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ABSTRACT
We present a new approach for finding generalized contin-
gent plans with loops and branches in situations where there
is uncertainty in state properties and object quantities, but
lack of probabilistic information about these uncertainties.
We use a state abstraction technique from static analysis of
programs, which uses 3-valued logic to compactly represent
belief states with unbounded numbers of objects. Our ap-
proach for finding plans is to incrementally generalize and
merge input example plans which can be generated by classi-
cal planners. The expressiveness and scope of this approach
are demonstrated using experimental results on common
benchmark domains.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search

General Terms
Algorithms, Reliability, Verification

Keywords
Agent Reasoning: Knowledge Representation, Planning

1. INTRODUCTION
Automated planning is one of the most fundamental re-

quirements for the effective development and deployment of
autonomous agents. The focus of research in AI planning
has been on efficiently finding linear sequences of actions
that take a specific problem state to a goal state. While this
has led to significant performance improvements, research
in planning for partially observable situations has not been
as successful. Tree structured plan representations used by
current contingent planners [5, 2] tend to grow exponentially
in size with increasing numbers of objects to be sensed.

In this paper we present an approach for extending the
scope and scalability of contingent planning. We propose

∗Sections of this paper were presented at AAMAS 2010 and
ICAPS 2010.

a novel approach for efficiently constructing program-like
generalized plans with branches and nested loops for solving
classes of situations or problem instances. These problem
instances can have different initial state properties (as in
the typical formulation), as well as different object quanti-
ties, which has not been addressed before. We assume the
framework of contingent planning [1], in which probabilistic
information about states and action outcomes is not avail-
able, so that the agent needs to plan for the worst case. As
an example, consider a fire fighting agent with smoke and
heat detectors in a building where a room may be on fire. It
can use the smoke detector to isolate the floor with the fire,
and heat detectors to isolate the room on fire. It’s task is
to extinguish the fire, if present. In addition to problems in
scalability due to tree structured solutions, state-of-the-art
conditional planners would require absolute precision about
the number of floors and rooms on each floor in order to
solve this problem (few planning frameworks can even ex-
press situations with unknown quantities of objects). Sup-
pose further that the agent has successfully executed such
searches under test conditions for a few small buildings us-
ing reactive control, or even state-of-the-art planners. Un-
fortunately, even with this information it is not possible to
use existing approaches to reliably construct plans for larger
buildings. For the fire fighting agent, reliability is an impor-
tant factor: generalizations are bound to be incomplete and
planning time is limited–the agent should be able to quickly
determine possible gaps in its generalization, and request
assistance if it is at a building that it cannot search.

The approach presented in this paper addresses all of these
issues. The main contribution of this paper is an algorithm
for constructing generalized plans with complex configura-
tions of loops and branches by generalizing and merging lin-
ear plans. The input plans can come from observed behavior
traces, or could be generated efficiently by classical plan-
ners. In the fire-fighting problem for instance, we compute
a plan which loops over floors while using the smoke sen-
sors, and then loops over all the rooms of a floor while using
the heat sensors (Fig. 4). Although such solutions appear
simple, computing them requires reasoning about loops and
approaches incomputable problems such as automated al-
gorithm synthesis. This difficulty is borne out by the near
absence of approaches addressing such planning problems.
We constrain our plan structures to those for which we can
efficiently determine preconditions (including those for loop
termination and progress towards the goal); however, in this
paper we focus on our approach for computing such plans.

Contingent planners typically use abstraction to represent



the agent’s belief state [1] efficiently. We use a state abstrac-
tion and action mechanism which is relatively new in AI,
but is built upon an established body of work in the static
analysis of programs (the TVLA system [9]). In addition to
representing belief states, we use this abstraction mechanism
for recognizing loop invariants and for compactly represent-
ing situations where a certain example plan segment will be
useful. In prior work [11], we used this abstraction mecha-
nism for the more limited goal of identifying simple loops in
a single classical plan without any sensing actions. While a
complete description of all aspects of this state abstraction
and action mechanism is beyond the scope of a single paper,
we provide the relevant details in the next section, which
also lays out our formal foundations, including our observa-
tion model and plan representation. The following section
presents an overview of our approach for computing plans
and contains the main algorithms. Sec. 4 presents some of
the results obtained with an implementation.

2. FORMAL MODEL
Running Example In the rest of this paper, we will use
the recycling problem as a running example: a recycling
robot must pick up objects from a set of bins, perform a
sensing action to determine recyclability of the drawn object,
and store it in an appropriate container.

We represent states of a domain as traditional (two-valued)
logical structures over a domain-specific vocabulary of pred-
icates. A state thus consists of a universe of objects, and
for every predicate, a set of object-tuples satisfying it. Do-
mains may include first-order integrity constraints that must
be satisfied in all instances of the domain. We use the terms
“state” and “structure” interchangeably.

Each action is specified as a first-order formula defining
its precondition, and a set of update formulas defining the
new value of each predicate. The following equation shows
the update formula for predicate pi where ∆+

i (∆−i ) specifies
when pi(x̄) will be changed to true (false) by the action:

p′i(x̄) := (¬pi(x̄) ∧∆+
i ) ∨ (pi(x̄) ∧ ¬∆−i ) (1)

This first order representation of planning is very standard
from a logical point of view and can be easily translated to
frame axioms for actions and to successor state axioms in
the situation calculus. However, instead of using theorem
proving to derive the effects of an action, we use the much
more efficient method of formula evaluation on structures.
Example The recycling problem can be modeled using the
following vocabulary: V = {bin1, visited1, object1, collected1,
empty1, container1, forPaper1, forGlass1, in2, isPaper1,
isGlass1, robotAt1}.

An example structure, S, can be described as follows: the
universe, |S| = {b, o, c1, c2}, binS = {b}, objectS = {o},
containerS = {c1, c2}, forPaperS = {c1}, forGlassS = {c2},
inS = {(o, b)}, isPaperS = {o}, robotAtS = {b}, visitedS =
{b}. We omit the predicates not satisfied by any tuples.

Integrity constraints for the recycling domain would in-
clude among others the formulas ∀uvw(in(u, v)∧ in(u,w)→
(v = w ∧ (bin(v)∨ container(v)))) meaning that each object
can be in at most one bin or container, and ∀u(object(u)→
(isGlass(u) ↔ ¬isPaper(u))) meaning that objects are ei-
ther of type paper or of type glass.

To keep the presentation simple, we assume here that no
bin contains more than one object. The goal condition is
that all bins are empty: ∀x(bin(x) → empty(x)). The pre-
condition and updates for the action collect(o, c) are:
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Figure 1: Abstraction for representing belief states

(isGlass(o) ↔ forGlass(c)) ∧ container(c) ∧
∃b(bin(b) ∧ in(o, b) ∧ robotAt(b))

in′(u, v) := (in(u, v) ∧ u 6= o) ∨
(¬in(u, v) ∧ u = o ∧ v = c)

empty′(u) := empty(u) ∨ in(o, u)

collected′(u) := collected(u) ∨ o = u

2.1 Abstract States and Actions
We represent belief states as in prior work [11] which

in turn is based on the abstraction methodology of TVLA
(Three Valued Logic Analyzer), a system for the static anal-
ysis of programs [9]. In this approach, potentially infinite
sets of similar concrete structures can be represented using
an (abstract) 3-valued structure, where the truth value of a
tuple being in a relation may be 1 (present), 0 (not present),
or 1

2
(perhaps present). The universe of such an abstract

structure may include summary elements, each of which de-
notes an arbitrary non-zero number of objects. We draw
summary elements using double circles; relations with truth
value 1

2
are drawn using dotted edges, those with truth value

1 are drawn using solid edges and those with truth value 0
are not drawn.

For example, in Fig. 1 the abstract structure Sa contains
two summary elements, b, x. Intuitively, Sa represents (or
“embeds”)1 any concrete structure that contains one or more
non-empty bins, (since empty is not written it is false), and
one or more objects of unknown type (paper or glass). Since
concrete structures must satisfy the integrity constraints, we
know that each bin contains exactly one object and no object
is in more than one bin. Two structures represented by Sa
are drawn at the top of Fig. 1. The set of all concrete states
represented by Sa is denoted γ(Sa). Recall that all states of
a domain are required to satisfy the integrity constraints, I.
Thus, γ(Sa) = {S |Sa w S;S concrete; S |= I}.

Given a domain, we choose a set, A, of unary predicates to
be the abstraction predicates. (The set of observable unary
predicates in our examples constitutes the abstraction pred-
icates.) We define the role of an element of a structure to
be the set of abstraction predicates it satisfies. In Fig. 1, the
role of pi’s, g and x is {obj}.
1Formally we say that structure S represents structure T
(equivalently, T is embeddable in S), S w T , iff there is an
onto function f from the universe of T onto the universe of
S such that for any relation symbol Rk, and any elements,
t1, . . . , tk of T , the truth value of R(f(t1), . . . , f(tk)) in S,
generalizes the truth value of R(t1, . . . , tk) in T ( 1

2
general-

izes anything whereas 0 and 1 only generalize themselves).
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Figure 2: Focus and coerce.

The canonical abstraction of a concrete structure S#, is
the least general abstract structure S that represents S# and
has definite truth values for each abstraction predicate [9].
This is computed simply by collapsing all elements of each
role to one element of that role. The collapsed element is a
summary element if there were multiple elements with that
role in S#. Truth values of tuples involving summary ele-
ments in S are the most specific generalizations of the truth
values of tuples they represent in S#. (In Fig. 1 Sa is the
canonical abstraction of S1, and of S2.) Note that even
though they typically represent infinite collections of con-
crete states, each canonical abstract structure contains at
most 2a elements where a is the number of abstraction pred-
icates. Abstract structures thus present an efficient way to
model belief states with uncertainty in object quantities.

2.1.1 Action Application on Abstract Belief States
Since we represent belief states using three-valued struc-

tures, we can safely apply the (first-order) definitions of the
action operators directly to the current belief state to derive
the new belief state after the action has been applied. For
action, a, and abstract or concrete structure, T , let τa(T )
denote the result of applying action a to T .
Fact 1 If S represents S# then τa(S) represents τa(S#) [9].

Fact 1 should give the reader an idea of the power and
generality of the TVLA abstraction methodology. However,
to make this useful, we have to make sure that the belief
states stay as precise as possible as we repeatedly apply ac-
tions, i.e., we want to maintain definite truth values (0,1)
whenever possible.

While the abstraction is convenient for succinctly repre-
senting a large set of possible concrete structures, the de-
signers of TVLA have observed that before an action is ap-
plied, it is useful to view some predicates in more detail.
They thus introduced the focus operation: given an ab-
stract structure, S, and a formula, φ, with at most one free
variable, focus(S, φ) produces a set of structures S1, . . . , Sk
that represent the same set of concrete structures as S, i.e.,
γ(S) = γ(S1)∪ · · · ∪ γ(Sk), but such that the truth value of
φ is definite in Si, i = 1, . . . k.

Given an action a, we automatically generate a set of rele-
vant focus formulas, φ1, . . . , φt from the ∆± formulas of the
action update (Eq. 1), and focus with respect to all of these.
We then apply τa to the relevant structures, thus preserving
precision. We use the TVLA function coerce to refine or
remove any structures that do not satisfy the integrity con-
straints. Finally, we canonically abstract the result struc-

tures to return to the standard, abstract representation, no
longer focusing on φ1, . . . , φt.

In Fig. 2, a simple example of focus is shown, where we
are focusing on the formula chosen(x) whose meaning might
be that x is the unique argument on which action a will be
applied. On the left, structure S1 is shown where chosen
has truth value 1

2
for the element b of role {bin}. When

we focus on chosen the result is the three structures on the
right representing the situations where chosen has definite
truth values and holds for all, some, and none of the ele-
ments represented by the summary element b, respectively.
On the extreme right, in the presence of the integrity con-
straint saying that chosen must hold for a unique element of
the universe, coerce removes S3 and refines S1 and S2. This
shows how we use focus and coerce to draw-out a repre-
sentative element from summary elements. Continuing with
Fig. 2, as we would expect, the result of drawing-out a repre-
sentative element from a summary element of a role ({bin})
results in two cases (at the extreme right): one where the
drawn out element is the only element of that role, and one
where there are more elements of that role. This drawing-
out mechanism is used to select a unique action argument
prior to action application. In the sequel, we will see that
the role of an action’s argument ({bin}, to which chosen was
set to have the truth value 1

2
) gets specified by the corre-

sponding action instance in an example plan. We refer the
interested reader to existing literature on TVLA (such as
[9]) for further details on focus and coerce.

2.2 Observation Model and Sensing Actions
Contingent plans deal with uncertainty about predicates

in the agent’s belief state using observation or sensing ac-
tions [1, 5]. We model sensing actions as focus operations
w.r.t the respective formulas being sensed. When applied
to an abstract state, they return a set of more precise belief
states corresponding to the different possible definite truth
values of the formula being sensed. For instance, the re-
cycling domain has only one sensing action applicable to a
chosen bin marked with the new (not in the domain’s vocab-
ulary) abstraction predicate chosen: senseType(), with the
focus formula ∃x(chosen(x) ∧ in(o, x) ∧ isPaper(o)). When
applied to an abstract structure (such as S4 or S5 in Fig. 2),
it returns structures with different possible types of a single
object in the chosen bin. Note that the integrity constraint
that each object has a unique type makes either of the pred-
icates isPaper, isGlass sufficient for sensing an object’s type.

In addition to uncertainty about predicates, the agent



Input: Existing plan Π, π = (a1, . . . , an), S#
0

Output: Extended version of Π
1 bpπ, bpt ← 0;

2 t← generalize(π, S#
0 )

3 mpΠ,mpt ← findMergePoint(Π, t, bpΠ,bpt);
4 repeat
5 if mpΠ found then
6 bpΠ, bpt ← findBranchPoint(Π, t,mpΠ,mpt);

end
7 if bpΠ found then
8 mpΠ,mpt ← findMergePoint(Π, t, bpΠ, bpt);
9 addEdges(Π, t, bpt, mpt, mpΠ, bpΠ)

end

until new bpΠ or mpΠ not found ;
if bpπ found and mpπ not found then

/* A terminal segment of t was not merged */

10 remainderT ← path added to Π after bpΠ;
/* Try to create loops in remainderT */

11 formLoops(remainderT);

end
12 return Π

Algorithm 1: Branch and Merge

does not have precise information about object quantities.
We only require that it has sufficient knowledge to deter-
mine whether there are zero, exactly one, or more than one
objects of each role at any step.
The planning problem Given a set of domain-specific
actions, integrity constraints, a goal formula, and an initial
belief state Sinit, our objective is to find a generalized plan
solving the initial belief state Sinit.

2.3 Plan Representation and Execution
Our representation of generalized plans is similar to that

of finite state controllers: a generalized plan is a directed
graph whose nodes are labeled with actions and edges are
labeled with structures. Edge labels may also include con-
ditions (with the default condition True) under which they
may be taken. Execution begins at one of the pre-defined
start nodes of the plan. At any stage during plan execution
a program-counter (initialized with the start node) labels
the active node. The neighbors of a node represent the next
possible actions. At each step in plan execution the action
labelling the active node is executed; subsequently, an edge
satisfied by the current belief state is taken and the neigh-
boring node along this edge becomes the new active node.
At any stage, if the next action cannot be carried out, or if
a valid edge embedding the resulting belief state cannot be
found, the plan execution ends. A generalized plan solves
a concrete state S# if every allowed execution of the plan-
steps on S# starting at an allowed start node ends at a state
satisfying the goal; the plan solves a belief state S if it solves
every S# ∈ γ(S) from which the goal is reachable.

This representation follows standard conventions for con-
trol flows. However, for ease in describing the merge oper-
ations used during the construction of generalized plans, in
Sec. 3 we will work with the dual of this plan representation,
where structures label nodes and actions label edges.

3. MERGING EXAMPLE PLANS
The most significant challenge faced by approaches com-

Input: Sinit, the initial belief state
Output: Plan Π
Π← ∅; looseEnds ← Sinit;
while looseEnds 6= ∅ do

Remove S0 ∈ looseEnds;

S#
0 ← concrete instance of S0;

π0 ← invokeClassicalPlanner(S#
0 );

Merge(Π, π0, S
#
0 );

looseEnds ← getLooseEnds(Π);

end
return Π
Algorithm 2: Generalizing and merging examples

bining multiple example plans is to determine positions in
an existing plan where segments of a new example plan
would be useful. This becomes more difficult when the ex-
isting plan contains loops. BranchAndMerge (Alg. 1) is a
greedy algorithm for addressing this problem. It uses ab-
stract structures in plan traces as a compact representation
of the infinitely many situations where the subsequent se-
quence of actions would be useful. The input to Alg. 1 is the
existing plan (initially ∅), a new linear example plan and a
concrete structure solved by the example plan.

Such example plans can be provided from prior experi-
ence. Given an abstract structure S0 representing the initial
belief state, they can be also generated by existing classi-
cal planners as follows: (a) create a concrete member state

S#
0 ∈ γ(S0) with specific truth values for the unobservable

predicates. The number of universe elements in S#
0 corre-

sponding to a summary element in S0 can vary; in this paper
we used a heuristic process to add at least six elements in
S#

0 for every summary element in S0. (b) make the ap-
propriate sensing actions for the unobservable predicates as
prerequisites for actions which use those predicates (c) solve
this problem instance using a classical planner like FF [6].

In the recycling problem, the input to a classical planner
can be a problem instance with multiple non-empty bins
where each object’s type is “paper”. The collect action’s
formulation will require a predicate “sensed” to hold for the
object being collected. The sensed predicate on the other
hand will only be set by a “senseType” action with no other
effect. This problem’s solution plan will use “senseType”
actions, but will only solve the problem for “paper” objects.

BranchAndMerge proceeds as follows. The example plan
is first generalized (line 2). The input to the generalize sub-

routine is a pair (π, S#
0 ), where π = (a1, . . . , an) is a solution

plan for the concrete structure S#
0 . Plan π is generalized

by replacing the action ai’s arguments by their roles in the
concrete structure S#

i−1 (S#
i = ai(S

#
i−1), i = 1, . . . , n) and

including the automatically generated (Sec. 2.1.1) focus for-
mulas. This results in a modified linear plan applicable in
the abstract state space, say π′. The sequence of intermedi-
ate concrete states is then generalized by applying π′ on the
canonical abstraction S0 of S#

0 , and keeping only those re-

sults Si = a′i(Si−1) which are consistent with the S#
i . This

results in an interleaved sequence of structures and actions
because only one of the results of the focus operation can be
consistent with a concrete state. Structures which are not
consistent with the result seen in π at the same step repre-
sent possible situations that were not handled by π. These
abstract structures can be indexed and stored in a list of



“looseEnds” if suggestions for further examples are needed
or in a hybrid implementation (Alg. 2). The generalization
process is similar to “tracing” [11].

Given an example trace t and an existing plan Π, Alg. 1
uses findMergePoint (lines 3 & 7) to find the index of the
earliest structure in t that is embeddable in a structure in
Π. If successful, findMergePoint returns mpΠ and mpt, the
node in Π and the index in t corresponding to these struc-
tures. A successful search indicates that the new example
encountered an instance of a belief state present in Π. How-
ever, the subsequent actions in t may not be different from
those following mpΠ in Π, or may not handle any new prob-
lem instances in addition to those already handled by Π. In
order to minimize the new edges added to Π, after finding
the merge points, Alg. 1 conducts a search for a branch point
using the procedure findBranchPoint.

findBranchPoint simultaneously traverses the actions of t
and Π starting from the last known merge points mpt and
mpΠ, and returns the last node and index where the example
trace matched the plan Π. More precisely, starting at the
previous merge points mpt,mpΠ it matches successive ele-
ments of t with action edges and structure nodes in Π until
it finds a node bpΠ in Π and an index bpt for a structure in
t such that either (a) none of the successor actions of bpΠ in
Π match any of the successor actions of bpt in t, or (b) there
is a matching successor action in Π, but its resulting struc-
ture does not embed the resulting structure in t. A branch
point will not be found only if the example trace after the
last merge point is completely subsumed by a path in Π.

In this way findBranchPoint gives us a situation where the
example trace behaved differently from the existing plan. In
general, the search for subsequent merge points can range
over all nodes in Π. Allowing merges with any node in Π
introduces loops of increasing complexity, which makes it
difficult to determine vital properties such as the guaranteed
termination of the resulting plan. From this point of view,
we limit the set of allowed merge points to non-ancestors
of the last branch point and nodes within the same loop.
The list of non-ancestors is obtained by running BFS on Π
with its edges inverted, and taking the complement of the
obtained set of reachable nodes. The resulting plans can be
analyzed for preconditions very efficiently. A description of
the methods for doing so is beyond the scope of the current
paper, but this issue is addressed briefly in Sec. 3.2.

The overall BranchAndMerge algorithm works by adding
nodes for structures and edges labeled with actions from the
branch point to the merge point (bpt, mpt respectively) in
the trace t, starting at bpΠ in Π and ending at mpΠ. If the
merge point in Π coincides with the previous branch point,
Alg. 1 introduces a new loop. If a merge point is not found,
all the actions and structures from bpt are added to Π, in a
linear path starting at bpΠ. Alg. 1 then calls the formLoops
algorithm described in prior work [11] in order to find loops
in the path of actions that was added after bpΠ.

Given a generalized plan Π with ΠE edges and a new trace
t with tn nodes, Alg. 1 runs in time O(ΠE · tn) and satisfies
the following property:
Observation 1 In any plan produced by Alg. 1, the short-
est path to the goal from any concrete member of the initial
belief state is smaller than or equal to the best provided ex-
ample that solved it. This is because action sequences from
example traces are either merged with existing edges that
subsume them, or are added to the existing plan.

A Hybrid Approach Alg. 1 can be implemented as a
part of a proactive algorithm for incrementally generating
example plans and merging them (Alg. 2). Alg. 2 uses the
list of looseEnds which can be created by the generalize sub-
routine. It requires a book-keeping subroutine for removing
structures which have been solved from the list looseEnds
when example traces are merged with the existing plan Π.
A complete implementation of Alg. 2 is left for future work.
Quality of Generalization We measure the quality of
plans on the basis of the fraction of solvable problem in-
stances that they solve. More specifically, we defineDπ(n) =
|Sπ(n)|/|T (n)| where T (n) is the set of solvable problem in-
stances of size at most n, and Sπ(n) is the subset of those
that π solves. For example the recycling problem of size n
must have n/2 each of bins and bin-contents, yielding a total

of 2n/2 instances with different bin contents.

3.1 A Detailed Example
Fig. 3(a) shows a plan segment that collects one object of

type paper, moves to the next bin and finds a glass object.
S#

0 is a concrete structure in which more than 2 objects each
of type paper and glass have been collected, and two bins
remain to be visited. Two of the actions in this example,
gotoNextBin and senseType, can have multiple abstract re-
sults due to the focus operations described earlier. When
applied on an abstract structure with an unknown number
of unvisited bins, the two results of the gotoNextBin action
correspond to whether or not the next bin is the last unvis-
ited bin, as per the drawing-out operation described earlier
(Fig. 2). The senseType action uses the focus operation to
enumerate the different possibilities for the type of the ob-
ject being sensed. Dotted edges in Fig. 3 represent results
of these actions that did not occur in the execution of the
given example plan on S#

0 .

Fig. 3(b) shows the result of generalizing Fig. 3(a). S#
0 ’s

canonical abstraction, S0, is identical to S4, the abstract
result of collecting another object of type paper. This is
recognized by formLoops (Alg. 1, line 10) because at this
stage, the plan Π is empty. formLoops creates a loop by
attaching the “collectPaper()” edge to S0 (Fig. 3(c)). The

following action edge (gotoNextBin()) from S#
4 however, is

not merged with the edge between S0 and S1 because S#
5

and its abstraction S5 do not have any elements with the
role of “unvisited bins”, thus differing from S1.

Fig. 3(d) shows an example plan for handling a structure

identical to S#
1 , but with the type of the object in the bin

set to glass. This plan is also traced in the abstract state
space and Alg. 1 is called with the resulting trace and the
current generalized plan (shown in Fig. 3(c)). Alg. 1 in turn
calls findMergePoint, which identifies S1 as a merge point.
It then invokes findBranchPoint, which also returns S1. This
is because the result of the senseType action on S1 is S7 in
the generalized trace, where the chosen bin has an object of
type glass (unlike S2, where it was paper).

After finding this branch point, Alg. 1 calls findMerge-
Point again, and this time, cannot find any merge points in
the example trace before S11, which it determines can be em-
bedded in S1. It returns S1 in Π and S11 in t as the merge
point, following which the subroutine addEdges is used to
add the structures and actions between S7 and S11 to Π.

3.2 Loop Preconditions
Because this approach stores the abstract structures pos-
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(a) Example plan execution:

(b) After Tracing:

senseType() gotoNextBin() senseType()goToNextBin() collectPaper()

(e) After Generalization and Merge:

(c) After Finding Loops: (d) Example plan for unhandled structure:

collectPaper()

senseType()

senseType()

goToNextBin()

collectPaper()
senseType()

Figure 3: A detailed example for Merge. Dotted edges represent results that did not occur in the example.

sible after any action in the computed generalized plans, this
information can be used to efficiently find the preconditions
or the set of problems that a computed generalized plan
solves. These conditions take the form of linear inequalities
between the numbers of elements of different roles (the“role-
counts”) and variables representing the number of iterations
of each loop. While a description of these methods is beyond
the scope of this paper, we quote the results below and refer
the interested reader to the appendix for details and proofs.

We define a simple loop as a cycle of nodes, and a complex
loop as a strongly connected component that is not a simple
loop. A shortcut in a simple loop is a linear sequence of
actions (no branches) starting with a branch caused due to
a sensing action in the loop and ending at any subsequent
node in the loop that is not after a chosen start node. The
start node can be any node, but is common to all of a loop’s
shortcuts. Simple loops with shortcuts capture a broad class
of nested loops.

Extended-LL domains [11] are a class of domains where
the unary predicates of a state are sufficient to determine
truth values of predicates of higher arities involving the
drawn-out objects in that state.

Lemma 1. Suppose a simple loop with shortcuts in an
extended-LL domain with sensing actions is entered with the
role-counts r̄0 at loop node Si. Then sufficient conditions
under which the execution of the loop will end via an action
branch from a loop node St in the loop, with the role-counts
r̄t can be computed in time O(s · ne · m), where m is the
number of shortcuts, ne is the number of edges in the simple
loop with shortcuts, and s is the maximum number of roles
in any structure in the loop.

Theorem 1. Let Π be a plan whose loops are simple loops
with shortcuts in an extended-LL domain with sensing ac-
tions. Sufficient conditions determining the achievable role-
counts for any structure in Π can be computed in time linear
in the number of actions in the plan.

4. IMPLEMENTATION AND RESULTS
We present the results of some of our experiments with

an implementation of BranchAndMerge. The test problems
were motivated by benchmarks from the international plan-
ning competitions and require solutions with different com-
binations of loops and branches. Incremental results for each
problem are shown in Fig. 4, with segments added due to dif-
ferent examples labeled and drawn with different edge types.
The actual outputs are more detailed, and include one iter-
ation of the loop learned using the first example prior to the
topmost action shown in the figures. Since the loops tend
to get too complex to understand visually, we present modi-
fied outputs in order to aid readability: structure-nodes and
edge labels for results of sensing actions are not drawn and
some action operands are summarized into action names.
We present a summary of these results with their incremen-
tal domain coverages, and provide representative detailed
results and execution times for the recycling problem.

The fact that all the loops make progress and terminate
can be determined automatically (Lemma 1).
Fire Fighting This problem was discussed in the intro-
duction. Smoke can be detected from anywhere on a floor
iff one of its rooms is on fire. The agent has smoke and
heat sensors; it can use the senseSmoke and goToNextFloor
actions to reach the correct floor, and the senseHeat and go-
ToRm actions to find the room on fire. The extinguishFire
action can be used to extinguish a fire. The number of rooms
and floors in the building are unknown, and unbounded.

The first example plan solved an instance of the problem
with 6 floors, with 1 room on each floor. None of the floors
were smoky in this problem instance (we did this to stress
BranchAndMerge; a problem instance with a smoky floor
would have extracted more of the solution plan from the first
example itself.). The example plan used goToNextFloor to
traverse all the floors but found none to be smoky. Since this
was the first example, BranchAndMerge called formLoops
which created the loop labeled (1) (Fig. 4(a)).

The second example plan solved a smaller problem in-



(b) Recycling

goToNextBin()

senseType()

apply−PaperPreProc(obj)

apply−GlassPreProc(obj)

senseType()

apply−PaperPreProc(obj)

collect−Paper(obj)
collect−Glass(obj)

apply−GlassPreProc(obj)

goToNextBin()

collect−Glass(obj)

collect−Paper(obj)

(a) Fire Fighting

senseSmoke−CurFloor()

goToNextFloor()

go−UnvisitedRoom−CurFloor()

go−UnvisitedRoom−CurFloor()

senseHeat−CurRoom()

extinguishFire−CurRoom()

senseSmoke−CurFloor()
senseHeat−CurRoom()

go−UnvisitedRoom−CurFloor()

(c) Transport

move(T2, L)

unload(T1)

move(T2,L)

load(server, T2)

move(T2, D3)

forkLift(server, T2)

move(T2, D1)

move(T2,L)

load(server,T2)

unload(T2)

forkLift(server, T2)

move(T1,D1) load(monitor, T2)

load(server, T1)

forkLift(server, T1)

move(T1, L)

move(T2, D2)

2

4

3

1
2

4
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1

2
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Figure 4: Segments of computed plans. Circled numbers and edge types label components from different examples.

stance. In its initial state, the agent is on the fourth floor
of a building with 6 floors and this floor is smoky, but the
smoke has not been detected The fire is in room 4; there are
5 rooms on this floor (the agent starts at the fourth floor to
make it harder to identify the context – starting at the first
floor would have provided a large prefix of actions matching
those of Π). The example plan used senseHeat and goToRm
actions to visit rooms 1,2, and 3 before reaching room 4,
sensing heat, and extinguishing the fire. BranchAndMerge
found that the initial structure of this plan was embeddable
in the abstract structure in loop 1 (Fig. 4(a)(1)), correspond-
ing to the agent being at any floor of the building. The first
senseSmoke action was also merged with (1), but its result
and the remainder of the example trace was not embeddable
anywhere in the existing plan (Fig. 4(a)(1)). A loop was also
detected in the remainder of this trace (Fig. 4(a)(2)). The
generalized plan formed using examples (1) and (2) does not
solve some boundary cases, for instance when the first floor
is smoky or when the first room in a floor has fire. Example
plans 3 and 4 handled these situations. However, only two
edges were added from these plans, connecting structures al-
ready in the generalized plan. In the final plan, there are no
unresolved action branches indicating that the goal struc-
ture with the fire extinguished is always reached.
Recycling This problem was used as the running example
and its solution was described in Sec. 3.1. BranchAndMerge
creates a loop in this example, illustrating how small exam-
ples can be used to identify powerful loops. Example 3 dealt
with an unhandled branch caused due to the drawing out of
elements from a summary element (last bin was reached),
and example 4 handled the case where the last object was
of type glass.
Transport We have a Y-shaped transport map with de-
pots D1, D2, D3 on the end points. Two trucks, T1 and T2

with capacities one and two are originally at D1 and D2,
respectively. The problem is to deliver an unknown number
of server crates (from D1) and monitor crates (from D2) in
pairs with one of each kind to D3. Location L at the cen-
ter of the Y can be used to transfer cargo between the two
trucks. There are two non-deterministic factors in this prob-
lem: server crates may be heavy, in which case the simple
load action drops them and a forkLift action must be used;
crates left at L may get lost if no truck is present.

The first example plan delivered 6 pairs of crates to D3

without experiencing heavy crates or losses. The second
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Figure 5: Domain coverage of recycling problem plans.

Plan Gen(1) Gen(1..2) Gen(1..3) Gen(1..4) CFF-soln7
Time(s) 110 129 134 144 262

Table 1: Solution Times

example found a heavy crate, and delivered it using forkLift
actions instead of load; in the third plan a crate left at L was
found missing when T2 reached L, and another crate had to
be picked up from D1. The plan computed using these three
examples does not handle one case of a server crate being
heavy (Fig. 4). This was was handled by example plan 4.
Key Observations All the presented solutions solve prob-
lems of unbounded sizes. BranchAndMerge adds only neces-
sary segments from example plans. For instance, only edges
for the two forkLift actions from the entire second exam-
ple in transport were added. In fire fighting, the result of
senseHeat action in example 4 of the fire fighting problem
was directly merged to a structure that had already been
handled. Merging plan segments within loops is a powerful
technique for increasing the scope of the plan far beyond the
individual examples: in recycling, the plan learned using the
first example solves only n of the 2n+1 − 1 possible problem
instances of size at most n. The second plan covers a single
specific problem instance. The generalized, merged result
using these two plans solves 2n−1 instances (it assumes that
the last two bins have paper).
Further Details and Comparison We illustrate the



incremental increases in domain coverage discussed above
with plots (Fig. 5) and the times (Table 1) taken to general-
ize and merge input example plans for the recycling prob-
lem. Fig. 5 shows that the domain coverage Dπ(n) increases
significantly with each new example plan, and approaches
1 with four examples. Since no other approach can solve
these problems due to uncertainties in object quantities, di-
rect comparisons are not feasible. However, to put this in
perspective, we compare these results with the domain cov-
erage and execution time for the largest recycling problem
instance (with 7 bins) that we could solve using contingent-
FF [5], a state-of-the-art contingent planner. Given the four
example plans for recycling described above, the general-
ization and merging process produces a near complete so-
lution while taking 45% lesser time than the time taken by
contingent-FF to find a plan (CFF-soln7) for 7 bins. Gener-
alized plans for all the other problems discussed above were
generated in under 300 seconds and showed similar compara-
tive performance with contingent-FF. Tests were conducted
on a 2.5GHz AMD Dual-Core machine with 2GB of RAM.

5. RELATED WORK
Using loops in plans has been previously proposed and an-

alyzed. Winner and Veloso [13, 14] present methods for con-
verting example plans into plans with branches and loops.
However, this approach does not address issues such as de-
termining termination and progress in loops, creation of
nested loops and the merging of multiple examples while
creating loops. Levesque [8] presents an approach (Kplan-
ner) for finding plans with loops which generalize only a
single, user-provided numeric planning parameter. Cimatti
et al. [3] consider domains where loops are needed for actions
which may have to be repeated for success. Loops created
using this approach need not make definite progress, and
the resulting plans may execute an unbounded number of
operations before achieving the goal. In contrast, our ob-
jective is to find loops that make measurable changes and
lead to the goal after a finite, computable number of steps.
The current authors’ prior work [11] had a similar objective,
but only dealt with the more limited problem of recognizing
simple loops in a classical plan. Hansen and Zilberstein [4]
also present a method for computing policies with loops of
actions, but in a setting where probabilities of action out-
comes and their rewards are used to determine the action
which would lead to the best possible value.

Recent approaches for agent programming languages and
architectures [7, 10] embed the planning process within pro-
grams specifying high-level control or partial solutions. In
this context, our approach can be viewed as the automatic
generation of plan rules (as in the BDI framework) with
widely applicable program-like plans which can be efficiently
instantiated and have automatically determined, provably
applicable contexts.

6. CONCLUSIONS AND FUTURE WORK
We presented a fundamentally new approach for improv-

ing the scalability of contingent planning systems. This ap-
proach produces generalized contingent plans that can solve
problems of unbounded sizes. The results discussed in this
paper are a part of an ongoing project, with many possi-
bilities for extension and optimization of the fundamental
algorithms presented here. Currently, BranchAndMerge at-

tempts to form loops only at the end of the merging process.
This could be extended to consider merging plans after ex-
tracting their loops. Instead of returning the first available
merge point, findMergePoint can be extended to conduct a
more exhaustive search and return the merge point which al-
lows the longest segment of the trace to be merged. We also
limited the capabilities of BranchAndMerge in this paper to
only create loops which can be efficiently analyzed to deter-
mine termination and applicability, although a discussion of
these methods is beyond the scope of this paper.

While there are many directions for future work with
ample opportunities for improving these fundamental algo-
rithms, the results already demonstrate applicability and
expressiveness not provided by any other existing approach.
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APPENDIX
A. PRECONDITIONS FOR SIMPLE LOOPS

IN EXTENDED-LL DOMAINS
For clarity we first restate a result due to [11]. This result

does not work for sensing actions or complex loops. The in-
terested reader is referred to [11] and ([12]) for more details.

Proposition 1. Suppose S1
a1−→ S2

a2−→ . . .
an−1−−−→ Sn

an−−→
S1 is a loop in an extended-LL domain. For any 1 ≤ i ≤ n
we can compute a set of linear inequalities C(l) which de-
termine the role-counts at Si after l iterations of the loop
starting at S1, plus the simple path from S1 to Si.

Proof. Since we are in an extended-LL domain, every ac-
tion changes a structure’s role-counts by a constant amount
([12]: Theorem 2 and def. of extended-LL domains). We
denote the role-counts in a structure using vectors. For ex-
ample, R̄0 = R̄ = 〈#R0

1,#R
0
2, . . . ,#R

0
m〉 denotes the initial

counts of roles R1, . . . Rm at structure S1. Let Rbi be the
branch role for action ai, i.e., the role whose count deter-
mines which branch is taken at action ai. In extended-LL
domains, the action branch that is taken when an action is
applied to an abstract structure is determined by whether a
certain role-count is greater than 1, or equal to 1 ([12]).

We use subscripts on vectors to denote the corresponding
role-counts, so the initial count of the branch-role at action
ai is R̄0

bi
. If there is no branch at action ai, we let bi =

d, some unused dimension. Let ∆i denote the role-count
change vector for action ai. Let ∆1..i = ∆1 + ∆2 + · · ·+ ∆i.

Before studying the loop conditions, consider the action
a4 in Fig. 6(a). Suppose that the condition that causes us
to stay in the loop after action a4 is that #Rb4 > 1. Then
the loop branch is taken during the first iteration starting
with role-vector R̄0 if (R̄0+∆1..4)b4 > 1. This branch will be
taken in l subsequent loop iterations iff R̄0+k·∆1..n+∆1..4

b4
>

1, and similar inequalities hold for every branching action,
for all k ∈ {1, . . . , l − 1}.

More precisely, the conditions for a full execution of the



loop starting with role-count vector R̄0 are:

(R̄0 + ∆1..1)b1 ◦ 1

(R̄0 + ∆1..2)b2 ◦ 1

...

(R̄0 + ∆1..n)bn ◦ 1

◦ is one of {>,=} depending on the branch that lies in the
loop; the entire set of inequalities can be simplified by re-
moving constraints that are subsumed by others. The only
variable term in this set of inequalities is R̄0. Let us call
these inequalities LoopIneq(R̄0). For executing the loop l
times, the condition becomes

LoopIneq(R̄0) ∧ LoopIneq(R̄l−1)

where R̄l−1 = R̄0 + (l− 1)×∆1..n. These two sets of condi-
tions ensure that the conditions for execution of intermediate
loop iterations hold, because the changes in role-counts due
to actions are constant, and the expression for R̄l−1 is linear
in them.

If F̄ denotes the final role-counts at Si after l iterations,
we have

LoopIneq(R̄0)

LoopIneq(R̄l−2)

(R̄l−1 + ∆1..1)b1 ◦ 1

(R̄l−1 + ∆1..2)b2 ◦ 1

...

(R̄l−1 + ∆1..i−1)bi−1 ◦ 1

F̄ = R̄l−1 + ∆1..i

These conditions on the role vector R̄0 at S constitute C(l).
Note that in order to compute this set of conditions we only
need to compute at most n different ∆1..i vectors. C(l) can
be computed in O(s · nl) time, where s is the maximum
number of roles in a structure in this loop, and nl is the
number of actions in the loop.

Note that final set of inequalities in the proof given above
include the exact role counts for all roles after l iterations of
the loop. Together with the ability to compute changes in
role counts across linear sequences of actions (see [12]), this
allows computation of not only whether a path with simple
loops can take a certain concrete structure to a desired goal
structure, but also the exact number of times we need to go
around each loop in the path, in order to reach the desired
structure with desired role counts.

B. SIMPLE LOOPS WITH SHORTCUTS
We define a simple loop as a cycle of nodes, and a complex

loop as a strongly connected component that is not a simple
loop. A shortcut in a simple loop is a linear sequence of
actions (no branches) starting with a branch caused due to
a sensing action in the loop and ending at any subsequent
node in the loop that is not after a chosen start node. The
start node can be any node, but is common to all of a loop’s
shortcuts (Fig.6).

Simple loops with shortcuts form a very general class–
many cases of “nested” loops can be translated into such
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Figure 6: A simple loop, and a version of the same
loop with shortcuts.

loops without changing their loop variables or their limits.
For instance, perhaps the most common“nested”loop in pro-
gramming, for i=1 to n do {for j=1 to k do {xyz}}, can
be turned into a single loop over i with an if statement (a
branch) resetting j to 1 and incrementing i when j = k is
reached. Loops of such kind of any depth, all doubly nested
loops and many other so called “nested” configurations can
be translated in this way (see Fig. 7) by translating the point
of entry in the loop.

For ease in exposition we require that the start nodes of
all shortcuts in a simple loop occur at the start node, or
otherwise, before the end node of any other shortcut, mak-
ing shortcuts non-composable in any single iteration of the
underlying simple loop. Non-composability allows us to eas-
ily count the simple loops caused due to shortcuts indepen-
dently while computing their overall effects. For instance,
we can view the loop in Fig. 6(b) as consisting of 3 different
simple loops. Which loop is taken during execution will de-
pend on the results of sensing actions a3 and a5. If different
shortcuts can be taken in a single loop iteration, the results
stated below can be applied by adding variables for counting
the number of times each possible combination of shortcuts
is taken.

Definition 1. Monotone shortcuts The shorcuts of a sim-
ple loop are montone if all shortcuts affecting a role either
increase it or decrease it, but not both.

Monotonicity ensures that stating the conditions for stay-
ing in a loop on the initial and final counts of roles is suffi-
cient. We can now state a more general form of the result
presented in the submission.

Lemma 2. Let Π be any plan in the form of a simple
loop with m non-composable, monotone shortcuts. Suppose
k1, . . . , km represent the number of times shortcuts 1, . . . ,m
are taken during the execution of Π. In extended-LL do-
mains with sensing actions, achievable role counts rif at any
structure-node Sx are given by the following system of linear
inequalities:

f ix(ri0, k1, k2, . . . , km, l) = rif ;

k1 + . . .+ km ≤ l;

∀j : LLj < r0
j , f

j
x(rj0, k1, k2, . . . km, l) ≤ ULj



}

for i = 1 to n {

for j = 1 to k {

a1

a2

a3

}

for i = 1 to n {

i = 1; j = 1

if (i < n+1) { a1 }

if (j > k) {

a3

i++

a1

j = 1

}

if (j < k+1) {

}
}

j++

a2

Figure 7: Representation of nested loops using a simple loop and shortcuts

where LLj , ULj are the lower and upper limits for role rj for
staying in the loop (the last inequality comes from Proposi-
tion 1 above), and l is the total number of iterations counted
at the start node.

Proof. Suppose we are given a plan with a simple loop
with m shortcuts and a chosen start node Sstart. Because
the shortcuts are constrained to be non-composable and
monotone, the idea is to consider the simple loops formed
by taking each of the m shortcuts independently.

In Fig. 6(b), this would give us 3 simple loops:

S1, S2, S3, S4, S5, S6, ..., S1;
S1, S2, S3, S

′
4, ..., S6, ..., S1;

S1, S2, S3, S4, S5, S
′
6, ..., S1.

We denote the loop created by taking the ith shortcut as
loopi, and the original simple loop taken when none of the
shortcuts are taken as loop0.

Within each of these loops, the assumptions used in com-
puting the inequalities C(l) in Proposition 1 hold, because
these loops do not have any branches due to sensing actions.
In other words, the only action branches that have to be con-
strained for completing an execution in any of these loops
come from non-sensing actions in extended-LL domains and
are determined by inequalities between role-counts and con-
stants.

Let ki denote the number of times loopi is executed in
full, with k0 = l−

∑m
i=1 k. Then the final role-counts can be

computed as F̄ = R̄0 +
∑m
i=0 ki∆

loopi obtained by adding
the changes due to each loop using proposition 1, where
∆loopi is the change vector due to loopi. Finally, in order
to ensure that the loop conditions hold for every intermedi-
ate iteration, we include the constraints LoopIneq(R̄0) and
LoopIneq(F̄ ), for every loop. For the partial loop iteration
between Sstart and Sx, we add to F̄ the change due to the
linear sequence of actions leading from Sstart to the struc-
ture node Sx to obtain F̄x, and include any conditions due to
the non-sensing actions. For details about computing con-
straints for linear sequences of actions, see Theorem 1 of [12].
If Sx is on a shortcut, then we get an additional constraint
that the sensing action result leading to that shortcut should
occur in the last iteration of the loop.

Finally, the desired form of the linear constraints is ob-

tained by setting f jx as the jth component of F̄x.

Using Lemma 1, we can compute linear constraints for
achievable role counts at any structure node in a plan con-
sisting of a linear path of actions with simple loops with
shortcuts at multiple positions in the path. Conditions for
exiting from a loop through a non-sensing action are en-
forced by including the appropriate role-count inequality
(similar to [12]).

While this gives us sufficient conditions to achieve a cer-
tain role-count at a given node if the loop iteration counters
ki’s and initial role-counts are left as variables, this does not
deal with effects caused due to the merging of different paths
of actions.

Theorem 2. Let Π be a plan whose loops are simple loops
with shortcuts in an extended-LL domain with sensing ac-
tions. A disjunction of linear inequalities determining the
achievable role-counts for any structure in Π can be com-
puted in time linear in the number of actions in the plan.

Proof. Consider each linear path having simple-loops-
with-shortcuts at multiple positions in the path. Linear
constraints for each such path can be determined using the
linear constraints developed explicitly under Lemma 1 and
the methods for computing constraints for linear sequences
of actions ([12]). Given a reachable node Sn and the set of
such paths leading to it, the disjunction of linear constraints
corresponding to each path gives us linear constraints for
achievable role-counts at Sn due to the union of those paths.
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