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Abstract

Online Internet applications see dynamic workloads that fluc-
tuate over multiple time scales. This paper argues that
the non-stationarity in Internet application workloads, which
causes the request mix to change over time, can have a signif-
icant impact on the overall processing demands imposed on
data center servers. We propose a novel mix-aware dynamic
provisioning technique that handles both the non-stationarity
in the workload as well as changes in request volumes when
allocating server capacity in Internet data centers. Our tech-
nique employs the k-means clustering algorithm to automat-
ically determine the workload mix and a queuing model to
predict the server capacity for a given workload mix. We
implement a prototype provisioning system that incorporates
our technique and experimentally evaluate its efficacy on a
laboratory Linux data center running the TPC-W web bench-
mark. Our results show that our k-means clustering technique
accurately captures workload mix changes in Internet appli-
cations. We also demonstrate that mix-aware dynamic provi-
sioning eliminates SLA violations due to under-provisioning
with non-stationary web workloads, and that it offers a bet-
ter resource usage by reducing over-provisioning when com-
pared to a baseline provisioning approach that only reacts to
workload volume changes. We also present a case study of
our provisioning approach on Amazon’s EC2 cloud platform.

1 Introduction

Online Internet applications have become popular in a variety
of domains such as e-retail, online banking, finance, news,
social networking and communication. Many Internet appli-
cations run on a hosting platform such as Amazon’s Elastic
Computing Cloud (EC2) or the Google App Engine. A host-
ing platform (or a compute cloud) comprises of server and
storage farms housed in one or more data centers; the plat-
form rents server and storage resources to each hosted appli-
cations and in return provides guarantees on the capacity and
performance seen by each application.

Numerous studies have shown that workloads seen by In-
ternet applications can be highly dynamic with variations at
multiple time-scales [8, 13]; such variations include seasonal
fluctuations such as time-of-day and month-of-the-year ef-
fects as well as sudden workload spikes caused by flash-
crowds (e.g., the so-called ’slashdot effect’). To ensure a
minimum level of performance and meet the contracted ser-
vice level agreements (SLAs), the underlying platform will
need to dynamically match allocated capacity to such ob-
served workload changes. While long-term variations can be
handled by manually allocating server capacity to an applica-
tion, short-term fluctuations require an ability to dynamically
provision capacity to react to workload changes in an agile
and timely manner. Recently a number of dynamic capac-
ity provisioning techniques have been proposed in the litera-
ture [23, 24, ?, 4]. Most of these techniques track or predict
changes in the workload [23, 24] and then provision sufficient
capacity to handle this expected volume of requests. For in-
stance, if a flash crowd causes the workload volume to dou-
ble, so must the provisioned server capacity. Similarly com-
mercial cloud platforms such as Amazon’s EC2 only support
a simple provisioning approach that adds a new server if the
utilization of the current servers exceed a threshold.

In this paper, we argue that provisioning server capacity
based on the expected volume of requests may not be suf-
ficient to accurately capture the service demands of a web
application. In particular it has been observed that in real
production applications ranging from enterprise applications
to large e-commerce sites, workload is higly variable and the
request mix exhibits nonstationarity [20, ?]. Consequently, a
provisioning technique should consider both the mix of re-
quests as well as their volumes to accurately estimate the
capacity needed by an application. For example, normally
infrequent heavy-tailed requests may become more frequent
during a workload surge, necessitating significantly more ca-
pacity to handle these “heavy-hitters”. We argue next using il-
lustrative examples why the workload mix matters when pro-
visioning server capacity.
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1.1 The Case for Mix Aware Provisioning:
Why Workload Mix Matters?

Workload fluctuations seen by Internet applications can be
caused by changes in the volume of incoming requests or by
changes in their mix; frequently, workload fluctuations are
accompanied by both types of changes. It is clear that a sig-
nificant change in the request volume requires changes in the
provisioned capacity—for example, if the request rate dou-
bles, the application needs twice as much server capacity. A
change in the workload mix (i.e., the relative frequencies of
different request types) is a more subtle phenomenon that has
an equally important impact on capacity provisioning; how-
ever, the impact of such non-stationary workloads has not
been adequately addressed in the research literature. We ar-
gue why the workload mix matters using two illustrative ex-
amples.

Example 1: Consider a web application that services
two types of requests: long and short. Assume that short
requests require 1ms of processing time and long requests
take 90ms. Initially, the application receives 90 short and
10 long requests each second (total of 100 req/s). This im-
poses 90 · 1 + 10 · 90 = 990ms of server processing over-
head in each second. Next assume that the workload mix
changes to 10 short and 90 long requests/second (the total
request volume is unchanged at 100 req/s). This new mix re-
quires 10 · 1 + 90 · 90 = 3610ms of server processing time
each second. Thus, the total processing demand on the server
has quadrupled even though the incoming request rate is un-
changed.

A provisioning technique that tracks aggregate request
volumes would not notice any change in the request rate, and
thus, would be unable to react to this large change in the
server load. Next we explain why a provisioning technique
that makes decision solely on the basis of request volumes
can incur errors by over- or under-provisioning server capac-
ity.

Example 2: Consider the above web application that ser-
vices long and short requests, where short requests require
1ms and long requests require 90ms of server processing. As-
sume an initial request rate of 100 req/s with equal number of
long and short requests (50 request each per second). Next as-
sume that the workload doubles to 200 req/s. If the workload
mix were unchanged, this would imply a doubling of the pro-
cessing demand on the server, requiring twice as much server
capacity. However, if the relative mix of long and short re-
quest changes when the workload doubles to 200 requests/s,
then the actual demand on the server can be greater or smaller
than the 2x increase in request volume. In particular, if the
mix changes to 150 long and 50 short request (total of 200),
this requires an increase of 150∗90+50∗1

50∗90+50∗1 = 2.97, which is a
three-fold increase in server capacity for a doubling of request
workload. Similarly, if the mix changes to 150 short and 50
long requests (total of 200 req/s), this requires an increase of
150∗1+50∗90
50∗90+50∗1 = 1.02 — a mere 2% increase in server capacity

even when the workload doubles. Thus, a provisioning tech-

nique that naively doubles server capacity due to a doubling
of request workload can under- or over-provision capacity by
large amounts by ignoring the changes to the workload mix.

The above examples illustrate why the workload mix mat-
ters when determining the server capacity needed to service
a particular workload. This paper presents such a mix-aware
provisioning technique that can automatically increase or de-
crease the server capacity allocated to an Internet application
in response to significant changes in the workload mix or the
workload volume.

1.2 Research Contributions

Our autonomic mix-aware provisioning technique is de-
signed to capture the effects of non-stationarity in Internet
workloads—which manifest as changes in the observed re-
quest mix as well as changes in the volume of requests seen
by servers. In order to be mix-aware, our technique first char-
acterizes the workload mix. Instead of doing a static a pri-
ori analysis of the workload, we present an automated ap-
proach based on the k-means clustering algorithm to auto-
matically determine the different “types” of requests present
in the workload. Our technique pays particular attention to
the effects of large requests seen in heavy-tailed workloads.
This characterization is then used to drive a queuing theo-
retic model of data center applications, which computes the
new server capacity needed to service the predicted workload
mix. The technique then dynamically increases or decreases
the number of servers allocated to the application based on
the predicted capacity.

We have implemented a prototype provisioning system
that incorporates our techniques on a laboratory Linux data
center. We have conducted a detailed experimental evalua-
tion of our approach by subjecting the TPC-W application to
non-stationary time-varying workloads. Our results show our
k-means clustering approach can accurately capture workload
mix changes seen by Internet applications. We also find that
our mix-aware dynamic provisioning system eliminates SLA
violations due to under-provisioning with non-stationary web
workloads, while also reducing over-provisioning and achiev-
ing better resource usage when compared to baseline provi-
sioning techniques that react to workload volume changes.

The rest of this paper is organized as follows: Section 2
gives a system overview. Our clustering technique and mix-
aware provisioning policy are described in sections 3 and 4,
respectively. Implementation details are discussed in Sec-
tion 5 and Section 6 shows experimental results. Section 7
presents related work and we conclude in Section 8.

2 System Overview

This section presents the model of the hosting platform and
Internet applications assumed in our work as well as the ar-
chitecture of our dynamic provisioning system.
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2.1 Data Center Model
We assume that web applications run on a hosting platform
(or the hosting “cloud”) that comprises a data center with
a cluster of commodity servers that are interconnected by a
high-speed LAN (Gb or 10Gb Ethernet); one or more high
bandwidth links connect the hosting platform to the Internet.
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Figure 1: Multi-tier application model

The platform is assumed to host multiple Internet applica-
tions. Modern Internet applications are distributed with sev-
eral components; a multi-tier architecture is a popular tech-
nique for constructing such applications. In this architecture,
each application tier provides a certain functionality, and the
various tiers form a processing pipeline. Each tier receives
partially processed requests from the previous tier and feeds
these requests into the next tier after local processing (see
Figure 1). For example, an online bookstore can be designed
using two tiers—a web tier that receives client connections
and implements the application logic, and a backend database
that stores catalogs and user orders.

The various tiers of the application are assumed to be dis-
tributed across different servers of the data center. Depend-
ing on the desired capacity, a tier may also be replicated via
clustering. In an online bookstore, for example, the web tier
can be a clustered Apache Tomcat server that runs on multi-
ple machines. Such replication enables the tier capacity to be
scaled in proportion to the number of replicas. Each clustered
tier is also assumed to employ a load balancing element that
is responsible for distributing requests to replicas in that tier.
If a tier is both clustered and replicable on-demand, it is as-
sumed that the number of servers allocated to it, and thus the
provisioned capacity, can be varied dynamically.

The goal of the hosting platform is to monitor the work-
load seen by each tier and dynamically add or remove replicas
at each tier to match the incoming workload (while striving to
meet the application’s desired response time SLA). The SLA
is assumed to be specified in terms of a high percentile of
the response time distribution (e.g., 95 percentile of requests
should have a response time less than 1 second).

2.2 Provisioning System Overview
The architecture of our dynamic provisioning system is de-
picted in Figure 2. The heart of the technique lies in the provi-
sioning logic which runs on a control node of the data center.

It consists of an aggregator that monitors the incoming work-
load at each tier and gathers workload statistics by processing
the request logs produced by each component. For new ap-
plications, these statistics are used by the mix determiner for
one-time analysis to characterize the application workload.
This characterization is used by the workload predictor to es-
timate the future workload mix and then fed into the queuing
model to compute the server capacity needed at each tier. The
actuator can then provision additional servers from the free
pool or return unneeded servers back to the pool.

The following sections describe (i) how the mix deter-
miner employs an automated clustering-based approach for
determining the request types seen by an application, and (ii)
how this workload characterization can then be employed to
design a mix-aware provisioning technique using a queuing
theoretic model.

3 Characterizing Workload Mixes
with Clustering

To characterize a workload mix, requests which have similar
service demands are grouped into a service class. The service
demand of a request is measured by the service time of the
request. Service classes are used to determine how much ca-
pacity to provision. Service classes can be determined man-
ually but this is a long, error prone and tedious process. We
propose a technique to perform this classification automati-
cally.

Our approach is based on the well-known k-means clus-
tering algorithm. k-means clusters n objects into k partitions
(k < n) by minimizing total intra-cluster variance to find the
centers of natural clusters in the data. The algorithm assumes
that the variance is an appropriate measure of cluster scatter.
Other clustering algorithms could be used for this purpose,
but k-means has the advantage that it is well studied and is
known to converge very quickly in practice. The vanilla k-
means algorithm requires k (the number of clusters) as an
input; in our case, however, the number of request classes in
not known a priori. Hence, we must use a modified approach
that first determines the appropriate k for a particular work-
load and then clusters the workload into k different request
classes.

Our technique for doing so consists of first collecting
unique request service times to partition them into clusters.
As explained in section 1.1, infrequent queries might have a
long service time which translates into a heavy-tailed work-
load. We adjust clustering of such workloads by splitting the
large tail cluster into smaller clusters less sensitive to service
time variations of larger queries. Finally, we observe the fre-
quency of the requests within each each cluster to find the
cluster means.

We now detail the 3 steps of our enhanced clustering algo-
rithm:
Step 1 - Determine k and partition unique request types
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into clusters: We use an iterative approach to determine the
the best k value for a particular application. The idea is to
iteratively run k-means with every value of k and compute 4
variables: coefficient of variation1 of intra-cluster distance,
coefficient of variation of inter-cluster distance, ratio of intra-
cluster variance to inter-cluster variance, and ratio of intra-
cluster coefficient of variation to inter-cluster coefficient of
variation. The best k value minimizes intra-cluster variance
and maximizes inter-cluster variance [14]. Determining the
best k value is a one-time activity for any given application.

Each cluster represents a service time class defined by a
lower and upper service time bound. As we use the entire
set of unique service times of the application, any request at
runtime will fall within a cluster.

Step 2 - Adjust for heavy-tailed workloads: It is com-
mon for service time distributions to have a long tail due to
infrequent heavy requests. k-means is likely to aggregate all
these infrequent service times in a single large cluster.

Example 3: Consider a cluster that contains 2 requests
of 500ms service time and 1 request of 2000ms. Then
the average service demand for the cluster is 2∗500+2000

3 =
1000 ms. If the workload changes and invokes one 500ms
and two 2000ms requests, the new cluster average becomes
500+2∗2000

3 = 1500 ms, which is a large shift in the cluster
mean.

To prevent such huge shifts in cluster averages, we divide
large clusters into smaller clusters of fixed size. To do so,
we specify a threshold max size on the maximum size of a
cluster; if a cluster containing the tail of the request exceeds
this size, it is broken up into multiple small clusters, each of
size max size.

Step 3 - Compute cluster means: We determine the mean
for each of the k clusters by using the set of all services times
seen in an interval as opposed to the unique request service
time used in previous steps. A cluster mean is the average
service demand for all requests falling in that cluster. If a
cluster has the service times S = {s1, s2, s3, . . . , sk} which
appear with frequencies F = {f1, f2, . . . , fk}, the cluster

mean is given by
Pi=k

i=1 sifiPj=k
j=1 fj

.

Step 4 - Recomputation of cluster means: As the work-
load mix changes over time, the frequency of different request
types will change, causing the cluster mean to change. In a
mix-oblivious scenario, all service times belong to one clus-
ter. The cluster mean changes very frequently, and by large
amounts, as the workload mix changes. With an optimal num-
ber of clusters, however, the cluster means remain more stable
over time even in the presence of workload changes.

Our experimental evaluation in section 6.2 shows that clus-
ter means changes do not exceed 5% in case of workload
changes. Therefore re-estimating cluster means is not a fre-
quent operation. This re-estimation of cluster means, while
infrequent, can be done efficiently since the number of clus-
ters is constant—we simply scan through all clusters and find

1coefficient of variation or variation coefficient is defined as a ratio of the
standard deviation to the mean, i.e. c = σ/µ;

out the frequency of each request type in each cluster to re-
calculate the cluster mean.

4 Autonomic Mix-Aware Provisioning
A dynamic provisioning algorithm must decide how many
servers to allocate at each tier of an application so that a spec-
ified Service Level Agreement (SLA) is not violated. The
provisioning decision for each tier of a multi-tier application
is taken independently. Once the provisioning logic decides
the number of servers required for each tier, the configura-
tion is updated accordingly by an actuator. Figure 2 gives an
overview of the architecture of the system.

The key insight behind our provisioning approach is to not
only consider changes in workload volume (like in a volume-
based provisioning approach [23]) but also track changes in
the workload mix using service time clusters determined in
section 3. Our algorithm continuously monitors the workload
to make two decisions: (i) when to trigger provisioning, and
(ii) how much additional capacity to provision. We discuss
each decision in turn.

4.1 When to provision?
The effectiveness of provisioning decisions relies on invoking
the provisioning algorithm at pertinent points in time. Our
approach uses three different types of triggers:

Periodic: the provisioning logic is invoked at regular time
intervals.

Triggered by change in volume: a drastic change in the
volume of requests triggers provisioning.

Triggered by change in the mix: a change in the workload
mix can be used to invoke provisioning to respond to these
changes.

By default, our approach invokes the provisioning algo-
rithm periodically to ensure that provisioned capacity is suf-
ficient to service the expected workload. The periodicity of
invocation can be decided by the administrator depending on
the datacenter; e.g. in the case of EC2 it can be less than 1
hour since the billing is done every hour, while in the case of
a private data-center it can be more. Besides this, any sudden
changes in the workload volume or the workload mix beyond
a threshold also serve as additional triggers, since either can
substantially change the service demand of the application.

4.2 How much to provision?
Once the provisioning algorithm has been triggered, it must
then provision additional capacity, if needed, for each tier of
the application so that its SLAs are met. We assume that
SLAs in a multi-tier application are specified as end-to-end
response time perceived by the client. For instance, an SLA
can specify that the mean of the end-to-end response time
must be less than a value or that the 95th percentile of re-
sponse time should be less than a threshold. The constraint
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on the end-to-end response time is suitably broken down into
constraints on per-tier response times. This way, each tier can
be treated independently of each other. In this paper, we use
SLAs specified in terms of the 95th percentile of the end-to-
end response time. Given these per-tier SLAs, provisioning
the correct number of servers for each tier is a three step pro-
cess:

Step 1 - Estimate λi for each cluster: The clustering al-
gorithm described in section 3 divides the entire workload
into clusters. A predictor for each cluster forecasts λi the ar-
rival rate of requests in that cluster. Predictors based on time
series can be used to provide accurate results for data center
workloads [8],[23]. The total volume of requests, λtotal, is
obtained by summing the λi’s of each cluster.

Step 2 - Queuing model to predict capacity: We model
multi-tier applications using a network of queues. Each tier
is represented as a queue. Requests coming into a tier are
modeled as requests visiting a queue. The queuing discipline
is assumed to be first-come-first-serve. The requests wait in
the queue to be serviced, and once serviced they move to the
next queue in the network. Each queue is modeled as a G/G/1
queuing system. This system can handle an arbitrary distribu-
tion of arrivals and an arbitrary distribution of service times.

We use Kingman’s approximation for the waiting time in
a G/G/1 queue in the heavy-traffic case [11]. This result gives
an approximation of the waiting time distribution when the
utilization ρ ∼= 1 (but remains strictly less than one so that the
system is still stable). The probability distribution function of
the waiting time in the queue is exponentially distributed with
mean σa

2+σb
2

2( 1
λ−x̄)

where σa
2 is the inter-arrival time variance,

σb
2 the service time variance, λ the request arrival rate, and

x̄ the average service time.
In our provisioning experiments the service level agree-

ment is defined in terms of the 95th percentile response time.
Since the waiting time distribution is exponential, the 95th

percentile of the waiting time, αW (95), can be expressed in
terms of the mean waiting time E[W ]. If the SLA requires
the 95th percentile response time to be less than y seconds,
the maximum arrival rate of requests that can be sustained by
one server is given by:

λ <

[
x̄ +

σa
2 + σb

2

2 (y/3− x̄)

]−1

(1)

The average service time is x̄ =
Pi=k

i=1 λidiPi=k
i=1 λi

where λi = arrival
rate in cluster i as found in step 1, and di = cluster mean of
cluster i. The values of the inter-arrival variance and service
times σa

2 and σb
2 are obtained using online monitoring of the

tier. We substitute these values in Equation 1 to find out λ.
This gives the capacity of one server. Using λtotal calculated
in step 1, we find the number of servers required at this tier:

N =
⌈

λtotal

λ

⌉
(2)

Our mix-aware provisioning algorithm is formally de-
scribed in Algorithm 1.

Input: Let there be k clusters at this tier, incom-
ing volume of requests in each cluster P =
{λ1, λ2, λ3, . . . , λk}, the cluster mean of each
cluster D = {d1, d2, d3, . . . , dk}, the 95th per-
centile response time threshold for this tier y, the
variance of inter-arrival time σa

2, the variance of
service time σb

2

Output: Number of servers needed for this tier

λtotal =
∑i=k

i=1 λi

x̄ =
Pi=k

i=1 λidiPi=k
i=1 λi

λper−server =
[
x̄ + σa

2+σb
2

2(y/3−x̄)

]−1

N =
⌈

λtotal

λper−server

⌉
return N

Algorithm 1: Find number of servers required at a partic-
ular tier

Step 3 - Applying the new configuration: Once the new
number of servers is determined for each tier, an actuator adds
or removes servers at each tier to achieve the desired config-
uration. New added servers are taken from a free pool, and
removed servers are returned to the free pool.

Note that heterogeneous platforms can be handled by us-
ing simple multiplication factors between servers depending
on their hardware characteristics. For example, Amazon EC2
provides various instances (small, medium, large, xlarge...)
each with different hardware resources. By running the web
application on each instance, it is easy to determine a perfor-
mance factor like, for example, a medium instance performs
1.5 times better than a small instance, or a large instance pro-
vides 2x the throughput of a small instance. The number of
servers can then be expressed in number of small instances
and the actuator can realize the configuration to apply using
a mix of different instances. For example, using the perfor-
mance factors described previously, adding 5 small servers
could be realized by adding 2 medium and 1 large servers or
2 large and 1 small servers.

5 Prototype Implementation
We have built a prototype provisioning system that incorpo-
rates our mix-aware provisioning technique. Our prototype
assumes a cluster of Linux servers in a data center that are
interconnected by a high-speed LAN such as a gigabit ether-
net. We assume that one node of the data center is the control
node that runs our provisioning logic. Our prototype assumes
that each tier of a multi-tier application runs on one or more
servers and that the tier can be replicated dynamically to scale
its capacity. Figure 2 gives the architectural overview of the
different components of our provisioning system.

Servers: The data center hosts a multi-tier application and
servers are allocated in 4 pools: web tier, database tier, load
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Figure 2: Provisioning architecture overview

injection and free servers. When the provisioning logic de-
cides to add a node to the web or database tier, a server is
picked from the free server pool. Unused nodes freed by the
provisioning decisions are returned to the free pool. The load
injection server pool is used to emulate users.

The web tier uses Apache Tomcat 5.5.26 application
server and the database tier is MySQL 5.1.26 using MySQL
master/slave replication. We have instrumented the Tomcat
source code to report the request service time. To get accu-
rate service times we use the Linux 2.6.26 getrusage system
call that captures the time consumed by a particular thread.
We also configured Tomcat to log the arrival time and re-
sponse time of each request. To measure the variance of
the inter-arrival time, we use finer granularity timers to get
sub-milliseconds accuracy. The logs are stored on a shared
filesystem. MySQL request service time is determined of-
fline by measuring the query execution time of each query in
isolation on a standalone system. The query log is activated
to record query arrival time. The above modifications can be
done in an application agnostic manner and is thus generic for
any web-application deployed on Tomcat and MySQL.

The provisioning logic contains 5 components: aggrega-
tor, mix determiner, predictor, model and actuator. They
are all implemented in Java; we have implemented the inter-
component communication using RMI.

Aggregator: The aggregator collects information from
all Tomcat and MySQL servers at regular time intervals via
the shared filesystem. Tomcat logs are parsed to find the i)
σa

2 the variance of inter-arrival time, ii) σb
2 the variance of

service-time, iii) the average response time and iv) the set of
service times seen in the last interval. For MySQL, the aggre-
gator gets the SQL queries from the request log file. It then
looks up the service time for each query from the numbers
collected during offline profiling. The statistics for each tier
are calculated by aggregating the corresponding statistics of
all the replicas of the concerned tier.

Mix-Determiner: The mix-determiner collects the ser-

vice time values observed at each tier from the aggregator.
Service times at a tier are distributed into the tier clusters.
This way the mix-determiner finds out the arrival rate of each
cluster (i.e. λi). It also computes the current cluster mean.
If the current cluster means deviate more than 0.5 times the
standard deviation of any cluster, mix-determiner automat-
ically triggers the process of re-estimation of new clusters
means.

Predictor: The predictor takes the arrivals of each bin
(λi) as an input from the mix-determiner. In the current im-
plementation, we directly use the arrival rate values from the
load injectors. Predictions are sent to the model.

Model: The model collects statistics from the aggregator
and the predictor. It processes them to find out the number
of servers needed at each tier by using algorithm 1. The re-
sults are sent to the actuator to implement the new system
configuration.

Actuator: The actuator reconfigures the system to pro-
vide the exact capacity that has been decided by the model.
It adjusts the number of servers at each tier accordingly by
either adding new servers from the free pool, or removing
servers and returning them to the free pool. Servers returned
to free pool are handled in a datacenter specific manner so
as to increase benefit of the reconfigured system; for e.g. in
the case of a data center with dedicated servers, actuator sus-
pends the machines to save power and wake them up when
needed, while in the case of EC2 it detaches the compute in-
frastructure to save the rental cost. The actuator adds servers
to the application in a tier specific manner, i.e. new MySQL
nodes are always added as slave nodes and the master node is
never removed, while Tomcat nodes, all being identical, are
added or removed indifferently.

6 Experimental Evaluation

We have tested our proposed clustering and provisioning
techniques using a standard multi-tier application benchmark.
We describe our experimental setup in section 6.1. As the
provisioning policies apply independently to each tier, we
have chosen for space constraints to only present our clus-
tering results for the database tier (section 6.2) and provision-
ing results for the web tier (section 6.3). Finally, we present a
case study on Amazon’s EC2 public cloud platform in section
6.4.

6.1 Experimental Setup

We use the ObjectWeb [16] implementation of the TPC-W
benchmark [22] as our reference multi-tier application. TPC-
W models an online retail bookstore. The TPC-W specifi-
cation describes 14 different web interactions and three dif-
ferent workload mixes: browsing, shopping and ordering.
These mixes differ in the relative frequency of each inter-
action which translates in different amount of read-only and
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update transactions. The browsing mix workload has 5% up-
dates, the shopping mix 20% updates and the ordering mix
50% updates.

The users interacting with the web site are emulated by
the RBE (Remote Browser Emulator) that browses the web
site according to the workload definition. For some provi-
sioning experiments, we have also used the httperf [15] load
generation tool. Httperf allows us to generate variations in
the workload that are different from the one hard-coded in
the RBE.

We have built a data center prototype to evaluate the effec-
tiveness of our clustering and provisioning techniques. We
use a total of 16 physical servers each with an Intel Pentium4
2.40GHz with 2GB RAM interconnected by a Gigabit Ether-
net network. One server is dedicated to run the provisioning
logic. The rest of the servers are used to host the different
components of the TPC-W web benchmark. Each server runs
a linux kernel version 2.6.26.

We also ran additional experiments on the Amazon EC2
[2] public cloud platform (section 6.4) where we use small
server instances for the application tiers and a dedicated in-
stance to run the provisioning logic. Each server runs a linux
kernel version 2.6.21 with the Xen [3] virtualization exten-
sions.

6.2 Clustering Evaluation

This section presents the results of our clustering experiments
for the TPC-W benchmark with the service times observed at
the database tier.

6.2.1 Initial clustering

As described in section 3, the first step is to find out the set of
unique service times for each tier. We run each workload mix
of the TPC-W benchmark with a constant number of 800 em-
ulated users to collect all possible service times in all mixes.
We use offline profiling to get MySQL service times as de-
scribed in section 4.

To find out the right number of clusters (or service classes)
in the service time dataset, we employ the technique de-
scribed in section 3. We try multiple values of k, the number
of clusters in the data, starting with 3 up to 14 (the total num-
ber of interactions in TPC-W). For each k, we run k-means
and compute 4 variables [14]: 1) inter-cluster coefficient of
variation (CVinter), 2) intra-cluster coefficient of variation
(CVintra), 3) ratio between intra and inter-cluster variance
(βvar) and 4) ratio between intra and inter-cluster coefficient
of variation (βcv). We then choose the value of k that gives
the smallest values of βcv and βvar.

Figure 3(a) shows CVinter, CVintra and βcv with increas-
ing values of k. Both βcv and CVintra reach their lowest
values when k = 5 which is the optimal cluster size for our
TPC-W setup. Clustering performance degrades sharply with
significantly higher values of βcv and CVintra with k > 5.

CVinter remains stable with an increasing number of clus-
ters. Figure 3(b) shows how βvar changes with an increas-
ing number of clusters (k). βvar reaches its smallest value
for k = 5 with cluster centers [{0,0.125}, {0.132, 0.279},
{0.279, 0.343 } { 0.343, 0.396} { 0.396, 0.57 }] (each value
is the range of service time in seconds for that cluster). Higher
number of clusters gives higher βvar values. These 2 figures
indicate that the appropriate number of clusters is 5 for the
database tier.

The results of k-means with 5 clusters shows that the high
service time clusters are mostly composed of just two SQL
queries. These two queries are the queries generated by the
“Best Sellers” servlet and the “Admin Confirm” servlet. The
authors of [5] also found these 2 interactions to require more
table joins than the others and to be the most intensive on the
DB tier. For this particular workload, k-means distributes the
heavy queries across multiple clusters and does not require
further tail adjustment.

6.2.2 Impact of non-stationary workloads

In Section 3, we discussed variations in cluster means.
We conducted two experiments with different non-stationary
workloads to show that cluster average variation is limited
even with significant workload mix changes.

In a first experiment, we change the workload from order-
ing mix to browsing mix. Initially there are 800 sessions per-
forming interactions defined by the ordering mix. We grad-
ually replace ordering mix sessions with browsing mix ses-
sions by steps of 100 so that there are always 800 sessions.
The average service time at the database tier is found out by
offline profiling. Also the service demand is estimated by
keeping the cluster average di fixed for each cluster. The ser-
vice times found in an interval are then put into the clusters to
find λi for each cluster. We then find the average service time
x̄ as shown in Algorithm 1. In a second experiment, we tran-
sition the workload from 800 ordering mix sessions to 800
shopping mix sessions.

Figure 3(c) shows the evolution of errors in the service de-
mand estimates for both workload transitions. The x-axis rep-
resents the number of ordering mix sessions decreasing from
800 to 0. Depending on the experiment, the number of brows-
ing and shopping sessions are increasing by 100 each time the
ordering sessions decrease by 100. The maximum error ob-
served was 5% for the transition from ordering to browsing.
The error remains below 1% for the transition from ordering
to shopping.

The lower errors observed in the second experiment are
due to the fact that the shopping and ordering mix have a
closer mix of interactions than the ordering and browsing
mix. The error can be reduced by periodically re-estimating
the cluster averages from past data. These experiments con-
firm that recomputing cluster averages does not need to be
done frequently. The service demand estimates remain accu-
rate even in the presence of a major workload change.
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Figure 3: Clustering Experiments

6.3 Provisioning Experimental Evaluation
In this section, we evaluate the accuracy of our provisioning
technique with non-stationary workloads. As provisioning
decisions are applied independently at each tier, these exper-
iments are focusing on the web tier only. The application is
assumed to require an SLA where 95th percentile of the web-
tier response time must not be greater than 2 seconds. The
database tier is over-provisioned with 4 replicated instances
of MySQL to ensure that the database is not a bottleneck re-
source.

We compare the standard provisioning policy based only
on volume of requests [23] with our technique that adds mix-
awareness. In both cases, the algorithms are provided with
the request arrival rate from the load injectors (λi and λtotal).
When new Tomcat servers are added to the web tier, the
load injectors are configured to distribute the sessions evenly
among Tomcat instances to ensure a good load balancing.

6.3.1 Non-stationary workload with constant
volume

This first experiment shows the impact of non-stationary
workloads on provisioning decisions when the number of ses-
sions remains constant. We expect mix-aware techniques to
improve over techniques that will not detect changes in the
constant arrival rate of requests.

The Workload: We have built a workload of a constant
number of 1000 sessions with a different mix of 3 different
servlets. We use 3 interactions of the TPC-W benchmark:
”new products” and 2 versions of ”execute search”. As the
service time of the ”execute search” servlet depends on the
complexity of the term searched, we have created 2 queries
that generate a short and a long service time that we call ”ex-
ecute search fast” and ”execute search slow”, respectively.
The measured service times on our prototype data center are
2.6ms for ”new products”, 5.5ms for ”execute search fast”
and 14.0ms for ”execute search slow”

Figure 4(a) shows the combination of requests that is sent
to the TPC-W application over a 90 minutes experiment. We
use httperf to send requests with a 5 seconds think time be-

tween 2 interactions. In the first 50 minutes, the percent-
age of ”new products” requests decreases while the percent-
age of ”execute search fast” requests increases. This causes
the average service time of requests on the web tier to in-
crease. Similarly, in the next 40 minutes, ”execute search
fast” requests are transitioned to ”execute search slow” re-
quests, leading to an even further increase in the average ser-
vice time. Figure 4(b) shows the constant average arrival rate
of requests, and the average service time of requests that in-
creases at the web tier during the experiment.

Provisioning Decisions: We compare our mix aware pro-
visioning scheme with a provisioning scheme that looks only
at the volume of requests. The provisioning logic is invoked
every 10 minutes. Figure 4(c) shows the decisions taken by
the 2 provisioning policies in terms of the number of servers
allocated to the web tier during this experiment. The figure
shows that the mix-aware provisioning policy is able to antic-
ipate faster capacity requirements than the mix-unaware on
two occasions. The mix-aware policy decides to allocate a
new Tomcat server to the web tier at t=30 and t=70 min-
utes. By predicting that the mix of requests about to come
is changing, the mix-aware provisioning anticipates the ca-
pacity needs. The mix-unaware policy however, does not see
changes in the volume of requests and assumes that it will
continue to see the past service demand in the future. It is
only when a response time increase is observed at a later iter-
ation that a new server is added to the web tier.

Response Times: Figure 4(d) shows the 95th percentile re-
sponse times as seen by the clients while running the two
provisioning approaches. These figures show a comparison
between the two policies in terms of how much they violate
the SLA. Note that with the mix-unaware policy the 95th per-
centile crosses the 2 seconds line on many occasions after the
mis-predictions at t=30 minutes and t=70 minutes. The mix-
aware policy anticipated the workload changes and reduced
the SLA violations by 94%.

Result: This experiment illustrates that when the volume
of requests is constant the resource demand on a tier may
still change because of a change in the workload mix. A mix-
aware provisioning is therefore able to provision resources
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Figure 4: Non-stationary workload experiment with a constant arrival rate

to account for these changes and avoid SLA violations that
would be experienced with a provisioning scheme only look-
ing at the volume of requests.

6.3.2 Non-stationary workloads with a varying
volume

In this second experiment, we combine a varying workload a
change in the arrival rate.

The Workload: The workload mix is the same as the ex-
periment described in section 6.3.1 until t=60 minutes, then
we transition the mix back symmetrically to its original com-
position for a total of a 120 minutes experiment. To vary the
arrival rate, we increase the number of sessions from 1000 to
2000 at time t=30 minutes.

Figure 5(a) depicts the workload mix and Figure 5(b)
shows the requests arrival rate and the average service time
at the web tier during this experiment. Due to the nature of
the mix, the average service time keeps increasing for the first
60 minutes and then decreases for the last 60 minutes.

Provisioning Decisions: The provisioning logic is invoked
every 30 minutes. Figure 5(c) shows the decisions taken by
the mix-aware and mix-unaware provisioning policies. At
t=30 minutes, the number of sessions has doubled. The mix-
unaware provisioning policy doubles the number of servers
to respond to this increase in volume of requests. The mix-
aware policy is able to capture the workload mix change in

addition to the increased volume of request. By taking into
account the mix change, mix-aware provisioning allocates an
additional server for a total of 3 servers at the web tier. The
mix-unaware policy only catches up 30 minutes later at the
next iteration to provision a third server.

After t=60 minutes, the workload mix changes with a de-
creasing service demand. At t=90 minutes, the mix-aware
policy detects the mix change and decides to decrease the
number of servers from 3 to 2. The mix-unaware policy how-
ever only considers the volume of requests. Since the volume
is the same it assumes that it will continue to need 3 servers
and leaves the system over-provisioned.

Response Times: Figure 5(d) shows the 95th percentile re-
sponse times during this experiment with both provisioning
policies. As expected we see that the mix-unaware policy
leads to SLA violations after the misprediction at t=30 min-
utes. Similarly, after t=90 minutes mix-unaware response
times are very low due to the over-provisioned web tier.
mix-aware response time remains below SLA requirements
throughout the experiment with an optimal number of servers
(i.e. no SLA violations).

Result:Even when the volume of requests is changing,
a mix-aware provisioning policy refines traditional predic-
tions based on volume changes by preventing both under-
provisioning and over-provisioning.
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Figure 5: Non-stationary workloads with a varying arrival rate

6.4 EC2 Case Study

In this section, we experiment our technique on the Amazon
EC2 (public cloud platform). Unlike our prototype data cen-
ter where our servers are dedicated to the benchmark execu-
tion, EC2 server instances are virtual machines potentially
competing with other virtual machines to share the same
physical resources [?]. We have calibrated the system on a
single server instance and observed that the peak through-
put was 15 requests/second for the browsing mix and 13 re-
quests/second for the shopping mix with 120 clients and 80
clients, respectively.

Figure 6(a) shows the TPC-W workload that we used for
our experiment. We initially use a browsing mix workload
of 30 requests/second that increases to 45 requests/second af-
ter 10 minutes. We then switch the workload from browsing
to shopping mix at t=20 minutes using the same number of
client requests. We finally increase the workload to 60 re-
quests/second for the last 10 minutes of the experiment.

Figure 6(b) shows the decisions that are taken by the mix-
aware and the mix-unaware provisioning techniques and the
provisioning logic was invoked every 10 minutes. When the
mix changes at t=20 minutes, the mix-aware technique pro-
visions an additional server that is required to sustain the 45
requests/second throughput for the shopping mix. The mix-
unaware remains under-provisioned as its capacity require-
ments are based on its observations for the browsing mix.

When the throughput finally reaches 60 requests/second, the
mix-aware algorithm provisions a fifth server that allows to
sustain up to 65 requests/second. The mix-unaware technique
provisions only 4 servers which can serve 60 requests/second
of the browsing mix but only 52 requests/second of the shop-
ping mix.

We have shown in this experiment that our mix-aware
technique was effective on a public cloud platform. The re-
sponse time numbers (not presented here for lack of space)
are similar to the ones observed on our private cloud platform.
In future works, we are planning to study the effects of virtu-
alization on longer experiments and the use of heterogeneous
server types (large and extra large EC2 server instances) in
cloud platforms.

7 Related Work

A number of recent efforts have focused on dynamic capacity
provisioning for Internet applications [21], [6]. In the context
of system-level efforts, Shirako [10] is a system that supports
on-demand leasing of network resources, including virtual
machines. Shirako decouples leasing mechanisms from re-
source management policies and provides a flexible, extensi-
ble framework for incorporating different resource types and
policies. vManage [12] is a system for coupling and coordi-
nating energy- and resource-management in data centers dur-
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Figure 6: Non-stationary workloads on Amazon EC2

ing provisioning and placement; such coupling enables coor-
dination of data center management policies across different
layers and yields better performance and stability. Violin [18]
is a system for dynamically constructing/provisioning groups
of isolated virtual machines within a distributed virtualized
environment; Violin focuses on network-level constructs for
dynamically provisioning and isolating groups of virtual ma-
chines running components of an application.

In the context of provisioning algorithms, one class of
techniques focuses on changes on the workload volume for
making provisioning decisions and is mix-unaware. Our past
work on provisioning includes a queuing-based approach for
provisioning multi-tier applications [23]. Like the present
work, the approach models each tier as a G/G/1 queue. How-
ever, the approach is mix unaware and only uses the peak
session arrival rate to capture the workload and provision-
ing capacity to service this peak workload. Thus, the ap-
proach faces the limitations discussed in section 1.1. An al-
ternate approach uses a G/G/N queuing model to compute the
number of servers necessary to maintain a target utilization
level [17]. This strategy is shown to be effective for sud-
den increases in request arrival rate. Other efforts have em-
ployed similar M/G/1 queuing models in conjunction with of-
fline profiling to model service delay and predict performance
[21] (we use such models for provisioning). The approach in
[24] formulates the application tier server provisioning as a
profit maximization problem and models application servers
as M/G/1/PS queuing systems; the approach only considers
the impact of different number of end-clients (and thus, re-
quest volumes) and does not specifically focus on the impact
of server processing times or different mixes.

Classical feedback control theory has also been used to
model the bottleneck tier for providing performance guar-
antees for web applications [1]. This approach focuses on
web servers serving static content, where service time can
be estimated from the request size. Composition of adap-
tive feedback systems has been studied in [9] where a co-
adaptation mechanism for dealing with composition of poorly
tuned feedback loops in web applications was proposed. Sim-

ilarly machine learning techniques have been used for provi-
sioning, such as the k-nearest neighbor approach to provision
the database tier [6].

A few recent techniques have taken request classes (i.e.,
mixes) into account but the mix is assumed to be specified
a priori. Zhang et. al. [?] use a multi-class model to cap-
ture the dynamics of workload by employing a fixed set of
14 predefined transactions-types and leverage it to predict the
performance of a multi-tier system. Another recent effort has
employed a network of queues to model a multi-tier Inter-
net application that services multiple types of transactions.
The authors employ approximate mean-value analysis (MVA)
to develop an online provisioning technique but the request
classes are assumed to be known a priori [4]. In contrast to
these efforts, our work automates the process of characteriz-
ing the workload mix and uses this characterization to provi-
sion system capacity. Further, while most of these multi-class
efforts have focused on analytic methods, our approach has
involved a full prototype implementation and experiments on
an actual Linux cluster.

k-means clustering is a common technique used for static
workload analysis. In [7], k-means is used for workload anal-
ysis and demand prediction. In constrast, we use k-means
to automatically characterize the workload and use queueing
theory approaches for provisioning. Further, our focus is on
designing a fully functional prototype system that has been
implemented, while the focus in [7] is on the analysis of real
traces. While we employ k-means to automatically character-
ize the workload, other automatic workload characterization
techniques can be used for this purpose as well. For exam-
ple, a recent effort has used independent component analysis
(ICA) to automatically groups requests based on service de-
mand [19]; such approaches can be also used in conjunction
with our provisioning algorithm.
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8 Conclusion
In this paper, we have shown that non-stationarity in appli-
cation workloads, which causes request mix to change over
time, have a significant impact on the overall capacity de-
mands imposed on a data center. We have proposed a new
technique based on k-means clustering to automatically deter-
mine workload mixes and a queuing model to predict server
capacity for a given workload mix. We have implemented
a prototype provisioning system that incorporates our mix-
aware approach and evaluated it on a prototype Linux data
center. Our experimental results show that k-means cluster-
ing can accurately captures workload mix changes. Our mix-
aware dynamic provisioning system improves over volume-
based provisioning techniques by eliminating SLA violations
due to under-provisioning with non-stationary web work-
loads, while offering better resource usage by reducing over-
provisioning. We also presented a case study of our provi-
sioning approach on Amazon’s EC2 cloud platform.

Acknowledgements: We would like to thank our anony-
mous reviewers and our shepherd, Jeanna Matthews, for their
helpful comments. This research was supported by NSF
grants CNS-0720271 and CNS-0720616

References
[1] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Per-

formance Guarantees for Web Server End-Systems: A
Control-Theoretical Approach. IEEE Transactions on
Parallel and Distributed Systems, 13(1):80–96, 2002.

[2] Amazon elastic computing cloud (ec2). http://
aws.amazon.com/ec2.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the art of virtualization. In Proceedings of the
19th ACM Symposium on Operating Systems Principles
(SOSP’03), Bolton Landing, NY, pages 164–177, Octo-
ber 2003.

[4] M. N. Bennani and D. A. Menasce. Resource allocation
for autonomic data centers using analytic performance
models. In ICAC ’05: Proceedings of the Second In-
ternational Conference on Automatic Computing, pages
229–240, Washington, DC, USA, 2005. IEEE Computer
Society.

[5] H. W. Cain and R. Rajwar. An architectural evaluation
of java tpc-w. In Proceedings of the Seventh Interna-
tional Symposium on High-Performance Computer Ar-
chitecture, pages 229–240, 2001.

[6] J. Chen, G. Soundararajan, and C. Amza. Autonomic
Provisioning of Backend Databases in Dynamic Con-
tent Web Servers. In IEEE International Conference

on Autonomic Computing (ICAC), pages 231–242, June
2006.

[7] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper.
Workload analysis and demand prediction of enter-
prise data center applications. In Proceedings of 2007
IEEE International Symposium on Workload Charac-
terization (IISWC’2007), Boston, MA, USA, September
2007.

[8] J. Hellerstein, F. Zhang, and P. Shahabuddin. An Ap-
proach to Predictive Detection for Service Management.
In Proceedings of the IEEE Intl. Conf. on Systems and
Network Management, 1999.

[9] J. Heo, D. Henriksson, X. Liu, and T. Abdelzaher. Inte-
grating adaptive components: An emerging challenge in
performance-adaptive systems and a server farm case-
study. In Proc. of IEEE RTSS, Tuscon, AZ, December
2007.

[10] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker,
and K. Yocum. Sharing networked resources with bro-
kered leases. In Proc. of USENIX Annual Technical
Conference, June 2006.

[11] L. Kleinrock. Queueing Systems, Volume 2: Computer
Applications. John Wiley and Sons, Inc., 1976.

[12] S. Kumar, V. Talwar, V. Kumar, P. Ranganathan, and
K. Schwan. vmanage: Loosely-coupled platform and
virtualization management in data centers. In Proc. of
ICAC 2009, pages 127–136, June 2009.

[13] D. Menasce and F. Ribeiro. In search of invariants
for e-business workloads. In Proceedings of the 2nd
ACM conference on Electronic Commerce, pages 56–
65, 2000.
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