
University of Massachusetts, Technical Report UM-CS-2010-006 1

Dolly: Database Provisioning for the Cloud

Emmanuel Cecchet, Rahul Singh, Upendra Sharma, Prashant Shenoy
University of Massachusetts, Amherst

USA

{cecchet,rahul,upendra,shenoy}@cs.umass.edu

ABSTRACT

The Cloud is an increasingly popular platform for e-commerce
applications that can be scaled on-demand in a very cost effective
way. Dynamic provisioning is used to autonomously add capacity
in multi-tier cloud-based applications that see workload increases.
While many solutions exist to provision tiers with little or no state
in applications, the database tier remains problematic for dynamic
provisioning due to the need to replicate its large disk state.

In this paper, we analyze the challenges of provisioning shared-
nothing replicated databases in the cloud. We evaluate various
replica spawning techniques and argue that being able to
determine state replication time is crucial for provisioning
databases. We propose Dolly, a database provisioning system
based on a virtual machine cloning technique to spawn database
replicas in the cloud. We propose cost models to adapt the
provisioning policy to the cloud infrastructure specifics and
application requirements. We present an implementation of Dolly
in a commercial-grade replication middleware and evaluate
database provisioning strategies for a TPC-W workload on a
private cloud and on Amazon EC2. By being aware of state
replication cost, Dolly can do better automated provisioning for
replicated databases on cloud platforms.

1. INTRODUCTION
Online applications have become popular in a variety of domains
such as e-retail, banking, finance, news, and social networking.
Many online cloud applications employ a multi-tier architecture
with a database back-end and a web-based front-end. Such multi-
tier applications run in data-centers or on cloud computing
platforms, which provide storage and computing resources to the
applications. Modern data centers that run private or public cloud-
based hosting platforms employ a virtualized architecture, where
each tier or application component runs inside virtual machines
that are mapped onto physical servers of the system.

1.1 Provisioning in the cloud
Numerous studies have shown that the workloads seen by online
web-based cloud applications are highly dynamic and exhibit
variations at different time-scales [29], [30]. For instance, an
application may see a rapid increase in its popularity, causing its
workload to grow sharply over a period of days or weeks. At
shorter time-scales, a flash crowd can cause the application
workload to surge within minutes. Applications can also see
seasonal trends such as higher workloads during particular
periods, e.g., during Black Friday, marketing campaigns or a new
product launch. These workload fluctuations have to be handled
by provisioning enough capacity for the application at the time it
needs it.

Replication is a popular approach for dynamically provisioning
capacity in private and public clouds by spawning new replicas at
each tier of the application. Much of the prior work on dynamic
provisioning has focused on the web or the application tiers and

not on the database tier [28], [29], [30], [6], [10]. Provisioning
these front-end tiers only requires starting up new web or
application server processes on new machines and since much of
the application’s persistent state is stored in the database tier,
these provisioning techniques for the front-end tiers do not need
to consider the more challenging tasks of replicating this
persistent state. In contrast, provisioning of the back-end database
tier must not only consider startup of new database server replicas
but also replication and synchronization of the associated disk
state of the database.

In this paper, we consider the problem of dynamically spawning
new replicas at the database tier in order to scale the capacity of
multi-tier applications. We assume a shared nothing architecture,
where each replica has a local copy of the database (these local
copies are assumed to always be consistent with one another).
Such shared-nothing databases are typical in today’s cloud
platforms, since shared disk architectures, such as Oracle RAC
[18] require specific hardware that is usually not available in
typical cloud platforms. Database provisioning typically involves
the task of capacity determination of how many replicas are
needed for a workload and that of the actual replication i.e.
starting up new replicas. The capacity determination problem for
database provisioning has been studied in [11] where analytical
models for determining the capacity needed to service a given
workload were proposed; this work does not consider the “hard”
problem of dynamically replicating database content to startup
new replicas.

Replication for shared-nothing architectures is well-studied in the
literature [17], [4], [22], [12], starting with the seminal work by
Gray et. al [14] that articulated the scalability issues in
asynchronous replication. However, much of this database
replication work has focused on performance aspects and
consistency tradeoffs of transaction execution, and the global
impact of management operations such as adding a new replica
has been overlooked [9]. In other words, prior work on database
replication has focused on scalability or consistency issues in
systems with a static number of replicas, and the problem of
dynamically scaling capacity by adding new replicas on-the-fly
has received relatively little attention. This problem is important
in cloud environments where dynamic workload changes require
these new database replicas to be started up on-the-fly at short
timescales.

University of Massachusetts, Technical Report UM-CS-2010-006 2

1.2 Why is database provisioning hard?
Database provisioning requires a capacity determination model to
estimate how many replicas to provision for a given workload.
Such models predict the future workload using historical data,
administrator input or dynamic predictors [16] and then use
queuing techniques to estimate the capacity needed to service the
predicted workload [13]. Traditional front-end provisioning
techniques assume that this capacity can be added immediately
(by starting up new replicas on new machines) to address
workload variations. In the case of back-end database tier
however, adding a new database replica involves (i) extracting
database content from an existing replica, (ii) restoring that
content on a new replica and (iii) synchronizing the state of the
new replica with the current state of all other replicas to preserve
data integrity. These operations can take minutes or hours
depending on the database size.

Thus, database provisioning is very different from traditional web
server provisioning because databases are stateful and their state
can be very large (and this state must be replicated before a new
database replica can be spawned). To provision database replicas
in a timely fashion, it is necessary to know how much time will be
required to replicate/synchronize this disk state and bring the
replicas online. These times vary greatly with the database size,
schema complexity, backup/restore tool options, database artifacts
(i.e. storage engine configuration, triggers…). Moreover, there are
many tradeoffs on how and when to snapshot the database state to
minimize replica resynchronization time. It is therefore non-trivial
to estimate the exact time needed to spawn a new replica, since it
depends on many parameters.

Traditional “just-in-time” web provisioning techniques such as
Amazon Auto Scaling [1] are based on thresholds and do not take
into account the time to replicate the disk state. If this disk state
replication overhead is ignored, the newly provisioned capacity
comes online far too late to handle the workload increase and the
capacity requirements will not be met in a timely fashion. As we
will show in this paper, Dolly is able to provision an adequate
capacity because it can estimate the time to bring a replica online
and take this overhead into account by triggering the appropriate
operations on time.

1.3 Contributions
In this paper, we present Dolly1, a replicated database
provisioning system for the cloud based on a database agnostic
technique for efficiently spawning replicas. Dolly is able to trigger
database resynchronization operations to meet a given capacity at
a given deadline while eliminating the need for database specific
tools. It also allows different provisioning strategies to be
implemented for private (e.g. optimizing energy usage) and public
clouds (e.g. minimizing cost) while still maintaining SLA
guarantees.

The key insight in Dolly is to use virtualization and the ability to
clone virtual machines—a feature that is already available in
compute clouds. In Dolly, each database replica runs in a separate
virtual machine. Instead of relying on the traditional database
mechanisms to create a new replica, Dolly clones the entire virtual

1 Inspired by the sheep Dolly, the first mammal to be cloned

successfully.

machine (VM) of an existing replica, including the operating
system, the database engine with all its configuration, settings and
data. The cloned VM can be started on a new physical server,
resulting in a new replica (which then synchronizes state with
other replicas prior to processing user requests). By “black-
boxing” the database state, Dolly offers a predictable replica
spawning time independent of the database size and complexity.
Although there are several disk-level and VM cloning techniques
(commercial or research prototypes), the challenge lies in
accurately quantifying the overhead and employing it for dynamic
provisioning. At the heart of Dolly are intelligent models to
estimate this cloning latency so that the provisioning algorithm
can take the state replication cost into account when spawning
replicas.

Our work on Dolly has led to the following contributions:

- We analyze the challenges of replica spawning in replicated
databases and evaluate different techniques in terms of
performance and manageability.

- We argue that database provisioning in the cloud requires an
accurate estimation of the database backup, restore and
resynchronization times. We propose a simple and effective
technique based on virtual machine cloning to efficiently
compute disk state replication times.

- We analyze capacity provisioning and snapshot scheduling
tradeoffs and propose a new provisioning algorithm with
user-defined cost functions to characterize database
provisioning policies on cloud platforms. This allows the
system administrator to tune the provisioning decisions to
optimize resource usage of her cloud infrastructure.

- We have developed a prototype of Dolly using Sequoia [24],
a commercial-grade open-source database clustering
middleware, and have combined it with the OpenNebula [21]
cloud manager to address provisioning in both private and
public clouds. We have evaluated the effectiveness of our
system by experimenting with a TPC-W [25] e-commerce
workload. In our experiments, we show the ability of Dolly
to properly schedule provisioning decisions to meet capacity
requirements in a timely fashion while optimizing resource
usage in private clouds and minimizing cost in public clouds.

The remainder of this paper is organized as follows. Section 2
introduces the necessary background on database replication and
explains database replica spawning in the cloud. Section 3
discusses the core techniques for database provisioning in the
cloud. Section 4 presents Dolly’s implementation. We present our
evaluation of spawning techniques in section 5. We perform an
experimental evaluation of provisioning technique on private and
public clouds in section 6. We discuss related work in section 7
and conclude in section 8.

2. SPAWNING REPLICAS IN THE CLOUD
This section introduces the necessary background on database
replication (Section 2.1) and details replica spawning techniques
in the cloud (Section 2.2). We then discuss the challenges of
replica spawning (Section 2.3) and show how VM cloning helps
when calculating replica spawning time (Section 2.4).

University of Massachusetts, Technical Report UM-CS-2010-006 3

2.1 Database Replication
Database replication enhances scalability—by allowing replicas to
collectively service a larger volume of requests—and improves
availability—by allowing the system to remain operational even in
the presence of replica failures. There are two primary
architectures for implementing database replication: shared-disk
and shared-nothing. Shared-disk requires specific hardware (i.e. a
SAN) that is shared by all database replicas so that no state copy
is required. Such infrastructure is usually not available in public
clouds and uses product specific provisioning techniques. Dolly is
not aimed at shared-disk architectures.

The alternative to expensive shared storage is the shared-nothing
architecture. In this case, each replica has a local copy of the
database content, and network communication is used to
synchronize the replicas. There are two main replication
strategies: master-slave and multi-master. In master-slave, updates
are sent to a single master node, while reads are distributed among
the slave nodes. Data on slave nodes might be stale and it is the
responsibility of the application to check for data freshness when
accessing a slave node. Multi-master replication enforces a
serializable execution order of transactions between all replicas so
that each of them executes update transactions in the same order.
This way, any replica can serve any read or write request.

Replication can be implemented inside the database engine, also
known as in-core replication, or externally to the database,
commonly called middleware-based replication. The technique to
add a new replica is similar in both environments. In both
architectures, transactions are balanced among the replicas and are
stored in a transactional log (also called recovery log). The
middleware design usually keeps a separate transactional log for
replication, whereas the in-core approach stores the information in
each database’s replica transactional log.

Figure 1. Procedure to spawn a replica in middleware-based
replication.

Figure 1 shows the steps to spawn a replica in a middleware-based
replication environment. First, a command to add a new replica is
issued from the management console to the replication
middleware. A checkpoint is then created in the transactional log
(step 2) and a replica is temporarily taken out of the cluster to take
a snapshot (also called database dump) of the database content
(step 3 via DB2). As soon as the snapshot has been taken, this
replica is resynchronized by replaying the transactions written in
the transactional log since the checkpoint (step 4) and it rejoins
the cluster. A new replica is then started on a separate node, and

the snapshot is seeded to this new replica using a restore operation
(step 5). Finally, the updates that have occurred since the snapshot
was taken are replayed from the transactional log (step 6) to
resynchronize the new replica and bring it up-to-date with all
other replicas in the system.

Conceptually, the above steps for replica creation can be classified
into three key phases: (i) the backup phase, where database
content is extracted from an existing replica and moved to a new
node, (ii) the restore phase, where a new replica is seeded with
this snapshot, and (iii) the replay phase, where the replica is
resynchronized with others by replaying new updates from the
transactional log. Dolly presently assumes multi-master
middleware-based replication and is implemented on Sequoia, a
commercial-grade database clustering middleware [24].

2.2 Replica Spawning via VM Cloning in
Private and Public Clouds
Modern data centers and cloud platforms employ virtualization. A
key management benefit is the ability to clone virtual machines;
cloning allows a copy of the original virtual machine to be created
and run on a different server. VM cloning can be exploited to
efficiently spawn database replicas. Figure 2 shows how two new
replicas are spawned in a private cloud. First, the virtual machine
(VM) containing a database replica is stopped on machine 1 and
cloned to be stored on a backup server (machine B). New replicas
are spawned by cloning the VM from the backup server and
starting these new VMs.

Figure 2. Replica spawning in a private cloud

To minimize the down-time of the VM being cloned, filesystem
snapshots are commonly used [7]. Using this technique, VM
images can be copied asynchronously, and the execution of the
original VM (and the replica) can be resumed almost immediately.

Figure 3 shows how replica spawning works in a public cloud
such as Amazon EC2 that provides a Network Attached Storage
(NAS) service called Amazon Elastic Block Storage (or EBS).
Note that EBS volumes cannot be shared by multiple instances
and are therefore different from a SAN or shared disk approach.
The VM disk image is stored on an EBS volume and the VM
boots from this image. When the VM is stopped, the volume is
detached from its running server. EBS allows snapshots of the
volume to be created; doing so asynchronously replicates the

DB1

VM1

OS

DB1

VM1

OS

stop

resume

clone DB2

VM2

OS

DB2

VM3

OS

clone

1

DB2

VM3

OS

start
DB2

VM4

OS

DB2

VM4

OS

start

1

B

3 3 2 2

DB1
new

replica backup DB2

snapshot

restore

1

Client SQL requests

Replication middleware

Transactional
log

Load balancer

Management
console add

replica

3

4
checkpoint

2

6

resynchronize

5

University of Massachusetts, Technical Report UM-CS-2010-006 4

volume. The volume snapshot must then be registered in EC2 in
order to create new VMs. This is equivalent to storing the image
to a backup server in a private cloud. When a new VM is created
from an EBS snapshot, a clone of that volume is created and
dedicated to the newly started instance. In our case, we assume
that the database server disk state (configuration file and the data
within the database) are stored on the EBS volume; thus
snapshots and booting a new VM from the snapshot is an effective
mechanism to replicate the shared-nothing database content and
start up a new database replica.

Figure 3. Replica spawning in a public cloud

2.3 Replica spawning challenges
The replica spawning procedure described on Figure 1 assumes
that the replica is quickly configured and ready to receive the new
database content. However, creating a new database replica
involves more than just copying the database content from one
machine to another. Figure 4 shows the different steps involved in
the setup of a new replica. For replica spawning to be successful,
all of the depicted steps must be executed flawlessly.

Figure 4. Steps involved in spawning a replica

First, a version of the database engine compatible with the
hardware platform and operating system must be installed. The
software must also be compatible with the replication software
and the other database instances it has to communicate with (e.g. a
master node). In step 2, the database must be configured and
tuned appropriately for the hardware and the host operating
system. The next step (3) is to copy the configuration parameters
specific to the database instance to be replicated. This includes
authentication settings, users and their respective access rights,

slave identifier (for master/slave configurations), network
configuration (e.g., access lists, certificate and encryptions keys
for secure connections) and tool specific configurations (e.g., for
backup/restore and console access).

The database content is then transferred from an existing replica
by first extracting the data into files (backup on step 4) and
loading it into the new replica (restore on step 5). Backup tools
may not be able to capture all database objects like temporary
tables, sequences, environment variables, encoding, large objects,
stored procedure and trigger definitions [9]. Alternatively,
filesystem-level copies can be made if the two database
architectures and configurations are strictly identical.

The consequences of missing information in a snapshot transfer
are many: the performance of the replica can be altered (e.g.
missing index and wrong optimizer statistics), queries can fail
(e.g. missing stored procedure), illegal data might be inserted (e.g.
missing integrity constraint), wrong results can be generated (e.g.
bad sequence number) or execution might diverge from other
replicas (e.g. missing trigger or environment variable setting).

Resynchronization (step 6) is the operation that consists of
replaying all the updates that happened since the snapshot was
taken so that the replica can be brought up-to-date with the other
nodes. This is achieved by replaying transactions from the
recovery log that is kept by the replication system. A replica can
be spawned from an old snapshot as long as the recovery log
contains all the update transactions that the system has seen since
the snapshot was taken. Similarly to the restore operation, the log
replay generally must be serialized. Under a heavy write workload
it is even possible that the replay mechanism does not catch up
with the current workload and lags behind until the update rate
decreases in the workload.

2.4 Determining replica spawning time
In general, there is a tradeoff between the time to backup/restore a
database, the size of the transactional log and the amount of
update transactions in the workload. For example, a new replica
can be seeded with an old snapshot (e.g., a snapshot that was
taken to seed a different replica), which eliminates the backup
phase overhead. However, use of an older snapshot forces the
system to keep a larger transactional log and also increases the
time to replay updates from this log during the replay phase. On
the other hand, taking a new snapshot for each new replica may
incur significant overheads during the backup phase, especially if
the database is large. This section analyzes this tradeoff in more
detail.

Figure 5. Decomposition of the replica spawning time with a
new snapshot

time backup restore replay

bi ri

updates

()
maxmaxmax

...
w

w

w

w

w

w
rb ttt
ii

+

replica spawning time

New Replica2

Replica1

DB1

data

backup

snapshot

restore

1

3

4

2

5

synchronize

Operating System

Database
engine

configOS

con
fig1

DB2

data

Operating System

Database
engine

configOS

con
fig2

6

DB1

Vol1

OS

DB1

Vol1

OS

stop

restart

snapshot DB2

Vol2

OS

register

DB2

Vol2

OS

DB2

Vol3

OS

DB2

Vol4

OS

start

DB1

Vol1

OS

University of Massachusetts, Technical Report UM-CS-2010-006 5

The replica spawning overhead can be analyzed using the five
variables defined in Table 1.

Table 1. Replica spawning time variables.

bi backup time to generate VM snapshot i

ri time to restore/clone snapshot i on a new replica

replayi time to replay update transactions logged since
snapshot i

wt average update transaction throughput observed at the
time the new replica spawning command is issued

wmax maximum update transaction throughput of the replica

When no snapshot is available, it is necessary to perform a new
backup and restore, yielding an overhead of (bi+ri) as shown on
Figure 5. The replay phase then replays all updates that have
occurred during this period. We can estimate the replay time by
observing the current rate of update transactions and assume that
it will remain a valid approximation during the replay time. The
new replica will be able to replay the requests at wmax speed since
it does not have to execute any other transaction. Therefore, the
time to replay the updates that occurred during backup/restore is

()
max

t
i i

w
b r

w
+ . Since new updates will occur during this replay, it

will take an additional ()
max max

t t
i i

w w
b r

w w

+

 to replay them. Since the

system sees continuous updates, the replay will end when

0
max

→

n

t

w

w . If the system is under peak load, wt = wmax and the

replica will never be able to catch up and it will have a lag of
bi+ri. This is the geometric series with:

,t

t max

max

w
p w w

w
= < ,

0

1

1

i

k

p
p

∞

=

=
−

∑

Hence, the replica spawning time s when no snapshot is available
can be estimated by the following formula:

() max

max

i i

t

w
s b r

w w
= +

−

If an existing snapshot i is available, the time to spawn a new
replica eliminates the backup time and is calculated as follows:

() max

max

i i

t

w
s r replay

w w
= +

−

where replayi accounts for all transactions recorded when the
replica spawning command is invoked.

By comparing these equations, it follows that: it is faster to take a
new snapshot j to spawn a new replica if: bj+rj<ri +replayi. Any
dynamic provisioning technique for replicating the database tier
of the application needs to consider this key tradeoff. The VM
cloning mechanism used by Dolly provides a predictable
backup/restore time independent of the database size and schema
complexity as shown in Table 9. Cloning only depends on the VM
image size that is known and its snapshotting time can be easily
predicted. replayi can be accurately predicted by recording the
execution times of each update transaction and adding them up.

Since replayi can be accurately predicted, having a constant bj
and rj, that are independent of the database size or complexity,

allows Dolly to decide if bj<replayi in which case it is faster to
take a new snapshot than to use an existing one to spawn a new
replica.

3. Dolly: Database provisioning in the cloud
Figure 6 gives an overview of the Dolly design. Cloud platforms
come with a set of tools to manage and monitor the infrastructure.
Predictors (Section 0) observe the behavior of the system and
predict its future capacity demand. Dolly processes that
information to schedule the provisioning operations using the
cloud infrastructure and APIs.

Figure 6. Dolly design overview

Dolly has four main components: capacity provisioning, snapshot
scheduler, paused pool cleaner and scheduler. To meet a certain
capacity at a given deadline, it is necessary to schedule capacity
provisioning actions according to the time it takes to replicate the
database state (Section 3.2). As replicas have to be spawned from
a database snapshot, the snapshot scheduler decides when new
database snapshots have to be taken (Section 3.3). Some resources
(backups, paused VMs) become obsolete over time and need to be
purged by the paused pool cleaner (Section 3.4). The scheduler
orchestrates and executes the orders of the other components.

Code Sample 1. Dolly main loop algorithm pseudo-code

if (predictor.capacity_changes ||

 predictor.write_workload_changes) {

 do {

 schedule = capacity_provisioning(predictions)

 snapshot_schedule = snapshot_scheduling(predictions)

 } while (snapshot_schedule schedules new snapshots)

 scheduler.schedule(snapshot_schedule)

 scheduler.schedule(capacity_schedule)

}

if (time since last operation > threshold) {

 paused_pool_cleaner.release_old_paused_vms();

 paused_pool_cleaner.delete_old_snapshots();

}

Code Sample 1 shows a simplified pseudo-code of the main loop
of the Dolly algorithm. Whenever new predictions become
available, the capacity_provisioning algorithm is invoked to

Predictors

Capacity Provisioning

Spawning options

Admission Control Management API

Scheduler

start/stop

clone/

snapshot

Monitoring

write throttling/

read throttling

Dolly

Snapshot scheduler

write predictions
capacity predictions

Paused pool
cleaner

Free pool
Manager

delete VM/

snapshot

HA adjuster

Write throttling

reclaim

University of Massachusetts, Technical Report UM-CS-2010-006 6

compute a new schedule to meet capacity demands. Then
snapshot_scheduling runs to check if new snapshots could be
generated (possibly from paused VMs) to make future spawning
operations cheaper. If new snapshots are generated, we re-run the
capacity provisioning algorithm to generate a new schedule. In the
end, we obtain a schedule of snapshot and capacity provisioning
actions (adding, pausing, resuming replicas) that are executed by
the scheduler. Dolly also regularly triggers the
paused_pool_cleaner to free old paused VMs and snapshots
that are no longer needed.

To adapt provisioning policies to the target cloud platform, Dolly
uses cost functions to allow the administrator to define which
option is best if multiple strategies are available. The cost can
model any metric like time, resource usage or actual resource cost
as we will show in the next sections. Table 2 lists the seven cost
functions used by Dolly and the definitions for each.

Table 2. Cloud platform specific cost functions used by Dolly

Cost function name Definition
pause_cost(VM, t) cost of pausing VM at time t
spawn_cost(s, t, d) cost to spawn a replica from snapshot s

at time t to meet deadline d
spawn_cost(VM, t, d) cost to spawn a replica from a paused

VM at time t to meet deadline d
running_cost(VM,t1,t2) cost to run a VM from time t1 to time t2
pause_resume_cost(VM,

t1, t2)
cost to pause a VM at time t1 and
resume it at time t2

backup_paused_cost(VM) cost to backup a paused VM
backup_live_cost(VM, t) cost to backup an active VM at time t

Table 3 summarizes the variables used to measure the time used
by the different operations used by the algorithms described in
this section.

Table 3. Variables used to measure replica spawning operations.

rr Time to restore and replay from the latest snapshot

br Time to spawn from a new snapshot (backup+restore)

iVMrs Time to resume paused VM i

psr Time to pause/snapshot/resume a VM

pw Prediction window

3.1 Capacity and workload predictors
Previous work has established how to predict replicated database
capacity based on a standalone node measurement [13]. This
allows forecasting performance scalability and identifying
potential bottlenecks. Many models exist for workload prediction
[16], [28]. Dolly does not provide any workload predictor or
capacity model; it can use any existing approach and can be a
platform to test new predictors or improve existing ones.

Depending on the capacity and workload predictors used, the
forecast has a limited visibility in the future. Web sites with stable
workloads might have accurate static weekly predictions possibly
adjusted by administrators for seasonal peaks. More dynamically
changing workloads can be less predictable and only sketch the
demand for the next hour or so. We call prediction window the
time between now and the latest time in the future for which the
load and capacity demand can be predicted.

Figure 7 shows an example of capacity demand and write
throughput of a replicated database. The prediction window slides
as time goes on. Prediction windows are not necessarily of a fixed

size since a predictor can dynamically change the technique it
uses to forecast the load thus increasing or decreasing the
prediction window size. Dolly has to schedule provisioning
decisions for deadlines d1, d2 and d3, where the capacity demand
changes in the prediction window.

Figure 7. Example of a capacity and write workload prediction
over time. Dolly provision replicas based on the forecast

available in the prediction window.

3.2 Provisioning replicas
Code sample 2 gives an overview of Dolly’s capacity provisioning
algorithm. The provisioning algorithm scans the prediction
window and looks for deadlines where changes in workload
require additional capacity (such as time d1 and d3 on Figure 7) or
less capacity (such as time d2 on Figure 7). The algorithm handles
all deadlines in sequence. In Figure 7, d1 is handled first. Once a
schedule has been found for d1, it moves to d2 and so on. The
algorithm works in two phases for each deadline: 1) list all
possible options for replica spawning or releasing and 2) sort
these options according to a cost function.

3.2.1 Decreasing capacity
When the capacity requirements decrease (step 1 in pseudo-code),
replicas that are no longer needed are paused. The replication
middleware keeps track of the state of each stopped virtual
machine replica so that it knows exactly what has to be replayed
when the VM is resumed. A similar state is saved in the slave
nodes for master/slave replication.

When a VM is stopped in a private cloud, its image still resides
on the machine’s local disk. As we might want to resume that
image later, we do not return the machine to the free server pool
but it is put it in a special paused server pool. The machine can be
shutdown as long as it is in the paused pool. A machine can be
reclaimed from the paused server pool by the private cloud
infrastructure if the free pool is empty and additional capacity is
required for other databases or tiers. In a public cloud like EC2,
the computing instance is simply detached from the storage and
can be re-attached later to any other instance.

The platform specific cost function, pause_cost(VM, d)
determines the cost of pausing VM at time d. For example, in EC2
where server time is billed by the hour, if at time d VM1 has just
started a new billed hour and VM2 is toward the end of its billed
hour, we would have pause_cost(VM1, d)>pause_cost(VM2, d).
On a private cloud, the administrator might prefer to switch off
the hottest machines to improve cooling. If the capacity has to be
reduced by r replicas at time d, the algorithm schedules the r
replicas that have the lowest pause_cost for pausing.

time

of
replicas
needed

prediction window

backup

restore

now

init

time

past

write
txput

wmax

d1 d2 d3

unpredicted

future

snapshot1 snapshot2

University of Massachusetts, Technical Report UM-CS-2010-006 7

Code sample 2. Capacity provisioning algorithm pseudo-code

function capacity_provisioning(deadlines[],snapshots[],

 paused_vms[], active_vms[], write_workload[])

returns schedule[] {

 foreach d in deadlines[] do {

 if (active_vms.size == d.required_capacity)

 continue // enough capacity

 if (d.is_capacity_decrease){

 r = number of replicas to pause

 schedule += pause r VMs from actives_vms at

 time d with lowest pause_cost(vm,d)

 continue // to next deadline
 }

 // d.is_capacity_increase

 r = number of additional replicas to spawn

 opts[] = all spawning options (initially empty)

 foreach s in snapshots[] do

 if(now+restore&replay(s,write_workload) < d)

 opts += restore s with cost spawn_cost(s,latest,d)>

 foreach p in paused_vms[] do

 if (now+resume&replay(p, write_workload) < d)

 opts += resume p with cost spawn_cost(p,latest,d)>

 opts = select r cheapest options

 foreach o in opts[] {

 if (o.is_paused_vm &&

 (running_cost(p,paused_time,resume_time) <

 pause_resume_cost(p,paused_time,resume_time)){

 schedule -= pause p // Don’t pause the VM, cheaper to let it run

 continue // to next option
 }

 schedule += o

 }

 if (opts.size < r) { // could not provision all replicas in time
 solution = capacity_provisioning() on deadline d

 with reduced write workload

 if (solution exists) {

 perform write_throttling until d

 schedule += solution

 } else { // Cannot meet capacity in time => admission control
 schedule += restore last_snapshot now

 perform admission control until replicas are ready

 }

 }

 update active_vms for next deadline

 }

 return schedule

}

3.2.2 Increasing capacity
When an increase in capacity is predicted at deadline d (step 2 in
pseudo-code), the algorithm explores all replica spawning options
from snapshots and paused VMs.

In our system, the replicated database always has at least one
snapshot available for creating new replicas. The first snapshot is
created when initializing the system as shown on Figure 7, and
snapshots are updated regularly when needed, as will be explained
in section 3.3. When new replicas are spawned from a snapshot,
we can predict the time it takes to bring the replica online using
the formula described in section 2.3.

Dolly looks at all available snapshots that can spawn replicas in
time to meet deadline d (step 3) and adds them as options.
Similarly, all paused VMs that can be resumed and
resynchronized in time are added as options (step 4). Each option
has its own cost defined by the spawn_cost function. For example,
on a private cloud, options using the latest start times allow
unused nodes to remain switched off longer and save energy. On a
public cloud such as EC2, the cost can be defined by the price the

user is going to pay for the compute hours of the instance, the IOs
on EBS and the monthly cost for data storage.

The cheapest options are selected to be executed (step 5). Note
that if there are not enough options to provision all replicas, this
means that it is not possible to spawn all replicas in time for the
deadline given the current workload. We address this scenario in
the next section.

A last optimization looks at all paused VMs that are going to be
resumed. For each to be resumed VM that has not been paused yet
(i.e., VMs that are scheduled to be paused sometime in the
future), we compare the cost of letting the VM run—defined by
running_cost—versus pausing and resuming it—defined by
pause_resume_cost. In a private cloud, as long as there is enough
time to pause and resume the VM (including machine shutdown
and boot time), it is worth pausing the VM to save energy. In
EC2, when the VM is paused the remaining unused minutes of the
computing hour have been already paid for. If the VM is resumed
before the end of that hour, the time will be billed twice. When
running_cost(VM, t1, t2)<pause_resume_cost(VM, t1, t2), it is
cheaper to let the VM run and the action to pause the VM is
simply cancelled (step 6).

3.2.3 Write throttling and admission control
If a capacity deadline cannot be met in time with the current
forecast, it is possible to perform admission control on the system
in multiple ways. Note that this scenario can only happen if the
predictor drastically changes its predictions for the current
prediction window (such as an unpredicted flash crowd).

First we assume that no writes will update the system from now
on and compute the time it takes to restore and replay from the
latest snapshot (rr), to take a new snapshot and spawn a replica
from it (br=backup+restore) or resume from paused VMs (

iVMrs).

If we find that (, , ,)
i jVM VMnow min rr br rs rs d+ ≤ , this implies that

there is enough time to create replicas but the write throughput is
too high or too close to wmax for replicas to catch up in time.
Doing admission control on the write throughput wt can be used
to meet the deadline as long as:

max

max

(, , ,)
i jVM VM

t

w
min rr br rs rs d now

w w
≤ −

−
.

This translates to:
max

max

(, , ,).
i jVM VM

t

min rr br rs rs w
w w

d now
≤ −

−

Note that doing admission control on writes (write throttling),
means that update transactions are going to be delayed.
Depending on timeout settings, this might translate into
transactions being aborted. The minimum acceptable write
throughput can be set by the administrator. If the algorithm can
find a solution that allows replicas to be spawned in time with
write throttling (step 7 in pseudo-code), it is scheduled.

If replicas cannot be spawned in time even with write throttling, it
is necessary to perform admission control on the incoming
workload to prevent the system from crashing due to overload.
Admission control can be performed by the replication engine by
allowing only a fixed number of transactions in the system at any
given time. It can also be achieved at another tier in front of the
database (e.g. web tier admission control). A workload matching
the current capacity has to be maintained (step 8) until additional
capacity becomes available at time:

1

2

3

4

5

6

7

8

1

3

4

6

7

8

University of Massachusetts, Technical Report UM-CS-2010-006 8

max

max

(, , ,)
i jVM VM

t

w
d now min rr br rs rs

w w
− +

−

The administrator can set a minimum acceptable wt and let Dolly
perform admission control and schedule spawning operations
accordingly.

3.3 Scheduling new database snapshots
In addition to provisioning new replicas or pausing existing ones,
Dolly must deal with the problem of periodically creating new
database snapshots. A newer snapshot reduces the cost of
spawning a new replica in the future (since it has a more recent
version of the database and will incur a lower synchronization
overhead). However, creating a snapshot incurs an overhead, and
Dolly must intelligently schedule their creation to balance the cost
and the benefit.

Two problems have to be solved to schedule new database
snapshots: how and when. How can either be from an already
paused VM or by pausing an active VM for the time of the
snapshot (see section 3.3.1). A new snapshot must be ready when
the time to restore and replay from the previously available
snapshot is greater than the prediction window (see section 3.3.2).

3.3.1 How to snapshot?
An opportunistic method to create a new snapshot is to clone
VMs that have been paused. While a paused VM only captures
the database state until the time it was paused, it might still be a
significant improvement over the last snapshot available.

The only other option requires taking an existing replica offline
for the time of the pause/snapshot/resume (psr) operation and
replaying of updates that happened since the VM was paused.
This means that the capacity of the system is going to be reduced

by 1 replica from tbackup to () max

max
backupbackup t

t

w
t psr replay

w w
+ +

−
.

If the workload prediction does not allow a replica to be
temporarily disabled during that time interval, an additional
replica has to be provisioned at time tbackup to allow taking a new
snapshot. This new deadline can be added to the current capacity
prediction and the capacity provisioning algorithm described in
section 3.2 has to be re-executed to provision this additional
replica in time.

3.3.2 When to snapshot?
If we want to provision additional replicas in time, the time to
restore and replay from the latest available snapshot should never
exceed the prediction window. Otherwise, when the predictor
forecasts a new capacity demand increase at the end of the
prediction window, there would not be enough time to spawn new
replicas. This means that a new snapshot must be ready to be fully
restored at time tswitch defined by:

,i backup switchi
backupr replay pw+ =

where pw is the prediction window and

To make sure that additional replicas can be provisioned at tswitch
using the new snapshot, the backup operation must be started the
prior to time

1ibackupt
+

so that there is enough time to backup, restore

and replay a new replica at time tswitch. This translates to:

1 1 , 11i i backup switch ii
backup backup switch backupb r replay t t

+ + ++

+ + ≤ −

To guarantee that a new snapshot can be ready in time, the
prediction window must be long enough so that:

1 1 1 ,1i i i backup switchi
switch backup backup backuppw t t b r replay

+ + + +

≥ − ≥ + +

If the prediction window is too short or write throughput is too
high, admission control can be used to make sure that new
snapshots can be prepared in time within the prediction window.

Code sample 3 describes the snapshot scheduling algorithm in
pseudo-code. If the prediction window does not have any capacity
changes, the algorithm inserts a fake capacity increase at the end
of the prediction window (step 1) to make sure that at least one
snapshot is available to spawn replicas in time for future demand.

The algorithm then scans the prediction window and look at each
deadline where new replicas have to spawned (adding capacity
only). For each deadline, it calculates the cost to spawn new
replicas for 3 strategies:

1) The cost to spawn replicas from a snapshot given by
spawn_cost (defined in section 3.2.2) for all snapshots that can be
restored and replayed by the deadline (step 2).

2) For each paused VM (step 3) that can be snapshotted, restored
and replayed by the deadline, the cost to take the backup from the
paused VM is given by the cost function backup_paused_cost to
which we add the cost of spawning replicas from this backup.

3) The cost of creating a backup from a live replica is given by the
backup_live_cost function to which we add the cost of spawning
replicas from this backup and the eventual cost of bringing a
replica online if no idle replica is available (step 4).

Code sample 3. Snapshot scheduling algorithm pseudo-code

function snapshot_scheduling(deadlines[], snapshots[],

 paused_vms[],write_workload[])

returns schedule[] {

 if (deadlines.is_empty)

 deadline += <now+prediction_window, cur_capacity+1>;

 foreach d in deadline[] do {

 if (!d.is_capacity_increase)

 continue;

 r = number of additional replicas to spawn

 min_cost = +∞;

 foreach s in snapshots[] do

 if (now+restore&replay(s,write_workload) < d)

 min_cost = min(min_cost, r*spawn_cost(s, latest, d));

 foreach pvm in paused_vms[] do

 if (now+backup&restore&replay(pvm,write_workload) < d)

 min_cost = min(min_cost, backup_paused_cost(pvm) +

 r * spawn_cost(pvm.snapshot, latest, d);

 new_replica&backup&restore =

 backup_live_cost(new_vm, backup_time)

 + r * spawn_cost(new_vm.snapshot, latest, d);

 if (no idle replica at backup time)

 new_replica&backup&restore +=

 spawn_cost(last_snapshot, latest, backup_time)

 if (new_replica_and_backup_and_restore < min_cost)

 schedule += spawn new replica + backup;

 else if (min_cost for paused VM)

 schedule += backup paused VM;

 else if (min_cost == +∞)

 { // No snapshot available in time, force an additional replica for backup
 deadline += latest backup time, d.capacity+1;

 invoke capacity_provisioning()

 }

 return schedule;

end

1

2

3

4

5

6

7

1

2

3

4

5

6

7

,

max

switch

backup switchi

backupi

t

t

t t

w
replay

w=

= ∑

University of Massachusetts, Technical Report UM-CS-2010-006 9

Next, the algorithm keeps the option that has the minimal cost for
each deadline and schedules the operations accordingly (step 5
and 6). If no option is available to spawn a replica in time for a
given deadline (step 7), the algorithm computes at what time a
snapshot should be taken and modifies the capacity requirements
to ask for one replica to be ready by that time. The capacity
provisioning is then invoked to provision that replica, eventually
using admission control if needed.

The capacity provisioning algorithm is re-run every time new
snapshots have been scheduled (as shown on Code Sample 1) to
check if a better replica spawning schedule is available. If this is
the case, the old schedule is replaced by the new schedule.

3.4 Relinquishing resources
Over time, some paused VMs become obsolete and are not cost
effective to be resumed. The same applies to old snapshots that
need to be erased. The paused pool cleaner has the responsibility
of releasing these resources. It is invoked at regular time intervals
that can be set by the administrator (from every hour, to every day
or every week). It scans each paused VM and checks the cost of
resuming that VM (spawn_cost(VM, now, pwend)) and compares it
to the cost of spawning a replica from the latest available snapshot
(spawn_cost(bi, now, pwend)). If the cost of resuming the VM is
higher, it means that this VM will not be used anymore and it can
be released.

A similar approach can be used for snapshots. All snapshots that
are older than the current latest available snapshot can be
released. However, the administrator might want to keep multiple
older backups for recovery purposes. On a public cloud like EC2,
since storage is paid for on a monthly basis, a better policy may
be to retain old volumes until the end of the billing cycle.

3.5 High Availability considerations
Replicated databases are also used for their high availability
features. In order to tolerate f faults, f additional replicas are
needed so that at least f+1 replicas are running. These
considerations can be easily taken into account by adjusting the
capacity predictions of the predictor by adding the necessary
number of replicas to tolerate the required number of faults.

Each time a node failure is detected, the provisioning algorithm
must be re-executed to re-provision new replicas to replace the
faulty ones. The administrator can set a hard deadline to replace
the faulty replicas and therefore fix the maximum time to repair.
This could trigger admission control and write throttling to meet
the given deadline. A best effort replacement using paused VMs
or the currently available snapshot might work for most cases.

3.6 Current limitations
Dolly assumes that all the components of the cloning operation
(backup, restore, snapshot…) have a constant time which is
correct for homogeneous setups with LAN interconnections. This
might not be the case with heterogeneous resources or resources
in different EC2 regions or clouds using WAN interconnections.
The worst case scenario measurement could be taken to ensure
safe scheduling, but specific optimizations for such environments
are left to future work. Additional optimizations such as virtual
machine migration can also be considered in these environments.

When synchronizing slave nodes in a master/slave setup, the
synchronization process uses master node resources and

potentially impacts its performance. We have not currently
modeled this performance impact but we did not find it noticeable
in our early experiments.

4. DOLLY DESIGN & IMPLEMENTATION
This section presents the design and implementation of Dolly. We
first present an overview of the Dolly approach, followed by the
specifics of the VM cloning technique used in Dolly. We then
describe the implementation of Dolly in the Sequoia clustering
middleware and the Xen virtual machine platform.

4.1 Dolly Design Overview
Dolly aims at simplifying the replica spawning process by
capturing all operating system, database engine, configuration and
database data as part of a single atomic operation. In Dolly, steps
1 to 5 described in Figure 4 are now a single operation: a virtual
machine clone.

Figure 8 provides an overview of the complete replica spawning
process in Dolly. Compared to Figure 1, note that each replica
runs in a separate VM. The original spawning command is still
issued to the replication middleware, which inserts a checkpoint
in the transactional log and disables a backend for replication. The
new replica is then created by simply cloning the virtual machine
of the disabled replica. Both VMs are then restarted and
resynchronized by replaying updates from the log.

Figure 8. Overview of Dolly integration in Sequoia and
OpenNebula running the TPC-W benchmark.

OpenNebula

TPC-W

load injector

Scheduler

 Recovery Log

Log
table

Dump
table

JMX Management API

Backupers

Dolly

OpenNebula

DB1 DB2 DB3

SQL requests
add/remove replica
snapshot/pause/…

VM1

OS

VM2

OS

VM3

OS

New
replica

VM5

OS

DB3
snapshot

VMclone

OS

Load
balancer

New
replica

VM4

OS

Sequoia controller

predictions

Sequoia driver

admission control

Backup server

or NAS

start/stop/
clone/…

 clone
 clone

Dolly
Private EC2

write throttling

University of Massachusetts, Technical Report UM-CS-2010-006 10

An extra configuration step might be required on the newly
cloned VM replica (before resynchronization) in the following
cases:

- Network configuration: If the IP address is statically assigned
to the VM, a new address and machine name must be
configured to prevent a conflict with the original VM. No
such configuration is necessary if DHCP is used to obtain IP
addresses.

- Replication configuration: Master-slave systems usually
require each slave to have a unique id, which must be
configured in the new VM.

- Security: Security is usually handled orthogonally by
isolating the database cluster network within a VPN.
However, when individual secure connections are required,
new encryption (SSL) keys must be generated for the cloned
VM.

Dolly is typically integrated in the replica spawning mechanism of
the replication software and any post-restore configuration can be
automated by running a script after the restore process.

4.2 VM Cloning in Dolly
Dolly supports two methods for spawning replicas: Copy & Clone
and Direct Clone. In both cases, a virtual machine has to be
shutdown prior being cloned. The cloned image is given a new
unique id and network configuration to prevent any conflict with
the original image.

Copy & Clone consists of copying a virtual machine image and
cloning it on-demand each time a new replica needs to be
spawned. This method is similar to the traditional database
backup that generates a dump which can be re-used at will to
restore new replicas.

Dolly copy & clone (Dolly c&c) spawns replicanew from
replicasource using the following 5 steps:

1. Shutdown replicasource VM.

2. Copy the virtual machine image files on storage.

3. Boot replicasource VM and resynchronize it

4. Clone the stored VM image to create a new VM image on
the node hosting replicanew.

5. Boot replicanew VM and resynchronize it.

Direct Clone directly clones a virtual machine to a new replica
without keeping a copy for spawning additional replicas. This
approach is similar to the file system copy that directly copies
files from one replica to another.

Dolly direct clone (Dolly direct) skips the VM image copy and
directly transfers the image on the new replica node. The steps
involved in replica spawning are:

1. Shutdown replicasource VM.

2. Clone replicasource image to create the virtual machine image
files on the node hosting replicanew.

3. Boot replicasource VM and resynchronize it.

4. Boot replicanew VM and resynchronize it.

Note that both replicasource and replicanew can be started in parallel
so that steps 3 and 4 do not have to be performed sequentially.

The benefits of using VM cloning for spawning replicas are many.
The backup phase overhead is proportional to the size of the VM
image and is independent of the complexity of the database
schema (the overhead is indirectly linked to the database size,
since the database contents are included in the VM disk image).
The approach is database-agnostic and does not require any
knowledge of backup-restore tools for a particular platform. The
restore phase has a constant overhead—namely VM cloning and
startup—and is independent of the database size. The replay phase
is still necessary to resynchronize the new replica; however
reducing the bi+ri overhead reduces the number of missed updates
that must be replayed for resynchronization.

4.3 Dolly Implementation
We have implemented the concepts of Dolly in the Sequoia [24]
(formerly C-JDBC [8]) database clustering middleware and
integrated it with the OpenNebula cloud infrastructure manager
[21]. OpenNebula works with both private and public cloud
resources and offers a single API to manipulate VMs
independently of the target platform. Figure 8 shows an overview
of the integration of Dolly with Sequoia and OpenNebula in the
context of the TPC-W benchmark.

Client applications send SQL requests to the Sequoia controller
that forwards them to the underlying databases to perform
replication. The SQL commands of update transactions are
recorded with their execution time in a transactional log called
recovery log. The log itself is stored in an embedded database
running within the Sequoia controller. The recovery log can be
replayed to synchronize new or failed replicas. Additionally,
Sequoia has a replica spawning infrastructure with a pluggable
backuper interface that interacts with the recovery log and allows
for database specific implementations of backup and restore
operations. Specific backupers for MySQL and PostgreSQL
database engines are already provided. They invoke the native
backup/restore tools provided with these databases. We have
implemented two new Dolly backupers that perform a virtual
machine clone operation: Dolly copy & clone (Dolly c&c) and
Dolly direct clone (Dolly direct).

The cloning operation uses the virt-clone tool that uses the libvirt
library. This allows us to remain independent of the virtualization
implementation. Even though we tested our prototype with Xen,
our implementation should work as is with KVM and QEMU. We
use the ‘--nonsparse’ option of the virt-clone tool to fully-allocate
the guest virtual disk and ensure consistent high performance of
the virtual machine. An NFS server is installed on the machine
hosting the Sequoia controller. The virtual machine image copy is
performed over NFS.

We have implemented a Dolly/OpenNebula backuper that
interacts with OpenNebula to start/stop and clone/snapshot virtual
machines to implement the backup and restore functionality.
When a new backup is triggered, a pointer to the current state of
the recovery log is stored with the dump metadata. When a restore
operation is launched, the dump is first restored and dedicated
threads then replay the recovery log (i.e. re-execute the SQL
commands) from the point that was saved in the metadata.
Updates are applied in a serializable order to bring the new replica
in a consistent state with other replicas. The time to replay is
computed by summing the recorded execution time of all queries
to replay. More information about Sequoia internals and its
recovery log can be found in the Sequoia documentation [24].

University of Massachusetts, Technical Report UM-CS-2010-006 11

Dolly takes predictions directly from the TPC-W load injectors
that act as oracles with perfect information. A tunable prediction
window can be used from 1 minute to the entire length of the
benchmark run. The provisioning actions are directly sent to the
Sequoia controller through its administration interface. Dolly
performs admission control directly on the load injectors but it
would typically do this at the web tier level in a multi-tier setup.
The write throttling is achieved by interacting with the Sequoia
scheduler. We have implemented different cost functions to model
our private cloud platform and the Amazon EC2 public cloud.

The private cloud cost functions detailed in pseudo-code in Table
4 optimize the time the resources are used. The longer the
resources are used, the more power they use and the higher the
cost. When the algorithm has to decide which VM to pause, it
selects the hottest machine at that time.

Table 4. Cost function implementation for our private cloud

Cost function name Implementation
pause_cost(VM, t) return 1/VM->machine->temp
spawn_cost(s, t, d) return d-t
spawn_cost(VM, t, d) return d-t
running_cost(VM,t1,t2) return 1
pause_resume_cost(VM,

t1, t2)
if (t2-t1>VM->pause+VM->resume)

 return 0

else return 2
backup_paused_cost(VM) return backup_time
backup_live_cost(VM, t) return VM->pause + backup_time

+ VM->resume

Table 5 models the cost functions as the real cost the user would
pay for EC2 resource usage. It includes both the compute time for
server instances (charged by the hour at the hour$ rate) and the IO
cost (charged monthly per GB of storage (EBS_storage$) and IOs
are charged per million (EBS_io$)). EBS snapshots are stored on
S3 and are charged monthly per GB of storage (S3_storage$).

Table 5. Cost function implementation for Amazon EC2

Cost function name Implementation
pause_cost(VM, t) return 60-((t-VM->start)%60)
spawn_cost(s, t, d) comp$=(d-t)/60*hour$

io$=EBS_storage$*s->size +

 EBS_io$*

 (s->restore_io+s->replay_io)

return comp$+io$
spawn_cost(VM, t, d) comp$=(d-t)/60*hour$

io$= EBS_io$*

 (s->resume_io+s->replay_io)

return comp$+io$
running_cost(VM,t1,t2) (t2-t1)/60*hour$;
pause_resume_cost(VM,

t1, t2)
io$= EBS_io$*

 (VM->pause_io+VM->resume_io)

comp$=(60-(VM->stop-VM->start)

 %60)/60*hour$

return io$+ comp$

backup_paused_cost(VM) return S3_storage$*s->size
backup_live_cost(VM, t) return pause_cost(VM, t)$+

 S3_storage$*s->size +

 (VM->stop_io+VM->start_io)*

 EBS_io$

5. SPAWNING TECHNIQUE
EVALUATION
This section first introduces our experimental setup and
methodology. We then present our performance evaluation
followed by our management evaluation.

5.1 Experimental Setup and Methodology
This section describes our experimental testbed and our
experimental methodology to evaluate various replica spawning
techniques.

5.1.1 Hardware and Software
We use a cluster of Pentium 4 2.8GHz machines running a
CentOS 5.2 Linux distribution with a Xen-aware Linux kernel
version 2.6.18-92.1.22.el5xen. We use the default packages for
the MySQL and PostgreSQL databases that are included in the
CentOS distribution. All machines are interconnected by a Gigabit
Ethernet network. For virtualization technology, we use the
popular open source Xen hypervisor (version 3.1.2). Our Dolly
implementation is integrated in Sequoia 4.0 running on the Java
runtime version 1.6.0_04-b12.

We experiment with 3 different benchmarks: RUBiS, TPC-W and
TPC-H. RUBiS [2] is an online auction web site that is commonly
used to measure distributed system performance. We use the
RUBiS Virtual Appliance v1.0 from ObjectWeb [19]. TPC-W is
an eCommerce benchmark from the Transaction Processing
Council [27] that emulates an online bookstore. We use the
ObjectWeb implementation of the TPC-W benchmark [25].
Finally, TPC-H is a decision support benchmark also from the
Transaction Processing Council. We use the reference
implementation from the TPC web site to generate scale 1 (1GB)
and scale 10 (10GB) TPC-H databases.

5.1.2 Replica spawning techniques
We evaluate three different replica spawning techniques:
backup/restore, file copy and Dolly.

Backup/restore uses the standard database tools to perform
backup and restore operations. PostgreSQL backup/restore uses
pg_dump and pg_restore with their default options when a SQL
dump is used. A binary dump format is obtained by passing the ‘--
format=c’ to the command line. We also execute the ‘vacuum
analyze’ command after a restore to make sure planner statistics
are up-to-date. MySQL backup/restore uses the mysqldump
command with the ‘—routines’ option to generate a dump, and
the mysql client to restore a dump. Databases are created and
dropped using the mysqladmin tool for MySQL and
pgcreate/pgdrop for PostgreSQL. We perform a standard
installation of the database software on the new replica using the
yum package manager.

File copy relies on database specific knowledge to locate data and
configuration files. We must make sure that data is flushed to disk
and consistent before performing a file copy. We simply shut
down the database to make sure that all data is persisted on disk.
We perform the filesystem level copy using the rsync command
directly from one replica to another. The database is restarted on
the new replica as soon as the copy has finished. The file copy
technique is manually intensive but represents a lower bound on
replica spawning time because only the bare minimum data is
transferred.

Dolly performs replica spawning via virtual machine cloning. We
use the two implementations described in section 4.2.

5.1.3 Methodology
We first evaluate the impact of the schema complexity on replica
spawning performance. We use 3 different configurations of the
same RUBiS database (same content, same number of rows, same
data types). Each configuration is tested using the MyISAM table
type and the InnoDB transactional type. The standard RUBiS
database is referred to as ‘w/ constraints’. We remove all foreign
key references and corresponding indices in the ‘no constraint’
versions. The ‘w/ constraint & index’ configurations adds a full-

University of Massachusetts, Technical Report UM-CS-2010-006 12

text index on the comments and item descriptions. We report the
different sizes on disk for the databases and their snapshots, as
well as the performance of the different techniques to spawn a
new replica for each RUBiS instance.

Second, we measure the performance of replica spawning with a
new snapshot or from an existing snapshot. We assume that the
database software is already installed on the new replica for the
backup/restore and file copy techniques, and that the VM
hypervisor is already installed when Dolly is used. Existing
snapshots are assumed to be ready to restore without further
processing. We do not evaluate the additional resynchronization
time for new snapshots since it is strictly proportional to the
length of the backup/restore operation.

Finally, we evaluate how the different spawning techniques are
vulnerable to management issues that are commonly found when
building new replicated databases. Manageability improves when
the number of steps to perform an operation decreases.

5.2 Performance Evaluation
In this section, we evaluate the performance of the different
spawning techniques. First, we look at disk space efficiency in
section 5.2.1. Then we measure the influence of schema
complexity on backup/restore operations in section 5.2.2. Finally,
we compare the performance of replica spawning from a new
snapshot and from an existing snapshot (section 5.2.3).

Table 6.Database size on disk, dump size and overall virtual
machine image size for all benchmarks

Benchmark DB size
Snapshot

size
VM size

RUBiS

MyISAM no
constraint

836MB

844MB 4.1GB

MyISAM w/
constraints

1.1GB

MyISAM w/
constraint & index

1.2GB

InnoDB no
constraint

1022MB

InnoDB w/
constraints

1.4GB

InnoDB w/
constraint & index

1.5GB

TPC-W

PostgreSQL binary
dump

684MB

210MB

2.1GB
PostgreSQL sql

dump
314MB

TPC-H
scale

1(GB)

PostgreSQL binary
dump

1.8GB

307MB 1.1GB
(OS) +
2.1GB
(data)

PostgreSQL sql
dump

1.2GB

TPC-H
scale

10(GB)

PostgreSQL binary
dump

12GB

2.0GB

16GB
PostgreSQL sql

dump
7.3GB

5.2.1 Database workloads
Table 6 summarizes the database size, dump size and virtual
machine size for each benchmark. The DB size column represents
the amount of data that needs to be transferred by the file system
copy approach. The snapshot size represents the size of the dumps
generated by the backup tools. Finally, the VM size is the size of
the virtual machine image on disk. The TPC-H 1GB virtual
machine uses two separate partitions, one for the operating system
and another for the database data.

We observe that database snapshots generated by the database
backup tool generate the most compact representation. When the
database schema complexity increases and when more indices are
required, the database footprint on disk becomes larger. We also
note that MySQL MyISAM and InnoDB storage engine have
different space requirements for the same database size.

As the virtual machine has to host the operating system, database
software and database content (current and future), its footprint is
significantly larger. There is a tradeoff to balance for the virtual
machine image size. Small images are faster to clone but will
require more efforts to reconfigure when a new virtual partition
needs to be added. Large images reduce the maintenance need but
potentially waste disk space and inflate virtual machine cloning
time.

5.2.2 Database schema complexity
We compare the performance of creating backups using the Dolly
Copy & Clone technique versus the MySQL backup tools for
MyISAM and InnoDB tables in the three versions of the RUBiS
database presented in section 5.1.3. The results are presented in
Figure 9.

290

826 843

292

899

5761

293

1141

6017

0

1000

2000

3000

4000

5000

6000

7000

Dolly c&c MySQL

MyISAM

MySQL

InnoDB

Dolly c&c MySQL

MyISAM

MySQL

InnoDB

Dolly c&c MySQL

MyISAM

MySQL

InnoDB

RUBiS no constraint RUBiS w/ constraints & basic

index

RUBiS w/ constraints & full text

index

T
im

e
 i
n

 s
e
c
o

n
d

s

VM shutdown

VM copy

VM cloning

VM boot

MySQL backup

MySQL restore

Figure 9. Time breakdown for the database snapshot transfer
with Dolly (copy & clone) and MySQL with the MyISAM and
InnoDB engines using the standard RUBiS benchmark initial

database without constraints or index, with integrity
constraints and basic indices, and with integrity constraints

and full text indices.

We observe that Dolly’s performance is similar for all versions of
the RUBiS database. The VM shutdown and boot times are 26s
and 42s, respectively. The dominant time components are the
fixed cost of the VM copy to the controller (100s) and the VM
cloning to the replica (varying from 123s to 125s).

MySQL MyISAM and InnoDB replica spawning performance for
the database version with no constraint and index are similar at

University of Massachusetts, Technical Report UM-CS-2010-006 13

826s and 843s, respectively. The restore operation is roughly 3
times more expensive than the backup operation. We note that the
backup operation is slightly faster with MyISAM but the restore is
faster with InnoDB.

The standard RUBiS database (RUBiS w/ constraints & basic
index) shows a much higher overhead. While the backup times
remain similar, the restore operation is much slower since it has to
rebuild the indices and check integrity constraints. We have
measured that the InnoDB transactional engine is 6.6 times slower
than the MyISAM non-transactional engine. This effect is
accentuated further when full-indices are used (RUBiS w/
constraints & full-text index). The restore time jumps to 962s for
MyISAM and 5820s for InnoDB.

This experiment shows that the performance of database native
backup/restore tools is affected by the database schema
complexity. Dolly’s blackbox approach depends only on the
virtual machine image size. Dolly provides near constant
performance, up to more than 20 times faster than traditional
backup/restore tools. Even for a modestly sized database (about
1GB), Dolly reduces replica spawning time by a factor of at least
2.8.

5.2.3 Spawning from a new snapshot
In the following experiments, we measure the time to spawn a
replica from a new snapshot. We compare Dolly with File copy
and PostgreSQL backup/restore tools. Figure 10 shows the results
we obtain for TPC-W. We do not evaluate the additional
resynchronization time as it is strictly proportional to the length of
the backup/restore operation and run against the active replica.

65

126

177

288
275

0

50

100

150

200

250

300

350

File copy Dolly direct Dolly c&c PG bin PG sql

TPC-W

T
im

e
 i

n
 s

e
c

o
n

d
s

VM shutdown
VM/File copy
VM cloning
VM boot
PostgreSQL stop/start
PG bin backup
PG bin restore
PG sql backup
PG sql restore

Figure 10. Time breakdown for the database snapshot transfer
with Dolly (copy & clone or direct clone), File copy and
PostgreSQL (binary and sql dump formats) for TPC-W.

File copy is the fastest way to replicate database content as long as
the administrator knows which files need to be replicated. The
database stop/restart only takes 7 seconds, and the entire
spawning (assuming the database is already pre-installed on the
new replica) only takes 65 seconds. Dolly has a higher overhead
to shutdown and boot the virtual machine of 25 and 32 seconds,
respectively. Despite its larger size, the VM image (a single file)
copy over NFS is faster than the File copy replication through
rsync which incurs overhead for each file to be transferred. The
VM cloning, that also includes a direct file transfer over the
network, takes about 69 seconds. The performance of

backup/restore is similar for both binary and sql formats, with the
restore operation being 3 times slower than the corresponding
backup operation.

For a small database like TPC-W, the minimalistic file copy
spawns a new replica in just about a minute. Dolly has an
incompressible VM shutdown and boot overhead that accounts
for almost a minute, doubling the time for Dolly direct compared
to File copy. To achieve the equivalent of Dolly copy & clone that
keeps a snapshot on the controller, two File copy operations
would have to be performed (from the source replica to the
controller and from the controller to the new replica). In that case,
Dolly c&c reduces the overhead to about 47 seconds compared to
two File copies (177s vs 130s). Dolly c&c improves over
PostgreSQL backup/restore tools by 35% to 39%.

Our results with larger databases are shown in Figure 11. While
File copy remains faster than Dolly direct for the smaller version
of the TPC-H database, for the 10 GB TPC-H database the rsync
of the larger number of data files becomes slower than the
streaming of the single large VM image. The result is Dolly direct
is 25% faster for the larger database. PostgreSQL’s backup/restore
is significantly slower than either File copy or Dolly direct. The
difference between binary and sql backup/restore for TPC-H
10GB is mostly due to a much slower VACUUM ANALYZE
operation when a binary dump is used for restore where this
operation only takes few seconds with the sql dump.

147 189 273

1477 1468

937
699

1215

5573

5256

0

1000

2000

3000

4000

5000

6000

File copy Dolly

direct

Dolly

c&c

PG bin PG sql File copy Dolly

direct

Dolly

c&c

PG bin PG sql

TPC-H 1GB TPC-H 10GB

T
im

e
 i
n

 s
e
c

o
n

d
s

VM shutdown
VM/File copy
VM cloning
VM boot
PostgreSQL stop/start
PG bin backup
PG bin restore
PG sql backup
PG sql restore

Figure 11. Time breakdown for the database snapshot transfer
with Dolly (copy & clone or direct clone), File copy and

PostgreSQL (binary and sql dump formats) for the TPC-H
1GB and 10GB benchmarks.

For smaller databases, Dolly has two major overheads: (i) the
larger disk size of the virtual machine image that includes not
only the database content but also the operating system and all
software, and (ii) virtual machine shutdown and boot time. When
the database size increases, these overheads become insignificant
compared to the transfer of the database content. Dolly provides a
much higher level of abstraction than database backup/restore
tools by completely blackboxing the database, and yet still
achieves a performance close to an optimized file copy that only
transfers the minimal set of necessary data. Dolly has a fixed
overhead of VM shutdown and boot (total 1 min), and OS image
overhead (amortized with the database copy) that the minimal File
copy does not. However, this additional overhead results in a
maximum penalty of 1 minute in the worst-case scenario from our

University of Massachusetts, Technical Report UM-CS-2010-006 14

experiments. We believe that this is a very small overhead to pay
for the gains in manageability and the elimination of errors that
could lead to system corruption or downtime.

5.3 Management Evaluation
A contribution of this paper is the following summaries of the
different challenges in spawning a new replica and how Dolly
addresses them. The issues related here have been experienced
with open source and commercial database software in production
environments. Specifically, we have identified: 7 major
configuration issues, 8 significant snapshot transfer issues and 4
major resynchronization issues.

Table 7. Possible management related issues in replica
spawning. ‘Yes’ means the issue can arise for that technique.

Possible Issues Backup/
Restore

Filesystem
Copy

Dolly

Incompatible DB
version

Yes Yes No

Database mis-
configuration

Yes Yes No

Database not tuned Yes Yes No

Missing authentication
settings

Yes Yes No

Network configuration Yes Yes Yes

Non-Unique slave id Yes Yes Yes

Backup tool
configuration

Yes No No

Expert knowledge of
DB filesystem needed

No Yes No

Missing integrity
constraint

Yes No No

Missing temporary
tables, sequences or

environment variables

Yes Yes No

Missing stored
procedure and trigger

definitions

Yes No No

LOBs transfer Yes No No

Performance issues,
concurrency limits

Yes No No

Non-atomic replica
spawning

Yes Yes No

Difficult to predict
replica spawning times

Yes No No

DB not live during
resynchronization

Yes Yes Yes

Query restrictions
during replay

Yes Yes Yes

Restrictions on temp
objects during replay

Yes Yes Yes

Serialization of replay
statements

Yes Yes Yes

Table 7 summarizes these different issues for each system. We
present the details of each and conclude this section with how
Dolly addresses all 15 of the configuration and snapshot issues.
However, the resynchronization issues remain an open concern.

5.3.1 Configuration issues
The first step is to install and setup the database on the new
replica. A compatible version of the database engine must be
installed. Not only must the version be compatible with the
replication software but it must also be compatible with the
version used by the other replicas. The database must then be
configured and tuned accordingly with the host operating system.
These steps are specific to the database engine and might require
extra steps for the replication configuration. Note that some
tuning options might be specific to a particular database instance
(e.g. size of the lock tables, buffer sizes for joins, etc.). More
subtle settings such as timezone and character encoding settings
can also have significant side effects on the database behavior.

Authentication settings, users and their respective access rights
have to be restored. This configuration can be stored in
configuration files, in the database information schema or both. A
specific super user account is needed to initiate this process.

The network configuration has to be setup to accept client
connections but also to communicate with the replication software
and the other replicas. In a master/slave configuration a new
unique slave id might have to be generated. If secure connections
are used, new certificates or encryption keys have to be generated
and exchanged.

Database management tools must also be able to connect to the
database especially to perform operations such as backup and
restore. A specific user, tool or bootstrap database might be
required to connect to the database engine in order to instantiate
the first database.

5.3.2 Snapshot transfer issues
The database content has to be transferred from an existing replica
usually using database specific backup/restore tools. Backup tools
may not be able to capture all database objects like temporary
tables, sequences, environment variables, stored procedure and
trigger definitions [9]. Additional challenges can arise from large
objects (LOBs) or language specific extensions that need to be
encoded in a neutral format.

Restore tools have to preserve data integrity which limits
concurrency of operations during restore. To improve
concurrency, some tools allow disabling all integrity constraints
and indices during restore to speedup inserts, and only alter the
tables at the end of the restore. This only applies to dumps in SQL
format; snapshots in binary format have to be restored
sequentially. Depending on the complexity of the database schema
and the table sizes, the time to restore a database will vary which
makes it very hard to predict the overall time this operation will
take. Optimizer statistics have also to be recalculated after a
restore operation.

Some database administrators directly backup the database files as
this can be more efficient than using the backup/restore facility for
large databases. Depending on the database, this task can be more
or less complex. The administrator must know exactly which files
to be backed up (e.g., data files, history log, redo log) for a
particular instance but also where to find meta-data and

University of Massachusetts, Technical Report UM-CS-2010-006 15

configuration files, making it an error prone task. Also this
becomes even more sensitive when distributed transactions are
used. It is possible that some transactions are prepared but not
committed at backup time and it is necessary that these states are
restored properly for these transactions to complete.

The consequences of missing information in a snapshot transfer
are multiple: the performance of the replica can be altered (e.g.
missing index, wrong optimizer statistics), queries can fail (e.g.
missing stored procedure), illegal data might be inserted (e.g.
missing integrity constraint), wrong results can be generated (e.g.
bad sequence number) or execution might diverge from other
replicas (e.g. missing trigger or environment variable setting).

5.3.3 Resynchronization issues
Resynchronization is the operation that consists of replaying all
the updates that happened since a snapshot was taken so the
replica can be brought up-to-date with the other nodes. This is
achieved by replaying transactions from the recovery log that is
kept by the replication system. A replica can be spawned from an
old snapshot as long as the recovery log contains all the update
transactions that the system has seen since the snapshot was taken.

Depending on the log implementation, SQL statements are re-
executed or binary logs are applied. Hybrid approaches use binary
logs for small updates and SQL statements for large updates that
touch many records in the database. Some systems are not capable
of live resynchronization and require the system to be stopped or
set to read-only to prevent additional updates to be appended to
the log while recovering. Other restrictions might apply like the
use of DDL statements (i.e. ALTER, CREATE, DROP…) or the
use of non-persistent objects (temp tables, sequences,
environment or session variables…) that cannot be logged and
resynchronized properly.

Similarly to the restore operation, the log replay generally must be
serialized which reduces the system’s effective throughput. Under
a heavy write workload it is even possible that the replay
mechanism does not catch up with the current workload and lags
behind until the update rate decreases in the workload.

5.3.4 Manageability
All the configuration challenges stem from the core need of
recreating a compatible environment for the DBMS state at the
new replica. By leveraging the virtual machine’s cloning
mechanism, Dolly creates an exact copy of the original system,
DBMS and OS. The VM cloning model is a nearly perfect
blackbox model that simply avoids issues due to potential
differences at the copy: There are none. The exception is
relatively minor changes needed for network addressing, which
the cloning process automatically manages in most cases (DHCP).

The snapshot transfer issues all stem from the core need of a
semantic understanding of the system state to do the transfer. The
highly complex internal structures supporting DBMS systems for
core functionality and additionally for optimized performance
require complex tools to make minimal, semantically equivalent
copies. While the database backup/restore tools provide a higher
level abstraction to logically manipulate database objects, they
still have limitations and make the replication process error prone.
Again, the blackbox model of Dolly simply sidesteps this
complexity by copying all state.

Replication related issues such as assigning a unique slave id or
resynchronization problems mentioned in section 5.3.3 are
independent of the cloning technique.

The benefits of replica spawning via Dolly’s virtual machine
cloning approach is a vastly simpler model for the administrator
with essentially all the details handled by the cloning mechanism.
From a manageability standpoint, Dolly provides an atomic
replica spawning operation whereas other approaches require
multiple steps to install, configure, copy and restore data.
Following the definition of the manageability metric, Dolly
provides a significantly higher level of manageability as it can
achieve the spawning operation atomically in a comparable
amount of time as file copy and much faster than backup/restore.
The overhead of the Dolly approach is the transfer of extra data
since, by ignoring the internal data structure semantics, DBMS
state cannot be isolated.

5.4 BENEFITS AND LIMITATIONS
SUMMARY

5.4.1 Administration benefits
Table 8 summarizes the features and requirements of the replica
spawning techniques evaluated in this paper. Dolly’s advantages
over other database replication methods follow directly from the
properties of cloning. Because cloning treats application state as a
blackbox, Dolly can be agnostic of database specifics. This
eliminates extra steps to install and configure the DBMS.
Furthermore, the system state becomes a large block of data that
can be streamed efficiently at near-peak component throughputs
(network and disk), so Dolly replication is fast. Since no
interpretation of the state is done, the time to replicate is easy to
model as it is dominated by highly predictable steps: VM
shutdown, state transfer, and VM boot up. Blackboxing the state
into a chunk of bytes also improves safety and reliability of the
copy as basic system error checking is sufficient to detect any
errors. This quality essentially makes spawning a replica atomic,
prior to replay of the log. In contrast, backup/restore tools have a
logical layer of transfer on top of the raw byte transfer, adding a
layer of complexity and more steps at which errors can occur
undetected by the system and corrupting state.

Table 8. Summary of features for the three replica spawning
techniques evaluated in this paper.

Feature
Backup/
Restore

Filesystem
Copy

Dolly

Database specific
knowledge

Medium Very high None

Performance Slow Fastest Fast

Snapshot size Small DB size VM size

Spawning time
predictability

Hard Moderate Easy

Database installation Moderate Moderate None

Database configuration Hard Hard None

Missing data in transfer Possible Unlikely No

Spawning atomicity No No Yes

Resynchronization
limitations

Yes Yes Yes

University of Massachusetts, Technical Report UM-CS-2010-006 16

While Dolly provides many advantages there are some limitations.
The computing cluster/cloud must be homogeneous, as Dolly’s
cloning, by definition, creates an exact image of the original
system. For the same reason, Dolly does not replace extract,
transform, and load (ETL) tools as cloning precludes any
transformation of the state. Furthermore, the minimum snapshot
size for Dolly is significant since the full VM state is captured.
While the functional simplicity of cloning results in very efficient
copying that mitigates the added delay due to the extra state,
highly tuned file copies of small databases will be faster than
Dolly cloning. However, so long as the system response time to
spawn new replicas can be measured in a few minutes rather than
seconds then Dolly cloning offers a solution that is performance
competitive with file copy solutions, yet simpler and safer than
conventional database backup tools.

5.4.2 Performance benefits
Like disk or filesystem replication, VM cloning is an alternative
mechanism for replicating content when compared to the
traditional database-specific backup-restore mechanism. In this
section, we summarize the copy overheads of the two approaches.

Table 9 summarizes the time to copy various databases using the
database native backup/restore tool (e.g. mysqldump, pg_dump)
versus VM cloning. The RUBiS benchmark database [2] is tested
with 3 configurations on MySQL using the InnoDB engine:
without constraint or index (-c-i), with integrity constraints and
basic indexes (+c+bi) and with constraints and full text indexes
(+c+fi). TPC-W and TPC-H [27] databases are stored in a
PostgreSQL RDBMS. We also experiment with two virtual
machine image sizes (4 and 16GB) where we store both the
operating system and the database within its content.

Table 9. Backup/restore and VM cloning time in seconds for
various standard benchmark databases.

Database
DB size
on disk

DB
Backup
Restore

Dolly
4GB VM
cloning

Dolly
16GB VM

cloning

RUBiS –c–i 1022MB 843s 281s 899s

RUBiS +c+bi 1.4GB 5761s 282s 900s

RUBiS +c+fi 1.5GB 6017s 280s 900s

TPC-W 684MB 288s 275s 905s

TPC-H 1GB 1.8GB 1477s 271s 918s

TPC-H 10GB 12GB 5573s n/a 911s

Indexes significantly increase the database footprint on disk. We
observe from the RUBiS results that integrity constraints checks
as well as index building can increase database backup/restore
time by a factor of more than 7 for the exact same database
content. Not only do the database schema and backup tool
configurations affect timings, different database engines yield
very different results for databases with a similar size on disk. We
observe that large or complex databases can take more than 1 hour
to replicate.

In contrast, VM cloning performs a filesystem level copy without
interpreting database objects, thus it offers a constant time
regardless of the database complexity or engine used. The time
only depends on the VM image size on disk (280s for a 4GB
image and about 900s for a 16GB image). Consequently, since the
VM disk size is fixed a priori, VM cloning makes it easy to
predict database backup/restore time incurred when spawning a
new replica—a crucial pre-requisite for database provisioning.

6. PROVISINONG EVALUATION
This section first introduces the cloud platforms used for our
experiments. We then present our performance evaluation.

6.1 Cloud Platforms
We use a private cloud composed of a cluster of Pentium 4
2.8GHz machines. Each machine is running a CentOS 5.4 Linux
distribution with a Linux kernel version 2.6.18-128.1.10.el5xen,
the Xen 3.3 hypervisor and MySQL v5.0.45. All machines are
interconnected by a Gigabit Ethernet network.

We use Amazon EC2 as our public cloud. EC2 instances are
created from EBS volumes. We use standard large on-demand
EC2 instances in our experiments. Each EC2 instance has
CloudWatch running on it to monitor the number of writes. The
price of our EC2 instance with CloudWatch is $0.355 per hour.
The price of an EBS volume is $0.10 per allocated GB of data per
month. The cost of doing I/O requests to an EBS volume is $0.10
per million I/O requests. There is a cost of $0.15 per GB per
month associated with the storage of EBS volume snapshots.

Table 10. Operation timings in seconds for a TPC-W
benchmark virtual machine on our private cloud and EC2.

Operation Private Cloud Public Cloud (EC2)

start VM 142s 220s

pause VM 26s 30s

resume VM 42s 30s

backup (stop/clone) 150s 320s

restore (clone/start) 132s 220s

wmax 149 writes/sec 197 writes/sec

Avg IOs per write 15 13

Our Dolly implementation is integrated with the Open-Nebula
cloud management framework v1.4 and Sequoia 4.0 running on
the Java runtime version 1.6.0_04-b12. We build a 4GB VM
image of the TPC-W benchmark for both cloud platforms. We
report our measurements of the various VM management and
cloning operations in Table 10. We measure the maximum write
throughput of a single replica (wmax) obtained by running only
write transactions of the TPC-W workload on a standalone
database. The average number of IOs per write transaction is
calculated by running iostat before and after the wmax run.

6.2 Workload Description
We experiment with the TPC-W benchmark. TPC-W is an
eCommerce benchmark from the Transaction Processing Council
[27] that emulates an online bookstore. We use the ObjectWeb
implementation of the TPC-W benchmark [25]. The setup is
similar to the one depicted in Figure 8 with load injectors
providing a 2 hour prediction window. The web tier (not shown
on Figure 8) is statically provisioned with enough servers for the
length of the experiment.

We have generated a custom mix of interactions to create the
workload depicted at the top of Figure 12. We generate a read-
only request mix by using the TPC-W browsing mix workload
and removing its few write interactions. We use httperf to create
the desired number of clients that send these read-only
interactions. The write interactions are generated using the
customer registration servlet of TPCW. Another set of httperf
clients generate these write-only interactions.

University of Massachusetts, Technical Report UM-CS-2010-006 17

We use the model described in [13] to determine the capacity
requirements shown in Figure 12. The initial capacity demand at
t=0 is 4 replicas (middle graph) and the write throughput is 20%
of the maximum write throughput (bottom graph). After 10
minutes the number of replicas needed decreases from 4 to 3. We
denote this deadline by d1. The number of replicas needed
decreases further from 3 to 2 at d2=20 minutes. The capacity
demand increases sharply from 2 to 5 replicas at d3=80 minutes,
then drops to 2 at d4=90 minutes and increases up to 6 replicas at
d5=100 minutes. The number of writes remains constant to 0.2
times the maximum write throughput for one hour with a 10
minute read-only workload starting at d2. After that hour, the write
throughput is 0 until d3 with a write surge at 50% of the maximum
write throughput. The write peak continues for 10 minutes and the
write throughput drops to 0 at d4.

Figure 12. TPC-W workload, predicted capacity requirements
and write workload.

A snapshot s0 is available at time t0. The 4 initial VMs v1, v2, v3

and v4 are started at t0-10, t0-20, t0-30 and t0-40 minutes,
respectively. In the private cloud, machines are stacked in a rack
with cooler temperatures at the bottom of the rack. VMs with
lower numbers (e.g. v1) are assumed to run on cooler machines.

6.3 Provisioning Schemes Evaluated
We evaluate Dolly’s performance by comparing it with two other
traditional provisioning schemes: reactive provisioning and
overprovisioning. Both these schemes have the same behavior on
both public and private cloud.

Reactive provisioning does not use any prediction and just reacts
to the current capacity demand. Under this scheme VMs are
paused when the demand decreases and are destroyed when a
newer snapshot becomes available; also database snapshots are
taken at regular intervals. We use intervals of 15 minutes
(Reactive15m), 1 hour (Reactive1h) and 2 hours (Reactive2h),
generating 7, 1 and 0 snapshots respectively during the
experiment.

The overprovisioning configuration (Overpro6) uses a constant
set of 6 nodes. Just like reactive provisioning, snapshots are
generated periodically in this scheme. We choose to only generate
1 snapshot during the experiment.

We invoke the Dolly provisioning scheme on the public (Pub) and
private (Pvt) cloud with three different prediction windows of
lengths 10 minutes (Dolly10mPub and Dolly10mPvt), 30 minutes
(Dolly30mPub and Dolly30mPvt) and 2 hours (Dolly2hPub and
Dolly2hPvt).

In the following sections, we invoke each provisioning scheme in
the private and public clouds with the workload and initial
conditions defined in the previous section. We use two metrics to
capture the performance of each provisioning scheme. The first
metric is the cost of the provisioning scheme. The cost in the
private cloud represents the cumulative machine uptime (6
machines up for 5 minutes accounts for 30 minutes) while the cost
in the public cloud (Amazon EC2) is the real cost in $USD. The
lesser the cost, the better the performance of the provisioning
scheme. The second metric used is missing replica minute (MRM)
that measures capacity underprovisioning (i.e. SLA violations). 1
MRM corresponds to a missing capacity of 1 replica for 1 minute
(5 replicas missing for 2 minutes accounts for 10MRM). The
lesser the MRM of a provisioning scheme, the better the
performance of the provisioning scheme.

6.4 OverProvisioning
We evaluate the performance of the overprovisioning technique.
This scheme always provisions six database replicas for the
system. A snapshot is taken at t=60 minutes. One of the six
replicas is used to generate this snapshot and the replica is
therefore unavailable for processing the workload during the time
the backup is being taken i.e., for 2m30s.

As 6 nodes are used for the 2 hours of the experiment, the total
cost is 720 minutes for the private cloud. The system is never
underprovisioned and therefore the MRM is 0. The EC2 cost is
dominated by machine rental cost and totals $8.39.

6.5 Reactive Provisioning
In this section we describe the provisioning decisions made by
reactive provisioning with database snapshots taken at intervals of
15 minutes, 1 hour and 2 hours. This provisioning scheme takes
the same decisions on both private and public clouds, so we only
illustrate the decisions made by reactive provisioning on the
private cloud.

6.5.1 Reactive provisioning with 15 min snapshots
Reactive provisioning responds to the decrease in demand at d1

and d2 by pausing VMs v4 and v3. The provisioning scheme needs
to generate a new database snapshot at t=15 minutes. To generate
this snapshot, it spawns a new database replica from snapshot s0.
The replica is spawned by restoring from s0 and then replaying the
writes, that takes a total of 6m12s. A new snapshot s1 is thus
generated at 21m12sec. The next snapshot is required at t=30
minutes. A new replica is spawned from s1 to generate this
snapshot. Spawning this replica involves restoring from s1 and
then replaying the writes, that takes a total of 2m45s. A new
snapshot s2 is generated from this replica. A new replica spawning
is started at t=45 minutes to generate the next snapshot. Spawning
this replica from s2 takes a total time 3m26sec, that includes time
to restore from s2 and then replay the writes. A new snapshot s3 is
thus generated at t=48m26s. Again, at t=60 minutes, a new replica
is spawned to generate a new snapshot. A new replica is spawned
by restoring from s3 and replaying, that takes 4m30s, and then a
new snapshot s4 is taken from this replica. Next, at t=75m, a new
snapshot is needed. The last snapshot s4 is uses to spawn a new

University of Massachusetts, Technical Report UM-CS-2010-006 18

replica in 2m12s by just restoring. A new snapshot s5 is taken at
77m12s. The provisioning scheme needs to spawn three replicas
to meet deadline d3=80 minutes. It spawns these three replicas by
restoring and replaying from snapshot s5; the replica spawning
takes 4m24s during which the system remains underprovisioned
by three replicas. When the demand decreases at d4=90 minutes,
the reactive provisioning scheme pauses the three replicas v1, v2,
v5. A new snapshot is required at t=90 minutes. A replica
spawning operation is started at t=90 minutes by restoring from s5
and then replaying the writes. The replica is ready at t=97 minutes
12 seconds at which point a new snapshot s6 is generated. For
deadline d5=100 minutes, four replicas need to be spawned. Three
replicas are spawned by resuming the VMs v1, v2, v5. The fourth
replica is spawned by restoring from snapshot s5 that takes 2m12s
during which the system is underprovisioned by one replica.

6.5.2 Reactive provisioning with 1 hour snapshots
Just like the previous provisioning scheme this provisioning
scheme pauses VMs v4 and v3 for deadlines d1 and d2. A new
snapshot is required at t=60 minutes, so a new replica needs to be
spawned. The replica spawning operation is started by restoring
from snapshot s1 and replaying, that takes 12m12s. A new replica
is available at t=72 minutes 12 seconds and a new snapshot s2 is
generated by taking its backup. For deadline d3=80 minutes three
replicas are spawned by restoring and replaying from this
snapshot s2. The new replicas become available at t=84 minutes
48 seconds and thus the system remains underprovisioned for
4m48s. Replicas v1, v2, v5 are paused at d4=90 minutes when the
demand decreases. To meet the deadline d5, three replicas are
spawned by resuming v1, v2, v5 and the fourth replica is spawned
by restoring from s2 and replaying that takes 7m12s during which
the system is underprovisioned by one replica.

6.5.3 Reactive provisioning with 2 hour snapshots
We now explore the provisioning decisions taken when the
reactive provisioning scheme is used with snapshots taken every 2
hours. This scheme pauses VMs v4 and v3 for deadlines d1 and d2.
For deadline d3, the three replicas are spawned by restoring from
s0 and replaying that takes 17m12s. This scheme remains
underprovisioned by three replicas for the entire 10 minutes
duration between t=80m and t=90m. The three replicas are paused
at t=97 minutes 12 seconds. These VMs are then resumed to meet
the deadline d5. The fourth replica needed to meet deadline d5 is
spawned by restoring from s0 and replaying, that takes 17m12s.
Thus, the system is underprovisioned by one replica from t=90
minutes to t=100 minutes.

6.6 Dolly
In this section we describe the provisioning decisions made by
Dolly with different prediction windows (10 minutes, 30 minutes
and 2 hours) in the private cloud and public cloud.

6.6.1 Dolly 10 min prediction window
We consider a sliding prediction window of 10 minutes. As
Section 3.3.2 describes, the snapshot scheduling algorithm
continuously adds a fake deadline of spawning one replica at the
end of the prediction window. When this deadline cannot be
fulfilled by restoring and replaying from the latest snapshot, the
snapshot scheduling algorithm schedules a new snapshot. Thus,
with a 10 minute prediction window Dolly produces multiple
snapshots during the experiment.

Private Cloud:

For deadlines d1 and d2 where the demand decreases Dolly pauses
v4 and v3 just like in the earlier case. When the start of the
prediction window reaches t=29 minutes, the snapshot scheduling
algorithm adds a deadline of spawning one replica at the end of
the prediction window. The snapshot scheduling algorithm
realizes that this deadline of spawning a new replica at t=39
minutes cannot be fulfilled by restoring and replaying from the
existing backup s0. So, it needs to create a new snapshot from
which it can spawn a new replica. The only option to spawn a new
replica for taking this new snapshot is by unpausing the paused
VM v3 at t=32m and then replaying the writes. We then take a
new snapshot s1 at t=32m. Dolly pauses the VM v3 after the
snapshot operation is finished. Dolly could also have used
unpaused v4 to spawn the replica needed for taking this snapshot,
but since the cost of spawning from v4 is more than the cost of
spawning from v3, it chooses to unpause v3. When the start of the
prediction window reaches t=70 minutes, Dolly needs to spawn
three replicas for deadline d3. The capacity provisioning algorithm
evaluates the costs of the three options available; spawning from
the latest backup s1 has cost 8m, the cost of spawning by resuming
v4 and replaying is 8m42s and the cost of spawning by resuming
v3 and replaying is 6m. The capacity provisioning algorithm
therefore schedules spawning a replica by resuming v3 at d3-6m
and the replaying. It schedules spawning the remaining two
replicas by restoring from snapshot s1 at d3-7m34s and then
replaying. The snapshot scheduling algorithm explores if it is
possible to achieve deadline d3 by creating a new snapshot and
spawning from it. Since the deadline is only 10 minutes away, the
snapshot scheduling algorithm finds it impossible to take a new
snapshot and spawn from it in such a small time. When the start of
the prediction window reaches t=74 minutes, the snapshot
scheduling algorithm again realizes that it needs to create a new
snapshot to meet the deadline at the end of the prediction window
i.e. at t=84 minutes. To create this new snapshot, the snapshot
scheduling algorithm explores the options of spawning a new
replica. The only option to spawn a new replica is by restoring
from s1 and replaying. Thus, the snapshot scheduling algorithm
schedules restoring a new replica from s1 at t=74 minutes and
replaying. The replicas become available for taking a new
snapshot at t=82 minutes when we take a new snapshot s2. When
the demand decreases at d4 Dolly decides to pause VMs v1, v2 and
v5. When the start of the prediction window reaches t=90 minutes,
Dolly needs to spawn four replicas for the deadline d5. Just like in
the case of Dolly with 2 hour prediction window, in this case
Dolly decides to unpause v1, v2, v5 to spawn three replicas at d5-
42s and schedules a new backup from one of the paused VMs at
t=d5-4m42s and restore from it to create a replica.

Public Cloud:

Dolly makes similar decisions in public cloud with a 10 minute
prediction as in the case of the private cloud. Dolly pauses v4 and
v3 at deadlines d1 and d2. When the start of the prediction window
reaches t=21 minutes 40 seconds, Dolly’s snapshot scheduling
algorithm adds a deadline of spawning a replica at the end of the
prediction window i.e. at t=31 minutes 40 seconds. It realizes that
this deadline cannot be fulfilled by spawning this replica from the
latest snapshot s0 and new snapshot needs to be taken. To take a
new snapshot a replica needs to be spawned whose backup can be
taken. Note that the time to take a backup and then restore in the
public cloud totals 9m. Thus the only option for generating a new

University of Massachusetts, Technical Report UM-CS-2010-006 19

snapshot and spawning a replica at the end of a 10 minute
prediction window is to resume the paused VM v3 at t=21 minutes
40 second, replay and then take a new backup s1. Similarly, when
the start of the prediction window reaches t=41 minutes 40
seconds Dolly’s snapshot scheduling algorithm adds a new
deadline of spawning a new replica at t=51 minutes 40 seconds.
This deadline cannot be fulfilled by spawning a replica from the
latest snapshot s1, so the snapshot scheduling algorithm tries to
generate a new snapshot by spawning a new replica and taking its
backup. Because of the small prediction window, the only option
available with the snapshot scheduling algorithm is to resume v3
at t=41 minutes 40 seconds, replay and then take its backup, just
like before. Dolly thus generates a new snapshot s2 at t=45
miniutes 12 seconds. When the start of the prediction window
reaches t=70 minutes, Dolly needs to spawn three replicas for
deadline d3. The capacity provisioning algorithm evaluates the
cost of the three options Dolly has: restoring from s2 and
replaying costs $0.48, resuming v3 and replaying costs $0.46, and
resuming v4 and replaying costs $0.57. The capacity provisioning
algorithm therefore schedules spawning a replica by resuming v3
at d3-3m27s and replaying. It schedules restoring from s2 at d3-
6m37s and then replaying to spawn the remaining two replicas.
The snapshot scheduling algorithm explores options of spawning
replicas by generating a new snapshot, but the small prediction
window precludes spawning new replicas by generating a new
snapshot. When the start of the prediction window reaches t=76
minutes 45 seconds, the snapshot scheduling algorithm again adds
a new deadline of spawning a replica at t=86 minutes 45 seconds.
The snapshot scheduling algorithm schedules generating a new
snapshot since the last snapshot s2 is too old to be used for
spawning this replica. To generate this new snapshot the snapshot
scheduling algorithm needs to spawn a new replica and take its
backup; the only option to generate a new replica in time is to
restore from s2 and replay. Thus Dolly immediately starts
restoring from s2 at t=76 minutes 45 seconds. A new snapshot s3 is
generated at t=86 minutes 45 seconds after the restore and replay
have finished. Dolly pauses v1, v2, v5 when the demand decreases
at d4. When the start of the prediction window reaches t=90
minutes, Dolly needs to provision four replicas to meet the
deadline d5 at the end of the prediction window. The capacity
provisioning algorithm compares the two options available for
spawning these replicas: resuming the paused VMs costs $0.40,
restoring from s3 and replaying costs $0.45. The snapshot
scheduling algorithm evaluates the cost of creating a new
snapshot from the paused VM and then spawning from that
snapshot, the cost of this option is $0.43. Dolly therefore
schedules unpausing the paused VMs at d5-30s and spawning
three replicas. For the fourth replica, Dolly schedules resuming a
paused VM at t=d5-9m30s, taking a new snapshot s4 and then
restoring from this snapshot.

6.6.2 Dolly 2 hours prediction window
With a 2 hour prediction window, Dolly is able to plan for the
entire duration of the experiment. However, a 30 minute
prediction window leads to exactly the same decisions and results.

As Section 3 describes, Dolly repeatedly invokes the capacity
provisioning algorithm followed by the snapshot scheduling
algorithm until no new snapshots are scheduled. First, the
capacity provisioning algorithm is executed.

Phase 1: Capacity provisioning algorithm

The provisioning decisions taken by the capacity provisioning
algorithm in this first phase are summarized in Table 11. The
algorithm looks at each deadline sequentially and chooses the
optimal options to meet that deadline. For the first deadlines d1
and d2, the algorithm has to decrease the capacity of the system by
1. The algorithm uses pause_cost to determine which VM to
pause. In the private cloud, it decides to pause the hottest VMs (v3
and v4). For EC2, v3 and v4 are chosen since they have used most
time of their billed hour.

Three replicas have to be provisioned at d3. On both platforms,
resuming the paused VMs is cheaper than spawning replicas from
snapshot s0. Therefore, 2 replicas are provisioned by resuming v3
and v4, and 1 additional replica is spawned by restoring s0. The
scheduling of the operations is done according to the timing of the
operations for each platform that are summarized in Table 10.

Table 11. Actions scheduled by the capacity provisioning
algorithm (phase 1) for each cloud platform

Deadline Private Cloud EC2

d1 Pause v4

d2 Pause v3

d3

Resume v3 @ d3-7min
Resume v4 @ d4-9min

Spawn v5 from s0 @ d3-13min

d4 Pause v1,v2,v3 -

d5
Resume v1,v2,v3 @ d5-6min -

Spawn v6 from s0 @ d5-18min

The algorithm uses pause_cost to determine which 3 replicas to
pause at d4. These paused VMs are the cheapest option to
provision 3 of the 4 replicas needed by d5. The 4th replica is
spawned from s0. The algorithm uses the pause_resume_cost
function to determine if the decision to pause the VMs should be
changed or not. In the private cloud, there is enough time to pause
and resume the VMs so it makes sense to pause them. In EC2,
pause_resume_cost is dominated by the instance cost. It costs
$0.059 to let the VM runs for 10 minutes compared to $0.296 for
the 50 minutes wasted if the VMs are paused. So the algorithm
decides to not pause the VMs for EC2.

Phase 2: Snapshot scheduling algorithm

Now, the snapshot scheduling algorithm is executed to check if
creating new snapshots after s0 could yield cheaper replica
spawning costs. The decisions scheduled are shown in Table 12.
The snapshot scheduling algorithm looks at each deadline where
new replicas have to be spawned (d3 and d5) and decides the best
strategy to take a snapshot for that deadline. For d3, the algorithm
uses spawn_cost to determine the cost of spawning 3 replicas
from the initial snapshot s0. It uses backup_paused_cost to
determine the cost of taking a backup of each paused VM. Finally,
it calculates the cost of taking a backup of a live replica using
backup_live_cost.

In the private cloud, the cost to spawn 3 replicas from s0 is
36min36s (3*(132s+10m)), spawning from v4 is 33m06s (150s+
3*(132s+8m)), spawning from v3 is 31m06s (150s+3*(132s+6m)).
Finally the total cost of taking a snapshot from a live replica is
spawning from s0 (12m12s) followed by backup (2m56s) and 3
restore/replay (3*132s=6m36s), that is a total of 21m44s. This last

University of Massachusetts, Technical Report UM-CS-2010-006 20

option has the smallest cost. The algorithm then schedules the
spawning of a new replica at time d3-18min that leaves enough
time for spawning, snapshot, restore and replay by d3.

In EC2, the cost to spawn 3 replicas from s0 is $1.89 (3*(running
cost ($0.355*0.22) + EBS volume cost ($0.10*4) and EBS IO
cost ($0.10*1.54))), spawning from a snapshot of v4 is $2.34
(snapshot storage cost (4*$0.15) + 3*(running cost ($0.355*0.16)
+ EBS volume cost (4*$0.10) and EBS IO cost ($0.10*1.3))),
spawning from a snapshot of v3 is $2.22 and spawning from a
snapshot of a live replica is $2.50 ($0.84 to spawn a new replica
from s0 + $1.26 to spawn 3 replicas from the snapshot). As it is
cheaper to spawn replicas from s0, no new snapshot is scheduled.

The second deadline where capacity needs to be increased is d5.
We need to spawn 4 replicas for the private cloud but only 1 for
EC2 where the VMs were not paused. The same cost functions are
evaluated again and the private cloud schedules a new snapshot
but this time from a VM paused at d4. In EC2, the storage cost of
EBS snapshots and volumes still overcomes the cost of replaying
IOs. Therefore, as restoring from s0 still allows spawning replicas
in time and it is still the cheapest solution, the algorithm decides
to not schedule any new snapshot. As no new snapshot is
scheduled, the algorithm terminates here for EC2.

Table 12. Scheduling decisions of the snapshot scheduling
algorithm (phase 2) for each cloud platform

Deadline Private Cloud EC2

d3 Spawn replica v5 at d3-18m + snapshot s1 -

d5 Snapshot s2 from paused v1@ d4+1min -

Next iteration

In the second iteration, the capacity provisioning algorithm is
invoked again for our private cloud. As more snapshots are
available, new decisions are scheduled as shown in Table 13. As it
is cheaper to spawn replicas from s1 than to resume v3 and v4,
these 2 VMs will never be resumed and get cleaned up by the
paused pool cleaner when it is invoked. For d3, two replicas are
spawned from s1 and one is provisioned by resuming v5, the VM
that was used to take the snapshot. At d5, the 3 paused VMs are
resumed and an extra VM is spawned from the new snapshot s2.

Table 13. Actions scheduled by the capacity provisioning
algorithm (phase 3) for the private cloud

Deadline Private Cloud

d1 Pause v4

d2 Pause v3

d3
Resume v5 @ d3-1min
Spawn v6,v7 from s1 @ d3-3min

d4 Pause v1,v2,v5

d5
Resume v1,v2,v5@ d5-6min
Spawn v8 from s2 @ d5-3min

The snapshot scheduling algorithm is invoked again. No new
snapshot is scheduled as it is not possible to find options with a
cheaper cost than what is currently available with s1 and s2.

Final Phase: Scheduling

Since the snapshot scheduling algorithm does not create any new
snapshots the loop terminates and the schedules are sent to the
scheduler for execution. Figure 13 shows the final provisioning
decisions made by Dolly for EC2 and our private cloud platform.

Figure 13. Final provisioning decisions taken by Dolly with a
30 minutes or 2 hour prediction window for our private cloud

and Amazon EC2 (public cloud).

Both schedules are correct and meet the capacity requirements in
time. The cost functions have optimized the schedules for the
minimum cost on EC2 and for lower energy consumption on our
private cloud.

6.7 Summary
We summarize the performance of the various provisioning
schemes evaluated in the preceding sections in this section. Figure
14 shows the provisioning decisions taken by each algorithm as
explained in the previous section. The performance of the
different algorithms as indicated by the two performance metrics
is summarized in Table 14.

The results show that reactive provisioning is not able to properly
provision the system with missing capacity ranging from 23.2 to
44.2 missing replica minute. Snapshotting more often reduces the
time to spawn new replicas by restore and replay but capacity is
missing during the spawning operations.

Overprovisioning (Overpro6) always provides an adequate
capacity but at a significantly larger cost on each cloud platform.
In contrast, Dolly uses much less resources while still providing
the required capacity. A 10 minute prediction window (Dolly10m)
requires more snapshots to be able to react to any new capacity
demand at the end of the short prediction window. A 30 minute
prediction window (Dolly30m) is enough to provide an optimal
provisioning using less than half of the resources of the
overprovisioned configuration.

When reactive provisioning is used, additional capacity is used to
spawn a new replica from the latest snapshot so that a new
snapshot can be generated. When capacity needs to be increased,
the system remains underprovisioned during the time replicas are
spawned. The older the snapshot the longer it takes to spawn new
replicas. In the Reactive2h case, replicas spawning starting at t=80
completes only 17 minutes later, leaving the system with only 2
available replicas to serve requests during the first peak period.

The Overpro6 configuration constantly provides 6 replicas except
for when the snapshot is generated where a node is briefly paused.
The large shaded area shows the amount of wasted resources.

University of Massachusetts, Technical Report UM-CS-2010-006 21

Figure 14. Capacity made available by each provisioning algorithm compared to the required capacity and the total capacity actually used.

Dolly with a 10 minute prediction window (Dolly10m) behaves
similarly on both cloud platforms. As the prevision window slides
the time to restore and replay from the latest snapshot exceeds the
prediction window size. This is why Dolly spawns new replicas to
generate new snapshots at deadlines s1 and s2. While new replicas
are spawned from s1 during the first capacity increase, the write
spike quickly triggers an additional replica to generate s2. Four
replicas are paused at the end of the first peak and resumed for the
second peak (no replay time since no write occurred during that
paused time). An additional replica is quickly spawned from s2.

With a 30 minute or longer prevision window (Dolly30m and
Dolly2h), decisions change between the private and the public
cloud according to the cost functions. While less machine time is
used on the private cloud by generating new snapshots from an
additional replica online (s1) or from a paused replica (s2), the
storage cost of a new snapshot dominates the IO cost of replay for
EC2. Therefore all replicas are always spawned from the original
s0 snapshot in the public cloud. Instances are also not stopped
between the two peaks as instances are paid for a full hour,
pausing and restarting them 10 minutes later costs more than
letting them run.

Table 14. Provisioning algorithm performance for private and
public clouds in terms of cost and missing replica minute (MRM).

Provisioning
algorithm

Private Cloud Public Cloud (EC2)

Cost (time) MRM Cost ($) MRM

Reactive15m 381m42s 17.5 18.29 27.2

Reactive1h 360m30s 25.8 5.00 33.7

Reactive2h 410m 42.1 4.61 41.5

Overpro6 720m 0 8.39 0

Dolly10m 381m54s 0 7.16 0

Dolly30m 352m 0 3.73 0

Dolly2h 352m 0 3.73 0

In summary, we have shown that Dolly with a prediction window
as short as 30 minutes is able to provide optimal resource

utilization (according to administrator defined cost functions)
while always providing the required capacity.

7. Related Work
Much of the prior work on dynamic provisioning [28], [29], [30],
[6] has focused on dynamic provisioning of the front tiers of web
applications. In this work we focus on the database tier that differs
from other tiers due to its large dynamic state. Commercial
solutions such as Oracle RAC [18] use a shared disk approach to
avoid the state replication problem. The use of in-memory
databases on top of a shared storage has also been considered
[18]. Our work focuses on cloud environments where a shared
disk approach cannot typically be deployed.

Amazon Relational Database Service (RDS) [2] works with
Amazon Auto Scaling [1] to provide reactive provisioning of
asynchronously replicated (i.e. master/slave) MySQL databases
based on static thresholds. Microsoft in its Azure PaaS (Platform
as a Service) cloud offering provides built-in replication in the
lower layer of its platform but hides it to the user [22].
Provisioning could be enhanced on both platform using Dolly.

The few papers related to dynamic provisioning of databases
usually focus on workload prediction without modeling the time
to spawn new replicas [11]. Dolly can work with any load
predictor and provisions database replicas accordingly by
predicting VM cloning and replica resynchronization time. The
problem of re-synchronizing database replicas in a shared nothing
environment has been described in [25]. However, the proposed
technique only relies on log replay and does not exploit
snapshotting as a way to bring up new replicas. Even in a more
recent work [14], state synchronization time is based on fixed
estimates for replay. We have shown that using virtualization, we
are able to snapshot databases via VM cloning and predict state
replication time accurately.

8. Conclusion
Database provisioning is a challenging problem due to the need to
replicate and synchronize disk state. Since modern data centers
and cloud platforms employ a virtualized architecture, we
proposed a new database replica spawning technique that

replica spawning

triggered here

replicas available

snapshotting

cheaper to leave instances online

snapshotting

snapshotting

s1 s1 s2 s2 s1 s2

University of Massachusetts, Technical Report UM-CS-2010-006 22

leverages virtual machine cloning. We argued that VM cloning
offers a replication time that depends solely on the VM disk size
and is independent of the database size, schema complexity and
database engine. We proposed models to accurately estimate
replica spawning time and analyzed the tradeoffs between
capacity provisioning and database state snapshotting. To the best
of our knowledge, Dolly is the first database provisioning system
that can be adapted to the specifics of various cloud platforms via
administrator-defined cost functions.

We implemented Dolly and integrated it with a commercial-grade
open source database clustering middleware. We proposed
different cost functions to optimize resource usage in a private
cloud and to minimize cost for the Amazon EC2 public cloud. We
evaluated our prototype with a TPC-W e-commerce workload and
demonstrated the benefits of an automated database provisioning
system for the cloud, with optimized solutions adapted to different
cloud platform specifics. We plan to release Dolly as open source
software and hope that it will facilitate replicated database
deployments in virtualized environments such as clouds.

Acknowledgement
We would like to thank Steve Dropsho for early contributions to
this work. This research was supported in part by NSF grants
CNS-0834243, CNS-0720616, CNS-0916972, CNS-0855128,
and a gift from NEC.

9. REFERENCES
[1] Amazon Auto Scaling - http://aws.amazon.com/autoscaling/

[2] Amazon RDS - http://aws.amazon.com/rds/

[3] C. Amza, E. Cecchet, Anupam Chanda, Alan L. Cox, S.
Elnikety, R. Gil, J. Marguerite, K. Rajamani, and W.
Zwaenepoel – Specification and implementation of dynamic
Web site benchmarks – WWC, 2002.

[4] C. Amza, A. Cox and W. Zwaenepoel – Conflict-Aware
Scheduling for Dynamic Content Applications – USITS’03,
Seattle, WA, March 2003.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, I., and A. Warfield – Xen and
the art of virtualization – SOSP, October 2003.

[6] M. N. Bennani and D. A. Menasce – Resource allocation
for autonomic data centers using analytic performance
models – ICAC ’05, Washington, DC, USA, 2005.

[7] J. Blancet – Snapshots in Xen – Online FAQ,
https://zagnut.storeitoffsite.com/home/jim.blancet/FAQ/Sna
pshots%20in%20xen

[8] E. Cecchet, J. Marguerite, W. Zwaenepoel – C-JDBC:
Flexible Database Clustering Middleware – Usenix Annual
Technical Conference, Boston, MA, USA, June 2004.

[9] E. Cecchet, G. Candea and A. Ailamaki – Middleware-
based Database Replication: The Gaps between Theory
and Practice. – ACM SIGMOD, June 10-12, 2008

[10] A. Chandra, W. Gong, and P. Shenoy – Dynamic Resource
Allocation for Shared Data Centers Using Online
Measurements – IWQoS 2003, June 2003.

[11] J. Chen, G.Soundararajan, C.Amza – Autonomic
Provisioning of Backend Databases in Dynamic Content
Web Servers – ICAC '06, June 2006.

[12] S. Elnikety, S. Dropsho and W. Zwaenepoel – Tashkent+:
Memory-Aware Load Balancing and Update Filtering in
Replicated Databases – EuroSys, March 2007.

[13] S. Elnikety, S. Dropsho, E. Cecchet and W. Zwaenepoel –
Predicting Replicated Database Scalability from
Standalone Database Profiling – EuroSys, April 2009.

[14] S. Ghanbari, G. Soundararajan, J. Chen, and C. Amza –
Adaptive Learning of Metric Correlations for Temperature-
Aware Database Provisioning – ICAC, June 2007.

[15] J. N. Gray, P. Helland, P. O’Neil, D. Shasha – The Dangers
of Replication and a Solution – ACM SIGMOD, 1996.

[16] J. Hellerstein, F. Zhang, and P. Shahabuddin – An
Approach to Predictive Detection for Service Management
– Proceedings of the 12th IEEE International Conference on
Systems and Network Management, 1999.

[17] B. Kemme, G. Alonso – Don’t be lazy, be consistent:
Postgres-R, a new way to implement Database Replication
– VLDB’00, September 2000.

[18] K. Manassiev and C. Amza – Scaling and Continuous
Availability in Database Server Clusters through
Multiversion Replication – DSN 2007, June 2007.

[19] ObjectWeb RUBiS Virtual Appliance -
http://rubis.ow2.org/

[20] Oracle – Oracle Real Application Clusters 11g – Oracle
Technical White Paper, April 2007.

[21] OpenNebula project. http://opennebula.org/

[22] M. Otey – SQL Server vs. SQL Azure: Where SQL Azure is
Limited - SQL Server Magazine, August 2010.

[23] C. Plattner, G. Alonso – Ganymed: Scalable Replication for
Transactional Web Applications – ACM/IFIP/USENIX
Middleware, Toronto, Canada, October 2004.

[24] Sequoia Project. http://sourceforge.net/projects/sequoiadb/

[25] G. Soundararajan and C. Amza – Online data migration for
autonomic provisioning of databases in dynamic content
web servers – 2005 Conference of the Centre For Advanced
Studies on Collaborative Research, Toronto, October 2005.

[26] TPC-W Benchmark, ObjectWeb implementation,
http://jmob.objectweb.org/tpcw.html.

[27] Transaction Processing Council. http://www.tpc.org/.

[28] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal –
Dynamic Provisioning for Multi-tier Internet Applications –
ICAC-05, Seattle, June 2005.

[29] D. Villela, P. Pradhan, and D. Rubenstein – Provisioning
Servers in the Application Tier for E-commerce Systems –
IWQOS 2004, June 2004.

[30] Q. Zhang, L. Cherkasova, and E. Smirni – A regression
based analytic model for dynamic resource provisioning of
multi-tier applications – ICAC ’07, Washington, DC, 2007.

