tolerant networks suffer from

topological uncertainty and disconnections due to myriad of factors including limited battery

capacity on client devices and mobility. Hence, providing reliable, always-on consistency

for network applications in such mobile and sensor systems is non-trivial and challenging.

However, the problem is of paramount importance given the proliferation of mobile phones,

PDAs, laptops, and music players.

This thesis identifies two fundamental deterrents to addressing the above problem. First,

limited energy on client mobile and sensor devices makes high levels of consistency and

availability impossible. Second, unreliable support from the network infrastructure, such as

coverage holes in WiFi degrades network performance. We address these two issues in this

dissertation through client and infrastructure end modifications.

v

The first part of this thesis proposes a novel energy management architecture called Hi-

erarchical Power Management (HPM). HPM combines platforms with diverse energy needs

and capabilities into a single integrated system to provide high levels of consistency and

availability at minimal energy consumption. We present two systems Triage and Turducken

which are instantiations of HPM for sensor net microservers and laptops respectively. The

second part of the thesis proposes and analyzes the use of additional infrastructure in the

form of relays, mesh nodes, and base stations to enhance sparse and dense mobile networks.

We present the design, implementation, and deployment of Throwboxes a relay system to

enhance sparse mobile networks and an associated system for enhancing WiFi based mobile

networks.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTER

1. INTRODUCTION . 1

2. MOBILE SYSTEMS, ENERGY, AND INFRASTRUCTURE 5

2.1 Mobile networks of the future . 6
2.2 Energy as a first class concern . 7
2.3 Performance Improvement in Mobile Networks . 9
2.4 Discussion . 12

3. EVALUATION PLATFORM: UMASS DOME . 13

3.1 Diverse Mobile Outdoor Environment . 13
3.2 Discussion . 16

4. HIERARCHICAL POWER MANAGEMENT: PROVIDING NETWORK
AVAILABILITY AT MINIMAL ENERGY . 17

4.1 A New Paradigm: Hierarchical Power Management . 18
4.2 System Design . 19

4.2.1 Hardware Design . 20
4.2.2 System Architecture . 21
4.2.3 Distributing Applications . 23

4.3 Triage: A Sensor net Microserver Design . 24

vii

4.3.1 Hardware Architecture . 25
4.3.2 Software Architecture . 25

4.3.2.1 Surrogates . 26
4.3.2.2 Scheduler and Profiler . 27

4.4 Example Surrogates . 28

4.4.1 Storage System Surrogate . 28
4.4.2 Network Forwarding Surrogate . 28
4.4.3 Query Processing Surrogate . 29

4.5 Profiling and Scheduling . 30

4.5.1 Task Profiling Algorithm . 30
4.5.2 Task Scheduling Algorithm . 31

4.5.2.1 Scheduling for Deadline Constraints 32
4.5.2.2 Scheduling for a Lifetime Constraint 34
4.5.2.3 Idle State Management . 35

4.6 Implementation . 36

4.6.1 Prototype Hardware . 36
4.6.2 Surrogates and Log . 37

4.7 Evaluation . 38

4.7.1 Static Energy Costs . 39
4.7.2 Soft-Realtime Scheduling . 40
4.7.3 Lifetime Scheduling . 43
4.7.4 Task Profiling . 45
4.7.5 Scaling to QoS Constraints . 47
4.7.6 Component Power Consumption . 47

4.8 Turducken: A HPM Architecture for Laptops . 49

4.8.1 Hardware Implementation . 49
4.8.2 Applications . 51

4.8.2.1 Time Synchronization . 52
4.8.2.2 Web Cache . 53
4.8.2.3 IMAP Synchronization . 53

4.9 Turducken Evaluation . 54

4.9.1 Methodology . 55

viii

4.9.2 Consistency . 57
4.9.3 Network and Service Availability . 62
4.9.4 Observations . 64

4.10 Discussion . 65

5. ENHANCING MOBILE NETWORKS WITH INFRASTRUCTURE 67

5.1 Vehicular Network Deployment . 68

5.1.1 Network Characteristics . 70
5.1.2 Trace-driven Simulator . 71
5.1.3 Placement . 72
5.1.4 Dynamic Routing Protocols . 74

5.2 Analytical Model . 76

5.2.1 Epidemic Spread . 78
5.2.2 Relays . 78
5.2.3 Base stations . 80
5.2.4 Mesh . 81
5.2.5 Impact of Network size . 81

5.3 Discussion . 83

6. ENHANCING SPARSE MOBILE NETWORKS WITH
THROWBOXES . 84

6.1 Mobility Prediction Engine . 86

6.1.1 Prediction Algorithm . 87
6.1.2 Estimating the Probability of Entering Data Radio Range 89

6.2 Discovery Radio Duty-Cycle Controller . 90
6.3 Token Bucket Lifetime Scheduler . 92

6.3.0.1 A Token-Bucket Approach . 92

6.4 Throwbox Prototype Implementation and Deployment 94
6.5 Evaluation . 95

6.5.1 Trace-Driven Simulation Results . 97
6.5.2 Prototype Evaluation . 99

6.6 Discussion . 100

ix

7. ENHANCING WIFI MOBILE NETWORKS . 102

7.1 Coverage Holes: Presence and Impact . 104
7.2 Covering Holes with a Low Bandwidth Bridge . 106

7.2.1 Patching Options . 106

7.3 Implementation . 108

7.3.1 Mobile node router . 108
7.3.2 Bridge Nodes . 110
7.3.3 Internet proxy . 110

7.4 System Evaluation . 111

7.4.1 Evaluation Methodology . 111
7.4.2 TCP performance . 111
7.4.3 Application Performance . 113
7.4.4 Synthetic Workloads . 114

7.5 Discussion . 115

8. CONCLUSION AND FUTURE DIRECTIONS . 117

BIBLIOGRAPHY . 119

x

LIST OF TABLES

Table Page

2.1 Idle and Active power measurements on an IBM R40 Thinkpad [13, 108]. 7

4.1 Platform Measurements . 38

4.2 This table shows a summary of the application characteristics. The
execution tier denotes where the application is carried out, and
Incoming or Outgoing describes the direction of updates. 52

4.3 The active and suspended power consumption of each tier running the time
application. The active power consumption for the StrongARM-tier was
not measured since it never synchronizes with the time server. 57

4.4 The active and suspended power consumption of each tier running the web
caching application. 57

4.5 The active and suspended power consumption of each tier running the
IMAP synchronization application. 58

5.1 The above table shows the characteristics of the two regions in the
network. 69

6.1 Characteristics of the two radios . 94

7.1 Characteristics of the Digi-XTend radios. 107

7.2 Improvement produced by Epsilon for web transfers. Epsilon downloads
40% more web-pages and has less than 3x timeouts. 113

xi

LIST OF FIGURES

Figure Page

4.1 HPM System Design . 20

4.2 Microserver Software Architecture . 26

4.3 ALAP Example: The figure shows the execution time and deadline for each
task, the wake up latency for tier-1, and the resulting batching time. A
new task TC is inserted into the scheduling decreasing the batch
time. 33

4.4 Prototype Triage System . 36

4.5 Experimental Setup . 38

4.6 Histogram of the time taken to execute image classifier on Stargate 40

4.7 Average Power Consumption for the deadline scheduler. The deadline
scheduler consumes slightly more power in order to meet more
deadlines. 42

4.8 Percentage of Queries executed within deadline. Triage meets more than
95% of all deadlines while Triage-Batch is able to meet only 70% of all
deadlines . 43

4.9 Lifetime Scheduler. This figure shows Triage’s use of the lifetime scheduler
for a goal of 60 minutes. For the first 30 minutes the load is light and
the microserver accumulates an energy surplus. For the last thirty
minutes it uses the surplus at the detriment of meeting deadlines. 44

4.10 Time Profile Accuracy. This shows the forwarding surrogate choosing
between two radios based on a latency constraint. For 80KB of data is
switches from the 802.15.4 radio to the 802.11 radio to meet the
constraint. 45

xii

4.11 Time Profile Power Consumption. This shows the forwarding surrogate
power consumption based on the amount of data it sends. At 80KB of
data it must switch to the 802.11 radio to meet the latency constraint,
thus using more power. The WoW* and PSM-DVFS solutions use more
power as they only use the 802.11 radio to send data. 46

4.12 Scaling to QoS constraints. Triage finds the minimal energy cost at which a
QoS constraint can be satisfied. The WoW* system and PSM-DVFS
system consume 3x and 5x more power than Triage respectively. 48

4.13 Power Traces for the Triage, WoW* and PSM-DVFS systems. 49

4.14 Break-down of the power consumed by independent components of Triage,
WoW* and PSM-DVFS systems. 50

4.15 These figures show the prototype implementation of the Turducken System.
The diagram on the left shows the logical connections between
components and the photo on the right shows the current prototype. 51

4.16 The lifetime of three system configurations running the time
synchronization application. As the system wakes more frequently,
Turducken provides a more significant gain in lifetime. 58

4.17 The lifetime of three system configurations running the time
synchronization application. As the system wakes more frequently,
Turducken provides a more significant gain in lifetime. 59

4.18 The lifetime of three system configurations running the web caching
application. For this application, the full three-tiered Turducken system
offers up to a 4 times longer lifetime and consistently performs better
than the x86-only configuration. 60

4.19 The lifetime of three system configurations running the IMAP
synchronization application. For this application, the full Turducken
system offers a 1.5 times longer lifetime and consistently performs
better than the x86 only configuration. 61

4.20 This figure shows how each tier, in different states, contributes to the
average power draw of the system as a whole. We observe that
Turducken systems achieve battery lifetime gains by replacing active
power consumption in less efficient tiers with more efficient ones. 62

4.21 This figure shows the battery lifetime of different configurations with
respect to varying the probability of availability of WiFi. As network
coverage increases, Turducken provides a greater benefit. 63

xiii

4.22 This figure shows the battery lifetime of different configurations with
respect to varying probability that a set of web servers is reachable. The
benefit of Turducken is evident as the probability that the servers are
available increases. 64

5.1 Prototype for a relay/mesh node. 69

5.2 Heatmap showing the amount of time vehicles spend in different regions of
the network as well as the CCDF of the aggregate pairwise
inter-meeting times between contacts for mobile nodes and mobile and
stationary nodes. 70

5.3 Placement of 25 base stations non-uniform across the mobile network. 73

5.4 The average packet delivery delay and the average number of transmissions
per packet with a varying number of stationary nodes for uniform and
non-uniform placement . 73

5.5 The average packet delivery delay with a varying number of relay nodes for
the three routing protocols. 75

5.6 The average packet delivery delay by varying the number of mesh nodes
and base stations for different routing protocols. 75

5.7 The average packet delivery delay as a function of the number of stationary
nodes and mobile nodes. The number of mobile nodes is fixed at 20 for
the first experiment and the number of stationary nodes are fixed at 25.
The network parameters are taken from our deployment. 82

6.1 Overview of our Throwbox architecture. 85

6.2 The figure depicts the working of the Mobility Prediction Engine 87

6.3 Prototype for a Throwbox node . 94

6.4 The breakup of the energy consumed by different components for the
Throwbox, PSM*, and WoW* systems. 97

6.5 The improvement in the delivery rate and the latency of packets transferred
using a Throwbox with a 80mW power constraint . 97

6.6 The consumption of energy for the throwbox prototype over a period 24
hours . 99

xiv

6.7 The distribution of the amount of data transferred during contacts and the
inter-contact time for the Throwbox prototype. 99

7.1 The fraction of 100x100 m2 regions in our city where vehicles have open
WiFi access points. 103

7.2 The cumulative distribution function of the disruption lengths observed by
buses (from a moving node) in DOME. 104

7.3 The decrease in TCP throughput for four minute TCP sessions in
Measurement Set I. For this figure the disruptions correspond to times
in between associations (successful or otherwise) . 105

7.4 An overview of the Epsilon system architecture. 109

7.5 The TCP improvement produced by Epsilon. Epsilon produces an
improvement of 6x in TCP throughput over a system which does not
use the Digi-XTend radio. 112

7.6 The figure shows TCP throughput as a function of the Off period with and
without Epsilon. The disruption duration is varied and the ON period is
chosen uniformly at random between 0-30 seconds. 114

7.7 The figure shows TCP throughput as a function of the
disruption-free/connected period with and without Epsilon. The
disruption period is chosen uniformly at random between 0-30
seconds. 115

xv

CHAPTER 1

INTRODUCTION

Unlike the wired core of the Internet, edge networks like mobile, sensor, and disruption-

tolerant networks suffer from topological uncertainty and disconnections due to a myriad

of factors including limited battery capacity on client devices, radio characteristics, and

mobility [55,107,147,149]. Hence, providing reliable, improved connectivity and always-on

consistency for network applications in such mobile and sensor systems is non-trivial and

challenging. However, the problem is of paramount importance given the proliferation of

mobile and sensor devices like cellular phones, laptops, PDAs, and music players [1, 7].

Some of the above problems have been addressed in isolation. For example, energy

management in embedded and mobile systems has been an active area of research for nearly

a decade [29,75,85]. However, most solutions propose using power state optimizations such

as CPU voltage and frequency scaling [58], disk spin-down [122] or power saving modes on

wireless cards [13] which can lead to high idle power consumption of the system. As we

move towards an era where services need high network consistency, we require techniques,

which differ radically from what state-of-the-art systems can provide. Similarly, a large

body of research has looked at the problem of providing enhanced connectivity in both

sparse and dense mobile networks [174]. However, most of the proposals are simulations

with little-to-no real world validation. This thesis addresses the above problems through the

design, implementation, and deployment of robust, reliable, and highly optimized mobile

and sensor systems capable of providing improved connectivity and availability in a diverse

range of pervasive scenarios.

1

Enhanced Connectivity and Consistency in Mobile and Sensor Systems

The primary focus of this dissertation is on how to provide improved connectivity and

improved availability in mobile and sensor systems. The problem is challenging because of

two factors. For a client device like a laptop or PDA, providing improved communication

is difficult due to limited battery capacity [145]. For example, with the wireless radio on,

the maximum battery lifetime of a laptop is a few hours [59]. This leads to the following

question: Is it possible to provide always-on operation at minimal energy consumption for

mobile and sensor devices? However, an always-on mobile client is not useful without

available connectivity. For example, consider popular organic WiFi deployments. While

open WiFi access can provide network coverage in large fraction of cities [136], many

regions have little or no connectivity [148]. Even in areas where access point density is

high, coverage holes are common due to channel interference and obstacles [107]. A similar

problem exists in sparse mobile networks such as wildlife tracking networks [147, 167]—

packet delivery performance in such networks is poor since nodes solely depend on meager

mobile-to-mobile contacts to transfer data. This observation leads to a second question: Can

inexpensive enhancements to already-existing networks provide dramatic improvement in

performance? This dissertation provides the basis to answer these two questions through

client and infrastructure end modifications.

Client-end modifications

Mobile devices such as laptops do not have adequate battery capacity for constant pro-

cessing and communication. For example, even by powering off unnecessary components,

such as the screen and disk [122], current laptops only have a lifetime of a few hours. How-

ever, while PDAs and sensors are similarly limited in lifetime, a PDA’s power requirement is

an order-of-magnitude smaller than that of a laptop, and a sensor’s is an order-of-magnitude

smaller than that of a PDA. This thesis proposes a new architecture called Hierarchical

Power Management (HPM) which combines platforms with such diverse energy needs and

2

capabilities into a single mobile or sensor platform. Through intelligent task sharing and

duty-cycling of these platforms, HPM provides high levels of availability at minimal energy

consumption. We present the design and implementation of Triage and Turducken—two

instantiations of HPM for building sensor net microservers and laptops. Both systems can

provide high levels of availability and consistency while consuming 2x-6x less energy than

state-of-the-art solutions.

Infrastructure enhancements

While HPM clients can provide always-on operation at minimal energy consumption,

without proper infrastructure support the goal of improved connectivity will remain a myth.

For example, in sparse mobile networks such as wildlife networks [82,147] mobile nodes

may be highly energy efficient, but network performance can be dismal since packets are

transferred only through node mobility. Similarly, organic WiFi deployments and cellular

networks (like 3G, GPRS) fail to provide 100% reliable connectivity in dense mobile

networks—coverage holes are common even in networks planned for blanket coverage.

The second part of this thesis proposes improving mobile network performance through

the addition of supporting infrastructure such as base stations, meshes, and relay nodes.

We first study the trade-offs for each type of enhancement through a comparison study

using a large scale deployment and a demonstrably accurate ODE-based analytical model.

Encouraged by the enhancement estimates that relays can provide, we present the design,

implementation and evaluation of a Throwbox, an architecture for a solar powered stationary

node capable of relaying traffic between mobile nodes. Finally, this dissertation explores the

feasibility of enhancing open WiFi access point networks with a 900MHz long range low

bitrate bridge.

Thesis Organization

The organization of this thesis is as follows. Chapter 2 motivates the problems addressed

in this dissertation in the broader context of related literature. Chapter 3 describes the mobile

3

network testbed used in the thesis to deploy and evaluate several of our systems. Chapter 4

introduces the idea of Hierarchical Power Management as an effective paradigm for energy

management in mobile and sensor systems. Chapter 5 presents a comparison of alternative

infrastructure in the form of relays, mesh, and base stations for enhancing mobile networks.

Chapter 6 presents the design, implementation, and evaluation of Throwboxes. Chapter 7

motivates the need to enhance WiFi based mobile networks and presents the design of

900MHz bridge nodes to patch WiFi coverage holes. Chapter 8 concludes the thesis and

presents future directions of research.

4

CHAPTER 2

MOBILE SYSTEMS, ENERGY, AND INFRASTRUCTURE

Advances in wireless and sensor systems has fueled the growth and evolution of a new

class of computing: mobile computing. The growing importance of this field is clearly

illustrated by the popularity of mobile handhelds—in 2009, the number of cellular phones,

Bluetooth enabled devices, and WiFi enabled smartphones worldwide is estimated at 269,

583, and 141 million respectively [4–6]. In addition to mobile handhelds, another class

of mobile networks has seen rapid growth—those based on sensor systems and radio

technologies such as Zigbee, IEEE 802.15.4, and Z-Wave [10, 57, 82, 147, 157]. Due to

the confluence of these diverse technologies, mobile systems are poised to have myriad

applications. An incomplete list include location-aware services [62, 90, 113, 124, 159],

social networking applications [2, 3, 8, 9, 53, 93, 113], wearable computing [39, 61, 92], and

peer-based services [21,21] on mobile handhelds, and wildlife tracking [57,73,82,147,157],

robotics [49, 95], underwater networking [30, 123, 131, 143], and battlefield applications [49,

95, 172] on sensor platforms.

While the possibility of mobile applications are endless, on the flip side mobile systems

research confronts unique challenges such as energy bottleneck on clients, network discon-

nections due to mobility, channel and radio characteristics, and scanty node density. To

address every known mobile computing issue is a gargantuan task, if not intractable. The

key insight lies in identifying deterrents that are most relevant to mobile networks of the

future.

5

2.1 Mobile networks of the future

Trends in mobile computing over a last decade points to two broad categories of ap-

plications which are likely to grow: (a) a wide corpora of common applications such as

web-based email [25,60], search [18,20], voice [12,19,44,164], and location-aware services

has been and will remain popular in the future (b) Monitoring and surveillance applications

such as wildlife tracking [57, 147], ocean/river monitoring, robotics [26, 46, 74, 141], and

defense [68,112] has also received considerable attention. The above applications combined

with the proliferation of handheld and micro-controller class devices are indications that

two broad mobile network classes will emerge and evolve.

• One-hop mobile networks: These are networks comprising of laptops, PDAs, and

cellular phones where clients either on foot [41, 76, 120] or in vehicles [33, 54, 78]

desire connectivity to an Internet server using either free roadside WiFi or an expensive

cellular infrastructure such as 3G or GPRS. In such a network, client devices have

one-hop wireless connectivity to the Internet through open WiFi access points or 3G

towers. Applications in such networks use disruption tolerant techniques [19,37,80]

(such as in email) or common transport protocols [14,15,69,109,165] (such as in web

email, web search) to forward data.

• Highly partitioned multi-hop networks: These are networks of embedded sensor

class devices such as wireless Motes [129, 130], Stargates [47], Gumstix [71], or

XYZ-motes [105]. Examples of such networks include wildlife networks, underwater

networks, and battlefield networks. Nodes in these networks transfer data using

disruption tolerant techniques [80]. When two nodes are within communication range

of each other, they exchange data—the receiver node stores this data and uses mobility

to carry it. Finally, data is forwarded using a base station to an Internet server.

These two classes of mobile networks span opposite ends of the node density spectrum.

While one-hop networks such as open WiFi vehicular networks are fairly dense, partitioned

6

mobile networks such as wildlife networks are extremely sparse. In spite of the differences

in node density, performance, requirements, and goals of these networks, two common

challenges emerge. First, client devices in both networks are untethered battery powered

devices. Hence, energy management is a common concern. While embedded devices are

becoming more capable with powerful processors, more storage and RAM, improvement in

battery capacity has been slow. This makes energy a primary constraint/bottleneck in such

systems. Second, in both types of networks connectivity and network capacity are primary

determinants of network performance. In highly partitioned networks where nodes forward

data using mobility, network performance could be dismal due to scarce network capacity.

Moreover, uncertainty in node meetings due to nodes mobility makes network performance

unpredictable.

2.2 Energy as a first class concern

Component Active Power (W) Idle Power (W)
CPU (1.3GHz) 27.45 16.90

Hard Drive 0.58 2.78
LCD Screen 1.01 0 (off)

Wireless Card 3.69 0.39

Table 2.1. Idle and Active power measurements on an IBM R40 Thinkpad [13, 108].

Mobile and untethered systems are synonymous. Whether it is a laptop, PDA, sensornet

microserver, or a Turtle or Zebra tracking device [82, 147], all systems are powered by a

battery or renewable energy source such as solar. Ideally, these client devices should be

highly available to support a wide range of applications and services. For example, laptops

and PDAs should be always on to support web search or instant messaging; sensornet

microservers should be available to serve queries from client nodes. However, component

energy consumption and limited battery capacity on these devices make this goal of constant

vigilance difficult. To quantitatively understand why, consider an IBM Thinkpad R40 laptop.

7

Table 2.1 shows the power consumption for different components of the device when idle

and active [13,108]. With a 4.4Ah battery, the device when active will approximately last for

two hours. Moreover, with the backlight off and different components idling, the device can

last for a maximum of four hours. Such a short lifetime requires regular recharging, which

can be an irritating proposition for users and infeasible for nomadic deployments [82, 147].

Having larger batteries or solar panels is simply not an option since it adversely affects the

portability of the device—making it less mobile.

Node mobility further complicates the energy management problem. To understand

why, consider a solar powered client in a highly partitioned mobile network. Its primary

source of energy drain is communication over the data transfer radio and searching for other

nodes [52,83,84,147]. For such a node, schemes that duty cycle the radio without regard

to node mobility may either be too conservative or too aggressive—the node might either

lose transfer opportunities or may have a short lifetime. Therefore, balancing energy with

availability in mobile systems is non-trivial and challenging.

Why is the state-of-the-art not sufficient?

The most common approach to energy management on mobile and sensor systems is to

leave the device “on” but opportunistically switch off hardware components. These include

aggressively spinning down the hard drive [50, 51, 72], turning off banks of RAM [75, 91,

103, 114], using power saving modes on wireless cards [12, 13, 87, 132], and CPU voltage

and frequency scaling [58, 67, 101, 126, 161]. A multitude of algorithms and operating

system primitives [59,106] have been proposed for tuning this duty-cycling to application

and user needs [24, 31, 100, 102, 110, 115, 118, 166, 175]. Although switching off or duty-

cycling components work well for a micro-controller class device [163], it is unlikely that

such shallow power saving modes can provide order-of-magnitude longevity in lifetime for

microserver class devices, PDAs, or laptops. The caveat is well explained using Table 2.1.

Note that the idle energy consumption of several components of the system such as the CPU

8

is very high, hence just idling system components can only produce a feeble reduction in

energy consumption.

To circumvent the idle energy overhead of a PDA or a laptop class device, combinations

of heterogeneous hardware platforms and radios have been proposed [29,119,125,137,151].

For example, the Wake-on-Wireless [138] system proposes augmenting a PDA with a sensor

where an in-network server notifies the low power sensor as to when it should wake up the

PDA. m-Platform [104], PASTA [137], and LEAP [48] are examples of tightly integrated

multi-processor systems which combine a high power processor with a low power sensor

device to expose a wide spectrum of low power modes. Analyzing these wide collection

of systems, we find that all of them suffer from the following two drawbacks: (1) Most

of these systems are hardware implementations, which lack a software architecture for

optimal task sharing to exploit the augmented low power modes. A hand-crafted fine-tuned

software design is important especially in a mobile network where the degree of uncertainty

in connectivity or energy harvesting is huge. (2) Many of these systems require in-network

support for wakeup and are not completely autonomous. Building autonomous systems

is important especially in highly partitioned mobile systems where network support is not

guaranteed. In this dissertation (see Chapter 4), we propose, implement, and evaluate a

radically different approach called Hierarchical Power Management (HPM) which combines

an intelligent software and hardware design to provide high levels of consistency at minimal

energy consumption. We show that HPM is (1) general: can be applied to a wide spectrum

of systems and applications (2) and balanced: it can balance energy consumption with

availability and application requirements.

2.3 Performance Improvement in Mobile Networks

Energy is a first class primitive in the design of mobile and sensor systems. However,

energy alone cannot dictate the performance of a mobile system. What other factors

affect the performance of mobile systems? The answer lies in understanding why mobile

9

systems are so popular. Quite simply they empower clients to remain connected (sometimes

sporadically) irrespective of their locations. For example, a PDA user can access her email,

sync her calender, or even make a voice call when she is mobile—something tethered

systems like desktops cannot provide. Two important factors make this possible: mobile

device portability and pervasive connectivity. With miniaturization of devices, portability is

no longer an issue. However, connectivity at mobile clients is still far from ideal.

The definition of “optimal connectivity” is highly dependent on the mobile network

and service under consideration. For example, if a client device such as a laptop or a

PDA is used in a vehicular context for instant messaging or voice, almost always available

access using open WiFi APs is required [19]. However, if we consider a Zebra tracking

network [82], good connectivity would imply longer pairwise meeting times between

Zebras and Zebras and base stations. In either scenario, mobility, wireless characteristics,

and flaky network support make connectivity uncertain. For example, in WiFi access

networks [63, 136] RF holes produce disruptions even in deployments tuned for blanket

coverage [11, 27, 28, 38, 107, 133]. Traditional transport protocols such as TCP perform

poorly in the presence of these disruptions, strangling performance [15]. Similarly, in highly

partitioned DTNs, packet delivery delays can be of the order of days [17,33] and throughput

could be dismal due to scanty meetings among nodes.

How can connectivity in sparse mobile networks be improved? Several papers have

proposed altering node mobility to enhance network performance [34, 36, 173]. Unfortu-

nately, movement patterns are often inherent to the mobile nodes and cannot be modified.

Additionally, intelligent DTN routing protocols has also been proposed to improve perfor-

mance [17, 33, 34, 37, 111, 135, 139, 158]. While routing schemes can determine the best

path from a source to a destination, they cannot add capacity to the network—a primary

cause of poor performance in highly partitioned mobile networks. Further, use of mobile

ferries [171, 172], mobile robots [35], and stationary relays [97] have been proposed to

10

increase network capacity. However, most of this work are based on computer simulations

with little-to-no real world validation.

Similar to sparse mobile networks, client and infrastructure modifications have been

proposed to make mobile WiFi access more predictable. Client side modifications include

tweaking network transport for wireless [15,69], using multi AP virtualization to improve

coverage [42,86,117], using disruption-tolerant techniques [18,55], faster handoffs [140],

and better access point selection [116]. Schemes which advocate WiFi infrastructure modifi-

cations such as multi-AP diversity [19], infostations [88] and drive through Internet [121]

have also been proposed. Most of these techniques improve the quality of connectivity or

transport protocol performance where there is WiFi coverage.

In spite of this varied collection of related literature, there still exists a paucity of

practical schemes that can (1) improve capacity in sparse multi-hop networks and (2) patch

disruptions where is no WiFi coverage in one-hop networks. In this dissertation, we argue

(through analysis and deployment) that stationary infrastructure in the form of relays [79],

mesh [32], and wired base stations [77] are the most practical enhancements for one-hop

and multi-hop mobile networks.

Why is deploying and managing infrastructure difficult?

Without building and deploying infrastructure it is impossible to understand the practical

real world issues involved. This is especially important in mobile networks where the

deployment environment may be urban/semi-urban [149] or a remote location [82]. To

appreciate the difference between a virtual world simulation and practical deployment,

consider the following example. Autonomous robots [36] and ferries [171] have been

proposed to enhance mobile networks. However, deploying moving nodes in a city can

raise administrative alarms, making them impractical. While deploying stationary infras-

tructure in the form of relays or a mesh seems more manageable, it raises other practical

concerns. First, since these nodes may have to be placed at arbitrary locations, tethered

11

connectivity cannot be guaranteed. Therefore, these additional infrastructure nodes should

be designed to last perpetually on energy scavenged from renewable energy sources such as

solar. Second, while simulations can place nodes at locations that are outputs of optimal

placement algorithms [174], practical obstructions such as buildings and trees constrain

node placements to sub-optimal locations—making performance of a simulation differ-

ent from a real world experiment. Third, long lasting remote deployments face technical

challenges such as remote debugging especially if the systems are built on inherently un-

reliable hardware [96,129,130]—making infrastructure management a overly tedious and

painful proposition. This dissertation addresses these unique challenges through the design,

implementation, and deployment of Throwboxes (see Chapter 6), a relay architecture for

enhancing sparse mobile networks and Epsilon, a mesh architecture for enhancing WiFi

based mobile networks (see Chapter 7).

2.4 Discussion

This chapter places the problems addressed in this dissertation in the wider context

of related work. It argues why energy management in mobile and sensor systems and

enhancing mobile networks with infrastructure are still virtually unsolved problems. In the

next chapter, we introduce our mobile testbed, DOME, which is the primary platform used

in the evaluation of our systems.

12

CHAPTER 3

EVALUATION PLATFORM: UMASS DOME

This dissertation uses a diverse research methods to validate several research hypotheses.

We have used rigorous mathematical analysis to derive performance bounds of our algo-

rithms and analytical modeling to compare the performance of alternative infrastructure

enhancements to mobile networks. However, a part of this thesis uses prototype implemen-

tation and deployment to study the performance of our systems. Most of our deployments

were made using our diverse heterogeneous mobile testbed—DOME (Diverse Outdoor

Mobile Environment) [149]. Here, we briefly describe the salient components of our testbed

which are important for understanding the evaluation framework in the rest of the thesis.

3.1 Diverse Mobile Outdoor Environment

The DOME testbed has been operational since 2004 and provides infrastructure for

a wide range of mobile computing research. It includes 40 transit buses equipped with

computers and a variety of wireless radios, 26 stationary WiFi mesh access points, and

thousands of organic access points. It provides support for diverse radio technologies,

including WiFi, 900MHz radios, 3G, and GPRS. It covers an area of 150 square miles and

provides spatial diversity; parts of the network form a sparse, disruption-tolerant network

while others are denser. With proper isolation the testbed can be used for research ranging

from infrastructure-based networking to sparse and dense ad hoc networks. To place

the system evaluation in this dissertation into perspective, we first describe the principal

hardware and software components of DOME.

13

Hardware Components

The DOME testbed consists of a DieselNet vehicular network [33], an outdoor mesh net-

work, and thousands of organic access points. Below we underline each of these components

in detail.

DeiselNet

Mobility in DOME is provided by a vehicular network called DieselNet [33]. DieselNet

is comprised of 40 transit buses, each equipped with Hacom OpenBrick 1GHz Intel Celeron

M systems with 1GB of memory running Ubuntu Linux, 60GB 2.5 IDE inch hard disk, 2GB

Compact Flash disk, Deluo USB GPS receiver based on the SiRF Star III chipset, Compex

WLM54AGP23 802.11abg mini PCI cards using the Atheros AR5413 chipset (upgraded

from 802.11b Prism2-based USB WiFi dongles), 802.11g wireless access point used as a

bridge to an Ethernet port on the OpenBrick, SierraWireless 881 3G USB Modems operating

on the AT&T network, Digi XTend 900MHz USB RF modem, and an inverter to convert

24VDC to 120VAC.

The node’s access point allows other buses, or bus riders, to establish 802.11 connections

into the brick, giving them access to the Internet via the 3G modem. The WiFi interface is

used by a brick to connect to foreign access points, including the APs on other buses. The

SSID broadcast by a brick’s AP allows it to be identified as belonging to a DieselNet bus by

other buses and any other DOME device.

Mesh Network

In cooperation with the Town of Amherst, we have installed 26 Cisco 1500-series WiFi

access points. These are lightweight access points, managed by a central controller, and they

support seamless hand-off for mobile nodes. The APs use two radios: a 802.11g radio for

the public and mobile nodes to connect to, and an 802.11a radio to mesh APs together.

The nodes are mounted on a variety of town-owned buildings and light poles. While

both locations provide power, only the buildings provide connectivity to the local fiber

14

infrastructure. Consistent with research findings [40] and Ciscos direction, the network is

laid out such that there are never more than three hops without connectivity to the wired

network.

Software Components

There are several important software modules built into DOME. Here, we only describe

the link management module which is most relevant to the evaluation of systems in this

dissertation.

We have implemented our 802.11 discovery and link management policies on the

vehicular nodes in a software module referred to as LiveIP. The purpose of LiveIP is to

scan for SSIDs, to establish and maintain WiFi connections as defined by the policies

set by the currently executing experiments, and to notify applications of the state of the

WiFi link. Selecting an access point and deciding when to terminate a connection is an

ongoing research topic [107, 116] and is a crucial factor in the performance of opportunistic

systems. The LiveIP configuration allows us to define regular expressions for prioritized

and blacklisted SSIDs, as well as the policy for dropping an association. We can tailor the

policy to individual experiments, such as only connecting to public APs and not to APs on

other buses, or vice-versa. By default, if no preferred SSIDs are found LiveIP uses signal

strength to select an AP. We also maintain a weight based on any prior attempts to connect

to an AP. However, this weight is currently only used as the final tiebreaker when choosing

between APs with the same signal strength. We have adopted some of the same mechanisms

described by the CarTel project [78], including DHCP caching, which reduces the amount

of time required to associate with APs. Similarly, there is an application on the buses to

manage the 3G link, and the buses have services to manage the XTend radio links and listen

for XTend beacons.

Throughout this thesis, we have used results from several deployments. A subset of

these deployments took place in the summer of 2005 and the Fall of 2007.

15

3.2 Discussion

In this chapter, we introduced our mobile testbed, DOME, which is the primary platform

for evaluation of systems described in this dissertation. In the next chapter, we intro-

duce our novel energy management architecture, Hierarchical Power Management (HPM),

which provides high levels of consistency in mobile and sensor systems at minimal energy

consumption.

16

CHAPTER 4

HIERARCHICAL POWER MANAGEMENT: PROVIDING
NETWORK AVAILABILITY AT MINIMAL ENERGY

A primary deterrent to providing high levels of consistency and availability on mobile

and sensor systems is limited energy. While recent years has seen the metamorphosis of

mobile devices such as laptops and PDAs into general purpose compute platforms, battery

capacity of these devices has always remained a primary bottleneck. The short battery

lifetime of mobile devices such as laptops and sensor network nodes such as microservers

has led to aggressive power management techniques, which extend device lifetime by

reducing the amount of time the device is on. However, such an approach leads to energy

savings at the cost of reduced functionality and may not be suitable for a wide range

of applications. Therefore, designing highly available and long-lived untethered mobile

and sensor systems poses the following unique challenge: how can a device provide both

performance guarantees, high levels of availability, and a long lifetime? These goals are

in direct conflict with each other: supporting performance guarantees requires examining

requests immediately, providing such vigilance is energy intensive.

In this chapter we resolve this tension through a new architecture for energy management

in mobile and sensor systems—Hierarchical Power Management (HPM). HPM is predicated

on the fundamental property that rather than choosing a single hardware platform, the

needs of untethered mobile and sensor systems are best met by combining platforms with

complimentary hardware characteristics. Using two instantiations of HPM (Triage and

Turducken) from a diverse application space (laptops and sensor net microserver design),

we show that systems built hierarchically can provide high levels of availability at minimal

energy consumption.

17

4.1 A New Paradigm: Hierarchical Power Management

The amount of non-reducible (idle) power varies for different devices. For example,

the non-reducible power of a PXA-based PDA-class device is on the order of twenty-times

smaller than the non-reducible power of an x86-based laptop. As another example, the

non-reducible power of a small sensor is significantly smaller than that of a device such as a

wireless music player. Typically, devices are carefully optimized to provide their promised

functionality at the lowest possible energy cost, and devices that provide less functionality

have less non-reducible power. Fortunately, there is significant overlap in the functionality

provided by high-power and low-power devices. For example, maintaining a consistent view

of a file requires only the ability to connect to a network and download data; a variety of

devices can provide this functionality, or serving simple queries in a sensor network requires

computational and storage ability; something also provided by a spectrum of devices.

The goal of Hierarchical Power Management (HPM) is to reduce the energy cost of

maintaining high levels of consistency on mobile and sensor devices by combining several

optimized platforms into one integrated system. By combining a very low-power platform

such as an Mote class sensor with a very high-power platform such as a laptop or a PDA, we

can produce a system with reduced energy consumption and still have all the functionality

of a laptop or a PDA.

A HPM system is composed of a set of tiers, each with a set of capabilities and a power

mode. The system as a whole executes tasks (e.g., downloads data updates) by waking the

tier that has the capabilities to execute the task in the most efficient manner. For example,

one tier might include a StrongARM processor, along with its memory and storage. This

tier could be integrated with a standard x86-based laptop. We can then suspend the x86-tier

and rely upon the StrongARM-tier to wake up and perform periodic tasks.

For instance, if the StrongARM-tier wakes up periodically to cache a copy of frequently-

used web pages, when the user opens the laptop, those pages will be available and highly

consistent. If the laptop alone were to frequently wake itself up and cache those same pages,

18

it would attain the same level of consistency; however, the overall lifetime of the system

would be greatly diminished. As another example, consider a sensor net microserver which

serves image queries to clients. If the microserver is composed of a low power Mote class

device and a high power PDA class device, the Mote class device can provide always-on

availability at minimal energy consumption—accept queries, and even process them if it has

the resources. When required, it wakes up the PDA device and uses its CPU and storage to

process more complex queries. For a PDA-alone system, providing such levels of availability

would require an order-of-magnitude more energy!

Note that in this integrated system all of the tiers use a common battery, are connected by

a common bus, and effectively form a tightly coupled distributed system. However, from the

user’s/client’s perspective it appears to be a single device. The addition of extra components

does increase the weight and cost of system. For instance, adding a StrongARM mobile

processor and memory to the inside of a laptop may add $100 and a few ounces. However,

the extra capabilities the system provides outweigh these costs. Another observation is that

this system could be commercially built using commodity components. The architecture

is fully composable: any set of tiers can be used together to give a wide variety of power

modes and can be applied to many mobile and sensor devices.

4.2 System Design

The design of a HPM system is composed of three parts: the hardware, the underlying

system architecture, and the model for distributing applications across the tiers. In general,

the design is similar to many distributed systems; each tier is under autonomous control

while decisions are made in a distributed manner. Tasks that support client applications are

distributed among the various tiers.

19

��������

��	�
����

�	��

�������
�

�����

��		��

������
��

����

������
��

����

�������������� �!�

��"
��!���
���#

�����

��		��
$
�%��
""������
��

$���

$
�%��
""������
��

$���

&�����

Figure 4.1. HPM System Design

4.2.1 Hardware Design

A HPM system is designed in a strictly hierarchical manner, and each tier is more pow-

erful than any tier below it. Each tier can communicate with a superior tier and an inferior

tier—the two exceptions being the top and bottom tiers of the hierarchy. Communication

occurs via a local communication network and the tiers are connected to a common power

source. Moreover, each tier has the ability to draw its superior tier out of a suspended mode.

It is fully composable; the system will still operate correctly if tiers are added, removed, or

changed. This provides a flexible architecture that can accommodate the evolving number

of hardware platforms available in low-power computing. For example, later in this chapter

20

we discuss how we have applied the architecture to variety of hardware platforms, including

Motes, x86-based laptop, and PDA-class devices. An overview diagram of our design is

shown in Figure 4.1.

Each tier contains an independent processor, memory, internal bus, and persistent storage

system. Each may also have an independent external wireless network interface, although

these can be shared by routing through the inter-tier communication network. The set of tiers

can be architecturally homogeneous and span a range of power requirements. By limiting

the interface between tiers, we achieve composability. Integrating new tiers with differing

instruction sets, capabilities, operating systems, and power requirements is straightforward.

A HPM system is also fully autonomous and does not depend on any special hardware

from the external network. For instance, HPM does not require external networks to be

equipped with hardware wakeup signals, such as those used in the Wake-On-Wireless

project [138].

4.2.2 System Architecture

The system as a whole is responsible for accepting tasks from the user/client and

executing them in a way that extends the lifetime of the system. Tasks can be anything

from keeping time synchronized to ensuring that the local copy of the user’s email is

current to queries in a sensor network. The user/client, or a service executing on behalf

of the user/client, introduces tasks at a tier and the system distributes these tasks among

the different tiers in a way that extends the lifetime of the overall system. For example, if

the task is a query in a sensor network, it could appear at the lowest-power tier (a Mote)

and if it is sending an email on a laptop it could appear at the highest power tier (the x86

platform). Each tier is capable of several operations: perform tasks or discover services;

inform other tiers when necessary; and manage its local consumption of power. We discuss

each responsibility in more detail below.

21

Perform a task. A tier can perform a task if the required service is reachable and ready to

be used. Ideally, a task will be executed by the most efficient tier capable of performing

that task. For example, the highest-power tier would be required to synchronize a

very large media file while a PDA-tier can perform the task of synchronizing a cache

of web pages. For some applications, a tier will also need to pass the results of task

execution to its superior tier. For example, a web page cached by a StrongARM-tier

will ultimately be delivered to the highest tier in response to a user request.

Perform service discovery. A tier can also monitor the availability of a service required by

a higher-power tier in order to perform a task. Service discovery may simply discover

the existence of a service, or it may determine whether a particular service needs to

be used (e.g., whether a user has new email that needs to be fetched). Again, service

discovery should be performed by the lowest-power tier is capable of discovering the

service. In many cases, it is also possible to further decompose service discovery. For

example, to determine if a large media file is available to be synchronized, an ATmega-

tier can monitor the network for connectivity, a StrongARM-tier can determine if the

file has changed, and the x86-tier can actually perform the task.

Enter a suspension state. If a tier is not needed to perform a task or service discovery, it

may put itself to sleep in order to conserve energy. In some cases, this may require

that the tier delegate tasks or service discovery jobs to its inferior tier. For example, a

PDA-tier may notify a Mote-tier that it is going to sleep and needs to be woken when

a network connection is available or there is a task for which it is required.

Wake its superior tier. Once a tier has discovered an appropriate service, it may need to

wake its superior tier so that it can perform the task. Each tier is capable of waking

its superior tier. In this way, a tier can rely on its inferior tier to tell it when there is

something to do rather than requiring the system to wake periodically and check.

22

4.2.3 Distributing Applications

There are several methods of distributing application responsibilities over the tiers. We

describe each of these options here:

System-Aware Architecture. The first option is to build an application that is customized

for the system. Such an application requires designers to create application compo-

nents for each tier. In addition, the application must define the messaging protocol

used to communicate between components. This hand-coded option is useful for new

applications and also for applications, such as time synchronization, which are fairly

simple to implement. We show the efficacy of such a software architecture in the

design of Triage later in the chapter.

Proxy-Based Architecture. A second option is to use a proxy-based architecture that can

take advantage of existing distributed application components. Using this architecture,

a tier that executes tasks appears as a proxy service provider or a replicated server to

superior tiers. Many distributed applications, such as distributed file systems, email,

and web caching, already support this design. Therefore, the advantage is simplicity

and deployability—proxies only require recompiling and reconfiguring the application

rather than recoding. Unfortunately, not all applications will tolerate a proxy that

queues responses, requiring some modification of applications. One possibility is to

use queued RPC as found in the Rover toolkit [81]. We use this architecture in the

design of Turducken.

Transparent Architecture. A final option is to develop a HPM system component that is

capable of transparently migrating application processes. One way to support this is

by using traditional process migration [98, 128, 152, 155]. Another possibility is to

use virtual machines, either programming-language virtual machines such as those

used for Java, or a lightweight, OS-level virtual machine such as Denali [162].

23

Till now we have described the overall system architecture for a HPM device. To

demonstrate the efficacy of the HPM architecture, we next present two instantiations of

HPM from a diverse application space—(1) Triage: a HPM architecture for building

sensornet microservers. Triage is capable of providing always-on availability for sensornet

clusterheads at minimal energy consumption. (2) Turducken: a HPM architecture for

building highly energy-efficient yet highly available laptops. In this chapter, we focus on the

evaluation of Triage and present the prototype implementation of Turducken. For detailed

evaluation of Turducken, please refer to the associated research publication [146].

4.3 Triage: A Sensor net Microserver Design

Microservers form an intermediate battery-powered tier between tethered base stations

or access points, and resource constrained nodes. Microservers provide services includ-

ing complex data processing [94] and high-capacity storage to augment storage limited

nodes [16]. They respond to user queries in a low latency manner [94], provide greater

range and coverage [89], and act as gateways between short range and longer-range radio

networks [65]. Designing microservers face unique challenges. While microservers need to

have the capability and availability of conventional servers; being untethered they must be

highly energy efficient for long lifetime.

Triage is a HPM instantiation which provides Quality of Service (QoS) and energy-

efficiency in a microserver through a combination of a high-power, resource-rich platform

and a low-power, resource-constrained platform. The low-power tier, or tier-0, remains

always-on ensuring responsiveness at minimal energy cost. The high-power tier, or tier-1,

remains in a power saving mode until its resources are required for a given service. The

low-power platform acts similar to a medical triage unit, examining requests to identify the

critical ones, and as a scheduler to minimize the number of times the high-power platform

is woken. Such a scheduling mechanism requires accurate in-situ profiling of the time and

energy needs of each task, which is performed at the low-power platform. The scheduler

24

can optimize for different criteria—in this chapter we focus on two: minimizing energy

consumption while meeting soft-real-time latency constraints, and meeting a lifetime goal

while satisfying as many task deadlines as possible.

4.3.1 Hardware Architecture

Triage employs a tiered hardware platform. The tier-0 platform is a very low-power

platform, in this case a TelosB Mote [129], and tier-1 is a more capable and higher-power

platform, in this case a Stargate [160]. In Triage, the two tiers are tightly coupled and

directly communicate over a wired link. This enables the lower tier to trigger the wake-up

of the higher tier when necessary.

The TelosB Mote is extremely resource-constrained, but consumes less than one-tenth

the power of the Stargate. This platform works well for always-on operation, simple packet

processing, and providing low-latency responses. The Stargate platform is significantly more

capable but less responsive due to the high latency of sleep to active transitions. We augment

this two-tier platform with a custom fabricated interface board that provides necessary

voltage conversions for the two platforms, the wakeup interface, as well as a fuel-gauge chip

to measure energy-consumption in-situ.

4.3.2 Software Architecture

Figure 4.2 illustrates the components of the software architecture for Triage. Tier-0

virtualizes resources available on tier-1 using a collection of surrogates. Surrogates receive

requests from the network and can service them in one of three ways: by using locally cached

information, by performing local execution, or by passing them to tier-1 for execution. The

surrogates decide on how to service the request based on information provided by the profiler

and the scheduler. A profiler measures the energy and processing requirements of a task

and a scheduler determines, based on the predicted energy cost of a task, when and where

it should be executed to meet QoS requirements. Requests that have been scheduled for

25

execution at tier-1 are written into a log and delayed until their scheduled execution time.

This log also serves as a cache of recent requests.

Wakeup Control

Task 2 Task 1

Hardware Power
Measurement

Figure 4.2. Microserver Software Architecture

4.3.2.1 Surrogates

Surrogates are small software modules that run on tier-0 and provide a service such as

storage or forwarding. Though tier-0 can process simple tasks, such as routing updates or

time synchronization, most tasks require resources only available at tier-1. When a request

arrives at the microserver the surrogate performs the following: (1) immediately execute

requests from information cached at tier-0; (2) if a request cannot be serviced from the cache,

ask the scheduler to determine where and when to execute the task; (3) if the scheduler

determines that the task should be executed at tier-0, execute it immediately; (4) otherwise

write the request into the delayed request log. The delayed request log acts as a priority

queue—the task with the smallest deadline lies at the head of the queue.

26

Triage also uses the delayed request log as a cache for the surrogates. This functionality

is particularly useful in storage applications; a read closely following a write to the same data

can be serviced from the log. In order to maximize the amount of cached data, Triage does

not erase the tier-0 log when a batch of requests is played at tier-1. Instead, the previously

committed log entries and cached results are lazily overwritten by new requests using an

LRU eviction policy. Though writing into the log consumes energy, we argue that it is

insignificant to the savings from minimizing the number of tier-1 wakeups.

To enable applications to compose the functionality of several surrogates, Triage also

permits communication between surrogates using primitives provided by the operating

system. For instance, a client may query the microserver for information, and request that

the results of the query be sent to another node. This requires a combination of a storage

surrogate as well as a forwarding surrogate.

4.3.2.2 Scheduler and Profiler

Triage uses a scheduler, running on tier-0, to provide QoS. The scheduler relies on a

profiler to provide information regarding how long each type of task will take to process,

and how much energy it will consume on both tiers. The profiler measures the execution

time of each task and builds a model of task execution time. Using this information, the

scheduler determines where and when to execute each request. The scheduler relies on the

execution time profiles generated by the profiler. However, if a task exceeds the typical

execution time, it is not preempted and is still executed to completion.

The question of where to execute a task can be answered by comparing the amount of

energy required to execute it at each platform. This decision may be even simpler if the task

requires the resources of tier-1 and cannot be executed on tier-0. The question of when to

execute requests is more complicated. There are two cases when the scheduler must wake

tier-1 and dispatch outstanding tasks. The first case occurs when the log becomes full. In

this case, the scheduler is automatically invoked by the delayed request log; it wakes tier-1

27

and dispatches each outstanding task to the appropriate service. The second case us ub

response to QoS constraints. Each request can optionally contain a soft-realtime deadline,

or latency constraint, which indicates the time by which a task should be executed. In order

to meet the deadlines with maximum energy efficiency, the scheduler will delay execution

of tasks as long as possible to increase the amount of time tier-1 remains in a low-power

state. However, if a batch is already being processed, all tasks irrespective of their deadlines

are executed on tier-1. This is done to avoid the high transition cost of waking up tier-1. We

describe the algorithms used by the scheduler and profiler in Section 4.5.

4.4 Example Surrogates

Some of the common and basic functions found in servers for sensor networking, mobile

networking, and pervasive computing are storage, query processing and forwarding. To this

end, we present three example surrogates: a storage system surrogate, a network forwarding

surrogate, and a query processing surrogate. As untethered networks proliferate, this library

of surrogates will be expanded, enhanced, and further optimized.

4.4.1 Storage System Surrogate

The storage surrogate enables in-network storage applications. It accepts read, write,

and delete requests for the tier-1 storage system. Upon receiving a request from the network,

it first determines whether the request is a read request that can be satisfied by a recent write

cached in the delayed request log. If so, it immediately provides the result. Otherwise, it

asks the scheduler to schedule the task. The scheduler considers any soft real time deadline

provided with the task and tells the surrogate when the task has been scheduled. The

surrogate then inserts the task into the delayed request log.

4.4.2 Network Forwarding Surrogate

The network forwarding surrogate enables efficient routing by utilizing both the tier-

0 and tier-1 network interfaces. When a packet arrives at the surrogate, it examines the

28

destination address, consults a routing table, and determines over which radios the destination

is reachable. It immediately passes this information, along with any latency constraint, to

the scheduler which determines which radio should be used to send the packet and when the

packet should be sent. If the scheduler determines that the tier-0 radio should be used, the

packet is sent immediately. Otherwise, the packet is inserted into the delayed request log.

4.4.3 Query Processing Surrogate

The query processing surrogate provides a simple query interface for data stored on the

microserver. Clients may use simple queries, such as retrieve all images from the last ten

seconds, or more complex queries, such as retrieve all images that contain 2 or more objects

and are from a particular geographic region. The queries are specified by the following

fields (1) the type of query (simple/complex) (2) the images queried (3) the number of

objects desired per image for complex queries (4) latency deadline associated with each

query. The query processing surrogate uses other surrogates to create a combination of

services, including processing, routing, and storage. Tier-1 can execute any query since

it has access to the powerful radio, the primary storage system, and a powerful processor.

However, tier-0 can respond to only simple queries. For example, any query that can be

performed using simple comparisons of cached metadata can be performed at the tier-0

system. Therefore, tier-0 maintains an index of results stored from previous queries in its

cache/log.

When the surrogate receives a query, it first determines whether the query is a simple

query that can be executed using data cached in the delayed request log. We assume that

tasks are statically mapped into simple queries, which can be executed at either tier, and

complex queries that require the resources of tier-1. If the query can be executed at tier-0,

it is executed immediately. Otherwise, the surrogate passes the query and any latency

constraint to the scheduler. Once the scheduler has scheduled the query, it is inserted into

the delayed request log.

29

4.5 Profiling and Scheduling

At the heart of Triage is a profiling engine that is used to estimate the execution time and

energy usage for different tasks, and a scheduling engine that determines how to meet QoS

constraints. In this section, we describe the algorithms employed by the profiling engine

and the scheduling engine to enable energy-efficient scheduling of tasks.

4.5.1 Task Profiling Algorithm

Triage employs a profiler to measure the execution time and energy usage for different

tasks. In this discussion, we focus on determining the typical energy usage and typical

execution time for each type of task. Such online profiling is necessary to deal with the

variability in execution time and energy usage of tasks that involve a combination of

processing, communication and storage.

Online profiling involves two steps, task grouping and parameter estimation. The online

profiling engine first identifies a task as belonging to a certain group based on the nature of

task. This grouping information is assumed to be provided a priori by the system designer.

We believe that such a grouping is appropriate since many applications of microservers

involve a small and well-specified set of tasks. For instance, in a camera sensor network,

a typical set of tasks might be {Motion Detection, Face Recognition, Store

Image, Send Data}.

For each of these task groups, the profiler uses a separate history of execution times

and energy consumption to build corresponding probability distributions. We focus on the

estimation of the typical execution time since a similar algorithm can be used to estimate

typical energy usage.

Let f(ti) be the probability density of time taken to execute task type i. Further, let X i

and σi denote the average execution time and standard deviation for task type i. The profiler

uses Chebyschev’s inequality (shown in Equation 4.1) to determine an interval of time such

that the task executes within that interval with probability at least p. Triage consequently

30

takes the upper bound on the interval as the typical execution time for the task. This is a

conservative estimate, however for tasks whose execute time distributions are not known

apriori, a conservative strategy is required.

Time(i, p) = [X i −
σi√
1− p

,X i +
σi√
1− p

] (4.1)

The parameter p can be tuned depending on the guarantee required by a user. For

instance, in a camera network used for surveillance, a Face Recognition task might

require a tight guarantee as the person might move out of the field of view of the camera

sensors. In this case, p can be set to a high value, say 0.9. Other tasks such as Send Data

might be more elastic, and Store Image might not have any deadline at all.

Using information collected after the task executes, the profiler builds two kinds of

dynamic models: histograms and parametrized models. When prior models of execution

time are unavailable, a simple histogram approximates the probability density, f(ti), and

tracks bins of execution times and energy consumption for each task group. In contrast,

when prior models are available, these can be used to more accurately model task execution

time and energy consumption. For instance, the execution time and energy used in a

communication task is a linear function of the number of bytes transmitted. In this case,

the execution times are fit to a simple linear model to determine the costs of the two radios

in Triage. Our prototype uses parametrized models for the storage and network surrogates

tuned to the size of the file and the size of the packet respectively. More complicated models

can be built for applications such as video coding, compression, and encryption. For the

query processing surrogate we use the histogram-based profiling.

4.5.2 Task Scheduling Algorithm

The scheduler that resides on tier-0 uses the profiling information about tasks to minimize

the number of times tier-1 is woken while still satisfying the task deadlines. The Triage

31

scheduler uses different algorithms depending on the optimization criteria. In this work, we

discuss two schedulers — the first is optimized to satisfy task deadlines, and the second is

optimized to achieve a target lifetime for the microserver. While we limit our discussion to

these two schedulers, we note that alternate schedulers that optimize, or balance, other QoS

constraints can be plugged into our system.

4.5.2.1 Scheduling for Deadline Constraints

The deadline scheduler tries to minimize the energy consumed by the microserver, such

that the deadlines of the incoming tasks are met. Let the set of tasks which are already

batched at tier-0 for delayed execution at tier-1 be denoted by S = {T1,, Tk} where task

Ti has deadline D(Ti), latest start time L(Ti), and execution time E(Ti). The latest start

time is the latest time at which a task can begin executing on tier-1 such that the deadlines

of all tasks after and including itself are met, and the execution time is the time it takes to

execute the task on tier-1. L(Ti) and E(Ti) are provided by the profiler. Further, we assume

that the list S is sorted by deadlines i.e. D(Ti) > D(Tj) if i > j. Let the wakeup time for

tier-1 be W , and the current batch time, B, correspond to the latest time at which tier-1

needs to be awakened so that the deadlines of all tasks in the list S can be satisfied.

Our scheduling framework is based on the well-known As Late As Possible (ALAP)

scheduler. When a new task arrives, the scheduler first queries the profiler for the typical

execution time for the task at tier-1. Next, the algorithm recomputes the batch time, B, i.e.

the latest time at which tier-1 can be woken such that all the batched tasks and the new task

meet their deadlines. Let the new task be inserted at index l into the sorted list S based on

its deadline. The scheduler now needs to ensure that the insertion of the new task does not

result in missed deadlines for any of the other tasks in the list. The scheduler only lowers

the batch time and never increases it, hence only the tasks that are before Tl in the list need

to be checked for deadline violation. Thus, for each task Ti : l ≥ i ≥ 1, the scheduler sets

the latest start time such that it does not violate the deadline constraint of Ti or any task with

32

EB=3
D=64
L=61

EA=3
D=60
L=57

64 61 5760

W=7

50

B=50

0

EB=3
D=64
L=61

EA=3
D=60
L=55

64 61 5558

W=7 B=48

048

EC=3
D=62
L=58

time:

time:

Figure 4.3. ALAP Example: The figure shows the execution time and deadline for each
task, the wake up latency for tier-1, and the resulting batching time. A new task TC is
inserted into the scheduling decreasing the batch time.

deadline after Ti, i.e. L(Ti) = min(L(Ti), L(Ti+1) − E(Ti)). The new batch time, B, is

updated to reflect the latest start time for the first task in the list, i.e. B = L(T1)−W . If

B ≤ 0, tier-1 is immediately awakened and the batch executed. If B > 0, a timer will fire at

time B and tier-1 will be awakened. The time required to update the schedule is linear in

the number of tasks currently in the queue.

We illustrate the deadline scheduling algorithm with a simple example, shown in Fig-

ure 4.3. Let there be two batched tasks, TA with deadline 60 seconds and execution time 3

seconds, and TB with deadline 64 seconds and execution time 3 seconds. The latest start

times of the two tasks are L(TA) = 57 seconds and L(TB) = 61 seconds respectively, and

the batch time, B is 50 seconds, assuming a tier-1 wakeup time, W of 7 seconds. Now, a

new task TC arrives with deadline 62 seconds and execution time 3 seconds. The task is

inserted between TA and TB . The scheduler checks whether the current batch time satisfies

TC’s deadline, notices a violation, and pushes TA forward in the schedule. Hence, the batch

time is set to 48 seconds.

33

4.5.2.2 Scheduling for a Lifetime Constraint

While the goal of the deadline scheduler is to miss only a small percentage of deadlines

while minimizing energy usage, the objective of the lifetime scheduler is to meet a target

lifetime for the microserver while satisfying as many deadlines as possible. The scheduler

should also be capable of handling periods of burstiness. To accomplish this we use a

token-bucket algorithm for the lifetime scheduler. Given a target lifetime, L, and battery

capacity, E, energy tokens are generated at a constant rate of E
L

. The total number of

accumulated tokens represents the amount of energy that is available for use by the system.

The amount of energy used by the system is continually monitored by the energy profiler,

and is queried periodically by the scheduler to determine the rate at which energy is depleted

by the system. The difference between the accumulated energy tokens and depleted energy

tokens at any time represents the surplus of energy that can be used by the system to execute

the batched tasks.

The lifetime scheduler builds on the deadline scheduling algorithm that we described

in Section 4.5.2.1. When a new task arrives, the deadline scheduling algorithm is used

to queue the task and determine the batch time. When this batch time becomes zero, the

lifetime scheduler checks to see whether there are sufficient energy tokens to wakeup tier-1,

execute all the tasks in the batch, and shutdown tier-1. If so, tier-1 is awakened and the

tasks are executed before shutting it down. The energy profiler is queried to determine how

much energy was used during this batched processing, and the number of available energy

tokens is updated accordingly. If the number of energy tokens is insufficient to execute the

batch, the wakeup of the tier-1 platform is delayed until sufficient tokens have accumulated.

During this period of waiting for tokens to accumulate, task deadlines could be missed, and

tasks could be dropped if the size of the task queue exceeds the storage capacity of the tier-0

platform.

Neither of our scheduling algorithms take into account the availability of DVFS (Dy-

namic Voltage and Frequency Scaling) states at tier-1. Evaluating and profiling multiple

34

DVFS states would possibly permit greater efficiency by allowing tier-1 to sleep longer,

however this pushes the complexity of the scheduler to O(kn) for n tasks and k power

modes — the scheduling problem can be shown to be NP-Hard. We are currently investi-

gating approximate heuristics that are computationally feasible for the tier-0 node. These

heuristics can be implemented on top of the scheduling algorithms described in this section

to determine when tier-1 should be awakened.

4.5.2.3 Idle State Management

One remaining issue is the state in which the scheduler leaves tier-1 while it batches new

requests at tier-0—there are two options, suspension and shutdown. Suspension requires

more idle power than shutting down the platform, but the transition cost is lower. For

example, the Stargate platform with a CF 802.11 card draws 60.46 mW in suspend mode

and costs 3.67 J and 32 J of energy to wake up from suspend and shutdown respectively.

The Triage scheduler determines the appropriate idle state for tier-1 based on the expected

times between wakeups of tier-1. The expected time between wakeups are calculated over

the last k wakeups, where k is a constant. We estimate the cost of each state based on the

expected idle time, and choose the state that minimizes this cost.

While this approach is sufficient for many applications, the choice of idle state does

enforce a minimum latency that the microserver can support. For example, if tier-1 is

shutdown due to infrequently arriving tasks, the next task that requires tier-1 will have to

wait at least as much time as tier-1 requires to wake from shutdown. In the case of the

Stargate, this minimum latency is 15.6 seconds. In order to deal with this problem, more

sophisticated profiling techniques could be used to anticipate the latency requirements of

upcoming tasks and choose the proper idle state accordingly.

35

Power Profiling Board

Stargate

TelosB

Battery

Figure 4.4. Prototype Triage System

4.6 Implementation

In order to evaluate our approach we have implemented a working prototype of Triage,

shown in Figure 4.4.

4.6.1 Prototype Hardware

We constructed a prototype using a Crossbow Stargate (tier-1) [160] and a TelosB Mote

(tier-0) [129]. The Stargate contains a 32-bit, 400MHz PXA255 XScale processor, 64 MB

of RAM, 32 MB of internal flash, and a WiFi interface. The TelosB Mote contains an

8-bit, 8 MHz microcontroller, 10kB of RAM, 1 MB of external flash, and an 802.15.4 radio.

These hardware platforms were chosen because they handle the range of workloads that

we have targeted, are separated in power consumption by more than an order-of-magnitude

(300mW-3000mW and 20mW-100mW), are easily programmable, and are well supported.

The Stargate platform runs Linux, making available a broad range of software tools and

services. We used the power-gating technique with a relay to switch off power to the CF

36

card when the Stargate is suspended [125]. This technique brought down the suspension

power of the Stargate to a modest 61 mW.

We used a power supply board designed to allow us to attach both boards to a single

battery. This board provides an additional hardware element necessary to Triage, a Maxim

DS2770 fuel gauge chip. The fuel gauge chip gives accurate readings of the energy left

in the battery, and the amount of energy used by the system during task execution. As

described, the scheduler uses this profiling information to control the platform energy policy.

One limitation of our current implementation is the transfer speed from the TelosB Mote

to the Stargate. The two devices communicate over a USB line which is limited to 230 kbps.

However, data needs to be read from the flash and then transferred over the USB which

increases the total time required for the transfer. As a result, transferring 1024 kB of batched

work along with protocol overhead takes more than 150 seconds and wastes a great deal of

energy while blocked on serial I/O. We are currently investigating more efficient means of

communication. Even with this limitation the current prototype shows extremely high gains

in energy efficiency.

4.6.2 Surrogates and Log

As part of this prototype, we implemented three surrogates: storage, network forwarding,

and query processing. The delayed request log is managed on the TelosB’s flash storage

using a custom designed file system. We implemented these components as TinyOS modules

written in nesC [64]. The forwarding, storage, and query processing surrogates comprise

535, 480, and 540 lines of nesC code respectively, and the custom file system consists of

roughly 1600 lines of code. The profiler and scheduler consist of 1360 lines of code. We

also implemented an execution engine that runs on the Stargate and executes tasks when

they are received from the Mote.

37

CLIENT

BASE STATION

MICROSERVER

SENSOR CAMERA

802.15.4 Link

802.11b
Link

PRINT

HELP

ALPHA

SHIFT

ENTER
RUN

DG ER FI

AJ BK CL

7M 8N 9O

DG DG DG

DG T 3U

0V .WX Y Z

TAB

% UTIL IZATI ON

HUB/MAU NIC

2
BNC
4M b/s

NI-PCI
6251 DAQ

Figure 4.5. Experimental Setup

4.7 Evaluation

We evaluate the performance of Triage through an extensive set of experiments. First,

we provide micro benchmarks that validate our use of a two-tier platform to achieve a

combination of capability, energy-efficiency and responsiveness. Second, we evaluate the

deadline and lifetime schedulers, and demonstrate their effectiveness in achieving their

goals. Third, we focus on the performance of the profiler, and its accuracy when used

with the forwarding surrogate. Fourth, we demonstrate how the Triage system is able to

adapt itself to different QoS constraints at minimal energy consumption. Finally, we show

the energy consumption of different independent components of the system and identify

potential bottlenecks in the system.

TelosB Max. Power Consumption 100 mW
Stargate Bootup Energy 32 J
Stargate Bootup Time 15.6 s

Stargate Resume Energy 3.7 J
Stargate Resume Time 2.6 s

Stargate Suspension Power 60.5 mW
Stargate Idle Power (WiFi in PSM-idle mode) 912.3 mW

Table 4.1. Platform Measurements

38

We use a camera sensor network application in our evaluation. The application involves

in-network processing, storage and forwarding and forms an adequate testbed for Triage.

The experimental setup is shown in Figure 4.5. Motes emulate cameras in the network and

feed images of variable sizes to the microserver. The other nodes in the network are client

Motes attached to a device equipped with a 802.11b interface. Therefore, results of queries

can be routed back to a client using a 802.15.4 or a 802.11b link. All power measurements

were taken using a NI-PCI 6251 DAQ with a SC-2345 signal conditioning unit.

In our evaluation, we compare Triage with three other systems.

1. PSM-DVFS : This is a single-tiered dual radio system which uses WiFi PSM and

DVFS (dynamic voltage frequency scaling) to save power on the Stargate. The system

runs a DVFS algorithm which uses previously measured data to identify the lowest

DVFS state on the Stargate where the given deadline can be satisfied. The wakeup

interval in PSM mode for the 802.11 card is set to the maximum value supported by

the card (33 secs). This provides an accurate comparison with a system which does

not use the hardware architecture of Triage.

2. WoW* : The system is similar to Wake-on-Wireless [138]. The published Wake-

on-Wireless system wakes up when it receives a network packet. WoW*, however,

wakes up tier-1 whenever a task arrives at tier-0. Tasks are always executed on tier-1.

WoW* is a system which uses the hardware architecture of Triage but does not use its

software architecture.

3. Triage-Batch : The Triage-Batch system uses the same hardware as Triage. However,

it does not use any online profiling, scheduling or caching. It batches a task as long as

its deadline permits and then wakes up tier-1 to execute the task.

4.7.1 Static Energy Costs

In order to provide better intuition into the behavior of our prototype, we measure

the static energy costs that directly impact Triage’s performance. These values, shown in

39

2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time taken (seconds)

P
ro

b
ab

ili
ty

Figure 4.6. Histogram of the time taken to execute image classifier on Stargate

Figure 4.1, are the basis for the energy savings achieved by Triage. We observe that the

idle cost of the Stargate platform with WiFi card in PSM mode is 6 times the sum of the

suspend power of the Stargate and the maximum power consumed by the TelosB. Therefore,

offloading tasks to tier-0 while keeping tier-1 asleep can lead to substantial energy savings.

However, the Stargate’s transition from suspend to active costs as much energy as 36 seconds

of computation on tier-0. Transitioning from shutdown to active is equivalent to 319 seconds

of active tier-0 computation. Therefore, replacing expensive state transitions at tier-1 with

low-power, tier-0 computation as long as possible can lead to minimal energy costs for the

system.

4.7.2 Soft-Realtime Scheduling

In order to evaluate the deadline scheduling algorithm, we observe how a Triage mi-

croserver performs in the presence of different latency constraints. In this experiment the

microserver answers queries of client Motes for objects in images. Such a query is common

in surveillance applications where a user might want to detect movements at a scene or

40

extract important features of a scene. The objects in the image are computed using the

kmeans classifier at the microserver and the classified image is sent back to the client.

The histogram of the amount of time taken to classify random 100-by-100 images using

the kmeans algorithm is shown in Figure 4.6. The figure illustrates the large variance in

the amount of time taken to classify an image. Moreover, it is clear that the time taken to

classify an image does not follow a known probability distribution. Hence, accurate time

profiling for the application is crucial to the success of the scheduler in meeting the deadline

constraint at minimal energy consumption. The profiler uses a threshold of p = 0.9 in

Equation 4.1 to determine the typical execution time of each task, i.e., at least 90% of the

time the microserver will meet its deadline for tasks.

We evaluate the scheduler on two task arrival distributions—(i) when tasks arrive at a

constant rate of one per 30 seconds (ii) when tasks arrive in bursts of three queries—the

inter arrival time between bursts follow a Poisson distribution with mean 30 seconds. While

the first scenario exhibits a constant load on the system which is easy to learn, the second

task arrival distribution tests loads which are unpredictable. Therefore, the system has to

accurately predict and adapt to the variable load patterns to perform well.

We varied the latency constraint on the task in the experiment and we measure the power

consumed by the microserver and the percentage of tasks completed within the deadline.

Each point on the x-axis represents experiments where the latency constraint is chosen

uniformly at random within the interval [x− 30, x+ 30] seconds. 100-by-100 images are

sent to the microserver at a rate of one per minute. The results are compared with the

Triage-Batch system.

The results of the experiment are shown in Figure 4.7 and Figure 4.8. We first note

(in Figure 4.8) that for all workloads the Triage deadline scheduler meets at least 90% of

the latency constraints. Triage adapts to bursty and unpredictable task arrival distributions.

This demonstrates both the accuracy of the non-parametric histogram profiler and deadline

scheduler of Triage. The histogram-based profiler precisely determines the computational

41

100 150 200 250 300
0

200

400

600

800

1000

1200

Average latency constraint(ms)

A
ve

ra
ge

 p
ow

er
 c

on
su

m
ed

 (
m

W
)

Triage (burst)
Triage−Batch (burst)
Triage (constant)
Triage−Batch (constant)

Figure 4.7. Average Power Consumption for the deadline scheduler. The deadline scheduler
consumes slightly more power in order to meet more deadlines.

needs of queries. The deadline scheduler correctly schedules the wakeup of tier-1 to meet

the desired latency constraints. Without profiling the execution time of tasks or the deadline

scheduler, the Triage-Batch scheduler is unable to determine when to wake tier-1 and

regularly misses deadlines, especially when latency constraints are small. This is because

scheduling errors are more likely to occur at the beginning of each batch of tasks. Allowing

longer latencies results in larger batches of tasks and more tasks that are processed ahead of

their deadlines. Moreover, the Triage system consumes only slightly more power than the

Triage-Batch system.

The second observation we make from the experiment is that the Triage system satisfies

all constraints irrespective of the task arrival distribution. However, both systems consume

more power for the bursty task arrival distribution. Even though the mean inter-arrival time

between bursts is the same as the interval between arrival time of constant rate tasks, the

number of tasks executed for bursty task arrival is more than for the constant task arrival

distribution.

42

100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Average Latency Constraint (sec)

P
er

ce
nt

ag
e

of
 D

ea
dl

in
es

 m
et

Triage (constant)
Triage (burst)
Triage−Batch (constant)
Triage−Batch (burst)

Figure 4.8. Percentage of Queries executed within deadline. Triage meets more than 95%
of all deadlines while Triage-Batch is able to meet only 70% of all deadlines

4.7.3 Lifetime Scheduling

To show that the lifetime scheduler is able to meet a lifetime goal, we perform a similar

experiment as before using a Query Processing application. We use simple queries for

images stored by the Stargate storage. In order to expedite this experiment, we use a small

battery capacity of 100 mAhr—enough energy for the microserver to operate at a maximum

load for 9 minutes. We set the lifetime goal of the server to be 60 minutes. For the first 30

minutes, all queries arrive at a constant rate of one per 30 seconds with a latency constraint

uniformly distributed over the interval [150, 210] seconds. For the remaining time, the server

sees a more intense load with queries arriving with latency constraints uniformly distributed

over the interval [5, 15] seconds. Figure 4.9 shows the results of this experiment. The slope

of the straight line demonstrates the lifetime goal divided by the energy capacity of the

server—this is the overall average power goal.

Recall that when using the lifetime scheduler, Triage prioritizes lifetime over latency

constraints. It attempts to meet the latency constraint whenever it can, and the token-bucket

algorithm allows for bursts of short, energy intensive workloads. For this algorithm to

43

0 10 20 30 40 50 60
0

20

40

60

80

100

Time (minutes)

B
at

te
ry

 C
ap

ac
ity

 R
em

ai
ni

ng
 (

m
A

h)

Lifetime Constraint
Triage
WoW*
PSM−DVFS

Figure 4.9. Lifetime Scheduler. This figure shows Triage’s use of the lifetime scheduler
for a goal of 60 minutes. For the first 30 minutes the load is light and the microserver
accumulates an energy surplus. For the last thirty minutes it uses the surplus at the detriment
of meeting deadlines.

operate correctly, Triage must accurately profile the energy use of tasks and track the overall

energy consumption of the microserver to account for profiling errors. For the first 30

minutes, the server consumes less energy than is required to meet its lifetime goal. During

this time the server’s workload is insufficient to drain the bucket, so Triage is free to schedule

all tasks and therefore meets its deadlines. After operating for 10 minutes under a more

intense workload, Triage continues to meet its deadlines, but it begins to consume the surplus

energy that has accrued. At 45 minutes, Triage runs out of surplus energy and begins to

sacrifice latency constraints for conserving energy. Note that Triage meets the lifetime goal

with an excess energy of about 3mAh. The WoW* and PSM-DVFS systems are unable to

meet the lifetime constraint. Their batteries die out at 38th and 21st minutes respectively.

Therefore, these systems are left without any battery for 37% and 65% of the time.

44

0 20 40 60 80 100 120
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Size of Images (KB)

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Triage
WoW*
PSM−DVFS

Latency constraint

Figure 4.10. Time Profile Accuracy. This shows the forwarding surrogate choosing between
two radios based on a latency constraint. For 80KB of data is switches from the 802.15.4
radio to the 802.11 radio to meet the constraint.

4.7.4 Task Profiling

The profiling function of the microserver is essential to providing soft-realtime guaran-

tees. We use simple parametrized linear models for the forwarding surrogate and general

histogram models for the more complex tasks like image processing where good models are

not known apriori. The model parameters are learned by Triage over time. The efficacy of

the histogram model was shown in Section 4.7.2. We present the efficacy of the parametrized

model here. We use an experimental setup where variable sized images are sent from the

camera Motes to the microserver at a fixed rate of one image per minute to be routed to

some destination Mote. The destination could correspond to a central processing server or

another node. Since the linear model for the amount of time taken to route data for the two

radios is a function of the amount of data that Triage wants to send over the radio, we vary

the size of the images sent during the experiment—this corresponds to images of different

resolutions required by a client.

45

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

size of images (KB)

A
ve

ra
ge

 P
ow

er
 C

on
su

m
ed

 (
m

W
)

Triage
WoW*
PSM−DVFS

Figure 4.11. Time Profile Power Consumption. This shows the forwarding surrogate power
consumption based on the amount of data it sends. At 80KB of data it must switch to
the 802.11 radio to meet the latency constraint, thus using more power. The WoW* and
PSM-DVFS solutions use more power as they only use the 802.11 radio to send data.

Each forwarding request has a fixed latency constraint of 15 seconds. We show the

results of the experiments in Figures 4.10 and 4.11. We compare our results with the

PSM-DVFS and WoW* systems. Comparing these systems we see several effects. First,

Triage is able to profile the time required for forwarding tasks correctly and send them by

their required latency constraint for data sizes less than 100KB. Triage uses the 802.15.4

radio at lower data rates. However above 80KB, Triage must wake the tier-1 system to

meet the latency constraint. Second, as Triage can use the TelosB-node alone to transfer

data it achieves 200% increase in lifetime over the WoW* system and 500% increase in

lifetime over the PSM-DVFS system. The savings clearly demonstrate the benefit of using a

tiered architecture. The architecture provides the microserver with the flexibility of using

resources on either tier intelligently—leading to substantial energy savings. Third, neither

WoW* and Triage are unable to meet the latency constraint for 120KB images. This is

due to the USB data transfer bottleneck in our system. The PSM-DVFS system meets all

deadlines at a much higher energy cost.

46

4.7.5 Scaling to QoS Constraints

The primary goal of Triage is to balance energy consumption of the server with a given

QoS constraint. Triage uses a combination of task profiling, scheduling, caching, and idle

state management to determine the minimal cost at which a QoS constraint can be satisfied.

We perform the following experiment to validate the above claim. Camera Motes feed

100-by-100 images to the microserver at a rate of one per minute. Client Motes request

images from the microserver at a rate of one per 30 seconds. Each query request is for a

single image taken T seconds ago, where T is exponentially distributed with a mean of 100

minutes. This represents applications where newer data is more valuable to the user than old

data. We vary the latency constraint on the task in the experiment. We compare Triage with

PSM-DVFS and WoW* systems. The results are shown in Figure 4.12. We see that Triage

consumes 300% less power than WoW* and 600% less power than the PSM-DVFS system.

Triage uses a combination of serving requests from cached data, scheduling and delayed

execution to amortize the transition cost of the tier-1 platform over a long period of time

and hence shows large power savings.

4.7.6 Component Power Consumption

Finally, we demonstrate the power consumed by independent components of Triage. We

perform an experiment where 100-by-100 images are sent to the microserver at a rate of 1

per minute. The client Motes request classified images with a task arrival rate distributed in

the interval [30, 60] seconds. This application provides for a combination of storage, data

transfer, processing and data forwarding. The power trace collected is shown in Figure 4.13.

The break-down of the average power consumed by different independent components of

the system are show in Figure 4.14. We find that the PSM-DVFS system suffers from a

huge idle cost of keeping the Stargate platform awake with the WiFi card in PSM-idle mode.

This problem is solved by the WoW* system by using the hardware architecture of Triage

and duty-cycling the Stargate. However, the WoW* system suffers from a huge transition

47

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

QoS Constraint (secs)

A
ve

ra
ge

 P
ow

er
 C

on
su

m
ed

 (
m

W
)

Triage
WoW*
PSM−DVFS

Shutdown
 mode

Suspension
 mode

Figure 4.12. Scaling to QoS constraints. Triage finds the minimal energy cost at which a
QoS constraint can be satisfied. The WoW* system and PSM-DVFS system consume 3x
and 5x more power than Triage respectively.

energy cost, since it has to wake up the Stargate on every task arrival. The above problem is

solved by Triage using its software architecture and amortizing the transition cost over a

long interval of time. However, we find that the USB-transfer cost is a potential bottleneck

for both the Triage and WoW* systems and the performance of Triage could be improved

if the bottleneck is eliminated using low power DMA (direct memory access) between the

Mote and the Stargate.

Till now we detailed the design, implementation, and evaluation of Triage: a HPM

instantiation for designing sensor net microservers. We showed that by combining diverse

hardware platforms into a single tightly integrated platform and intelligently sharing tasks

among them, we can design systems which are highly available and energy-efficient at the

same time. To provide further external validity to the efficacy of the HPM architecture, we

motivate and describe Turducken: a HPM instantiation for designing highly energy efficient

laptops.

48

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

Time (sec)

P
ow

er
 C

on
su

m
ed

 (
W

)

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

Triage

WoW*

PSM−DVFS

Figure 4.13. Power Traces for the Triage, WoW* and PSM-DVFS systems.

4.8 Turducken: A HPM Architecture for Laptops

Turducken is a HPM instantiation for designing highly energy-efficient laptops. Tur-

ducken combines three diverse tiers: a x86-based laptop, StrongARM-based PDA, and

an ATmega-based Mote into a single integrated laptop. Through a proxy based software

architecture for task sharing among tiers, Turducken achieves high levels of availability at

minimal energy consumption. Below, we describe the components of a working Turducken

system prototype. The prototype currently consists of a hardware implementation and three

applications: time synchronization, web caching, and IMAP synchronization.

4.8.1 Hardware Implementation

The hardware prototype, shown in Figure 4.15, consists of three tiers: an x86-based IBM

Thinkpad X31, a Compaq iPAQ 3870 StrongARM-based PDA, and a CrossBow Mica2Dot

ATMega-based Mote. The Mote and iPAQ are directly connected via a serial interface

and the iPAQ and the laptop are directly connected via a USB interface. The Mote can

wake the iPAQ through the use of the serial DCD line, and the iPAQ can wake the laptop

49

Triage WoW* PSM−DVFS
0

200

400

600

800

1000

1200

A
ve

ra
ge

 P
ow

er
 C

on
su

m
ed

 (
m

W
)

TelosB
Suspend
Transition
USB−Transfer
Computation+WiFi
Stargate−idle

Figure 4.14. Break-down of the power consumed by independent components of Triage,
WoW* and PSM-DVFS systems.

by sending a request to the Mote, which wakes the laptop by triggering a relay connected

to the keyboard. Our prototype can currently be reconfigured as: x86, x86+ATMega,

or x86+StrongARM+ATMega. Each tier also contains a real-time clock (RTC) that can

generate a wake interrupt. If we reconfigure the system as x86 only, it can suspend itself

and use its RTC to wake it at set intervals.

This prototype differs from our ideal HPM design in three significant ways. First, the

hardware components are all physically separate—a deployed system would integrate all

of the components into a laptop form-factor. The connections shown in the picture would

all be internal to the system. Second, there is a plethora of extra parts in our prototype. An

integrated implementation would eliminate much of the PDA, including its screen, sleeve,

and buttons. Third, each tier is run from its own battery. The Turducken design assumes that

there is only a single, shared battery. This has implications for how we evaluate the system.

In our implementation, there are two types of wireless interfaces: WiFi and the Mote’s

custom radio interface. There are both advantages and disadvantages to having access to

multiple wireless standards. It does allow the system to take advantage of a broader range of

50

��������	
��

��

������	��
����	��

������	��

�����	���

�	���

����

�	���

�������

 !�
��!���!�

��!�

��������

Figure 4.15. These figures show the prototype implementation of the Turducken System.
The diagram on the left shows the logical connections between components and the photo
on the right shows the current prototype.

services by allowing it to communicate with more devices; however, it makes system design

more challenging since certain tasks may require a particular network interface and thus

it cannot be accomplished by all tiers. To mitigate this disadvantage, we have attached a

WiFi detector to the Mote. The detector can determine if WiFi signals are present, though it

cannot communicate using WiFi or discover if an access point is open or closed.

Even though the x86 and StrongARM tiers each have WiFi interfaces, there is no reason

to use them both in the Turducken system. In a configuration that includes both, we turn off

the x86-tier’s interface and route all traffic through the StrongARM-tier. This saves power,

thus extending the battery lifetime of the system.

4.8.2 Applications

We have developed and deployed three applications that are representative of commonly-

used mobile distributed services: time synchronization, web caching, and IMAP synchro-

nization. Time synchronization is necessary for timestamping distributed updates and

determining timeouts in soft-state protocols. Web caching on mobile devices allows the

mobile node to serve pages during periods of disconnection and improves response time

when connected. IMAP synchronization maintains a local mail cache that can serve mail

51

Execution Incoming or
Tier Outgoing

Time Sync ≥ATmega Incoming
Web Cache ≥StrongARM Incoming
IMAP Sync ≥StrongARM Both

Table 4.2. This table shows a summary of the application characteristics. The execution
tier denotes where the application is carried out, and Incoming or Outgoing describes the
direction of updates.

during periods of disconnection and improves response time. In addition, a local IMAP

store can buffer outgoing mail and send it when the node is connected.

These applications also represent three broader classes of applications. These classes

are defined by the traits listed in Table 4.2. Time synchronization represents applications

that require limited processing and limited transmission of incoming data updates. Web

caching represents applications that require more significant processing and larger amounts

of incoming data. This is similar to a variety of publish-subscribe systems. IMAP synchro-

nization represents applications that require fairly significant processing and support for

outgoing as well as incoming updates. This is similar to the requirements of distributed file

and database systems, though the consistency requirements are not as strict.

4.8.2.1 Time Synchronization

The time synchronization application follows the system-aware programming model.

The ATmega-tier runs a custom built Network Time Protocol (NTP) client that synchronizes

its local clock with a known time server every t seconds. The StrongARM and x86 tiers can

then request the current time from the ATmega-tier and update their local clocks. We define

an explicit API for this communication. When the ATmega-tier is not present, the x86-tier

uses its RTC to wake every t seconds and synchronize with the remote time server using the

UNIX utility ntpdate.

52

4.8.2.2 Web Cache

The web cache application follows a proxy-based programming model. The ATmega-

tier detects the presence of a WiFi signal; the StrongARM-tier runs a Squid proxy cache;

and the x86-tier runs a web browser. Every t seconds, the ATMega determines whether a

WiFi connection is available and, if so, wakes the StrongARM-tier. The StrongARM-tier

remains awake for 30 seconds while the proxy continuously fetches expired cache items.

Web requests originating from the web browser running on the x86-tier are routed through

the StrongARM-tier. These requests can be transparently serviced by the proxy when no

network connection is available.

When the StrongARM-tier is not present, the Squid proxy runs on the x86-tier and the

cache is stored on the system’s hard disk. The ATmega-tier or RTC wakes the x86-tier every

t seconds. If a connection is present, it remains awake for 30 seconds while the Squid proxy

fetches expired cache items. Again, the Squid proxy can transparently fulfill requests from a

web browser.

4.8.2.3 IMAP Synchronization

The IMAP synchronization application also follows a proxy-based programming model.

The ATmega-tier detects the presence of a WiFi signal and the StrongARM-tier runs a UNIX

utility named mailsync, which performs synchronization between an IMAP server and a

secondary mail store. The x86-tier maintains the primary mail store and uses mailsync

to synchronize with the StrongARM-tier’s secondary mail store. The x86-tier also runs the

user’s mail client. Every t seconds, the ATmega-tier determines whether a WiFi connection

is available and, if so, wakes the StrongARM. The StrongARM-tier uses mailsync to

retrieve incoming mail from and send outgoing updates to the user’s mail server. Incoming

mail is stored in the secondary mail store hosted on the StrongARM-tier.

When the user turns on the x86, it synchronizes its primary store with the secondary

store on the StrongARM-tier. The user accesses mail by configuring the mail client to point

53

to the primary mail store on the x86-tier. When the user suspends the x86-tier, any changes

the user has made will be synchronized with the StrongARM-tier which will synchronize

with the remote mail server when connected.

In some cases, the user may receive pieces of mail that are too large to be stored in the

StrongARM-tier’s flash memory. To accommodate this scenario, the primary mail store

also synchronizes with the remote mail server when possible. In addition, we would like to

modify the StrongARM-tier to wake the x86-tier when it detects this situation, though we

have not yet implemented this feature.

If the StrongARM-tier is not present, the x86-tier synchronizes directly with the remote

mail server when connected. Similar to the web cache, the ATmega-tier or RTC wakes the

x86 every t seconds. If the x86-tier discovers that no connection is present, it goes back into

a suspended mode without performing synchronization.

Both the IMAP synchronization and the web caching applications were implemented

using standard components. Due to the distributed nature of these applications, recoding is

not necessary in order to deploy them on our prototype Turducken system. Each component

can simply be recompiled for both the x86 and StrongARM architectures.

4.9 Turducken Evaluation

The primary goal of Turducken is to extend the lifetime of a mobile computing de-

vice while allowing it to remain aware of its environment when not actively in use. In

our evaluation of the Turducken system, we measure the lifetime of several Turducken

configurations running the following three sample applications: time synchronization, web

caching, and IMAP synchronization. For each application, we compare the system lifetimes

of different configurations with respect to data consistency. Finally, we focus on the web

caching application and compare system performance with respect to variable network and

service availability.

54

4.9.1 Methodology

Our evaluation measures the lifetime of several system configurations running varied

workloads. Measuring the lifetime of a Turducken system presents a number of interesting

challenges. Explicitly measuring the lifetime of a single configuration running a single

workload can take longer than a week. Collecting even a small number of data points using

this method is impractical with only a single prototype system. We address this problem

using time dilation. For each experiment we measure the energy consumed by the system

under a small number of workloads. Using these measured values, we use extrapolation to

project system lifetimes over a wide range of data points.

We calculate the lifetime of the system from the average energy that is required to run a

particular application under a given workload for a set period of time. From this value we

can estimate how long it will take the system to drain a battery of known capacity. We also

make the assumption that the power draw of a full system will be no greater than the sum of

the power draw of each tier. This estimate is conservative since an integrated system can use

more power-efficient communication links between tiers.

For the experiments presented here, we measure the amount of energy consumed by

each tier using the tier’s native power management interface. Batteries used in modern

mobile devices typically contain a gas gauge chip, such as the Texas Instruments BQ2011

chip used in the x86-tier’s battery, which considers temperature, battery chemistry, and past

usage to accurately compute the amount of energy remaining in the battery. This approach is

sufficient to measure the average energy consumption over a particular period of time. This

is similar to the method used to measure power consumption of the Odyssey System [59].

Using this method we measure the energy consumed by each tier over a fixed period of

time, and calculate the amount of time it takes the entire system to drain a full battery. This

calculation depends on several factors: the average power draw of each tier while active;

the average power draw of each tier while suspended; the amount of time each tier spends

active; and the amount of time each tier is suspended.

55

We measure the power draw of both the x86-tier and the StrongARM-tier in suspended

mode over a 10 hour period of time. The energy in the battery is sampled immediately

before and after the period of suspension in order to determine the total energy consumed.

We divide this value by the total experiment time to obtain the power draw of each device

in suspended mode. For the StrongARM-tier, we obtain the full battery capacity from the

manufacturer’s specification. For the x86-tier we use the estimated capacity specified by the

device’s battery.

To determine the power draw of the x86-tier and StrongARM-tier in active mode we run

each application on each system configuration for a 24-hour period. During all experiments,

we turn off both the screen and backlight of the two higher tiers in order to make a more fair

comparison. For each device, we measure the amount of time it is active, tA, the amount

of time it is suspended, tS , and the total energy, E, consumed by the tier. Using the total

amount of time suspended and the suspended power draw, PS , we calculate the energy

consumed while suspended, ES over the 24 hour period:

ES = PStS. (4.2)

We then use the total energy, E, and the energy used while suspended, ES , to compute

the energy used while active:

EA = E − ES. (4.3)

By dividing the energy used while active by the amount of time the system is active, we

obtain the power draw, PA, of each tier in the active state:

PA =
EA

tA
. (4.4)

The resulting power draws are shown in Tables 4.3, 4.4, and 4.5.

56

Mode x86 ATmega
Active (mW) 11,600 26.4

Suspended (mW) 180 0.056

Table 4.3. The active and suspended power consumption of each tier running the time
application. The active power consumption for the StrongARM-tier was not measured since
it never synchronizes with the time server.

Mode x86 StrongArm ATmega
Active (mW) 10,955 740 26.4

Suspended (mW) 180 40 0.056

Table 4.4. The active and suspended power consumption of each tier running the web
caching application.

For the ATmega-tier, we assume it will be always on and establish a generous upper

bound on the power draw from the Crossbow datasheets. Even using this upper bound, the

power draw of the ATmega-tier has very little impact on the lifetime of the system.

Using these individual measurements, we calculate the power draw of the full system as

the sum of the power draw of each tier in the appropriate state. Using this value, we calculate

the amount of time it takes the entire system to drain the entire battery of the x86-tier.

4.9.2 Consistency

The goal of our first set of experiments is to vary the level of consistency required and

observe the consequent lifetimes of several system configurations. To accomplish this, we

vary the interval at which the system wakes to perform synchronization from 0 (always on)

to 0.5 hours. A wake interval of i minutes ensures that data is inconsistent for no longer than

i minutes.

For each of these experiments, a wireless network is always present, the remote service

is available, and new data updates are ready. For the time synchronization application, we

assume that the time is synchronized whenever the system wakes. For the web caching

57

Mode x86 StrongArm ATmega
Active (mW) 11,720 810 26.4

Suspended (mW) 180 40 0.056

Table 4.5. The active and suspended power consumption of each tier running the IMAP
synchronization application.

application, the system maintains a 5 MB cache consisting of 15 web sites. For the IMAP

synchronization application, the Turducken system fetches data updates and sends any

queued, local updates upon waking. For this experiment, the x86-tier wakes for 2 minutes

of every hour to simulate a user creating modifications to the local mail store. This store

initially contains 4MB of mail in four separate folders. The queued updates to the local store

are sent to the remote IMAP server when the StrongARM-tier wakes to synchronize. In

addition, new mail is sent to the inbox at a rate of 120KB per hour. During synchronization,

the Turducken client fetches this mail.

0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5
Wakeup Interval (hours)

L
if

e
ti

m
e

(h
o

u
rs

)

x86 x86+ATmega x86+StrongARM+ATmega

Figure 4.16. The lifetime of three system configurations running the time synchronization
application. As the system wakes more frequently, Turducken provides a more significant
gain in lifetime.

58

The results of the time synchronization experiment are shown in Figure 4.17. When

the system synchronizes frequently, the lifetime of the x86-only system degrades drasti-

cally while both the x86+StrongARM+ATmega and x86+ATmega configurations main-

tain nearly constant lifetimes. This is a consequence of the fact that when using a Tur-

ducken system, the x86 and StrongARM tiers never need to come out of a suspended

state. In this case, the x86+ATmega configuration has a lifetime of about 225 hours and

the x86+StrongARM+ATmega has a lifetime of approximately 180 hours. The difference

between these two configurations is a result of the energy draw of the StrongARM-tier in

suspended mode.

0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5
Wakeup Interval (hours)

L
if

e
ti

m
e

(h
o

u
rs

)

x86 x86+ATmega x86+StrongARM+ATmega

Figure 4.17. The lifetime of three system configurations running the time synchronization
application. As the system wakes more frequently, Turducken provides a more significant
gain in lifetime.

Figure 4.18 shows the results of the web caching experiment. We observe that the

x86+StrongARM+ATmega consistently performs better than the other configurations, pro-

viding a ten times improvement for always on operation and a three times improvement

when the system wakes up every six minutes. Additionally, we observe that as the wake

interval grows, the lifetime gain lessens. This is a result of the energy required to power the

59

0

20

40

60

80

100

120

140

160

180

0 0.1 0.2 0.3 0.4 0.5

Wakeup Interval (hours)

L
if

e
ti

m
e

(h
o

u
rs

)

x86 x86+ATmega x86+StrongARM+ATmega

Figure 4.18. The lifetime of three system configurations running the web caching appli-
cation. For this application, the full three-tiered Turducken system offers up to a 4 times
longer lifetime and consistently performs better than the x86-only configuration.

StrongARM-tier in suspended mode. Similarly, the x86+ATmega system performs worse

than the x86-only configuration for larger wake intervals because of the additional energy

required to power the ATmega tier. Again, we can conclude from these observations that the

higher the level of consistency required, the better the performance of Turducken.

Figure 4.19 shows the results of the IMAP synchronization experiment. The relative

performance for IMAP synchronization is very similar to the web caching application,

however, we observe that the absolute system lifetimes are significantly smaller. This is

a result of the workload of IMAP synchronization. This particular experiment requires

that the x86-tier wake periodically to simulate a user updating the local mail store, which

costs additional energy. This application also introduces additional outgoing network traffic

which impacts energy usage. However, we still observe that Turducken enjoys at least a

150% improvement in system lifetime for wakeup intervals less than six minutes. If the

x86-tier does not perform periodic synchronization and only wakes up once an hour to send

and receive updates its average lifetime is found to be 75 hours. However, the cost of this

60

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5

Wakeup Interval (hours)

L
if

e
ti

m
e

(h
o

u
rs

)

x86+StrongARM+ATmega x86+ATmega x86

Figure 4.19. The lifetime of three system configurations running the IMAP synchronization
application. For this application, the full Turducken system offers a 1.5 times longer lifetime
and consistently performs better than the x86 only configuration.

gain in system lifetime is that the expected time to get an update is 1
p

hours, where p is the

probability of a network connection being available. Since this latency can be large for

small values of p, it is reasonable to sacrifice 13% of the system’s lifetime in exchange for

one-tenth the expected latency.

Figure 6.4 shows the average power draw for each tier. Each bar represents the total

average power consumed by a particular configuration running a particular application. A

bar is composed of several components that show each tier’s contribution to the average

power draw of the entire system. We further decompose each tier’s contribution into its

active and suspended modes. For example, for the x86-only configuration running the time

application, the graph shows that the x86-tier spends most of its time suspended and a small

amount of time in its active mode. Similarly, when it is augmented with an ATmega-tier,

it spends all of its time suspended and the ATmega-tier expends a negligible amount of

power. In the web caching experiment, the x86+StrongARM+ATmega configuration is able

to replace the active power of the x86-tier with the StrongARM-tier. The mail experiment

61

0

100

200

300

400

500

600

700

800

900

1000

A
v

e
ra

g
e

P
o

w
e

r
(m

W
)

x86 Suspend Power x86 Active Power

ATmega Suspend Power ATmega Active Power

StrongARM Suspend Power StrongARM Active Power

1 = x86

2 = x86+ATmega

3 = x86+StrongArm+ATmega

Web MailTime

1

2
3

1
2

3

1
2

3

Figure 4.20. This figure shows how each tier, in different states, contributes to the average
power draw of the system as a whole. We observe that Turducken systems achieve battery
lifetime gains by replacing active power consumption in less efficient tiers with more
efficient ones.

sees a similar gain; however, because the x86-tier spends more time in active mode, the

resulting active power draw is larger. We observe that Turducken systems achieve lower

average power consumption by replacing active power consumption in less efficient tiers

with more efficient ones.

4.9.3 Network and Service Availability

The goal of our second set of experiments is to vary the availability of a wireless

network and the availability of the required service, and observe the consequent lifetimes of

several system configurations. For this set of experiments, we look exclusively at the web

caching application and fix the wake interval at 12 minutes. In the first experiment, we vary

the probability that a wireless network is available from 0 (network never available) to 1

(network always available). In the second experiment, we fix the probability of wireless

network availability at 1 and vary the probability that a set of web servers is reachable from

0 (web servers never reachable) to 1 (web servers always reachable). For this experiment,

62

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1

Probability (Availability of WiFi)

L
if

e
ti

m
e

(h
o

u
rs

)

x86+ATmega x86+StrongARM+ATmega x86

Figure 4.21. This figure shows the battery lifetime of different configurations with respect
to varying the probability of availability of WiFi. As network coverage increases, Turducken
provides a greater benefit.

we assume that either all web servers are reachable or no web servers are reachable and we

assume that it takes a trivial amount of time to determine reachability for all servers.

The results of varying the network availability are shown in Figure 4.21. When the prob-

ability of WiFi is low, the x86+ATmega system performs best. This is because it can avoid

waking the x86-tier if no signal is present. The x86+StrongARM+ATmega system enjoys

the same benefit, but incurs the cost of powering the StrongARM-tier in suspended mode.

Interestingly, the x86-only configuration performs similar to the x86+StrongARM+ATmega

for low probabilities. This implies that the cost to periodically wake the x86 to discover that

no network is present is roughly equivalent to the cost of powering the StrongARM and

ATmega tiers in suspended mode. As the probability of a network connection increases,

the x86+StrongARM+ATmega system remains nearly constant, outperforming the other

configurations by up to a factor of 2. This is a result of the energy saved fetching web pages

using the StrongARM-tier without waking the x86-tier. We can conclude that Turducken

63

0

20

40

60

80

100

120

140

160

180

0 0.2 0.4 0.6 0.8 1

Probability (Availability of Service)

L
if

e
ti

m
e

(h
o

u
rs

)

x86 x86+ATmega x86+StrongARM+ATmega

Figure 4.22. This figure shows the battery lifetime of different configurations with respect
to varying probability that a set of web servers is reachable. The benefit of Turducken is
evident as the probability that the servers are available increases.

provides a greater benefit as network coverage increases, and performs no worse than an

x86 alone as coverage decreases.

The results of varying the availability of web servers is shown in Figure 4.22. The

results for this experiment are similar to the previous experiment with the exception of the

x86+ATmega configuration. While the ATmega-tier can determine the presence of WiFi, it

cannot determine the reachability of a web server. Therefore, the ATmega-tier must always

wake the x86-tier to determine if the web servers are reachable. This costs the x86+ATmega

configuration up to 40 hours of lifetime. However, as the probability of service increases,

the benefit of Turducken increases.

4.9.4 Observations

Our primary observation is simple: for many common distributed applications, a Tur-

ducken system can maintain a high level of consistency at a fraction of the power cost of a

conventional laptop. This allows system behavior which has traditionally been ruled out

64

in favor of conserving battery power. Naturally, there is a cost incurred when powering

additional devices. This cost becomes noticeable when the system wakes up less frequently,

reducing the benefit and retaining the cost of the additional hardware. Fortunately, even if

the system never wakes up, the x86+StrongARM+ATmega configuration will last 82% as

long as the x86-only system.

Our experiments have also shown that the main limiting factor of the system’s battery

lifetime is the suspended power draw of the x86-tier. Our proposed solution to this is to use

hibernation, which involves saving the machine’s state to disk and powering it down. When

the system is restored, it boots to the previously saved state. Clearly, it will cost more in

both energy and latency to wake a device out of hibernation; however, during times of little

or no activity (e.g. at night), using hibernation could result in significant power savings,

potentially extending the system’s lifetime to over a month on a single charge.

Additionally, it is clear that the benefit achieved is highly application dependent. For

example, in the case of very simple applications, like time synchronization, the x86+ATmega

configuration achieves the best performance. The best set of tiers for a particular Turducken

system depends on the target applications that the system will host.

4.10 Discussion

In this chapter we presented a new paradigm for energy management in mobile and

sensor systems called Hierarchical Power Management. HPM can provide high levels of

consistency in mobile and sensor systems at minimal energy consumption. We presented two

instantiations of HPM—Turducken and Triage. While Turducken is a system architecture

for combining a x86 with a StrongARM with a ATMega platform to build highly energy

efficient laptops, Triage is a clean slate software and hardware design for combining a PDA

class device with a Mote for sensor network microserver design. While HPM can help build

highly energy-efficient mobile and sensor client devices, it is a solution to only half the

problem of providing improved network consistency and connectivity in mobile and sensor

65

systems. In the next chapter we argue that without proper support and enhancements to

the associated network infrastructure, the vision of improved performance for networked

applications and improved connectivity will remain a myth.

66

CHAPTER 5

ENHANCING MOBILE NETWORKS WITH INFRASTRUCTURE

Energy-Efficient mobile and sensor clients can provide improved network availability at

minimal energy consumption. However, without proper support from the network infras-

tructure, providing improved network connectivity at clients will always remain a myth. For

example, consider a wildlife tracking application [147]. If the mobile client devices are

energy-efficient they can collect large amounts of data. However, if the network is sparse

and mobile node contacts are meager, packet delivery delays to base stations could be of the

order of days. As another example consider a laptop user who accesses the web using open

WiFi connections when mobile. If the laptop runs the Turducken system (see Chapter 4),

it will have improved lifetime and always-on availability. However, if connectivity using

open WiFi is intermittent there is no way an always-on client can provide high levels of

consistency to network applications.

One way to improve connectivity in mobile networks is by adding infrastructure/stationary

resources [20, 38, 66, 79]. This includes using open WiFi base stations [20, 38, 78], mesh

networks [32], and relays [79]. While building and nomadically deploying these alternate

infrastructure enhancements presents a significant systems challenge, the first step towards

using relays, base stations or mesh nodes to enhance mobile networks is to understand

their relative benefits. The study of different types of infrastructure enhancement under one

unified framework is extremely important to understanding their relative cost and benefits—

an element lacking in the present literature. In fact, there are several research questions

related to alternative infrastructure enhancements which are still poorly understood. For

example, if opportunistic base stations are available, is mobile-to-mobile routing necessary?

67

If opportunistic access to base stations is unavailable, should one deploy relays, base stations

or mesh nodes to reduce delays? How do these trade-offs scale as the network grows in size

or density?

To answer these questions, in this chapter we present results from a set of field experi-

ments and analysis that compares the benefits of each kind of hybrid mobile network. While

the deployment study demonstrates many of the practical issues involved, including node

placement, real world propagation, and dynamic routing schemes the results heavily depend

on the particular system, underlying technology, and mobility patterns. To address this

shortcoming, we use observations from the deployment study to develop analytical models

for large scale hybrid networks based on ordinary differential equations (ODE).

5.1 Vehicular Network Deployment

We used the DOME testbed (see Chapter 3) to deploy alternative infrastructure enhance-

ments. To examine different kinds of infrastructure, we deployed three different kinds of

networks:

Relays: We placed six stationary relay nodes in the network for a period of 20 days.

The nodes consist of a PDA-class Stargate device equipped with a WiFi CF card and 64 MB

of storage (see Figure 5.1). When a vehicle comes within WiFi range of a relay, the two

exchange data over a TCP connection until the contact opportunity ends. The relay node

stores those packets, waits for another vehicle, and then exchanges packets with that vehicle,

propagating packets from mobile node to mobile node.

Mesh Nodes: These same stationary nodes can be configured as a mesh network. Using

an additional radio, in this case a 900MHz Digi-XTend radio, the nodes form a mesh network.

When one of the mesh nodes receives data from a vehicle over WiFi it propagates those

packets to other nodes in the mesh network.

68

XTEND
MAXSTREAM

RADIO

STARGATE

BATTERY

Figure 5.1. Prototype for a relay/mesh node.

Characteristics Network-core Network-periphery
average pairwise inter-contact time 434 min 506 min

average contact duration 8590 ms 2802 ms
number of contacts (per day) 145 7

Table 5.1. The above table shows the characteristics of the two regions in the network.

Base Stations: For base stations, we used a combination of APs that we deployed and a

set of open-access points set up by third parties. When a vehicle passes an AP it exchanges

data with a central server through the AP, reachable by all of the base stations.

We collected only data inherent to the network and type of infrastructure so that we

could later apply the traces to a variety of scenarios. Each node, both mobile and station-

ary, recorded its contact with other nodes and their durations, as well as the amount of

data transferred during the contacts. For the mesh nodes, we collected data on the WiFi-

based vehicle-to-mesh and the XTend-based mesh-to-mesh connections. The mobile nodes

collected detailed mobility traces from GPS units.

69

Greater than 7 hours 0 − 5 hours

1 2 3

4 5 6

7 8

9 10

11 12

0 200 400 600 800 1000 1200 1400
10−3

10−2

10−1

100

Inter−meeting time (minutes)

P
ro

ba
bi

lit
y

Network−core (mobile−mobile)
Network−periphery (mobile−mobile)
Network−core (mobile−stationary)
Network−periphery (mobile−stationary)

Figure 5.2. Heatmap showing the amount of time vehicles spend in different regions of
the network as well as the CCDF of the aggregate pairwise inter-meeting times between
contacts for mobile nodes and mobile and stationary nodes.

5.1.1 Network Characteristics

To understand how placement and mobility effects hybrid network performance, we first

look at the geographic characteristics of our mobile network testbed. Figure 5.2 shows a

heatmap of the amount of time vehicles spend in different parts of the network. The darker

squares are areas where vehicles spend the least amount of time while lighter regions are

areas where vehicles spend the greatest amount of time. From the figure, we can divide

the network into two disjoint regions: (1) a network core, where nodes reside for a large

fraction of time (squares 1, 5, 8, and 9 in Figure 5.2); and (2) a network periphery, where

nodes spend the rest of the time. Figure 5.1 shows the characteristics of these two regions.

Note that the pairwise contact durations, the pairwise inter-contact times and the overall

number of contacts is different for both regions.

We later use this dichotomy of regions to develop accurate mathematical models for

mobile networks with infrastructure. Further, this feature is not unique to this kind of

deployment—a dichotomy of regions is inherent in many other mobile networks. For

example, in a network of humans [76], nodes are likely to spend more time in certain parts of

70

the network as compared to others. The partition of the mobile network also provides insight

on how stationary nodes should be placed in a mobile network to maximize performance.

While the two regions exhibit different absolute contact statistics, the pairwise inter-

contact times between mobile nodes and mobile and stationary nodes for both regions have

similarly shaped distributions. Figure 5.2 shows the CCDF of aggregated inter-contact

time in each region. From the graph we see that 90% of all the contacts approximately

follows an exponential distribution. The noisy behavior in the tail of the distribution is due

to end-of-day effects, called partially observed contacts—these are contacts that have a

start time but not an end time recorded in the logs. We calculate the inter-meeting time for

such contacts using the end of the day as the last contact between the node pair (similar to

previous work in vehicular networks [169]).

5.1.2 Trace-driven Simulator

Using the traces taken from our deployment, we built a trace-driven simulator to evaluate

the performance benefits of alternatives to enhancing a mobile network. The simulator can

be used to examine three key factors that affect performance: the type of infrastructure

enhancement, the placement of that infrastructure, and the choice of the routing protocol.

Examining each type of infrastructure enhancement (relay, mesh, and base stations) is

straightforward, we modify the simulator to simulate each communication path—relays can

only communicate with mobile nodes, meshes and base stations with other infrastructure

nodes and mobile nodes. Modifying the simulator for routing protocols is also possible: the

packets exchanged in the simulator between nodes is determined by the particular algorithm

we choose.

Placement requires restricting infrastructure to a set of feasible locations. Relays can be

placed anywhere in the network. Using solar cells and batteries, relay nodes can be placed

independent of power and network infrastructure, as well as independent of one another.

This does add an additional complexity of energy management on the nodes—something we

71

discuss in the next chapter. Mesh nodes are more constrained, in that they must be placed

within range of one another (in the case of our mesh nodes, this range is 1650 meters).

We have built these mesh nodes from the same solar-powered boxes as the relays, and the

collection of connected nodes can be placed anywhere subject to the maximum distance

constraint. The base stations can only be placed where there is wired connectivity. However,

they do not need to be proximate to one another. A pair of base stations can communicate

across the full geographic diameter of the network. To approximate the placement constraint

for base stations, we assume that the base stations can only be placed at current access point

locations.

The remaining parameters come from the traces themselves. We use the vehicle GPS

traces to calculate the time and duration of contacts between mobile and stationary nodes.

We use measured values for the WiFi radio (100 meters) and the XTend Maxstream radio

(1650 meters) from our six node deployment. The simulator uses the vehicle-to-relay and

vehicle-to-AP bandwidth distributions measured from our deployment for the amount of

data transferred during each contact. For the mobile-to-mobile contacts, we use the vehicle-

vehicle connections logged by the nodes in our testbed. The data includes the time, location,

duration of contacts, and the amount of data transferred during connection events. The

movement of vehicles is taken directly from the GPS traces.

5.1.3 Placement

We use two strategies for stationary node placement. (1) uniform: place nodes uniformly

across the entire network (2) non-uniform: place more nodes in regions where the vehicles

spend a larger fraction of time (see Figure 5.3).

We evaluate the effect of each placement strategy using our trace-driven simulator. As a

starting point, we use RAPID [17] as our routing protocol. We chose RAPID since it has

been shown to perform close to optimal. We present results from experiments using other

routing schemes in Section 5.1.4. We compare performance using two metrics (1) average

72

Figure 5.3. Placement of 25 base stations non-uniform across the mobile network.

5 10 15 20 25
0

20

40

60

80

100

120

Number of stationary nodes

A
ve

ra
ge

 p
ac

ke
t d

el
iv

er
y

de
la

y
(m

in
ut

es
)

Relay (uniform)
Relay (non−uniform)
Mesh (uniform)
Mesh (non−uniform)
Base station (uniform)
Base station (non−uniform)

5 10 15 20 25
0

5

10

15

20

25

Number of stationary nodes

A
ve

ra
ge

 n
um

be
r

of
 tr

an
sm

is
si

on
s

pe
r

pa
ck

et

Relay (uniform)
Relay (non−uniform)
Mesh (uniform)
Mesh (non−uniform)
Base station (uniform)
Base station (non−uniform)

Figure 5.4. The average packet delivery delay and the average number of transmissions per
packet with a varying number of stationary nodes for uniform and non-uniform placement

packet delivery delay: the lifetime of a packet from its creation to the first time it is delivered

to the destination; (2) average number of transmissions per packet: the number of copies

made by the time the packet is first delivered to its destination. This can be used to estimate

energy and bandwidth as both are proportional to the number of packet copies.

73

The simulation generates 1KB packets at a uniform rate of 5 packets per destination per

hour. This load is intentionally small so that it does not exceed the network capacity. The

small load also isolates the effect of delay from bandwidth. The destination for each packet

is divided into two equal classes: one half of the traffic is destined for a sink node; otherwise

it is equally likely to be destined for any other mobile node. The sink node for the relay and

mesh case is a randomly chosen node, and in the base station case it is any base station node.

Figure 5.4 shows the average packet delivery delay for different infrastructures for both

uniform and non-uniform placement across a range of numbers of infrastructure nodes. The

error bars represent the 95% confidence interval around the sample mean. Figure 5.4 shows

the number of transmissions per packet, including replication. From the figures, we make the

following observations about our deployment. (1) We need only 5–7 times as many relays or

2–3 times as many mesh nodes as base stations to reduce delay by a factor of two. Given that

the cost of deploying base station networks can be greater than 7 times the cost of relays or

a mesh network, either relays or meshes are better choices. (2) The non-uniform placement

of nodes leads to 10% lower delays as compared to uniform placement. Therefore, placing

infrastructure in popular regions can lead to better performance. (3) The average number

of transmissions per packet for different infrastructures is similar. In terms of resource

consumption, all infrastructure networks are similar.

5.1.4 Dynamic Routing Protocols

To determine the effect of different routing schemes on different kinds of infrastructure,

we perform a similar experiment with three routing protocols: (1) RAPID, (2) two-hop: a

protocol that does not use any mobile-to-mobile routing—instead the mobile source only

passes the packet to the infrastructure, and the destination can only receive the packet from

it as well, and (3) Random-epidemic: a base-line protocol that creates copies of a packet

randomly, i.e., when two nodes meet the packets they transfer are chosen randomly from

their buffers.

74

2 5 10 15 20 25
0

20

40

60

80

100

120

Number of relay nodes

A
ve

ra
ge

 p
ac

ke
t d

el
iv

er
y

de
la

y
(m

in
ut

es
)

Two−hop
Random−epidemic
RAPID

Figure 5.5. The average packet delivery delay with a varying number of relay nodes for the
three routing protocols.

2 5 10 15 20 25
0

20

40

60

80

100

120

Number of mesh nodes

A
ve

ra
ge

 p
ac

ke
t d

el
iv

er
y

de
la

y
(m

in
ut

es
)

Two−hop
Random−epidemic
RAPID

2 5 10 15 20 25
0

20

40

60

80

100

120

Number of base station nodes

A
ve

ra
ge

 p
ac

ke
t d

el
iv

er
y

de
la

y
(m

in
ut

es
)

Two−hop
Random−epidemic
RAPID

Figure 5.6. The average packet delivery delay by varying the number of mesh nodes and
base stations for different routing protocols.

Figures 5.5, and Figure 5.6 compare the average packet delivery delay for random,

RAPID, and two-hop routing for relay, mesh, and base station networks. From these graphs,

comparing two-hop routing with RAPID, we find that the improvement yielded by mobile-

to-mobile routing is marginal for a mesh and base station infrastructure. Base stations

and meshes substantially help reduce delays. However, the additional benefit of mobile-

75

to-mobile routing over a two-copy approach yields little additional benefit. Somewhat

intuitively, mobile-to-mobile routing helps in the relay case, as the destination must meet

one of the same relay nodes that the source saw. Moreover, from the figures, we find that

Random-epidemic performs close to RAPID. From this we can conclude that even for relay

infrastructure, simple epidemic schemes like random provide excellent performance. This is

because the increase in capacity of the network through additional infrastructure overwhelms

the benefits of priority schemes to select packets for replication, as used by RAPID, over

Random-epidemic.

Since most of our results are for low traffic loads, we also experimented with higher

packet generation rates for RAPID and Random-epidemic. We found that increasing the

packet generation load from 5 packets per hour per destination to 120 packets per hour

per destination (a factor of 24) leads to a 29%, 12%, and 28% increase in average packet

delivery delay for base stations, meshes, and relays, respectively. Moreover, even for higher

loads the performance of Random-epidemic is close to RAPID. From the experiment, we

conclude that the addition of infrastructure manages increasing network load well.

5.2 Analytical Model

Although our deployment study presents interesting trade-offs between the three type of

infrastructure it suffers from the following limitation. The number of mobile nodes are fixed,

hence we cannot validate our results for a large number of mobile and stationary nodes. To

address this limitation, we develop detailed analytical models for large-scale networks in

the presence of infrastructure.

We model the mobile network as N + 1 mobile nodes and M stationary nodes. The area

covered by the mobile network is divided into k disjoint regions. We observed that k = 2

for our deployment. The mobile nodes spend time in each of the k regions. The stationary

nodes can either be placed uniformly— every region has the same number of stationary

76

nodes or non-uniformly— some regions have more nodes than other regions. The stationary

nodes are placed uniformly within a region.

We assume that the pairwise meeting times between mobile nodes within region i are

represented by exponentially distributed random variables with mean inter-meeting time

1/βi, and the pairwise meeting times between mobile and stationary nodes are represented

by exponentially distributed random variables with mean inter-meeting time 1/γi. The

time at which mobile nodes move from region i to j are assumed to be represented by

exponentially distributed random variables with mean rate µij . The exponential assumptions

follows from the observation made in our deployment regarding the mobile-to-mobile and

mobile-stationary contacts (see Figure 5.1.1).

We assume a very general traffic model: (i) traffic in the network is unicast; (ii) traffic

sources and destinations are uniformly random; and (iii) stationary nodes route data and can

serve as sinks and not sources. For traffic destined to a sink, all base stations, one of the

mesh access points, and one of the relays are connected to the Internet.

Our analytical model evaluates a general epidemic routing protocol where every node

forwards packets to every other node it meets. Two nodes meet when they are within trans-

mission range of each other. Every node has an large buffer and every transfer opportunity

is long enough such that all packets in a node’s buffer can be transferred to its peer. Hence,

every packet can be considered independent of all other packets. Our analytical model

differs from previous work in two major aspects. (1) Previous works use Markov chains

to model infrastructure enhanced mobile networks [70,79,150]. The use of ODEs as fluid

limits of Markov chains is limited to purely mobile networks [170]. (2) Prior work treats the

entire network as one single region and models the inter-meeting times between peers as

one exponential distribution [70, 79, 150] which we found yields inaccurate results for our

mobile network.

77

5.2.1 Epidemic Spread

We model the spread of a packet and its replicas as an epidemic infection among nodes

in the network. When nodes meet one another they exchange packets, infecting each other

with the packets they possess until the packet infects the eventual destination.

The packet infection model consists of a system of non-linear differential equations with

two variables for every region i: xi(t) and yi(t). The number of mobile nodes infected with

a packet at time t within region i is xi(t), and the number of infected stationary nodes at

time t within region i is yi(t). The network delivers a packet once the destination is infected

with the packet, and our goal is to determine P (t) = Pr[T < t], the probability that the

time to deliver a packet is less than t. The expected delivery delay of a packet is given by∫∞
0

(1− P (t))dt.

Similar to our deployment study, our other goal is to estimate the amount of resources

used in the network, including bandwidth, storage, and energy costs. All are strongly

correlated with the number of transmissions/copies per packet. The expected number of

copies per packet, E[C], is given by the following. E[C] =
∫∞

0
(
∑i=k

i=1(xi(t) + yi(t)))dP (t).

We assume in our analysis that all replicas of a packet are removed once the packet is

delivered to its destination. In this section, we describe the set of differential equations for

each of the three cases: relays, base stations, and meshes.

5.2.2 Relays

For peer-to-peer traffic, the set of non-linear differential equations governing the packet

spread in the network is given by the following.

78

x′i(t) = (βixi(t) + γiyi(t))(ni(t)− xi(t))

−
∑
∀j 6=i

µijxi(t) +
∑
∀j 6=i

µjixj(t),

y′i(t) = γixi(t)(Mi − yi(t)),

n′i(t) =
∑
∀j 6=i

µjinj(t)−
∑
∀j 6=i

µijni(t),

x1(0) = 1, ∀i 6= 1, xi(0) = 0,∀i, yi(0) = 0,

n1(0) = N + 1.

(5.1)

The rate of change of P (t), P ′(t), is given by the following:

P ′(t) =

∑i=k
i=1 x

′
i(t)

N
,

P (0) = 0. (5.2)

The above set of differential equations assume that the destination is always a mobile

node. However, in many cases data is destined towards a sink (e.g., the Internet). To account

for node to sink traffic we assume that one of the relay nodes in region 1 is a sink. Such a

node could be located close to an open access point and can act as a gateway to the Internet.

We only need a minor modification to P ′(t) to account for the source-sink traffic. For

packets destined to the sink, P ′(t) is the following.

P ′(t) =
y′1(t)

M1

,

P (0) = 0. (5.3)

79

5.2.3 Base stations

We model the M base stations as one node. We assume that the pairwise meeting

times between mobile nodes and the single node in region i is represented by exponentially

distributed random variables with mean inter-meeting time 1/(Miγi). For peer-to-peer

traffic, the differential equations governing the dynamics of the packet spread in the network

is given in Equation 5.4. The rate of change of P (t) is given in Equation 5.5.

x′i(t) = (βixi(t) + γiMiy(t))(ni(t)− xi(t))

−
∑
∀j 6=i

µijxi(t) +
∑
∀j 6=i

µjixj(t),

y′(t) = (
i=k∑
i=1

Miγixi(t))(1− y(t)),

n′i(t) =
∑
∀j 6=i

µjinj(t)−
∑
∀j 6=i

µijni(t),

x1(0) = 1, ∀i 6= 1, xi(0) = 0, y(0) = 0

n1(0) = N + 1.

(5.4)

P ′(t) =

∑i=k
i=1 x

′
i(t)

N
,

P (0) = 0.

(5.5)

For mobile node to sink traffic any base station can act as a sink since all of them are

connected to a wired infrastructure. We make a simple modification to P ′(t) to accommodate

traffic to the sink.

80

P ′(t) = y′(t),

P (0) = 0. (5.6)

5.2.4 Mesh

We can model the wireless mesh as a special case of a relay network. The difference

between a relay network and a mesh network is that once a mesh node is infected by the

packet, all nodes in a mesh can be infected by the packet using the mesh radio. This rate of

infection among mesh nodes, denoted by α, depends on the bit rate of the mesh radio and

the number of packets transferred simultaneously over a mesh link. The ODEs governing

the rate of change of xi(t), P (t), and ni(t) are the same as the relay case. The difference

lies in the differential equations governing the rate of infection among the stationary mesh

nodes in region i (y′i(t)).

y′i(t) = γixi(t)(Mi − yi(t)) + f(α, y1(t), ..., yk(t),Mi) (5.7)

The function f depends on the topology of the mesh. For example, if we consider a

clique, f is the following.

f(α, y1(t), ..., yk(t),Mi) = α(
i=k∑
i=1

yi(t))(Mi − yi(t)) (5.8)

The above definition of f means that the rate of infection among mesh nodes in region i

is equal to the rate at which the infected mesh nodes (in the entire network) infect the nodes

in region i.

5.2.5 Impact of Network size

We validated the results from the model by comparing it with results from our simulation

on data from the deployment—please refer to the associated research publication [23]. We

81

2 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

100

110

Number of stationary nodes

A
ve

ra
ge

 p
ac

ke
t d

el
iv

er
y

de
la

y
(m

in
ut

es
)

Relay
Mesh
Base station

2 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

160

180

Number of mobile nodes

A
ve

ra
ge

 p
ac

ke
t d

el
iv

er
y

de
la

y
(m

in
ut

es
)

Relay
Mesh
Base station

Figure 5.7. The average packet delivery delay as a function of the number of stationary
nodes and mobile nodes. The number of mobile nodes is fixed at 20 for the first experiment
and the number of stationary nodes are fixed at 25. The network parameters are taken from
our deployment.

then use the model to evaluate the performance of hybrid networks with large numbers

of stationary and mobile nodes. We perform two experiments with the model. We fix the

number of mobile nodes in the first experiment to 20 and vary the number of stationary

nodes. In the second experiment the number of stationary nodes is fixed at 25 and we vary

the number of mobile nodes. The model parameters are taken from the uniform placement of

stationary nodes in our deployment and the fraction of traffic to a sink is taken as one-half.

Figures 5.7 shows the average packet delivery delay for the first and second experiment.

From the figures, we draw the following conclusions. (1) With a very large number of

stationary nodes, we obtain very low delays. However, if we desire delays of the order of

seconds (e.g. for an instant messaging application) we need a very large number of base

station nodes. (2) To reduce packet delivery delay by a factor of two we need around 5–7

times as many relays and 2–3 times as many mesh nodes as base stations. (3) Adding

mobile nodes to a network produces substantial improvement in performance of a relay

infrastructure but only a small improvement in the performance of either a mesh or base

82

station infrastructure. This result confirms that mobile-to-mobile routing leads to marginal

improvement in the presence of base stations or a mesh.

5.3 Discussion

This chapter presented several interesting trade-offs between base station, mesh, and

relay hybrid networks. We found that while base stations provide better performance in

terms of packet delivery delay, their high costs often makes mesh and relay networks a

better choice. However, base station-enhanced mobile networks with a large number of

stationary nodes is required to support applications such as instant messaging which can

tolerate latency of the order of seconds. Moreover, we saw that addition of infrastructure

often obviates the need for mobile-to-mobile routing. However, there is an important aspect

of relay and mesh node design which we ignored in our analysis. We assumed that mesh

and relay nodes are solar powered yet always available. This assumption is true only if we

have intelligent power management on relay nodes which provide maximal performance

and near-perpetual operation using energy scavenged from the sun. In the next chapter,

we use the idea of Hierarchical Power Management (described in Chapter 4) to design a

multi-tiered, scalable solar powered relay node called Throwbox.

83

CHAPTER 6

ENHANCING SPARSE MOBILE NETWORKS WITH
THROWBOXES

We showed in the previous chapter that the addition of stationary resources in the form

of base stations, relays, and mesh nodes can improve the performance of mobile networks.

Especially in sparse disruption-tolerant mobile networks [82, 147], addition of stationary

resources in the form of nomadic relays can substantially improve performance. However,

building and deploying relay nodes in mobile networks face unique system challenges. For

example, one of the chief impediments to the deployment and use of relays for enhancing

mobile networks is energy management on the stationary nodes. To understand why consider

this: for relay nodes to be maximally effective they may have to be placed anywhere in the

network. Such a nomadic placement requires solar or battery powered devices. Hence, the

effectiveness of these untethered nodes without intelligent energy management is minimal.

Therefore, the actual design of these relays opens up several interesting networking and

embedded systems questions. For instance, what is the ideal hardware platform for such

relays? How do we manage energy on these nodes?

The high power consumption of always-on nodes results in a shorter lifetime; conversely

nodes powering on and off intermittently without regard to node mobility may miss numerous

connection opportunities, increasing lifetime without necessarily improving performance. A

key goal is to provide energy efficiency without sacrificing network performance. Moreover,

the relays are constrained to consume power at a rate dictated by a lifetime requirement or

the availability of scavenged energy, such as solar power. In this chapter we address these

issues in the context of the following challenge: how can a relay in a mobile network meet

84

Mobile Node

802.11
Range

XTend Radio
Range

Tier-0
Mote

Xtend Radio

Mobility
Prediction

Lifetime
Scheduler

Tier-1
Stargate

802.11 Radio

Speed and direction
beacon

Contact opportunity

Routing
Engine

Packet
Storage

W
ak

eu
p

Throwbox

Figure 6.1. Overview of our Throwbox architecture.

an average power constraint and simultaneously maximize the number of packets forwarded

by it?

Our approach is a new relay architecture called Throwbox. Throwboxes use a novel

paradigm for energy management in mobile DTNs that provides more efficient neighbor

discovery by detecting the mobility of other nodes at a minimum cost and predicting the

cost and opportunity of each possible contact. Using these predictions, the throwbox can

intelligently choose the most fruitful contact opportunities, and can limit the number of

opportunities to meet energy constraints. In our architecture, we pair a tier-1 platform—a

PDA-like Stargate and 802.11 radio—with a low-power tier-0 platform—a Mote and Digi-

XTend radio. The XTend radio is a long-range, low-bitrate radio for neighbor and mobility

discovery. It has a range of about a mile which is more than ten times the range of WiFi

radios. By coupling the XTend radio with a low-power Mote, we reduce the total energy

cost of the throwbox platform. The system builds on ideas from other multi-radio systems

such as CoolSpots [127] and Wake-on-Wireless [138].

Figure 6.1 presents an overview of our approach and the problems we address in this

chapter. Mobile nodes (shown as a bus in the diagram) beacon their position, direction,

and speed using the long-distance radio. While listening for other nodes, the throwbox

needs very little computational power and memory, and the tier-0 platform is sufficient to

85

process the beacons. If a throwbox hears a beacon, tier-0 predicts if, when, and for how

long the mobile node will come in contact with the tier-1, 802.11 radio. Using a constrained

single-objective optimization to meet a power consumption target, the node decides whether

to take the transfer opportunity. If it does, tier-0 wakes the Stargate and WiFi radio in

advance of the mobile node entering radio range, which then transfers DTN data. After the

contact opportunity, the tier-1 platform returns to a sleep state. For this scenario, we develop

a method for predicting the contact opportunities based on the observed mobility of remote

nodes (§ 6.1) and an algorithm for choosing which contacts to take (§ 6.3).

6.1 Mobility Prediction Engine

If a mobile network is sparse (e.g., TurtleNet [147], ZebraNet [168]), throwboxes

must expend significant energy searching for contact opportunities. Because of node

mobility, throwboxes have a limited amount of time to exchange data with peers. Searching

for contacts efficiently requires waking and sleeping rapidly (called duty cycling), and

conversely, data transfer requires high-bandwidth connections. Our design philosophy is to

separate neighbor discovery from data transfer, and to divide these tasks across the hardware

that is best suited to each task. The long-distance radio and tier-0 platform can duty-cycle,

listen, and idle efficiently, while the high-bandwidth radio and tier-1 platform can transfer

large amounts of data during limited connection opportunities. While the tier-0 platform is

listening for contacts, the tier-1 platform remains asleep.

The decision to wake the tier-1 platform and radio depends on an engine that detects,

and predicts the mobility of nodes in the network, based on information gathered by the

tier-0 platform and radio. By predicting the trajectory of an on-coming mobile node, the

tier-0 platform can determine if, when, and for how long it will enter the range of the data

transfer radio. If the throwbox determines that the mobile node will not come in contact

with its data transfer radio, it can safely ignore that node. If it determines that the mobile

node will enter at a certain time, it must make sure that the throwbox can make the most

86

A B

C

Probability of entering 802.11 range
from Cell A Traveling in the SE Direction

P AB * P BC

D1

D2

Predicted Time Before Node
enters the 802.11 range

D1 / Velocity

Predicted Time Till Node Will
remain in 802.11 Range

D2 / Velocity
NODE

TRAJECTORY

802.11
Range

Figure 6.2. The figure depicts the working of the Mobility Prediction Engine

of the contact opportunity. When the throwbox estimates the time that the mobile node

will enter 802.11 range, it wakes the tier-1 node in advance of the mobile node arriving—a

process that can take several seconds. The predicted length of the contact opportunity is

then used to determine which contact opportunities to take.

To determine trajectories, we require mobile nodes to periodically transmit location,

speed, and direction over the long-distance radio as a beaconing message.

6.1.1 Prediction Algorithm

Mobility prediction algorithms in the past have been used for predicting future network

topology [153], accurately predicting hand-offs and bandwidth provisioning in cellular

networks [43, 142] and location tracking in wireless ATM networks [99]. Such algorithms

either require coordinated information from more than one base station [142, 144], or

they are computationally too expensive to implement on a resource constrained Mote like

device [144], or are built assuming very specific mobility patterns of nodes [142]. We want

an uncoordinated, base station independent mobility prediction engine which works on

constrained platforms like a Mote. Therefore, unlike previous work, we present a lightweight

simple mobility prediction engine.

87

We model the movement pattern of the mobile nodes as a Markovian process. Hence,

we assume that the location of a node at time ti depends on its location at time ti−1. The

algorithm models the problem as a virtual square of width 2r, where r is the radius of the

long-range radio. The throwbox is located at the center of the square in Figure 6.2. The

large square is divided into square cells numbered from 0 to k. The algorithm makes use of

a probability transition matrix T for mobile nodes in the network. Entry Tij of the matrix is

the probability that a node will transition to cell j given that it is in cell i.

Mobile nodes beacon data in tuples of the form< p, v, t, d >, where p is the current GPS

location of the mobile node, v is its speed, t is the time at which the beacon was sent, and d

is the direction of motion of the node. The direction of motion is determined using a GPS.

When a node n approaches, the throwboxes collect a set of tuples {< p1, v1, t1, d1 >, ..., <

pk, vk, tk, dk >} over time. Using this set, as well as historic information, the algorithm

estimates :

• The probability that the mobile node n would be in any cell within the data transfer

radio range after time ∆T , where ∆T is the time required to wakeup tier-1 and start

transferring application data. The time to wakeup tier-1 can be typically on the order

of seconds

• The predicted time when the node will be in range of the data transfer radio and,

subsequently, the amount of data it is likely to transfer

Figure 6.2 illustrates this process. At time t = 0, the mobile node’s beacon from cell

A is received. By dead-reckoning along a straight line of motion, the prediction engine

estimates D1, the distance until the node is within 802.11 range, and D2, the distance for

which the node would be within range. Accordingly, the predicted length of time until the

mobile node reaches the range of the data transfer radio is D1/v; if this time is greater

than the transition time to wakeup tier-1, then the mobile node is ignored. Otherwise, the

throwbox calculates Pr, the probability that the node will enter the range of the data transfer

88

radio. In the simple example presented in the figure, Pr is the product of the probability of

transition from cell A to B and from B to C; i.e., Pr = TAB · TBC . The expected duration

of time the mobile node will stay in data radio range is Pr · (D2/v). Below, we show how

we calculate Pr under Markovian assumptions.

6.1.2 Estimating the Probability of Entering Data Radio Range

The prediction engine assumes that the node moves in the direction that it was last

moving in. Therefore, it constructs a straight line in the current direction of motion and finds

the intersection with the range of the data-transfer radio range, idealized as a circle. Let p be

the cell at which the node enters the data radio range; let Dp,pk
be the Euclidean distance

between the present location of the node and the location of the point where it enters the

data transfer radio range (assuming the present direction of motion of the node). Let vk be

the velocity of node n. Let ci, . . . , cj+i be a sequence of cells in the predicted path of motion

of the node. Let {d1, . . . , di} be the set of i possible directions of motion. For example, a

direction could be north, south, east or west. The probability that a node enters the data

transfer radio range at position p after time ∆T is given by:

Pr[Xtk+∆T = p|(Xtk = pk, dtk = dk), . . . , (X1 = p1, dt1 = d1)],

where Xt is the position of the node at time t. The above probability can be approximated

as

Pappr = Pr[Xtk+∆T = p|Xtk = pk, dtk = dk] (6.1)

assuming that the node movement is modeled as a Markovian process. Pappr is evaluated by

the algorithm as

Pappr ={
Tci,ci+1

· . . . · Tci+j−1ci+j
,

Dp,pk

vk
≤ ∆T

0,
Dp,pk

vk
> ∆T.

(6.2)

89

Equation 6.2 shows that the probability of a node entering a cell of the data transfer

radio after time ∆T equals the transition probability of the node from its present cell to

cell ci+j provided the node is traveling fast enough to cover the shortest distance between

the two cells in time ∆T . Although we assume that that the node is going to continue

movement in the direction that it was last seen, this information is periodically recalculated

with every incoming beacon. Hence, if the beaconing rate is fast enough (once per second in

our prototype implementation) the actual trajectory of the mobile node is approximated as a

combination of piecewise linear functions.

The transition probability Tij is learned/updated by each throwbox node using historical

data. Every time a mobile node passes through the long range radio’s range the beacons

captured by the throwbox is used to build the transition probability matrix. If a throwbox

finds that a mobile node in a path of motion has moved from cell A to B, it updates

the transition probability entries PAi, where i represents the eight neighboring cells of A

including B.

We also derive the running time and space complexity bounds for the prediction

algorithm—please refer to the associated research paper [22].

We also note that while searching for mobile nodes, the long-distance radio does not

need to be constantly powered; it needs only to wake-up often enough to predict if, when,

and for how long the mobile node will be within range of the data transfer radio. Our design

uses a Digi-XTend radio that support several very efficient duty-cycling modes built into the

hardware and the MAC layer. We have implemented an adaptive controller for duty cycling

the radio which we describe in the next section.

6.2 Discovery Radio Duty-Cycle Controller

The radio used in our design has k software configurable cyclic sleep modes {S1, S2, ..., Sk}.

In sleep mode Sk, the radio wakes up every tk seconds for time τ (τ << tk) looking for RF

90

activity. If any RF activity is discovered and the packet received has a special header, the

radio is switched on to receive the entire packet.

We use these cyclic sleep modes to efficiently duty-cycle the Digi-XTend radio. If the

mobility prediction engine requires m data points to accurately predict the movement pattern

of a node, the aim of the heuristic is to gather these m points at minimal energy cost. The

number of points the mobility predictor needs must be determined through experimentation.

In our experience we found that a small number of points, such as four, is sufficient to make

accurate predictions in our network.

The algorithm constructs m virtual concentric circles of radii rn = R + n·(r−R)
m

(1 ≤

n ≤ m), where r and R are the ranges of the discovery radio and the data transfer radio.

The number of circles, m, constructed depends on the number of data points required by the

mobility prediction engine to accurately predict when the node will enter the data transfer

radio range. The distance r1 −R is such that the time before a node enters the data transfer

range is less than the time to wakeup tier-1 from suspension or shutdown. The virtual

concentric circles help the throwbox determine how close it is to a mobile node. The sleep

mode Sk corresponding to the shortest sleep interval is taken as the default sleep mode.

Therefore, when there are no nodes in range the radio is duty-cycled in sleep mode Sk.

When the throwbox receives a beacon from a mobile node it determines the circles of radii

ri and ri−1 within which the node is presently located. The algorithm uses the velocity v to

find the sleep mode Sj with the longest tj such that tj ≤ (ri − ri−1)/v. Consequently, the

duty-cycle controller puts the discovery radio to sleep in sleep mode Sj . If the discovery

radio does not find any data after time tk, the node is put to sleep again in the default sleep

mode. Assuming that the variance in the speed of the mobile nodes is not very large, the

algorithm would not miss many beacons on the long range radio and would remain asleep

as long as possible. If the throwbox records beacons from multiple nodes, the heuristic

calculates the shortest time after which a node will enter the adjacent concentric circle.

91

6.3 Token Bucket Lifetime Scheduler

Mobile nodes may present a Throwbox with many transfer opportunities. However,

because they have limited energy, they may not participate in every opportunity. Additionally,

mobile nodes may only skirt the outside range of the data transfer radio, and by the time the

tier-1 platform is awake, the contact may have moved out of range.

A limited energy supply can be viewed as a constraint on the average power that the

system consumes in two different scenarios. First, the throwbox may be designed to last for

a certain period of time—computing the average power from the capacity of the batteries is

straightforward. Second, throwboxes may be capable of scavenging energy, such as the solar

panels used in our prototype system. In that case, we assume the average power constraint

to be the average power produced by the solar cells. This is a simplification, as there is great

variance in radiant solar energy and the battery must be large enough to smooth fluctuations.

We show that computing the optimal subset of opportunities to participate in given

an energy budget is NP-Hard (see the related publication [22]). Here we present our sub-

optimal solution, which is linear in the number of connections and requires constant memory.

Note that optimization criteria other than energy can also be considered concurrently. For

example, mobile nodes may transmit the priority of packets that they are carrying, or the

throwbox can decide which opportunities to take based on the likelihood of being able to

route the packet to its final destination. However, we leave this extension to future work (see

Chapter 8).

6.3.0.1 A Token-Bucket Approach

An approximate online solution to choosing the appropriate set of connection events

would follow the following intuition: since an online algorithm has no knowledge of the

future, at any time t it should take a contact opportunity only if the energy cost does not

lead to a violation of the average power constraint till time t. In other words, the heuristic

should regulate energy flow based on the average power constraint. Moreover, since contact

92

opportunities may occur in bursts, the scheduler should also be capable of handling bursts

of energy consumption.

Token buckets have been used in a similar scenario in networking to regulate network

traffic [154]. Token buckets allow bursty traffic to continue transmitting while there are

tokens in the bucket, up to a user-configurable threshold thereby accommodating traffic

flows with bursty characteristics [56].

Algorithm 1 Token Bucket Scheduler
Average power constraint = P
Generate energy tokens at the rate of P /sec
Energy cost of present connection event = Ep

Size of present connection event = Sp

Number of tokens accumulated till present = m
if m · P < Ep then

Do not wakeup Tier-1
else

Mean size of the last k connection events = Sk

Mean energy of the last k connection events = Ek

Mean inter-arrival time of connection events = Tm

if m · P − Ep + Tm · P < Ek and Sp < Sk then
Do not wakeup Tier-1

end if
end if

Our scheme, shown in Algorithm 1, is based on a token bucket scheduler. It generates

energy tokens at the rate of the average power constraint. For any given connection event, if

the number of tokens accumulated is less than the amount of energy required, the event is

ignored. However, if the number of tokens accumulated is greater than the energy required

for a connection event the system decides between the following simple choices: should it

take this connection event, the next connection event, or both? First, the algorithm estimates

the size and energy cost of the current connection event based on the mobility prediction

engine. It then estimates the size and energy cost of the next connection event as the mean

of the last k connection events and assumes that the connection event arrives at the mean

inter-arrival time of the last k connections. Taking into account the number of tokens that

would accumulate between now and the next connection event, if it estimates that it can take

93

STARGATE

TELOSBXTEND
RADIO

BATTERIES

INTERFACE
BOARD

Figure 6.3. Prototype for a Throwbox node

Characteristic XTend Dlink-Air
Ranges 1000 m 150 m

Receive Power 360 mW 1000 mW
Transmit Power (max) 1 W 1.2 W

Sleep Power 10 mW 50 mW

Table 6.1. Characteristics of the two radios

both connection events it takes the current one. Otherwise it chooses the larger of the two.

This process repeats for the next contact opportunity.

The algorithm runs in time linear in the number of connection events and requires O(1)

space. Therefore, the algorithm is space and time efficient and is easily implementable on a

low power tier-0 platform.

6.4 Throwbox Prototype Implementation and Deployment

We constructed prototype throwboxes, shown in Figure 6.3, using a Crossbow Stargate

(tier-1) [160] and a TelosB Mote (tier-0) [129]. We chose these hardware platforms because

they handle the two mobile DTN activities, data transfer and neighbor discovery, efficiently.

94

The Stargate platform runs Linux, allowing us to run the same Java-based routing software

used in our mobile testbed [33] (see Chapter 3).

The Stargate has a 32-bit, 400 MHz PXA255 XScale processor, 64 MB of RAM, 32 MB

of internal flash, and a DLink-Air 802.11b interface. The TelosB Mote has a 8-bit, 8 MHz

micro-controller, 10 KB of RAM, and 1 MB of external flash. The Mote is attached to a

Digi-XTend 900 MHz OEM module. The prototype also employs two 5V PowerFilm solar

panel as additional energy source. The characteristics of the two radios are summarized in

Table 6.1.

We fabricated a power supply board for attaching both platforms to a single battery and

support charging from solar energy. This board provides an additional hardware element

necessary to throwboxes, a Maxim DS2770 fuel gauge chip. The fuel gauge chip provides

accurate data on the amount of energy left in the battery, similar to those found in laptops.

This accounts for energy consumed by the platforms and radio, as well as energy produced

by the solar panels. The TelosB Mote reads this value periodically and corrects the token

bucket to account for the actual energy used and produced.

To support a real-world test of the throwbox, we used the mobile component of our

DOME testbed, UMass DieselNet [33] (described in Chapter 3). We deployed three always-

on throwbox prototypes at fixed locations on DieselNet bus routes and collected data for a

period of three weeks. The throwboxes were placed according to a placement algorithm in

previous work [174].

6.5 Evaluation

We evaluated the Throwbox system using two techniques: trace-driven simulations

and prototype experimentation. The simulations use traces collected from three always-

on throwboxes placed in DieselNet for three weeks, changing batteries manually. These

prototypes logged connection events. In the simulations, we compare our system with the

following systems.

95

• Optimal (Dual platform): The optimal system uses the two-radio, two-platform system,

but with a perfect mobility prediction algorithm and an optimal scheduler. The optimal

system assumes knowledge of the exact time and length of every contact opportunity.

The system uses a dynamic programming algorithm for the knapsack problem to

select the exact set of connection events that maximizes throughput while meeting an

energy constraint [45].

• PSM*: This system is a single tiered single radio system that periodically powers off

its wireless interface to save energy. This is similar to PSM (Power Saving Modes)

used on WiFi cards. PSM* wakes up its wireless interface and scans for connection

events and goes back to sleep if it finds none. When the WiFi card is switched

off, the platform is in its idle state. We exhaustively searched the state space to

set parameters that use the minimum energy with equivalent data transferred. This

provides a comparison to the best system that does not use any extra hardware.

• WoW*: This system is adapted from Wake-on-Wireless [138] which uses a second

radio as a discovery radio. The published WoW system always wakes up when it sees

data addressed to it on the discovery radio and it is assumes that the discovery radio

has the same range as the data transfer radio. For fair comparison, we adapt WoW

to a DTN environment. The WoW* system uses our mobility prediction engine to

intelligently decide when to wakeup the data transfer radio. Without this modification,

the WoW* system would wakeup the higher power tier on every spurious contact over

the long-range radio. However, it does not use the scheduling algorithm to decide

which opportunities to take, nor does it duty-cycle the long-range radio.

• Always-on: This throwbox remains on all of the time, and thus does not use the second

radio, and it is not penalized by the additional energy needed for the long-distance

radio and Mote.

• No throwbox: Without a throwbox the DTN delivers data normally.

96

0

200

400

600

800

1000

1200

1400

1600

1800

Throwbox WoW* PSM*

A
ve

ra
ge

 P
ow

er
 (m

W
)

TelosB
Disovery Cost
Idle Cost
Tokens Left
Transition Cost
Data Transfer

80 mW

410 mW

1710 mW

Figure 6.4. The breakup of the energy consumed by different components for the Throwbox,
PSM*, and WoW* systems.

5 10 15 20 25 30
0

10

20

30

40

50

60

70

Number of Packets per hour (per node)

 P
ac

ke
ts

 D
el

iv
er

ed
 (

%
)

No Throwbox
Throwbox (80mW)
Always−on Throwbox

0 5 10 15 20 25 30
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Number of Packets per node (per hour)

A
ve

ra
ge

 D
el

ay
 (

se
cs

)

No Throwbox

Throwbox (80mW)

Always−on Throwbox

Figure 6.5. The improvement in the delivery rate and the latency of packets transferred
using a Throwbox with a 80mW power constraint

6.5.1 Trace-Driven Simulation Results

System Power Consumption

We first present the energy consumption for different systems when they forward the

same amount of data. Figure 6.4 shows the average power of each system broken down by

their component power consumption. We have divided the bars into the following parts:

97

energy for useful work (Data Transfer), the number of tokens left over by the scheduler at the

end of the simulation (Tokens Left), the energy used by the long distance radio (Discovery

Radio), the cost of turning the tier-1 system on (Transition Cost), the cost of idling tier-1

while it is searching for contacts (Idle Cost), and the power consumed by the tier-0, Mote

system (TelosB).

The power consumption of the PSM* system plainly illustrates the value of using the

tier-0 platform and radio. PSM* devotes 99.5% of its energy turning the platform on and off

and idling while searching for contacts. The WoW* system virtually eliminates this idle

cost as it only turns on the tier-1 system when there is a valid contact. However, it does

devote a large amount of energy to the long-distance radio as it does not use the duty-cycling

employed by the Throwbox architecture. Additionally, the WoW* system suffers from a

high transition overhead as it takes all contacts—short and long—and hence incurs a overall

high transition energy cost.

Average Power Constraint Versus Network Performance Boost

We next study the performance boost provided by placing a single Throwbox in our

mobile testbed with a given power constraint. We use the MaxProp [33] routing protocol to

exchange data among nodes in the network. Each node uses a 1GB buffer and the packets

transferred were 1KB in size. We varied the number of packets generated per node per

hour and calculated the delivery rate and average latency of delivered packets. We ran

the experiments for three weeks of simulated time—the total period of our deployment.

Figure 6.5 shows the improvement in packet delivery percentage and decrease in packet

delivery time with a single Throwbox deployed with an average power constraint of 80 mW.

From the results in figures, we see that a Throwbox with an average power constraint

of 80 mW performs close to an always-on Throwbox and leads to an increase in packet

delivery percentage of more than 37% and decrease of at least 10% in the packet delivery

time. When compared to an always-on throwbox, the power constraint of 80 mW yields a

98

2 am 8:40 am 4 pm 2 am
0

50

100

150

200

250

300

Time

E
n

er
g

y
(m

A
h

)

NIGHT DAY EVENING AND NIGHT

Figure 6.6. The consumption of energy for the throwbox prototype over a period 24 hours

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inter−contact time (minutes)

F
ra

ct
io

n
of

 c
on

ta
ct

 ta
ke

n

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Amount of data forwarded (KB)

F
ra

ct
io

n
 o

f
ta

ke
n

 c
o

n
ta

ct
s

Figure 6.7. The distribution of the amount of data transferred during contacts and the
inter-contact time for the Throwbox prototype.

system that can last 31 times longer on the same battery while delivering almost as many

packets.

6.5.2 Prototype Evaluation

We deployed a two-platform, two-radio prototype with a power constraint of 80 mW

using the mobility prediction, scheduling, and duty-cycling algorithms described in this

99

Chapter. The system was equipped with solar panels 220 cm2 in area and a 1 Ah battery

that was 20% full. The box was deployed in our mobile testbed for a day and it logged the

capacity remaining in the battery as a function of time. The results of the experiments are

shown in Figure 6.6 , Figure 6.7. In Figure 6.6, we see that the Throwbox stores excess

energy during the day and during nighttime it spends the excess accumulated energy. We

determined through this experiment that the solar panels produce an average of 65 mW

over 24 hours. This is about 15 mW less than the amount of power we predicted using the

data sheets from the solar panel. During the period of the entire day, the throwbox was

able to transfer 8.3 MBytes of data with bus nodes. On an average, when an Always-on

throwbox was deployed in our testbed, it could transfer 22 MBytes of data with the bus nodes.

Therefore, the throwboxes at 65 mW power consumption can transfer one-third the amount

of data compared to the best case. Figure 6.7 shows the distribution of the time in between

contacts taken by the throwbox prototype. We find that in most cases the inter-contact time

is less than one hour. This shows that the Throwbox’s scheduling algorithm is able to take

bursts of contacts successfully. Moreover, the throwbox takes contacts equally during the

day (when energy is being scavenged from the sun) and during the night (when it uses

the stored energy in the battery). The same figure shows the distribution of the amount of

data transferred during contacts. From the figure, we find that the Throwbox always takes

contacts which are long and where substantial amount of data can be transferred.

6.6 Discussion

In this chapter we presented a hardware and software architecture of solar powered

Throwboxes. Through extensive trace-driven simulations and deployment evaluation, we

showed that Throwboxes can operate near-perpetually while substantially improving network

performance. However, since Throwbox relay can only create virtual contact opportunities

between mobile nodes by storing and forwarding data for mobile nodes, they can only

enhance sparse disruption tolerant mobile networks where traffic is peer-to-peer [33, 82].

100

However, in urban and semi-urban regions where the primary destination from mobile nodes

is an Internet sink, we require a radically different solution. In the next chapter, we briefly

outline the challenges with connectivity in open WiFi based mobile networks and present

a solution which uses additional mesh nodes to provide enhanced connectivity to mobile

users.

101

CHAPTER 7

ENHANCING WIFI MOBILE NETWORKS

Throwboxes can enhance sparse mobile networks. They are especially useful when

traffic is peer-to-peer [82,147]. However, in urban and semi-urban areas, mobile users are

most concerned with transferring data to an Internet server. For example, popular mobile

phone applications such as email, web browsing, and instant messaging require an active

Internet connection.

There are several methods of providing reliable, ubiquitous connectivity for mobile

devices in urban and semi-urban areas. Cellular deployments, including 3G, EVDO, and

GPRS, offer commercial, fee-based coverage of large areas. Unfortunately, such infrastruc-

ture is costly and difficult to manage, and its installation and operation is reserved for a

handful of large carriers. And due to the costs involved—a recurring fee of about US$50 per

month per device—its use is limited to persons that can afford it, and usually for only one

mobile device.

At the same time, open WiFi access points (APs) are gaining in popularity [136] and are

present in cities large [54, 136] and small [20]. The major advantage of these organically

deployed APs is cost — while 3G price plans will vary, open WiFi is by definition free

to mobile users. Accordingly, open WiFi removes a significant impediment to pervasive

computing. Figure 7.1 shows the availability of open WiFi APs in a section of our city.

From Aug 07–Oct 08, at least 75% of 62500 regions each 0.01 km2, supported open WiFi

Internet access.

The disadvantage of WiFi access is robustness. Although WiFi links can have higher peak

downstream bandwidths than 3G, it is a shorter-range radio, which leads to both coverage

102

Aug07 Oct07 Dec07 Feb08 Apr08 Jun08 Aug08 Oct08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
ra

c
ti

o
n

 o
f

R
e

g
io

n
s

Figure 7.1. The fraction of 100x100 m2 regions in our city where vehicles have open WiFi
access points.

holes and areas of high loss rates, even in networks planned for blanket coverage [18, 107].

In networks where mobile users are subject to longer periods without connectivity, a myriad

of ad hoc and disruption tolerant networking (DTN) protocols have been proposed that

leverage the mobile nodes to deliver data [55]. While ad doc networks and DTNs provide

connectivity where there was none, delivery delays depend on the mobility of other users.

Typically, popular interactive, delay-sensitive applications cannot be reliably supported.

In this chapter we first briefly analyze the problems with open WiFi networks. We show

that such networks are rampant with coverage holes which can have an adverse effect on

the performance of network transport. Next, we propose a system called Epsilon which

uses a novel approach of placing very low-bandwidth, long-range radios wherever holes

are present. The low-rate backbone acts as a bridge to a 802.11 AP. Connections from the

mobile user are striped across both channels to smooth hand-off. Combined with an Internet

proxy, clients can then maintain TCP connections across open APs, making applications

more predictable. Because the radios are longer range than WiFi, fewer devices and a

smaller cost is required to cover a large area. We show that while existing solutions [54]

can increase TCP throughput by a factor of 2x when a node is associated to an access point

103

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

disruption length (seconds)

fr
ac

tio
n

of
 d

is
ru

pt
io

ns

permanent+transient holes
permanent holes

Figure 7.2. The cumulative distribution function of the disruption lengths observed by buses
(from a moving node) in DOME.

(effectively a gain of 15% when there are disruptions), using Epsilon, TCP throughput can

increase for mobile users by 1.2x to 13.0x.

7.1 Coverage Holes: Presence and Impact

To analyze the performance of mobile systems in open WiFi networks, we conducted

a measurement study of disruptions in our mobile testbed (see Chapter 3). We performed

both link-layer and application layer connectivity measurements from buses using open

WiFi [148]. We found that coverage holes are rampant even in WiFi networks planned for

blanket coverage. Consider Figure 7.2 as an example. The figure shows the CDF of the

duration of coverage holes as observed by buses in DOME. Permanent holes correspond

to areas where there is no AP coverage over a period of time and transient holes are areas

where there is access point coverage but there is no connectivity due to transient factors

such as failure to obtain DHCP leases or other factors such as interference and obstacles.

The absolute lengths of the holes is high: the median length is 50 seconds with a 90th

104

0

500

1000

1500

2000

2500

3000

3500

T
C

P
 th

ro
ug

hp
ut

 (
K

bp
s)

with disruptions
without disruptions

Figure 7.3. The decrease in TCP throughput for four minute TCP sessions in Measurement
Set I. For this figure the disruptions correspond to times in between associations (successful
or otherwise)

percentile of 500 seconds. This figure clearly indicates the presence of disruptions—large

and small—in WiFi based mobile networks.

TCP and UDP streams suffer differently from disruptions in connectivity. Because of

the TCP congestion control mechanism, a mild disruption can engage slow start, strangling

throughput. UDP simply suffers the minimum of the available capacity and offered packet

rate. Here, we quantify the loss of throughput for TCP based on traces of mobility and

coverage holes in our environment. We performed a series of trace-driven experiments

using traces collected from DOME. To provide repeatable experimentation we conducted

the experiments in an indoor environment with a stationary node associated to a WiFi AP.

We implemented a proxy at the client that uses ip queue (an ip table utility to queue

packets in the linux kernel) to drop packets whenever the trace recorded a disruption. We

then started a large TCP transfer to download data from a host on the network.

The results of the experiment are shown in Figure 7.3. As a point of reference, we plot

the bars corresponding to TCP performance when there are no disruptions. We see that due

105

to constant TCP timeouts and congestion control management TCP throughput decreases

by a factor of 16 in the presence of disruptions, even though the disruptions would ideally

decrease throughput by a factor of 2. The drop in TCP throughput is due to TCP’s inability

to adjust its timeout values and RTT after a connection returns. TCP stalls for a period of

length tw due to exponentially increasing timeout values during disruptions. tw can grow

linearly in Td for certain values of Td [148]. Therefore, if there is a period of connectivity

followed by a equivalent period of disruption, and this trend repeats itself, TCP will have

near-zero throughput.

7.2 Covering Holes with a Low Bandwidth Bridge

In the last section we saw that coverage holes (small and large) are rampant in WiFi

based mobile networks. Such holes can have an adverse effect on the performance of TCP. A

large suite of applications such as web browsing, web search, instant messaging, and voice

is likely to perform very poorly in such environments. The performance degradation comes

primarily from long timeouts and small congestion window sizes after the disruption occurs.

7.2.1 Patching Options

Patching coverage holes is challenging and non-trivial, although there are a number

of existing proposals. For example, Vi-Fi [19] addresses transient holes by coordinating

retransmissions by APs; it is unlikely that such a solution can be easily deployed in an

unplanned WiFi network where APs are unlikely to coordinate, and it does not address per-

manent holes. Similarly, client-based solutions that leverage diversity, such as FatVAP [86],

can only be applied to areas where multiple access points are available and do not address

permanent holes.

Another option is to avoid WiFi and use very long range cellular/3G access; such

networks impose a recurring cost for each device that the user carries, and are unavailable

to a town or campus. For example, a municipality cannot offer free 3G access within its

106

Range 600 m
Max Data Rate 115.2 Kbps
UDP Throughput 47 Kbps
Lowest Transmit Power 1 mW
Highest Transmit Power 1 W
Receive Power 360 mW

Table 7.1. Characteristics of the Digi-XTend radios.

downtown, commercial area, nor can a University offer free 3G access on its campus; it’s

simply not an option. WiMax installations to cover large areas require a license, large towers,

and carrier grade hardware (and will not be devoid of coverage holes).

Finally, the most obvious way to cover WiFi holes is to add WiFi infrastructure, but

that has its own challenges [23, 77]. In general, covering a large area with medium range

WiFi APs is much less expensive than completely covering the area so that no performance

problems are present [107].

To summarize, we desire an inexpensive, long-range solution — off-the-shelf, unlicensed

900 MHz radios offer both characteristics. Moreover, they have a small energy profile and

are appropriate for nomadic deployments. What such radios lack is bandwidth. A summary

of the characteristics of the 900 MHz Digi-XTend radio is given in Table 7.1.

At first thought, it seems counter-intuitive to augment a WiFi network with a radio with

a data rate that is 1/20 as large. This approach is explained by the following intuition: one

of the primary factors affecting TCP performance is the exponential growth of timeouts.

Timeouts result in a stalled period after connections are re-established, a period that can

grow linearly with the disruption length. Moreover, TCP has to restart from a window size

of one (slow start) after this period. Hence, our goal for the low-bandwidth bridge is to avoid

this wasted period by keeping TCP in congestion avoidance through the period of WiFi

disconnection and into a reconnection. As we show in the system evaluation, the throughput

gains are substantial. Moreover, the bandwidth of 44 kbps offered for TCP and 47 Kbps for

UDP (see Table 7.1) is significant, especially in the presence of larger coverage holes. VoIP

107

codecs such as G.726 and G.728 require bit rates of less than 50 Kbps and would work well

using just the Digi-XTends.

The other benefit of the Digi-XTend radio is that it supports several efficient cyclic sleep

modes and has low-power transmit modes. The receive power of the radio is 360 mW (one

third of WiFi and 3G) while the average transmit power is around 500 mW (also one third of

WiFi and 3G). We are working on porting our system to solar powered Mote class devices

as future work (see Chapter 8).

The primary decision that has to be made by the mobile node is when to switch between

the two radios. Multiplexing or striping schemes for managing the single TCP stream

over both radios will result in performance that is governed by the low bandwidth channel

and will be affected greatly by the fluid connectivity changes. We expect the systems to

be available simultaneously only at times. Epsilon, in its present implementation detects

disruptions in situ and switches to the 900MHz radio whenever a disruption is detected.

Disruption in WiFi connectivity can be detected by the absence of end-to-end connectivity

(losing consecutive pings) or through lack of link-layer acknowledgments. We expect that

the loss of connectivity using link-layer information can be detected quickly (on the order

of tens of milliseconds).

7.3 Implementation

The main components of the Epsilon architecture are shown in Figure 7.4. The core

architecture is proxy-based, similar to the MAR system [134]. There are three types of

nodes in network: (1) the mobile node router, (2) bridge nodes, (3) and an Internet proxy. In

this section, we describe the design and implementation of the software modules.

7.3.1 Mobile node router

Each mobile node in the network is assumed to have two radios: a WiFi radio and a

Digi-XTend radio. Epsilon uses a user-space proxy at each mobile client. When a disruption

108

Netfilter
(ip_queue)

User Space Proxy
Radio Splitter

Packet Encapsulation

Digi-XTendWi-Fi

IP-Packets

Bridge node

Mobile node

Wi-Fi
Aggregating Flows

Rewrite Source Address
Rewrite Destination Address

TCP

Costum MAC

INTERNET

XTend Packet Decapsulation
Send to Internet Proxy

Internet Proxy

Open Access Point

Digi-XTend

TCP

Netfilter
(ip_queue)

IP-Packets

Figure 7.4. An overview of the Epsilon system architecture.

is detected, the proxy sends packets over the low bandwidth channel; otherwise it forwards

them on WiFi.

As the mobile node associates with different access points, the IP address associated with

its outbound wireless interface changes. To mask the effect of these changes, Epsilon uses

a virtual dummy interface (eth2) and forces all application packets to be routed through

this interface. The interface is assigned a static IP address which is unique for every mobile

node. However, a single static route is set to the Internet proxy through the actual outbound

interface (wlan0). The proxy uses Netfilter and ip queue to capture IP packets

from the kernel. If the mobile node proxy decides to route packets over WiFi, it encapsulates

the captured IP packet in another IP packet and sends it to the Internet proxy over a TCP

109

connection. Otherwise, the IP packet is encapsulated in a Digi-XTend packet and transferred

over the 900 MHz link to the bridge.

7.3.2 Bridge Nodes

The bridge node is a Linux box equipped with a 900 MHz Digi-XTend radio as well as

a WiFi radio. It acts as an intermediary between the mobile nodes and the Internet proxy.

When receiving a packet over the Digi-XTend radio, the bridge first decapsulates it to get

the raw IP packet, and then encapsulates it again in another IP packet. The bridge will then

forward the packet over a TCP connection to the proxy. The reverse of the process occurs

when it receives a packet from the Internet proxy.

7.3.3 Internet proxy

The Internet proxy acts as an aggregation point for packets being received from or sent

to the bridge or mobile node. The following example demonstrates how the Internet proxy

is used in Epsilon. Consider a mobile user sending a query to google.com. The IP

packets sent from the bridge and the mobile node (encapsulated in other IP packets) have

the address of the virtual interface of the mobile node as their source and google.com as

their destination addresses. The Internet proxy rewrites the source address of the packets

with its own address, recalculates the IP/TCP checksum and then sends the packets to

the destination (here, google.com) using a raw socket. On the other hand, the packets

received from google.com are queued using a iptable hook and trapped at the Internet

proxy using ip queue. The destination address of the packets is then rewritten with the

destination address of the virtual interface of the mobile node. The packets are then sent

over a previously established TCP connection with the mobile node or to the bridge from

where they are sent to the mobile node over the Digi-XTends. The packets are decapsulated

at the mobile node and then sent to the application using raw sockets. The mobile node

re-initiates TCP connection with the Internet proxy every time it associates with a new open

access point.

110

7.4 System Evaluation

In this section we evaluate the improvement in TCP throughput and application perfor-

mance (HTTP transfers) with Epsilon. For evaluating these factors, we use transport-layer

disruption traces from our mobile testbed. Moreover, to extend our results to other testbeds,

we evaluate more general scenarios using synthetic workloads.

7.4.1 Evaluation Methodology

We have built a prototype of the Epsilon bridge node using the same hardware deployed

on our mobile nodes, described in Chapter 3. In our evaluation, we compare two systems:

Epsilon: our proposed dual-radio and bridge system; and WiFi: a system that uses only the

WiFi radio.

For our experimental evaluation, we use traces of connectivity durations collected from

our testbed to carry out trace-driven emulations on an indoor experimental setup. The

computer representing the mobile node begins a TCP transfer to a server on the Internet

using the WiFi network. Based on the traces of connectivity, the user-space proxy drops

outgoing and incoming packets on the WiFi interface. If the mobile node decides to use the

XTend radio, it connects and transfers data to an implementation of an Epsilon bridge node,

also placed in our building.

Although the experimental setup is static and indoors, the effects of isolated disruptions

are captured in the real world traces we have collected from our testbed in February 2009.

Accordingly, the experimentation using trace-driven emulation has two major advantages.

First, it provides us the flexibility to produce repeatable results and to try out various

approaches without redeployment in the testbed; and second, using a full implementation on

real hardware provides a comparison platform that produces accurate system delays.

7.4.2 TCP performance

We measured TCP performance using an iperf server running on a remote Internet

host, and an iperf client running on the emulated mobile node. All experiments are

111

0

500

1000

1500

2000

2500

th
ro

ug
hp

ut
 (

K
bp

s)

Epsilon
WiFi

Figure 7.5. The TCP improvement produced by Epsilon. Epsilon produces an improvement
of 6x in TCP throughput over a system which does not use the Digi-XTend radio.

based on 4-minute long sessions initiated continuously during the experiment by the client’s

iperf software. The proxy on the emulated mobile node drops packets when connectivity

is absent.

The results in Figure 7.5 show a 6x improvement in average TCP throughput for Epsilon

over just WiFi, i.e., from 200 Kbps to 1200 Kbps. Note that the additional TCP throughput

that the Digi-XTends can provide is limited to less than 50 Kbps —-hence the extra 950 Kbps

is an outcome of the 900MHz radio preventing TCP timeouts (hence minimizing the wasted

time tw), preventing TCP from moving into slow start, and keeping TCP in congestion

avoidance. However, there is large variance in the Epsilon bar (shown by the error bars).

Since we run 4-minute TCP sessions and in our mobile testbed we have disruptions of

greater than 4 minutes, some TCP sessions fall into regimes where there is only 900MHz

connectivity—gaining throughput of less than 50 Kbps.

112

Metric WiFi Epsilon
Web-pages downloaded 796 1187

HTTP timeouts 203 61

Table 7.2. Improvement produced by Epsilon for web transfers. Epsilon downloads 40%
more web-pages and has less than 3x timeouts.

7.4.3 Application Performance

Our evaluation of throughput of TCP streams shows an order of magnitude improvement

using Epsilon. Here we capture the performance of specific applications using Epsilon. We

evaluated HTTP performance since it is the basis of popular Web browsing, Web email, and

Web search applications. Instant messaging, file transfers, and other applications that rely

on continuous, long-running TCP streams, will achieve improvements at least as good or

better than HTTP-based applications using short-lived TCP connections.

In our web transfer experiments, we chose 10 popular web-pages and fetched their

content using wget. The web-pages were spread across sources in U.S., Europe, and

Asia. This two-hour experiment was based on two key performance metrics: the number of

web-pages successfully downloaded; and the number of HTTP timeouts. The number of

timeouts is proportional to the Web browsing experience a user would have. This is because

timeouts lead to broken images, unloaded web-pages, and error messages.

Table 7.2 shows the relative benefits of using the Epsilon system for many Web appli-

cations. Epsilon is able to download more than 40% extra pages and experience 3x less

timeouts. While web transfers involve short TCP transfers and are probably the worst case

for Epsilon as compared to WiFi, we still see a substantial improvement in performance

using the additional radio.

113

Figure 7.6. The figure shows TCP throughput as a function of the Off period with and
without Epsilon. The disruption duration is varied and the ON period is chosen uniformly at
random between 0-30 seconds.

7.4.4 Synthetic Workloads

While these performance improvements in TCP and application performance demon-

strate Epsilon’s benefits, the results are specific to our testbed. To generalize the results to

other scenarios, we evaluated our system using a parametrized, synthetic connectivity trace.

The synthetic trace is characteristic of two parameters. The on period is when connec-

tivity is not disrupted, and the off period is when connectivity is disrupted. We performed

the experiments using the same iperf-based sessions from our emulated client node to an

Internet host. Figure 7.6 shows TCP performance as a function of the off period statistics.

The on period is chosen uniformly at random between 0–30 seconds. As the disruption

periods increase the benefits of using Epsilon also increase and the off period is varied in

the varied. When the length of the off period is comparable to the on period we see a 4.6x

improvement using Epsilon. Figure 7.7 shows the benefits of Epsilon as the on period varies.

The right hand side of the graph represents a very dense deployment of APs while the left

hand corner represents a sparse distribution of access points. Cabernet [54] reports a median

114

Figure 7.7. The figure shows TCP throughput as a function of the disruption-free/connected
period with and without Epsilon. The disruption period is chosen uniformly at random
between 0-30 seconds.

duration of 4 seconds for the on period and an off period (i.e., the median time between WiFi

encounters) as 32 seconds. For these values, the results in Figure 7.6 show that Epsilon can

provide a 13.8x improvement in TCP throughput. While the best known system [54] reports

2x improvement to TCP when associated with access points (effectively a 15% improvement

when there are disruptions) Epsilon produces more than an order of magnitude improvement

to TCP.

7.5 Discussion

In this chapter, we presented a system which uses a 900MHz bridge to patch coverage

holes in organic and managed WiFi networks. The system can stripe TCP flows across

the 900MHz and 2.4GHz channels to provide near ubiquitous connectivity in WiFi mobile

networks. The 900MHz bridge helps keep TCP in congestion avoidance when WiFi connec-

tivity reappears after a period of disruption/disconnection. While Throwboxes can provide

enhanced connectivity in sparse mobile networks, Epsilon bridges can help provide (near)

115

ubiquitous connectivity in WiFi based dense mobile networks. Hence, using a variety of

alternate enhancements such as relays, mesh nodes (bridges), and base stations performance

of diverse mobile networks can be enhanced.

116

CHAPTER 8

CONCLUSION AND FUTURE DIRECTIONS

This dissertation addresses the problem of providing improved consistency and network

connectivity in mobile and sensor systems. We identify two fundamental problems which

are primary deterrents to pervasive connectivity and high level of consistency in mobile and

sensor systems. First, we attribute poor consistency and availability of clients to energy

scarcity at end systems. Second, we observe that unreliable and poor connectivity offered

by available infrastructure in mobile networks can also cause poor performance at clients.

To address the first problem, the thesis presents a novel energy management architecture

called Hierarchical Power Management (HPM). HPM combines platforms with diverse

energy needs and capability into one integrated system which provides high levels of

consistency at minimal energy consumption. We address the second problem by alternative

enhancement to mobile networks in the form of relays, mesh nodes, and base stations. We

first study the relative performance benefits of each type of enhancement. Next, we present

the design, implementation, and evaluation of relay and mesh based systems for enhancing

sparse and dense mobile networks.

While the dissertation presents a convincing solution for improved connectivity and

consistency in mobile and sensor systems, it also opens up several avenues for future research.

First, a problem we have ignored in the deployment of mesh and relay enhancements is

the placement of the nodes. Moreover, in the design of the 900MHz bridge to patch

coverage holes we assumed that the nodes are tethered. It is unlikely to be the case in

practical deployments, especially if coverage holes are large. To patch large coverage holes,

we require multi-hop connectivity to a bridge node. This would require multiple solar

117

powered 900MHz nodes deployed at various locations of the network. Such a nomadic

deployment requires a highly energy-efficient design of nodes—something we leave as

future work. Another interesting direction of research lies in the algorithmic issues with

the Throwbox control algorithm. While the present incarnation of the algorithm considers

local forwarding of packets, an ideal algorithm should consider end-to-end metrics such as

end-to-end throughput and delay under the constraint of energy scavenged from solar. This

presents an interesting direction where local information at the Throwboxes can be used to

optimize for network wide global metrics.

118

BIBLIOGRAPHY

[1] Apple iPhone. http://www.apple.com/iphone/.

[2] Dodgeball Social Networking. http://dodgeball.com/.

[3] Loopt. http://loopt.com.

[4] Marker Focus: Bluetooth in Mobile Devices, WorldWide, 2004-2009. Gartner.

[5] Mobile Device - An Important Marker Segment for WLAN. doc:IEEE.

[6] Mobile Phone Sales. Gartner Newsroom.

[7] Nokia Smartphones. http://nokia.com.

[8] Pantopic Social Networking. http://pantopic.com/.

[9] Rummble Social Networking. http://rummble.com/.

[10] Zigbee Standard. http://www.digi.com/technology/rf-articles/wireless-zigbee.jsp.

[11] Afanasyev, M., Chen, T., Voelker, G. M., and Snoeren, A. C. Analysis of a Mixed-Use
Urban WiFi Network: When Metropolitan becomes Neapolitan. In IMC (October
2008), pp. 85–98.

[12] Agarwal, Y., Chandra, R., Wolman, A., Bahl, V., Chin, K., and Gupta, R. Wireless
Wakeups Revisited: Energy Management for VoIP over Wi-Fi Smartphones. In
Proceedings of Mobisys (Puerto Rico, USA, June 2007).

[13] Anand, M., Nightingale, E. B., and Flinn, J. Self-Tuning Wireless Network Power
Management. In Proceedings of MobiCom (San Diego, CA, September 2003).

[14] Balakrishnan, H., Padmanabhan, V., and Katz, R. The Effects of Asymmetry on TCP
Performance. ACM Mobile Networks and Applications (MONET) (1999).

[15] Balakrishnan, H., Padmanabhan, V. N., Seshan, S., and Katz, R. H. A Comparison of
Mechanisms for Improving TCP Performance over Wireless Links. In Proceedings
of Sigcomm (1996), pp. 256–269.

[16] Balani, R., Han, S., Raghunathan, V., and M.B.Srivastava. Remote Storage for Sensor
Networks. UCLA-NESL-200504-09, UCLA, 2005.

[17] Balasubramanian, A., Levine, B. N., and Venkataramani, A. DTN Routing as a
Resource Allocation Problem. In Proceedings of ACM Sigcomm (August 2007).

119

[18] Balasubramanian, A., Levine, B. N., and Venkataramani, A. Enabling Interactive
Applications in Hybrid Networks. In Proceedings of Mobicom (September 2008).

[19] Balasubramanian, A., Mahajan, R., Venkataramani, A., Levine, B., and Zahorjan, J.
Interactive WiFi Connectivity for Moving Vehicles. In Proceedings of ACM Sigcomm
(August 2008).

[20] Balasubramanian, A., Zhou, Y., Croft, W. B., Levine, B. N., and Venkataramani, A.
Web Search From a Bus. In Proceedings of ACM Workshop on Challenged Networks
(September 2007).

[21] Banerjee, N., Agarwal, S., Chandra, R., Bahl, P., Wolman, A., and Corner, M.
Virtual Compass: Relative Positioning to Sense Mobile Social Interactions. Under
Submission, Sensys (2009).

[22] Banerjee, N., Corner, M. D., and Levine, B. N. An Energy-Efficient Architecture for
DTN Throwboxes. In Proceedings of IEEE Infocom (May 2007).

[23] Banerjee, N., Corner, M. D., Towsley, D., and Levine, B. N. Relays, Base Stations,
and Meshes: Enhancing Mobile Networks with Infrastructure. In Proceedings of
ACM MobiCom (San Francisco, CA, USA, September 2008).

[24] Banerjee, N., Rahmati, A., Corner, M. D., Rollins, S., and Zhong, L. Users and
Batteries: Interactions and Adaptive Energy Management in Mobile Systems. In
Proceedings of Ubicomp (Innsbruck, Austria, September 2007).

[25] Banerjee, N., Wei, W., and Das, S. K. Mobility Support in Wireless Internet. IEEE
Wireless Communications (2009).

[26] Batalin1, M. A., and Sukhatme1, G. S. Coverage, Exploration and Deployment by a
Mobile Robot and Communication Network. Telecommunications Systems (2004).

[27] Bicket, J., Aguayo, D., Biswas, S., and Morris, Robert. Architecture and Evaluation
of an Unplanned 802.11b Mesh Network. In Proceedings of MobiCom (August 2005),
pp. 31–42.

[28] Blinn, D. P., Henderson, T., and Kotz, D. Analysis of a Wi-Fi Hotspot Network. In
Proceedings of WiTMeMo (2005), pp. 1–6.

[29] Brakmo, L. S., Wallach, D. A., and Viredaz, M. A. microSleep: A Technique
for Reducing Energy Consumption in Handheld Devices. In Proceedings MobiSys
(Boston, MA, June 2004).

[30] Brekhovskikh, Leonid, and Lysanov, Yuri. Fundamentals of Ocean Acoustics, 3rd ed.
Springer-Verlag, 2003.

[31] Brooks, D., Tiwari, V., and Martonosi, M. Wattch: A Framework for Architectural-
level Power analysis and Optimizations. In Proceedings of ICSA (2000), pp. 83–94.

120

[32] Bruno, R., Conti, M., and Gregori, E. Mesh Networks: Commodity Multihop Ad-hoc
Networks. IEEE Communications Magazine 43, 3 (March 2005).

[33] Burgess, John, Gallagher, Brian, Jensen, David, and Levine, Brian Neil. MaxProp:
Routing for Vehicle-Based Disruption-Tolerant Networks. In Proc. IEEE INFOCOM
(April 2006).

[34] Burns, B., Brock, O., and Levine, B. N. MV routing and capacity building in
disruption tolerant networks. In Proceedings of IEEE INFOCOM (March 2005),
pp. 398–408.

[35] Burns, B., Brock, O., and Levine, B. N. MV routing and capacity building in
disruption tolerant networks. In Proceedings of IEEE Infocom 2005 (March 2005).

[36] Burns, B., Brock, O., and Levine, B. N. Autonomous Enhancement of Disruption
Tolerant Networks. In Proceedings of IEEE ICRA (May 2006).

[37] Burns, B., Brock, O., and Levine, B. N. MORA Routing and Capacity Building in
Disruption-Tolerant Networks. Elsevier Ad hoc Networks Journal (2008). To appear.

[38] Bychkovsky, V., Hull, B., Miu, A. K., Balakrishnan, H., and Madden, S. A Mea-
surement Study of Vehicular Internet Access Using in situ 802.11 Networks. In
Proceedings of ACM Mobicom (Sept 2006), pp. 50–61.

[39] Caceres, R., Carter, C., Narayanaswami, C., and Raghunath, M. T. Reincarnating
PCs with Portable SoulPads. In Proceedings of MobiSys (2005).

[40] Camp, J., Robinson, J., Steger, C., and Knightly, E. Measurement Driven Deployment
of a two-tier Urban Mesh Access Network. In Proceedings of ACM MobiSys (2006),
pp. 96–109.

[41] Chaintreau, Augustin, Hui, Pan, Crowcroft, Jon, Diot, Christophe, Gass, Richard, and
Scott, James. Impact of Human Mobility on the Design of Opportunistic Forwarding
Algorithms. In Proceedings of IEEE INFOCOM (Apr 2006).

[42] Chandra, R., Bahl, P., and Bahl, P. MultiNet: Connecting to Multiple IEEE 802.11
Networks Using a Single Wireless Card. In Proceedings of IEEE Infocom (2004).

[43] Choi, S., and Shin, K. G. Predictive and Adaptive Bandwidth Reservation for Hand-
offs in QoS-sensitive Cellular Networks. In Proceedings of ACM Sigcomm (1998).

[44] Cole, R. G., and Rosenbluth, J. H. Voice over IP Performance Monitoring. CCR
(2001).

[45] Cormen, T. H., Lieserson, C. E., Rivest, R. L., and Stein, C. Introduction to Algo-
rithms. MIT Press, 2001.

[46] Cortes, J., Martinez, S., Karatas, T., and Bullo, F. Coverage Control for Mobile
Sensing Networks. Proceedings of IEEE ICRA (2002).

121

[47] Crossbow Technology Inc. Stargate Developer’s Guide, Rev. A ed. San Jose, CA,
September 2004. 7430-0317-12.

[48] D. McIntire, K. Ho, Yip, B., Singh, A., Wu, W., and Kaiser, W. J. The Low Power
Energy Aware Processing (LEAP) Embedded Networked Sensor System. Tech. rep.,
UCLA, Los Angeles, CA, 2005.

[49] Davis, J., Fagg, A., and Levine, B. N. Wearable Computers and Packet Transport
Mechanisms in Highly Partitioned Ad hoc Networks. In Proc. IEEE Intl. Symp on
Wearable Computers (ISWC) (October 2001), pp. 141–148.

[50] Douglis, F., Krishnan, P., and Bershad, B. N. Adaptive Disk Spin-down Policies for
Mobile Computers. In Proceedings of the 2nd Symposium on Mobile and Location-
Independent Computing (April 1995).

[51] Douglis, F., Krishnan, P., and Marsh, B. Thwarting the Power-hungry Disk. In
Proceedings of The USENIX Winter 1994 Technical Conference (San Francisco, CA,
1994).

[52] Dutta, P., and Culler, D. Practical Asynchronous Neighbor Discovery and Rendezvous
for Mobile Sensing Applications. Proceedings of Sensys (2008).

[53] Eagle, N., and Pentland, A. Reality Mining: Sensing Complex Social Systems.
Personal and Ubiquitous Computing 10, 4 (2006), 255–268.

[54] Eriksson, J., Balakrishnan, H., and Madden, S. Cabernet: Vehicular Content Delivery
Using WiFi. In Proceedings of ACM MobiCom (San Francisco, CA, September
2008).

[55] Fall, K. A Delay-Tolerant Network Architecture for Challenged Internets. In Pro-
ceedings of ACM Sigcomm (2003), pp. 27–34.

[56] Ferguson, P., and Huston, G. Quality of Service: Delivering QoS on the Internet and
in Corporate Networks. Wiley and Sons, Inc, 1998.

[57] Fioravanti-Score, A., Mitchell, Sarah V., and Williamson, J. Michael. Use of Satellite
Telemetry Technology to Enhance Research and Education in the Protection of
Loggerhead Sea Turtles. In 19th Annual Symposium on Sea Turtle Biology and
Conservation (1999).

[58] Flautner, K., Reinhardt, S., and Mudge, T. Automatic Performance-setting for
Dynamic Voltage Scaling. In Proceedings ACM MobiCom (Rome, Italy, July 2001).

[59] Flinn, J., and Satyanarayanan, M. Managing Battery Lifetime with Energy-Aware
Adaptation. ACM Transactions on Computer Systems (TOCS) 22, 2 (May 2004).

[60] Forman, G.H., and Zahorjan, J. The Challenges of Mobile Computing. IEEE
Computers (1994).

122

[61] Froehlich, J., Chen, M. Y., Consolvo, S., Harrison, B. L., and Landay, J. A. MyEx-
perience: A system for in situ Tracing and Capturing of User Feedback on Mobile
Phones. In Proceedings of MobiSys (2007).

[62] Gaonkar, S., Li, J., Choudhary, R. R., Cox, L., and Schmidt, A. Micro-Blog: Shar-
ing and Querying Content Through Mobile Phones and Social Participation. In
Proceedings of MobiSys (2008).

[63] Gass, R., Scott, J., and Diot, C. Measurements of In-Motion 802.11 Networking. In
Proceedings of WMCSA (2006), pp. 69–74.

[64] Gay, D., Levis, P., Behren, R. V., Welsh, M., Brewer, E., and Culler, D. The nesC
Language: A Holistic Approach to Networked Embedded Systems. In Proceedings
of PLDI (June 2003).

[65] Girod, L., Stathopoulos, T., Ramanathan, N., Elson, J., Estrin, D., Osterweil, E.,
and Schoellhammer, T. A System for Simulation, Emulation, and Deployment
of Heterogeneous Sensor Networks. In Proceedings of SenSys (Baltimore, MD,
November 2004).

[66] Goodman, D. J., Borras, J., Mandayam, N. B., and Yates, R. D. INFOSTATIONS: A
New System Model for Data and Messaging Services. In Proceedings of Vehicular
Technology Conference (Phoenix, AZ, May 1997), pp. 969–973.

[67] Govil, K., Chan, E., and Wasserman, H. Comparing Algorithms for Dynamic Speed-
setting of a low-power CPU. In Proceedings of MobiCom (Berkeley, CA, November
1995).

[68] Gray, B. Soldiers, Agents, and Wireless Networks: A Report on a Military Applica-
tion. Technical Report (2000).

[69] Grieco, L. A., and Mascolo, S. Performance evaluation and comparison of West-
wood+, New Reno and Vegas TCP congestion control. In ACM CCR (2004), pp. 69–
74.

[70] Groenevelt, R., Nain, P., and Koole, G. The Message Delay in Mobile Ad hoc
Networks. In Proceedings of Performance (2006).

[71] Gumstix Inc. http://www.gumstix.com/, ed. San Jose, CA, September 2004. 7430-
0317-12.

[72] Helmbold, D. P., Long, D. D. E., and Sherrod, B. A Dynamic Disk Spin-down Tech-
nique for Mobile Computing. In Proceedings of the MobiCom (Rye, NY, November
1996).

[73] Horst, G. R., Hoagland, D. B., and Kilpatrick, C. W. The mongoose in the west indies:
The biogeography and population biology of an introduced species. Biogeography of
the West Indies: Patterns and Perspectives (2003), 409–424.

123

[74] Howard, A., Mataric, M. J., and Sukhatme, G. S. Mobile Sensor Network Deployment
using Potential Fields: A Distributed, Scalable Solution to the Area Coverage Problem.
Proceedings of DARS (2002).

[75] Huang, H., Pillai, P., and Shin, K. G. Design and Implementation of Power-Aware
Virtual Memory. In Proceedings of USENIX Technical Conference (San Antonio, TX,
June 2003).

[76] Hui, P., Chaintreau, A., Scott, J., Gass, R., Crowcroft, J., and Diot, C. Pocket Switched
Networks and Human Mobility in Conference Environments. In Proceedings of ACM
Workshop on Delay-Tolerant Networking (August 2005), pp. 244–251.

[77] Hui, P., Lindgren, A., and Crowcroft, J. Empirical Evaluation of Hybrid Opportunistic
Networks. In Proceedings of COMSNETS (Bangalore, India, January 2009).

[78] Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu, A., Shih, E.,
Balakrishnan, H., and Madden, S. CarTel: A Distributed Mobile Sensor Computing
System. In Proceedings of ACM SenSys (October 2006), pp. 125–138.

[79] Ibrahim, M., Hanbali, A. Al, and Nain, P. Delay and Resource Analysis in MANETs
in Presence of Throwboxes. In Proceedings of Performance (October 2007).

[80] Jain, S., Fall, K., and Patra, R. Routing in a Delay Tolerant Network. In Proceedings
of ACM Sigcomm (August 2004).

[81] Joseph, A. D., and Kaashoek, M. F. Building Reliable Mobile-Aware Applications
using the Rover Toolkit. In Proceedings of MobiCom (White Plains, NY, November
1996).

[82] Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L. S., and Rubenstein, D. Energy-
Efficient Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences
with ZebraNet. SIGOPS Operating Systems Review 36, 5 (2002), 96–107.

[83] Jun, H., Ammar, M. H., Corner, M. D., and Zegura, E. Hierarchical Power Man-
agement in Disruption Tolerant Networks with Traffic-Aware Optimization. In Proc.
ACM SIGCOMM Workshop on Challenged Networks (CHANTS) (September 2006).

[84] Jun, H., Ammar, M. H., and Zegura, E. W. Power Management in Delay Tolerant
Networks: A Framework and Knowledge-Based Mechanisms. In Proceedings of
IEEE SECON) (2005).

[85] Kamijoh, N., Inoue, T., Olsen, C. M., Raghunath, M. T., and Narayanaswami, C.
Energy trade-offs in the IBM Wristwatch Computer. In Proceedings of International
Symposium on Wearable Computers (Zurich, Switzerland, October 2001).

[86] Kandula, S., Lin, K. Ching-Ju, Badirkhanli, T., and Katabi, D. FatVAP: Aggregating
AP Backhaul Capacity to Maximize Throughput. In Proceedings of NSDI (San
Francisco, CA, April 2008).

124

[87] Kravets, R., and Krishnan, P. Power Management Techniques for Mobile Communi-
cation. In Proceedings of MobiCom (Dallas, TX, October 1998).

[88] Kubach, U., and Rothermel, K. Exploiting Location Information for Infostation-based
Hoarding. In In Proceedings of MobiCom (2004), pp. 217–230.

[89] Kulkarni, P., Ganesan, D., and Shenoy, P. Senseye: A multi-tier camera sensor
network. In ACM Multimedia (2005).

[90] LaMarca, A., and de Lara, E. Location Systems: An Introduction to the Technology
Behind Location Awareness. Synthesis Lectures on Mobile and Pervasive Computing
(2008).

[91] Lebeck, A. R., Fan, X., Zeng, H., and Ellis, C. S. Power Aware Page Allocation. In
Proceedings of ASPLOS (Cambridge, MA, November 2000).

[92] Lester, J., Choudhury, T., and Borriello, G. A Practical Approach to Recognizing
Physical Activities. In Proceedings of Pervasive (Dublin, Ireland, May 2006).

[93] Li, K., Sohn, T., Huang, S., and Griswold, W. PeopleTones: A System for the
Detection and Notification of Buddy Proximity on Mobile Phones. In Proceedings of
MobiSys (2007).

[94] Li, M., Ganesan, D., and Shenoy, P. PRESTO: Feedback-driven data management in
sensor networks. In Proceedings of the 3nd USENIX/ACM Symposium on Networked
Systems Design and Implementation (NSDI 2006) (May 2006).

[95] Li, Q., and Rus, D. Sending Messages to Mobile Users in Disconnected Ad hoc
Wireless Networks. In Proceedings of MobiCom (August 2000), pp. 44–55.

[96] Lin, Kris, Hsu, Jason, Zahedi, Sadaf, Lee, David C, Friedman, Jonathan, Kansal,
Aman, Raghunathan, Vijay, and Srivastava, Mani B. Heliomote: Enabling long-lived
sensor networks through solar energy harvesting. In Proceedings of ACM Sensys
(November 2005).

[97] Lindgren, A., Diot, C., and Scott, Ja. Impact of communication infrastructure on
forwarding in pocket switched networks. In Proceedings of CHANTS (Pisa, Italy,
September 2006), pp. 261 – 268.

[98] Litzkow, M., Livny, M., and Mutka, M. Condor: A Hunter of idle Workstations. In
Proceedings of International Conference on Distributed Computing Systems (June
1988).

[99] Liu, T., Bahl, P., and Chlamtac, I. Mobility Modeling, Location Tracking, and
Trajectory Prediction in Wireless ATM networks. IEEE JSAC 16, 6 (1998), 922–936.

[100] Liu, Xiaotao, Shenoy, Prashant, and Corner, Mark D. Chameleon: Application
Controlled Power Management with Performance Isolation. In Proc. ACM Multimedia
(Singapore, November 2005).

125

[101] Lorch, J. R., and Smith, A. J. Reducing Processor Power Consumption by Improving
Processor Time management in a Single-user Operating System. In Proceedings of
MobiCom (Rye, NY, Novemeber 1996).

[102] Lorincz, K., Chen, Bor-rong, Waterman, J., Werner-Allen, G., and Welsh, M. Re-
source Aware Programming in the Pixie OS. In Proceedings of SenSys (New York,
NY, USA, 2008), ACM, pp. 211–224.

[103] Luz, V. De La, Kandemir, M., and Kolcu, I. Automatic Data Migration for Reducing
Energy Consumption in multi-bank Memory Systems. In Proceedings of the 39th
Conference on Design automation (New Orleans, LA, June 2002).

[104] Lymberopoulos, D., Priyantha, N. B., and Zhao, F. mplatform: A Reconfigurable
Architecture and Efficient Data Sharing Mechanism for Modular Sensor Nodes. In
Proceedings of IPSN (Los Angeles, CA, April 2007).

[105] Lymberopoulos, D., and Savvides, A. XYZ: A Motion-Enabled, Power Aware Sensor
Node Platform for Distributed Sensor Network Applications. In Proceedings of ISPN
(Los Angeles, CA, April 2005).

[106] M. Anand, E. B. Nightingale, and Flinn, J. Ghosts in the Machine: Interfaces for
Better Power Management. In Proceedings of MobiSys (Boston, MA, June 2004).

[107] Mahajan, R., Zahorjan, J., and Zill, B. Understanding WiFi-based Connectivity From
Moving Vehicles. In Proceedings of IMC (2007).

[108] Mahesri, A., and Vardhan, V. Power Consumption Breakdown on a Modern Laptop.
Proceedings of PACS.

[109] Mascolo, S., Torino, P. Di, Gerla, M., Sanadidi, M. Y., and Wang, R. TCP Westwood:
Bandwidth Estimation for Enhanced Transport over Wireless Links. In Proceedings
of ACM MobiCom (2001), pp. 287–297.

[110] Mayo, R., and Ranganathan, P. Energy consumption in mobile devices: Why future
systems need requirements-aware energy scale-down. Lecture Notes in Computer
Science (2003). Special Issue on Power Management.

[111] Merugu, S., Ammar, M., and Zegura, E. Space-Time Routing in Wireless Networks
with Preictable Mobility. Tech. Rep. GIT-CC-04-07, College of Computing, Georgia
Institute of Technology, March 2004.

[112] Military. Rapid Deployment of Secure Mobile Communications. Technical Report.

[113] Miluzzo, E., Lane, N. D., Fodor, K., Peterson, R. A., Lu, H., Musolesi, M., Eisenman,
S. B., Zheng, X., and Campbell, A. T. Sensing Meets Mobile Social Networks: The
Design, Implementation and Evaluation of the CenceMe Application. In Proceedings
of SenSys (2008).

126

[114] Musoll, E., Lang, T., and Cortadella, L. Exploiting the Locality of Memory Refer-
ences to Reduce the address Bus Energy. In Proceedings of the 1997 International
Symposium on Low Power Electronics and Design (Monterey, CA, August 1997).

[115] Neugebauer, R., and McAuley, D. Energy is just another resource: Energy accounting
and energy pricing in the Nemesis OS. In Proceedings of HotOS (Schloss Elmau,
Germany, May 2001).

[116] Nicholson, A. J., Chawathe, Y., Chen, M. Y., Noble, B. D., and Wetherall, D. Im-
proved Access Point Selection. In Proceedings of MobiSys (2006), pp. 233–245.

[117] Nicholson, A. J., Wolchok, S., and Noble, B. D. Juggler: Virtual Networks for Fun
and Profit. IEEE Transactions on Mobile Computing (April 2008).

[118] Noble, B., Satyanarayanan, M., Narayanan, D., Tilton, J.E., Flinn, J., and Walker, K.
Agile Application-Aware Adaptation for Mobility. In Proceedings of the 16th ACM
Symposium on Operating System Principles (St. Malo, France, October 1997).

[119] Olsen, C. M., and Morrow, L. Alex. Multi-processor Computer System Having
Low Power Consumption. In Proceedings of the Second International Workshop on
Power-Aware Computer Systems (Cambridge, MA, February 2002).

[120] Onnela, J. P., Saramki, J., Hyvnen, J., Szab, G., Lazer, D., Kaski, K., Kertsz, J., and
Barabsi, A. L. Structure and Tie Strengths in Mobile Communication Networks.
Proceedings of National Academy of Science.

[121] Ott, J., and Kutscher, D. Drive-Thru Internet: IEEE 802.11b for “Automobile” Users.
In Proceedings of IEEE Infocom (March 2004), pp. 362–373.

[122] Papathanasiou, A. E., and Scott, M. L. Energy Efficiency through Burstiness. In
Proceedings of WMCSA (Monterey, CA, October 2003).

[123] Peleato, B., and Stojanovic, M. A MAC Protocol for Ad hoc Underwater Acoustic
Sensor Networks. In Proceedings of WUWNet (2006), pp. 113–115.

[124] Peng, C., Shen, G., Zhang, Y., Li, Y., and Tan, K. Beep Beep: A High Accuracy
Acoustic Ranging System Using COTS Mobile Devices. In Proceedings of SenSys
(2007).

[125] Pering, T., Agarwal, Y., Gupta, R., and Want, R. CoolSpots: Reducing the Power Con-
sumption of Wireless Mobile Devices with Multiple Radio Interfaces. In Proceedings
of ACM Mobisys (June 2006).

[126] Pering, T., Burd, T., and Brodersen, R. The Simulation and Evaluation of Dynamic
Voltage Scaling Algorithms. In Proceeedings of the International Symposium on Low
Power Electronics and Design (Monterey, CA, August 1998).

[127] Pering, Trevor, Agarwal, Yuvraj, Gupta, Rajesh, and Want, Roy. CoolSpots: Reducing
the Power Consumption of Wireless Mobile Devices with Multiple Radio Interfaces.
In Proc. ACM MobiSys (June 2006), pp. 220–232.

127

[128] Plank, J., Beck, M., Kingsley, G., and Li, K. Libckpt: Transparent checkpointing
under Unix. In Proceedings of the USENIX Winter 1995 Technical Conference
(January 1995).

[129] Polastre, J., Szewczyk, R., and Culler, D. Telos: Enabling Ultra-low Power Wireless
Research. In Proceedings of IPSN/SPOTS (April 2005).

[130] Polastre, J., Szewczyk, R., Sharp, C., , and Culler, D. The Mote Revolution: Low
power wireless sensor networks. In Proceedings of HotChips (August 2004).

[131] Pompili, D., Melodia, T., and Akyildiz, I. F. Routing algorithms for Delay-insensitive
and Delay-sensitive Applications in Underwater Sensor Networks. In Proceedings of
MobiCom (2006), pp. 298–309.

[132] Rahmati, A., and Zhong, L. Context-for-Wireless: Context-Sensitive Energy-Efficient
Wireless Data Transfer. In Proceedings of Mobisys (Puerto Rico, USA, June 2007).

[133] Robinson, J., Swaminathan, R., and Knightly, E. Assessment of Urban-Scale Wireless
Networks with a Small Number of Measurements. In Proceedings of ACM Mobicom
(2008).

[134] Rodriguez, P., Pratt, I., Chakravorty, R., and Banerjee, S. MAR: A Commuter Router
Infrastructure for the Mobile Internet. In Proceedings of ACM MobiSys (2004),
pp. 217–230.

[135] Sarafijanovic-Djukic, N., and Grossglauser, M. Last Encounter Routing under Ran-
dom Waypoint Mobility. In Proceedings of IFIP Networking (May 2004).

[136] Sastry, N., Crowcroft, J., and Sollins, K. Architecting Citywide Ubiquitous Wi-Fi
Access. In Proceedings of HotNets 2007 (Atlanta, Georgia, November 2007).

[137] Schott, B., Bajura, M., Czarnaski, J., Flidr, J., Tho, T., and Wang, L. A Modular
Power-Aware Microsensor with 1000X Dynamic Power Range. In Proceedings of
IPSN (Los Angeles, CA, April 2005).

[138] Shih, E., Bahl, P., and Sinclair, M. J. Wake on Wireless: An Event Driven Energy
Saving Strategy for Battery Operated Devices. In Proceedings of ACM Mobicom
(Atlanta, GA, September 2002).

[139] Shin, M., Hong, S., and Rhee, I. DTN Routing Strategies using Optimal Search
Patterns. In Proceedings of ACM MobiCom Workshop on Challenged Networks
(September 2008).

[140] Shin, M. H., Mishra, A., and Arbaugh, W. Improving the Latency of 802.11 hand-offs
using neighbor graphs. In Proceedings of Mobisys (2004), pp. 69–74.

[141] Sibley, G.T., Rahimi, M.H., and Sukhatme, G.S. Robomote: A Tiny Mobile Robot
Platform for large-scale Ad-hoc Sensor Networks. Proceedings of IEEE ICRA (2002).

128

[142] Soh, W., and Kim, H. S. Dynamic Bandwidth Reservation in Cellular Networks
Using Road Topology Based Mobility Predictions. In Proceedings of IEEE Infocom
(March 2004).

[143] Son, D., Krishnamachari, B., and Heidemann, J. Experimental Study of Concurrent
Transmission in Wireless Sensor Networks. In Proceedings of SenSys (2006), pp. 237–
250.

[144] Song, L., Deshpande, U., Kozat, U. C., Kotz, D., and Jain, R. Predictability of WLAN
Mobility and its Effects on Bandwidth Provisioning. In Proceedings of IEEE Infocom
(2006).

[145] Sorber, J., Banerjee, N., Corner, M. D., and Rollins, S. Turducken: Hierarchical
Power Management for Mobile Devices. In Proceedings of MobiSys (Seattle, WA,
June 2005).

[146] Sorber, J., Banerjee, N., Corner, M. D., and Rollins, S. Turducken: Hierarchical
power management for mobile devices. In Proceedings of ACM MobiSys (Seattle,
WA, 2005).

[147] Sorber, J., Kostadinov, A., Garber, M., Brennan, M., Corner, M. D., and Berger, E. D.
Eon: A Language and Runtime System for Perpetual Systems. In Proceedings ACM
SenSys (Syndey, Australia, November 2007).

[148] Soroush, H., Banerjee, N., Corner, M. D., and Levine, B. N. Epsilon: Patching WiFi
Mobile Networks. Technical Report (May 2009).

[149] Soroush, H., Banerjee, N., Corner, M. D., Levine, B. N., and Lynn, B. DOME: A
Diverse Outdoor Mobile Testbed. Department of Computer Science Technical Report
UM-CS-2009-23, Univ. of Massachusetts Amherst, May 2009.

[150] Spyropoulos, T., Psounis, K., and Raghavendra, C. S. Spray and Wait: An Efficient
Routing Scheme for Intermittently Connected Mobile Networks. In Proceedings of
ACM Workshop on Delay Tolerant Networking (2005).

[151] Stathopoulos, T., Lukac, M., McIntire, D., Heidemann, J., Estrin, D., and Kaiser, W.
End-to-end Routing for Dual-Radio Sensor Networks. In Proceedings of the IEEE
Infocom 2007 (Anchorage, Alaska, USA, May 2007).

[152] Stellner, G. CoCheck: Checkpointing and Process Migration for MPI. In Proceedings
of International Parallel Processing Symposium (April 1996).

[153] Su, W., Lee, S., and Gerla, M. Mobility Prediction and Routing in Ad hoc Wireless
Networks. International Journal of Network Management (2001).

[154] Tanenbaum, A. S. Computer Networks, 3rd ed. Prentice-Hall, 2003.

[155] Theimer, M. M., Lantz, K. A., and Cheriton, D. R. Preemptable Remote Execution
Facilities for the V System. In Proceedings of SOSP (Orcas Island, WA, December
1985).

129

[156] Tiwari, V., Malik, S., and Wolfe, A. Compilation Techniques for Low Energy: An
Overview. In Proceedings of IEEE Symposium on Low Power Electronics (October
1994).

[157] Trifa, V. M., Girod, L., Collier, T., Blumstein, D. T., and Taylor, C. E. Automated
Wildlife Monitoring Using Self-Configuring Sensor Networks Deployed in Natural
Habits. Proceedings of AROB (2007).

[158] Vahdat, A., and Becker, D. Epidemic routing for partially-connected ad hoc networks.
Tech. rep., Duke University, 2000.

[159] Varshavsky, A., de Lara, E., Hightower, J., LaMarca, A., and Otsason, V. GSM indoor
localization. In Pervasive and Mobile Computing journal (Dec. 2007).

[160] Want, R., Pering, T., Danneels, G., Kumar, M., Sundar, M., and Light, J. The Personal
Server - Changing the Way We Think about Ubiquitous Computing. In Proceedings
of Ubicomp (Goteborg, Sweden, September 2002).

[161] Weiser, M., Welch, B., Demers, A., and Shenker, S. Scheduling for Reduced CPU
Energy. In Proceedings of OSDI (Monterey, CA, November 1994).

[162] Whitaker, A., Cox, R. S., Shaw, M., and Gribble, S. D. Constructing Services with
Interposable Virtual Hardware. In Proceedings of NSDI (San Francisco, CA, March
2004).

[163] Ye, W., Heidemann, J., and Estrin, D. An Energy-Efficient MAC Protocol for Wireless
Sensor Networks. In Proceedings of IEEE Infocom (New York, NY, USA, June 2002),
pp. 1567–1576.

[164] Yin, L., Li, B., Zhang, Z., and Lin, Yi-Bing. Performance Analysis of a Dual-
threshold Reservation (DTR) Scheme for voice/data Integrated Mobile Wireless
Networks. Proceedings of IEEE WCNC (2000).

[165] Yu, X. Improving TCP Performance over Mobile ad hoc Networks by Exploiting
Cross-layer Information Awareness. In Proceedings of MobiCom (New York, NY,
USA, 2004), ACM, pp. 231–244.

[166] Zeng, H., Ellis, C. S., Lebeck, A. R., and Vahdat, A. ECOSystem: Managing Energy
as a first class Operating System Resource. In Proceedings of ASPLOS (San Jose,
CA, October 2002).

[167] Zhang, P., Sadler, C. M., Lyon, S. A., and Martonosi, M. Hardware Design Experi-
ences in ZebraNet. In Proceedings of SenSys (New York, NY, USA, 2004), ACM,
pp. 227–238.

[168] Zhang, P., Sadler, C. M., Lyon, S. A., and Martonosi, M. Hardware Design Experi-
ences in ZebraNet. In Proceedings of SenSys (New York, NY, USA, 2004), ACM,
pp. 227–238.

130

[169] Zhang, X., Kurose, J., Levine, B. N., Towsley, D., and Zhang, H. Study of a Bus-
Based Disruption Tolerant Network: Mobility Modeling and Impact on Routing. In
Proceedings of ACM Mobicom (September 2007).

[170] Zhang, X., Neglia, G., Kurose, J., and Towsley, D. Performance Modeling of
Epidemic Routing. In Proceedings of IFIP Networking (2006).

[171] Zhao, W., and Ammar, M. Message Ferrying: Proactive Routing In Highly Partitioned
Wireless Ad hoc Networks. In Proceedings of IEEE Workshop on Future Trends in
Distributed Computing Systems (May 2003).

[172] Zhao, W., Ammar, M., and Zegura, E. A Message Ferrying Approach for Data
Delivery in Sparse Mobile Ad Hoc Networks. In Proceedings of MobiHoc (May
2004).

[173] Zhao, W., Ammar, M., and Zegura, E. Controlling the Mobility of Multiple Data
Transport Ferries in a Delay-Tolerant Network. In Proceedings of IEEE INFOCOM
(2005).

[174] Zhao, W., Chen, Y., Ammar, M., Corner, M. D., Levine, B. N., and Zegura, E.
Capacity Enhancement using Throwboxes in DTNs. In Proceedings of IEEE MASS
(Oct 2006), pp. 31–40.

[175] Zhu, J., Hung, Ka-Lok, and Bensaou, B. Tradeoff between Network Lifetime and Fair
rate allocation in Wireless Sensor Networks with Multi-path Routing. In Proceedings
of MSWiM (New York, NY, USA, 2006), ACM, pp. 301–308.

131

