
A Benchmark for Evaluating the Applicability of Software
Engineering Techniques to the Improvement of Medical

Processes

Stefan C. Christov
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
christov@cs.umass.edu

George S. Avrunin
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
avrunin@cs.umass.edu

Lori A. Clarke
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
clarke@cs.umass.edu

Leon J. Osterweil
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
ljo@cs.umass.edu

Elizabeth A. Henneman
School of Nursing

University of Massachusetts
Amherst, MA 01003

henneman@nursing.umass.edu

ABSTRACT
Problems in health care have gained prominence in recent
years. To address such concerns, the software engineering
and medical informatics communities have been developing
a range of methodologies and tools for reasoning about med-
ical processes. To facilitate the comparison of such method-
ologies and tools in terms of their applicability to health
care, it would be desirable to have a set of medical examples,
or benchmarks, that are easily available, described in con-
siderable detail, and carefully characterized in terms of the
real-world complexities they capture. This paper presents
one such benchmark and discusses a list of desiderata that
medical benchmarks can be evaluated against.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications

General Terms
Experimentation

Keywords
medical process, benchmark, software engineering method-
ology

1. INTRODUCTION
Problems in health care have gained prominence in recent

years. A 2009 US National Research Council report [27] ar-
gues that “these persistent problems do not reflect incompe-
tence on the part of health care professionals—rather, they

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEHC 2010 Cape Town, South Africa
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

are a consequence of the inherent intellectual complexity
of health care taken as a whole and a medical care envi-
ronment that has not been adequately structured to help
clinicians avoid mistakes or to systematically improve their
decision making and practice.” The report also notes that
current health care information technology is rarely used to
support data-driven process improvement. To address such
concerns, the software engineering and medical informatics
communities have been developing a range of methodologies
and tools for evaluating medical processes (e.g., [8, 11, 22]).
The complex nature of medical processes—for example, the
possible involvement of a diverse set of medical professionals
treating a single patient, the abundance of exceptional situ-
ations, the concurrent execution of activities and real-time
constraints—makes these processes hard to analyze and cor-
responding analysis methodologies hard to evaluate.

Because of the complexity of medical processes, it impor-
tant to be able to automate, at least partially, the reasoning
about them. Researchers have thus used modeling notations
with formal semantics to make the process models amenable
to automated analysis. In this paper, we refer to a process
model created in such notations with rigorous, formal se-
mantics as a process definition.

To empirically evaluate different process modeling nota-
tions and analysis techniques, researchers have applied them
to different examples from the medical domain. For in-
stance, the Little-JIL process definition language [6] and the
FLAVERS finite-state verification analysis technique [15]
have been applied to discover defects and suggest improve-
ments in both blood transfusion and chemotherapy pro-
cesses [8, 9]; the Asbru language [25] and the KIV theorem
prover [5] have been used to reason about a jaundice proto-
col [28]; Message Sequence Charts [16] translated to guarded
Labeled Transition Systems [19] have been combined with
various kinds of static analyses to reason about a cancer
therapy process [11].

Evaluating such process modeling notations and analysis
techniques on medical examples is an important step to-
wards a rigorous discipline of applying software engineering
and medical informatics approaches to health care. An im-
portant question arises: “What are the relevant strengths

and weaknesses of each modeling notation or analysis tech-
nique?” and consequently “For what kinds of medical pro-
cesses should one use a certain process modeling notation or
a certain analysis technique instead of another notation or
analysis technique?” Questions like these are difficult to an-
swer when each modeling notation or analysis technique has
been evaluated in the context of a different medical exam-
ple and when many of these medical examples are not easily
accessible, are ambiguously described, or are not carefully
characterized in terms of the real-world complexities they
are meant to capture.

To facilitate the comparison of software engineering and
medical informatics modeling notations and analysis tech-
niques in terms of their applicability to health care, what
seems to be needed is a set of medical examples, or bench-
marks. Ideally, these medical benchmarks would be both
easily accessible by the research community and rigorously
described to reduce ambiguity and help ensure that different
researchers are working on the same example. Preferably,
these benchmarks should also be captured in notations that
are relatively easy to understand and would be character-
ized in terms of the complexities of the real-world medical
processes that they capture. Such characterizations would
guide potential users in their choice of benchmarks. A set
of medical benchmarks would not only facilitate the com-
parison of different process modeling notations and analysis
techniques in terms of their applicability to health care, but
it could also provide an infrastructure for controlled experi-
mentation and reproducibility.

Benchmarks (e.g., [1, 12, 17]) have been successfully used
in various other domains to facilitate the comparison of dif-
ferent systems and approaches. We believe that the use of
benchmarks can also benefit the research community study-
ing the applicability of software engineering and medical
informatics process modeling notations and analysis tech-
niques to health care. In addition to providing a basis for
the comparison of different approaches and for controlled
experimentation and replicability, a set of medical bench-
marks could help lessen the burden on software engineering
and informatics researchers of eliciting these processes from
medical domain experts. Our experience indicates that elic-
iting an adequate description of a medical process can be
very time-consuming and labor-intensive for both the do-
main experts and the computer scientists. Therefore, hav-
ing a set of widely available medical benchmarks seems to
be particularly valuable as it could significantly reduce costs
associated with eliciting medical examples from scratch.

This paper presents one such medical benchmark, which
is now being made available to the community. This bench-
mark is based on a blood transfusion process. The compo-
nents of the benchmark we are making available now are:
a blood transfusion process definition created in the Little-
JIL language; a set of properties, or requirements, that a
blood transfusion process must satisfy; and a set of bindings
that establish the relationship between the blood transfusion
properties and process definition.

The contributions of this paper are the blood transfusion
medical benchmark, and a list of desiderata against which
medical benchmarks can be evaluated. The next section of
this paper discusses related work. The desiderata for med-
ical benchmarks are presented in section 3. Section 4 de-
scribes the blood transfusion benchmark in detail, and sec-
tion 5 concludes with an evaluation of the benchmark, its

current status, and issues to be addressed in future work.

2. RELATED WORK
The medical community has created many descriptions of

standard medical procedures and processes (e.g., [31,32]) for
purposes such as promoting evidence-based practice or train-
ing novice health care professionals. These medical process
descriptions are usually written using natural language as a
narrative, as a checklist, or as a high-level flow chart. They
aim to provide important procedural details but they have
several drawbacks that make them difficult to use directly
as benchmarks. These descriptions often contain poorly de-
fined and inconsistently used terms, which could lead to dif-
ferent interpretations of the medical procedure, that in turn
could complicate the comparison of the different technolo-
gies. Such medical process descriptions also tend to focus
almost exclusively on the normative workflow and tend to
omit important details about exceptional scenarios.

The medical informatics community has created several
languages that can be used to represent medical processes
(e.g., EON [20], GLIF [22], Asbru [25]). These languages
tend to have constructs with well-defined semantics, and
thus medical process descriptions specified in these languages
tend to be more precise and less ambiguous than the nat-
ural language descriptions mentioned above. Some of these
languages also have support for integrating domain ontolo-
gies into the process description, which can further reduce
ambiguity. In this respect, medical process descriptions cre-
ated in such languages are a step closer to being usable as
benchmarks. Different languages, however, have different
strengths and weaknesses in terms of the semantic constructs
they provide to support the precise description of important
aspects of medical processes, such as concurrency, excep-
tional flow, and real time constraints. The degree to which
process descriptions capture such aspects is thus affected by
the semantic richness of the language used to create these
descriptions. To facilitate their use as benchmarks, such
process descriptions should be accompanied by a clear state-
ment of the important medical aspects they cover, as this
would seem to be a useful guide to researchers in selecting
the process descriptions that are most suitable for evaluating
their technology.

In an effort to compare several languages for specifying
medical guidelines, Peleg et al. [23] specified portions of
two medical guidelines—for managing chronic cough and
hypertension—in these languages. These guidelines and their
corresponding specifications seem to focus on providing physi-
cians with recommendations or heuristics about what tests
to order and what treatments to prescribe based on symp-
toms and test results. The benchmark presented in this pa-
per focuses mostly on the processes through which health-
care providers actually deliver these treatments by inter-
acting with each other, the patient, and the resources re-
quired for care. We believe that both of these perspectives
on medical processes are important and that benchmarks
from each perspective are needed in order to evaluate the
relative strengths and weaknesses of software engineering
technologies for improving medical processes.

Researchers have already used process descriptions cre-
ated in some of the languages mentioned above to evaluate
the applicability of several software engineering techniques
to health care (e.g., [11,28]). To the best of our knowledge,
however, the medical process descriptions that were used

for these evaluations are not publicly available to be used as
benchmarks by other groups.

As noted, benchmarks have been successfully used in other
domains to evaluate the strengths and weaknesses of differ-
ent approaches and tools. The software testing community
has developed an infrastructure (that contains a collection of
programs, versions, test cases, and scripts) to support con-
trolled experimentation with software testing techniques [12]
and has utilized this infrastructure to evaluate different test-
ing techniques (e.g., [13]). The software process modeling
community developed the ISPW-6 Software Process Exam-
ple [17] to “facilitate understanding, comparing, and assess-
ing the various approaches that are being pursued for soft-
ware process modeling”. Since then, many researchers have
used the ISPW-6 benchmark to evaluate approaches to soft-
ware process modeling ([2] mentions some examples). The
SPEC benchmarks [1] have been extensively used to empir-
ically evaluate a wide range of compiler approaches (e.g.,
compiler optimization techniques [3, 33])

3. DESIDERATA FOR MEDICAL PROCESS
DESCRIPTIONS

This section discusses desiderata that should be taken into
account when considering medical processes and when de-
signing benchmarks based on such processes. We would
hope that over time, the set of available medical benchmarks
would provide representative examples of all these aspects.
This list is not exhaustive but contains aspects that we have
identified in our case studies from the medical domain and in
our interactions with medical professionals. As the commu-
nity develops a set of medical benchmarks and gains more
experience with their design and use, we would expect this
list to be augmented.

Detail and Precision.
It is important that medical process descriptions be de-

tailed enough to support meaningful reasoning about the
process. For example, if one wishes to reason about the risks
that can arise if a paper copy of a treatment plan becomes in-
consistent with an electronic version, the process description
needs to provide enough detail about the use of the paper
and the electronic versions of the treatment plan to detect
such inconsistencies. If a medical process description is to be
utilized as a benchmark to compare the capabilities of differ-
ent, and probably automated, analysis approaches, then it
needs to be precise enough to avoid ambiguity and to ensure
that the results from applying these analyses are based on
process descriptions that are sufficiently complete and con-
sistent. To further help reduce ambiguity, it is desirable to
use a notation with well-defined semantics for representing
the medical process description.

Artifacts.
An artifact is an instance of a type of object (e.g., a blood

tube, a treatment plan, or a patient medication label) that
is consumed, produced, or used in a health care process. As
mentioned in the previous paragraph, reasoning about cer-
tain features of a medical process may necessitate informa-
tion about artifacts such as the versions of a treatment plan.
Thus, it is often desirable that a medical process description
incorporate an explicit mechanism for specifying the artifact
types and instances that are involved in the process.

Agents.
The involvement of a diverse group of medical profession-

als is typical for many situations in health care. For example,
in a chemotherapy preparation and administration process,
physicians, nurses, pharmacists, and support staff may all
participate in the provision of care for a single patient. In
addition, each health care professional is usually responsible
for certain kinds of tasks, but under some circumstances,
may perform tasks outside their traditional role. For exam-
ple, a physician does not typically administer an injection
but, in an emergency situation, may choose to do so. For the
purposes of this discussion, we define an agent to be an in-
stance of a type of human, machine, or software system that
is capable of performing some set of activities (e.g., triage
nurse, physician, electronic health record, robot that per-
forms a surgery). To capture the complexity of real-world
medical processes, process descriptions often need to pro-
vide information about the different agent types, and some-
times about particular agent instances (e.g., physician Phil
or robot R2D2), involved in a process.

Medical professionals are continuously making decisions
as they perform their tasks. These decisions are influenced
by both the patient’s medical condition and by the medi-
cal professional’s personal working style. As a result, such
decisions cannot be specified a priori and it is often desir-
able that medical process descriptions provide support for
letting agents make decisions. For human agents, this might
involve a sense of “free choice”, while for automated agents
this might be represented by nondeterminism.

Resources.
Resources are instances of artifacts or agents for which

there typically is contention. Health care processes often in-
volve a variety of such resources (e.g., surgeons, beds, and X-
ray machines). The availability of these resources can play a
critical role in the quality, efficiency, and cost of health care
provision. Thus, if a medical process description is to be
used to reason about, or to evaluate tools that can be used
to reason about, issues such as quality, efficiency, and cost,
then that process description needs to contain adequate rep-
resentation of the resources used in the process. Since it is
generally the case that resources are entities for which there
is contention, representing them in a process description of-
ten requires additional information, such as access control
policies, priorities, and resource capacities.

Aspects of Process Flow.
Medical process descriptions often need to specify complex

process flow in order to provide an adequate representation
of the real-world processes.
Exceptional behavior: Deviations from normal workflow
occur frequently in most medical processes. For example, in
a situation where a patient needs a blood transfusion, the
nurse responsible for the transfusion can face a variety of
non-normative events: the patient may be missing an ID
band, in which case the nurse does not know if this is the
right patient to receive the ordered unit of blood; the pa-
tient may be unconscious or unable to speak the language
that the nurse speaks, in which case the nurse will not be
able to perform the standard procedure of obtaining two pa-
tient identifiers (e.g., name and date of birth) by asking the
patient for them; or the patient may have an adverse reac-
tion to the transfused unit of blood, in which case the nurse

has to discontinue the transfusion immediately, stabilize the
patient, and consult with a physician before attempting to
restart the transfusion. In all these situations, the agent (in
this case a particular nurse) faces exceptional circumstances
and is forced to deviate from the normal execution of the
process to handle those circumstances appropriately.

Sometimes, the exact location in the process flow and the
exact type of exceptional event that can arise can be pre-
dicted and planned for. For example, if during normative
flow there is an activity requiring a nurse to check that a
piece of information on an artifact is correct, one can expect
that in certain exceptional situations, this check may fail.
Many medical processes, especially processes performed in
highly dynamic environments such as an emergency room,
however, exhibit exceptional events, such as interruptions,
whose exact type and location in the process flow are harder
to predict. Such exceptional events can be caused by events
that are external to the process under consideration (for ex-
ample, a nurse may be paged to go to a different hospital
unit where help with a patient in critical condition is needed,
thus interrupting the nurse’s current activity) and can occur
at almost arbitrary locations in the process flow. Our ex-
perience with modeling medical processes and interactions
with domain experts indicates that exceptional situations or
deviations from the “happy path” are common in the med-
ical domain, suggesting that special attention needs to be
paid to them when creating medical process descriptions.
Concurrency and Synchronization: In many medical
processes, different activities may happen simultaneously.
For example, the activities of processing and analyzing a pa-
tient’s test results (e.g., evaluation of laboratory and X-ray
results) could happen in parallel. In addition, at different
points in the process, information may need to be exchanged
or coordinated before other activities can proceed. For ex-
ample, surgery may not proceed until the lab and X-ray
results have both been received.
Real time constraints: Time-critical activities are preva-
lent in certain types of medical processes. During a surgery,
for example, it may be necessary for tasks to be performed
within a certain time frame, either absolute (e.g., each blood
unit must be transfused within thirty minutes or arriving on
the patient care unit) or relative to each other (the patient’s
blood pressure must be taken before administering an anti-
hypertensive medication).

4. THE BLOOD TRANSFUSION
BENCHMARK

This section first provides a high-level description of the
in-patient blood transfusion process, the real-world medi-
cal process on which the benchmark components are based.
Then, the individual components of the benchmark as well
as the tools used to produce and analyze them are described.
This paper presents some simple examples of the benchmark
components; the full benchmark is available at https://

collab.cs.umass.edu/groups/laser_library/wiki/daf17/

BloodTransfusionBenchmark.html.
The benchmark components were created in the course of

several years of collaboration between medical professionals
and computer scientists. The main goals of the project were
to define and analyze complex, high-risk medical processes
to improve their safety and efficiency. At the same time,
this project afforded opportunities to develop and improve

certain software engineering techniques for defining and rea-
soning about medical processes. The benchmark compo-
nents are based on a standard blood transfusion process.
Standard process descriptions from the medical literature,
however, tend to lack precise specification of exceptional sce-
narios. Thus, the knowledge and experience of the domain
experts we worked with was used to describe common excep-
tional scenarios in the process definition. Some lower-level
details in the process definition cover tasks related to com-
puterized physician order entry (CPOE), which are specific
to institutions that have CPOE systems.

4.1 Overview of the Process
In the blood transfusion process, a nurse receives a physi-

cian’s order to transfuse one or more units of blood into a
patient. To carry out the order, the nurse needs to perform
several subprocesses: 1) checking that the patient’s blood
type and screen have been performed and if they have not,
obtaining the blood specimen which allows the type and
screen to be performed; 2) preparing documentation, and
picking up the unit of blood from the blood bank; 3) per-
forming the transfusion; and 4) performing follow-up doc-
umentation. Our benchmark for blood transfusion focuses
mainly on the first and third of these subprocesses, since
they are the most safety-critical.

If the type and screen have not been performed, the nurse
needs to obtain a blood specimen from the patient so that
the type and screen can be performed. Before the nurse can
obtain the specimen, a physician’s order to do so is needed.
There is a possibility, however, that the computer system is
temporarily down, in which case the physician needs to use
a special downtime requisition form. Once the nurse has the
physician order for obtaining a blood specimen, the nurse
needs to obtain the appropriate specimen labels and equip-
ment for specimen collection, verify the patient’s identity,
confirm that the information on the patient’s identification
band matches the information of the specimen label, label
the specimen, perform the blood draw, and send the blood
specimen to the lab. This subprocess must be conducted
in the order described with one exception—the blood label
may be applied either prior to immediately after obtain-
ing the specimen for type and cross. The important safety
property is that no other process may occur between ob-
taining and labeling the specimen. Complications can arise
at several points in this subprocess (e.g., the information
on the patients ID band does not match the information on
the specimen label). All of these details are important for
a high-risk process such as blood transfusion and together
with all of the above exceptional scenarios that may arise,
make the blood transfusion process particularly challenging
yet interesting to study.

The subprocess for performing the actual transfusion is
also quite complex. If a patient is losing a lot of blood, the
physician may order the administration of several units of
blood. In that case, the nurse may need to manage several
transfusions simultaneously. Before administering a unit of
blood, the nurse needs to clinically assess the patient, ob-
tain the equipment necessary for the transfusion, and per-
form bedside checks. Again, each of these tasks has its own
complexities—the clinical assessment may reveal problems
in patient history that need to be addressed before the trans-
fusion can be started, necessary equipment may be unavail-
able, or there could be problems with verifying the patient’s

Figure 1: Benchmark architecture

identity. In addition, a subset of the bedside checks—the
verification of the blood product information—needs to be
performed in cooperation by two different nurses as a safety
measure. Only after having completed these tasks can the
nurse start the actual infusion of blood into the patient.
During the infusion, patients may develop what is known as
a “transfusion reaction”. If this happens, the nurse needs
to react quickly and perform an elaborate process of han-
dling the transfusion reaction, which includes immediately
stopping the infusion, obtaining a blood bank evaluation,
notifying the physician and then acting according to the
physician’s orders. Finally, after the infusion of each blood
product has been completed, the nurse needs to perform
post-infusion tasks, such as performing another clinical eval-
uation of the patient, recording infusion information and
discarding appropriately the infusion materials

Most of the activities in the blood transfusion process are
performed by a nurse, who is responsible for the blood trans-
fusion. Tasks performed by other agents, however, are also
an important part of the process. Some examples are blood
bank staff tasks for preparing the correct unit of blood and
physician tasks for ordering the blood transfusion and de-
ciding if the patient develops a transfusion reaction. The
blood transfusion process requires a rich assortment of re-
sources and artifacts (e.g., physician order, patient ID band,
unit of blood product, etc.). The blood transfusion process
is also interesting in terms of process flow. The normative
flow is complex and has many important details itself, but
elaborate deviations from the normative flow can also arise
as a result of exceptional events, such as realization that the
patient’s type and screen are unavailable, determining that
the information on the patient’s ID band does not match
the information on the blood product tag, or observing that
the patient develops an adverse reaction after the infusion
of blood has been started. The process exhibits some con-
currency as a nurse may need to perform multiple blood
transfusions for the same patient simultaneously. Real time
constraints are also inherent to the process because. For
example, the nurse needs to act within a certain time if a
patient develops a transfusion reaction and a unit of blood
from the blood bank must be used or returned to the blood
bank within thirty minutes.

4.2 Benchmark components
The components included in the benchmark are a defi-

nition of the blood transfusion process, a set of properties,

or requirements, that the blood transfusion process must
satisfy, and a set of bindings that relate the events in the
properties to steps in the process definition. In addition to
the benchmark components, we also provide a set of results
obtained from applying finite-state verification techniques to
these components and the tools that we used to create those
finite-state-verification results.

Figure 1 shows an architectural view of how the bench-
mark components relate to each other and indicates some of
the tools and artifacts that could be used to populate these
components. The second column in Figure 1 (i.e., “Prop-
erties”, “Bindings”, “Process Definition”, etc.) corresponds
to benchmark components; the first column shows the tools
that we actually used to create some of these components;
the third column shows other tools that could utilize the
benchmark components for various kinds of analyses; and
the fourth column shows potential results that might be
generated from these tools. The shaded benchmark com-
ponents and tools are those for which specific instances are
being made available to the community for use. We have
utilized the Little-JIL language editor to create a defini-
tion of the blood transfusion process in Little-JIL [6] and
the Propel property elicitation tool [10] to create a set of
blood transfusion properties. To establish the correspon-
dence between the properties and the process definition, we
used the Little-JIL environment (not shown) to create a set
of bindings between the events in the properties and the step
names in the Little-JIL definition, since these components
are usually created independently of each other. The Little-
JIL definition, the properties, and the bindings are input to
the FLAVERS finite-state verifier [15], which then tries to
determine if all possible traces through the process conform
to the stated properties. The verification results consist of
a confirmation that the blood transfusion process definition
satisfies a given property or of a counterexample showing
a process definition trace that violates the property. The
shaded components and tools are described in more detail
in the ensuing subsections.

The shapes that are not shaded in Figure 1 are com-
ponents that can potentially be added to the benchmark
and tools that can potentially operate on the existing or
the newly added benchmark components. These compo-
nents serve as examples of how the benchmark can continue
to grow and the tools are ones that we currently have un-
der development. In Figure 1, the definition of the blood

transfusion process can be accompanied by a set of poten-
tial hazards, which can then be used together with a fault
tree generator to produce fault trees for the blood transfu-
sion process. A fault tree and the accompanying minimal
cut sets can help identify the minimal sets of events that
need to occur in a process for a hazard to occur [7, 30]. To
complement the information obtained from fault tree anal-
ysis, failure mode and effect analysis (FMEA) [26] can be
applied. For failure mode and effect analysis, the definition
of the blood transfusion process is used together with a set
of failure modes to generate a table showing the effects re-
sulting from those failure modes. One can also supply a set
of scenario specifications and use them together with the
blood transfusion process definition to drive discrete event
simulation [24]. The resulting simulation runs can be used,
for example, to reason about the effect of different resource
mixes (e.g., number of physicians, nurses, beds) on quanti-
ties of interest (e.g., patient waiting time in an emergency
room) so that a resource mix that optimizes these quantities
of interest can be found.

We do not expect the architecture shown in Figure 1 to
be final. We hope that as the community continues to study
the applicability of software engineering approaches to tack-
ling health care problems, other benchmark components and
tools that support different types of analysis will be added.
We also hope that the benchmark components we provide
can be used with different tools and approaches and can
serve as a basis for comparing the relative strengths and
weaknesses of such tools and approaches. Finally, we hope
that other medical case studies will be shared with the com-
munity. These case studies could have attributes similar to
the blood transfusion process or they could focus on other
aspects of medical processes that are not evident or empha-
sized by the blood transfusion process (e.g., interruptions).

Process definition.
The definition of the blood transfusion process included

in the benchmark was created in the Little-JIL process def-
inition language [6] using the Little-JIL editor. Little-JIL’s
support for concurrency and synchronization, exception han-
dling, resources and artifacts makes it suitable for model-
ing the complex aspects of medical processes, as discussed
above, and its formally defined semantics make processes
defined in it amenable to rigorous analysis. A Little-JIL
process definition consists of three main specifications—a
resource specification, an artifact specification, and a co-
ordination specification. The resource specification defines
the agents and resources (human and non-human) needed
to perform process activities. The artifact specification de-
fines the products of the process activities. The coordina-
tion specification brings these two together by defining which
agents, using which resources, perform which activities on
which artifacts at which times. The main building blocks of
the Little-JIL coordination specification are steps. A step
corresponds to an activity performed by a human or non-
human agent and, in the graphical representation, is shown
iconically by a black bar. A Little-JIL process definition is a
hierarchical decomposition of steps where each step can be
decomposed into substeps to an arbitrary level of detail.

Figures 2 and 3 show two subprocesses of the Little-JIL
definition of the blood transfusion process and illustrate
some of the complexities and the detail it captures. Figure 2
shows the decomposition of the step perform pre-infusion

work, part of the larger blood transfusion process definition.
Perform pre-infusion work is a sequential step (indicated
by the right arrow in the step bar), which means that the
agent(s)1 need to perform the substeps in order from left to
right.

Three of the substeps of perform pre-infusion work in Fig-
ure 2 can throw exceptions (indicated by the notes2 under
the step bars). Exceptions correspond to events that require
a deviation from the desired process flow. For example, if
the nurse finds a problem in the patient’s history while as-
sessing a patient, the nurse needs to first handle that prob-
lem before continuing with any other tasks. When a Little-
JIL step throws an exception, the exception propagates up
the step hierarchy until a matching exception handler is
found, and then executed. Thus, when the step assess pa-
tient throws ProblemFoundInPatientHistory exception, the
matching exception handler handle ProblemFoundInPatient-
History is executed (exception handlers are connected to the
“X” in the step bar of perform pre-infusion work). Similarly,
when the other two substeps of perform pre-infusion work
throw exceptions, their corresponding handlers are executed.

Exception handlers are themselves steps and can therefore
be hierarchically decomposed to an arbitrary level of detail
and can throw exceptions themselves. The handler handle
ProblemFoundInPatientHistory, for example, can throw Re-
ceivedOrderToDiscontinueTransfusion exception, which cor-
responds to the situation when the physician has decided
that blood transfusion cannot be completed, (perhaps, for
instance, due to a problem in the patient’s history), and has
ordered that the nurse discontinue the work involved in per-
forming that transfusion. When the handling of an excep-
tion is completed, execution continues based on the resump-
tion semantics indicated in the handler. Little-JIL supports
four different resumption semantics. In the blood transfu-
sion process definition shown in Figure 2, for example, af-
ter handling the exception ProblemFoundInPatientHistory
is completed, the parent step needs to be restarted, which
means that the nurse needs to attempt to carry out perform
pre-infusion work again. If after completing handleProblem-
FoundInPatientHistory the nurse restarts the parent step,
this will happen because the physician decided that the
problem is not significant enough and the transfusion can
go ahead (this communication with the physician is part
of the exception handler). At this point, the nurse will
never throw the ProblemFoundInPatientHistory exception
because of this problem again since he/she already has re-
solved this problem with the physician.

As mentioned earlier, all four substeps of perform pre-
infusion work and the three exception handler steps can
be hierarchically decomposed into lower levels of detail (in
fact, all of the above steps are further decomposed in the pro-
cess definition included in the benchmark, except for confirm
presence of IV catheter and gather infusion materials). We
show the decomposition of the step perform bedside checks
in Figure 3. It is a sequential step, meaning that its sub-
steps verify patient ID to ID band (whose elaboration is not

1We elide agent and artifact information from these dia-
grams to avoid clutter, but this information is part of the
Little-JIL process definition. The types of agents involved
in the blood transfusion process are nurse (2 different in-
stances), physician and blood bank staff.
2The notes are not part of the Little-JIL visual syntax but
they are included in the diagrams here for clarity.

Figure 2: Elaboration of perform pre-infusion work

Figure 3: Elaboration of perform bedside checks.

shown here due to space limitations) and verify blood product
information need to be executed in that order. Verify blood
product information is a parallel step (indicated by the equal
sign in the step bar), which means that its substeps can
be executed in any order, including concurrently. Finally,
the step check blood product by 2 nurses is decomposed into
two substeps whose elaboration is again not shown due to
space limitations, but is included in the benchmark. Four of
the steps in Figure 3 throw a FailedProductCheck exception,
which propagates up the step hierarchy and is handled by
handle FailedProductCheck in Figure 2.

Properties.
Another component included in the benchmark is a set

of properties related to the behavior described in the blood
transfusion process definition. A property is a requirement
or a goal that a system or process must satisfy. A property
is usually independent of any particular implementation of
a specific process or system and thus is required to hold
across different processes, and indeed often across different
organizations at which the processes are performed. The
properties included in the benchmark are constraints on the
event sequences that can occur during the execution of a
blood transfusion process. For example, a property may
state that one event cannot occur until after another one
has occurred, or that some particular event must always
occur after some other particular event.

Eliciting precise and accurate properties is known to be
difficult and error prone [10,29]. To facilitate property elic-
itation and specification, we created a set of blood transfu-
sion properties using the Propel tool [10]. Propel provides
templates for most of the common finite-state verification
patterns identified in [14]. Each template provides options

that the user must select in order to elaborate the full de-
tails of a property. Initially the specifier indicates the main
events and answers a few questions until it becomes clear
which specification pattern template applies. The specifier
can then continue to answer questions using the Question
Tree (QT) view, can select from sentences using a Disci-
plined Natural Language (DNL) view, or can select from
optional labels and transitions in the Finite-State Automa-
ton (FSA) view. No matter which of the views the specifier
prefers, questions, such as “Does event B have to occur?”,
“Is event B allowed to occur more than once before event A
occurs?”, “Does the property need to hold only within a lim-
ited scope?”, “Are there any exceptional scenarios where the
property is not required to hold?”, etc., need to be addressed
when elaborating the property. The Propel specifications
of the properties provide answers to these detailed questions.

Propel aims to bridge the gap between natural language,
which is understandable by domain experts but is also im-
precise, and a mathematical formalism, which is precise but
can be hard for domain experts (and even computer scien-
tists) to understand. Each property specified with Propel
has two final representations—a finite state automaton and
a disciplined natural language paragraph expressing the dif-
ferent aspects of the property. We believe that the natural
language representation of the properties in the benchmark,
although verbose, makes them easier for users of the bench-
mark to understand, while the formal representation is un-
ambiguous and provides a reliable basis for comparison of
software engineering tools and the methodologies that use
them.

To give a sense of the kinds of properties included in the
blood transfusion benchmark, we present one of the proper-

Figure 4: An example property.

ties here3: “Before infusing each unit of blood product into
a patient, it must be checked that the medical record num-
ber (MRN) on that patient’s ID band matches the medical
record number on the tag affixed to the unit of blood prod-
uct”. This property has two main events, namely infuse unit
of blood product and check MRN on ID band and product tag
match, and it is an instance of the Precedence specification
pattern [14]. The informal English description, the fully
elaborated English description, and the corresponding FSA
for this property are shown in Figure 4. These three items
are provided for all the properties in the benchmark.

Each property has three elements: an alphabet, a scope,
and a behavior. The alphabet is the set of events of interest
for a given property. The scope specifies over what parts of
an execution of the process/system the property is required
to hold. The property presented in Figure 4, for example, is

3In the interest of simplifying the discussion, the presented
property is a slightly simplified version of the property in-
cluded in the benchmark.

required to hold throughout the entire execution of the blood
transfusion process but, in general, a scope can specify that a
property is required to hold before or after the occurrence of
a given event or between the occurrences of two events. The
scope can also indicate whether there are certain exceptional
events after whose occurrence the property may no longer
be required to hold. The behavior expresses the constraints
between the property events that are required to hold within
the specified scope. The scope and behavior are determined
by selecting the options associated with the selected pattern,
no matter which representations are used. In addition to the
events used to delimit the scope, the primary events partic-
ipating in the property pattern, and any exceptional events,
properties can also have secondary events. Secondary events
are events that might be restricted or allowed to happen be-
tween primary events. Thus, secondary events can be used
to express constraints, such as “secondary event S is not al-
lowed to occur between the occurrence of primary event A
and the subsequent occurrence of primary event B.”

The DNL property statement in Figure 4 elaborates the
high-level property statement given informally above. The
finite-state machine in Figure 4 is an equivalent represen-
tation of the DNL representation of the property, but it is
formal and is thus amenable to automated analysis. The al-
phabet of the FSA in Figure 4 contains the primary events
infuse unit of blood product and check MRN on ID band and
product tag match. The FSA is originally in its initial state
q0. For this property, q0 is an accepting state (indicated by
the doubled circle), which means that even if none of the
events in the alphabet occurs on an execution of the blood
transfusion process, the property still holds. If an event
from the property alphabet does occur, then a correspond-
ing transition (labeled with that event) in the FSA is taken.
For example, if the event infuse unit of blood product oc-
curs on a process execution while the property is in its initial
state q0, the transition that drives the FSA to state q3 is
taken. In the FSA for this particular property, q3 is a vio-
lation state, meaning that if the FSA ends up in this state,
the property has been violated. State q3 is a non-accepting
(indicated by the single circle) trap state, meaning that once
the FSA enters this state, it can never leave it, no matter
what events occur afterwards. Thus, if infuse unit of blood
product drives the FSA from q0 to q3, the FSA will remain
in the violation state and never leave it, which in turn cor-
responds to a property violation since infuse unit of blood
product occurred before the event check MRN on ID band
and product tag match has occurred. On the other hand, if
check MRN on ID band and product tag match occurs fol-
lowed by infuse unit of blood product, the property will be
driven from q0 to q1 and then to q2. State q2 is accepting
and the property holds since check MRN on ID band and
product tag match followed by infuse unit of blood product
is an event sequence allowed by the property. The transi-
tions and the states in the FSA in Figure 4 encode precisely
the information in the DNL property statement.

Bindings.
To check whether a process definition satisfies a given

property, one needs to provide a mapping from the abstract
events used to define the property to the actual events that
take place in the course of execution of the process definition.
We call such mapping a binding. For each of the properties
specified in Propel that are included in the benchmark, we

also provide the binding that establishes how the events in
the property relate to the events arising from execution of
the blood transfusion process definition. Frequently the ex-
ecutions of steps in a process definition are the events that
are bound to events in a property. Thus, to be able to ver-
ify the property mentioned in the previous paragraph, for
example, the event check medical record number on ID band
and product tag match is bound to the execution of the step
confirm product tag matches patient ID band, which is part
of the process shown in Figure 3. The property event in-
fuse a unit of blood product is bound to the execution of
the step infuse unit of blood product, which is in a different
part of the blood transfusion process definition (not shown
in this paper due to space limitations) that is executed af-
ter the nurse has completed the step perform pre-infusion
work. Property events do not have to be bound only to the
executions of steps in a process definition. They can also be
bound, for example, to the use/definition of parameters or
to the throwing of exceptions. The set of bindings included
in the benchmark has several such examples.

Creating the bindings between the property events and
the constructs from the process definition is a human inten-
sive process that can be difficult and error-prone. Given a
set of events from a property, one needs to choose what kind
of process construct to bind the events to (e.g., steps, pa-
rameters, exceptions) and also find the appropriate instance
of these process constructs (i.e., a particular step, parame-
ter, exception) in a potentially large process definition. The
toolset that we make available with the benchmark com-
ponents provides capabilities that facilitate the creation of
bindings, such as automated search for process constructs
to which events could be bound.

The need to bind abstract events of high-level properties
to concrete entities in a process definition is not specific to
the use of Propel to verify properties of Little-JIL process
definitions. This need also arises when verifying properties
specified in other notations against process definitions (or
other models) written in other formalisms. Analysis results
and performance can differ significantly with minor varia-
tions in the bindings that do not initially appear signifi-
cant [21]. Thus, including a set of bindings in the benchmark
seems essential if the properties and the process definition
included in the benchmark are to be used as the basis for
evaluating different analysis techniques.

4.3 Accompanying tools and components
In addition to the main benchmark components—the blood

transfusion process definition, properties, and bindings—we
also make available a set of tools. The toolset contains the
Little-JIL editor, Visual-JIL, which was used to create the
blood transfusion process definition and which can be used
to view the graphical representation of the definition and
to modify that definition. The Propel property elucidator,
which was used to specify the blood transfusion properties
and which can be used to view and modify these properties,
is also included in the toolset. Propel can be used to ex-
port the FSA representation of the properties in standard
external formats, such as XML. Finally, the toolset contains
FLAVERS/Little-JIL, which was used to create the bind-
ings and to run the finite-state verification analyses given
the process definition, properties, and bindings.

We also provide the finite-state verification (FSV) results
obtained from applying FLAVERS/Little-JIL. The toolset

discussed in the previous paragraph automatically translates
a Little-JIL process definition into a model that represents
all sequences of relevant events that could occur on process
executions, where the relevant events include the primary,
secondary, exceptional, and scope events of the property be-
ing verified. Then FLAVERS [15] uses this model to algo-
rithmically check whether the model satisfies a given prop-
erty. If the model does satisfy the property, FLAVERS re-
ports that. Otherwise, it produces a counterexample, which
is a trace through the process on which the property is vio-
lated. We provide the verification results based on the blood
transfusion process and properties as an additional compo-
nent to the benchmark. For the blood transfusion example
there are currently 23 properties in the benchmark. We
were able to specify 21 of them in Propel and then use
FLAVERS/Little-JIL to check whether the process defini-
tion satisfies them. The results are included in the bench-
mark website. The other 2 properties involved real time
constraints and we were unable to specify them in Propel.
We expect to add more properties to the benchmark as we
elicit and formalize them.

5. DISCUSSION AND FUTURE WORK
This section discusses some of the strengths and limita-

tions of the current version of the blood transfusion bench-
mark. We believe that this information will be useful to
researchers who may decide to use the blood transfusion
benchmark to evaluate different technologies on a medical
process. We conclude by discussing some open issues related
to the collection and management of medical benchmarks.

5.1 Current status of the blood transfusion
benchmark

Currently, the definition of the blood transfusion process
included in the benchmark covers most of the aspects of
medical processes discussed in section 3. The process defi-
nition provides a significant amount of detail for important
parts of the blood transfusion process (i.e., checking for pa-
tient blood type and screen and performing the infusion of a
unit of blood product) and it is rigorous and precise since it
is defined in Little-JIL, a language with formally defined
semantics. Exceptional scenarios, such as what happens
when the patient’s blood type and screen are unavailable
or what happens when the patient develops a transfusion
reaction, are also well represented in the process definition.
The agents responsible for the execution of the steps in the
process are specified, as well as the most important artifacts
and resources used in the process. This process definition
contains only a few examples of concurrent execution. The
process definition does not represent well the real time con-
straints, such as that the nurse must clinically assess the pa-
tient 15 minutes after the blood transfusion has been started.
This is mainly due to the fact that the Little-JIL language
currently has weak support for real time constraints.

Another limitation of the benchmark is that the process
definition is currently specified only in Little-JIL. Thus, users
of the process definition will need to familiarize themselves
with Little-JIL’s syntax and semantics to be able to fully un-
derstand the definition of the blood transfusion process. We
are currently working on a tool that can automatically gener-
ate a natural language description from a Little-JIL process
definition. We plan to include the generated natural lan-
guage description of the blood transfusion process as a com-

ponent of the benchmark as soon as it becomes available. We
believe that this natural language process description will fa-
cilitate the understanding of the blood transfusion process
by people unfamiliar with Little-JIL’s semantics. The nat-
ural language description by itself, however, does not fully
satisfy the need for a precise and unambiguous description.
In addition, it is long and verbose because of all the process
details that it needs to express. One could argue that a nat-
ural language description that is totally independent of any
process definition notation would be preferable to one gener-
ated from a specific process definition. But we believe that
for this description to be accurate and to capture all nec-
essary information, the description would have to become
very artificial, long, and detailed—similar to the one that is
automatically generated—and we are not optimistic about
a description that is independent of a formal notation being
sufficiently unambiguous and precise.

The set of blood transfusion properties included in the
benchmark covers a wide range of requirements for blood
transfusion processes, ranging from policy and regulatory
requirements, such as the need for a consent form to be
signed before performing blood transfusion, to purely clini-
cal requirements, such as the specific response required for
dealing with a transfusion reaction. As mentioned earlier,
properties are in general high-level and are independent of
a specific system or process and thus we expect that the set
of properties included in the benchmark can be used with a
variety of blood transfusion processes, as performed in differ-
ent hospitals. A potential limitation of the set of properties
comes from the fact that Propel, the tool used to create the
FSA and DNL representations of the properties, supports
only event-based properties. Event-based properties can en-
code constraints on the order of occurrence of certain pro-
cess events but are weak in encoding constraints that involve
state information. The specification patterns that Propel
is based on also do not support real time constraints. There
has been some work on extending these specification pat-
terns with support for real-time constraints [18] and such
extensions to Propel will be considered in the future. Most
of the properties that we elicited from the domain experts,
however, turned out to be event-based properties with no
real time constraints and thus we were able to create formal
FSA representations and a detailed DNL descriptions for
these properties. There were a few properties that involved
real time constraints. For these, we did not create an FSA
or a DNL description, but we provide the high-level natural
language statements as part of the benchmark.

We are currently working on some of the other tools and
benchmark components (represented by unshaded shapes in
Figure 1). Our group has elicited a description of an emer-
gency room process from domain experts and has applied
discrete event simulation techniques to reason about opti-
mal resource allocation strategies [24]. We are also investi-
gating how automated fault-tree analysis and failure mode
and effect analysis techniques can be used to analyze medical
processes.

5.2 Benchmark Issues
The prospect of accumulating a set of benchmarks to be

used for the evaluation of the applicability of software engi-
neering technologies to solving health care problems raises
several important issues. As medical benchmarks get modi-
fied, having an adequate version control mechanism in place

will be necessary. This will allow researchers to know which
versions they are comparing and to track modifications. Mod-
ifications will need to be clearly documented, specifying such
key aspects as content and authorship.

As the community accumulates a larger number of bench-
marks, organizing them could also become an issue. How
will benchmarks be categorized? How do different bench-
marks relate to each other? Answers to such questions will
not only help researchers find the most appropriate bench-
mark(s) for evaluating their technologies, but may also influ-
ence the creation of benchmarks for specific needs. The list
of benchmark desiderata discussed in this paper can serve
as a starting point to provide one possible categorization.

There has been evidence in the research literature that
even when easily accessible, unambiguously described, and
carefully characterized benchmarks are available, compar-
isons of different methodologies are still difficult to make [4],
and thus we acknowledge that a set of medical benchmarks,
like the one described in this paper, will not solve all prob-
lems in comparing different methodologies. We believe, how-
ever, that creating such benchmarks is an important step
and will constitute an improvement of the community’s abil-
ity to evaluate the relative strengths and weaknesses of dif-
ferent software engineering and medical informatics method-
ologies when applied to health care.

6. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation under awards CCF-0427071, CCF-
0820198, and IIS-0705772#2. Any opinions, findings, and
conclusions or recommendations expressed in this publica-
tion are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

The authors gratefully acknowledge the work of Rachel
Cobleigh and Huong Phan, who made major contributions
to the development of the Little-JIL definition and proper-
ties of the blood transfusion process, of Dr. Philip L. Henne-
man, who provided medical expertise during the project, of
Bin Chen and Heather Conboy, who worked on the FLAVERS/
Little-JIL toolset and helped with the creation of the bind-
ings and with the verification, and of Alexander Wise who
contributed to the development of the Little-JIL language.

7. REFERENCES
[1] Standard Performance Evaluation Corporation

(SPEC) http://www.spec.org.

[2] V. Ambriola, R. Conradi, and A. Fuggetta. Assessing
process-centered software engineering environments.
ACM Trans. Softw. Eng. Methodol., 6(3):283–328,
1997.

[3] M. Arnold, M. Hind, and B. G. Ryder. Online
feedback-directed optimization of Java. In OOPSLA
’02, pages 111–129, 2002.

[4] G. S. Avrunin, J. C. Corbett, and M. B. Dwyer.
Benchmarking finite-state verifiers. Softw. Tools for
Technology Transfer, 2(4):317–320, 2000.

[5] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and
A. Thums. Formal system development with KIV. In
FASE ’00: Proc. Third Int. Conf. on Fundamental
Approaches to Softw. Eng., pages 363–366, London,
2000. Springer-Verlag.

[6] A. G. Cass, B. S. Lerner, J. Stanley M. Sutton, E. K.
McCall, A. Wise, and L. J. Osterweil.
Little-JIL/Juliette: a process definition language and
interpreter. In ICSE ’00: Proc. 22nd Intl. Conf. Softw.
Eng., pages 754–757, 2000.

[7] B. Chen, G. S. Avrunin, L. A. Clarke, and L. J.
Osterweil. Automatic fault tree derivation from
Little-JIL process definitions. In SPW/ProSim,
volume 3966 of LNCS, pages 150–158, Shanghai, 2006.

[8] B. Chen, G. S. Avrunin, E. A. Henneman, L. A.
Clarke, L. J. Osterweil, and P. L. Henneman.
Analyzing medical processes. In ICSE ’08: Proc. 30th
Intl. Conf. Softw. Eng., pages 623–632, 2008.

[9] S. Christov, B. Chen, G. S. Avrunin, L. A. Clarke,
L. J. Osterweil, D. Brown, L. Cassells, and
W. Mertens. Rigorously defining and analyzing
medical processes: An experience report. Models in
Softw. Eng.: Workshops and Symposia at MoDELS
2007, Reports and Revised Selected Papers, pages
118–131, 2008.

[10] R. L. Cobleigh, G. S. Avrunin, and L. A. Clarke. User
guidance for creating precise and accessible property
specifications. In SIGSOFT ’06/FSE-14: Proc. 14th
ACM SIGSOFT Intl. Symp. Found. Softw. Eng.,
pages 208–218, 2006.

[11] C. Damas, B. Lambeau, F. Roucoux, and A. van
Lamsweerde. Analyzing critical process models
through behavior model synthesis. In ICSE ’09: Proc.
2009 31st Intl. Conf. Softw. Eng., pages 441–451,
2009.

[12] H. Do, S. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques:
An infrastructure and its potential impact. Empirical
Softw. Eng., 10(4):405–435, 2005.

[13] H. Do and G. Rothermel. An empirical study of
regression testing techniques incorporating context
and lifetime factors and improved cost-benefit models.
In SIGSOFT ’06/FSE-14: Proc. Intl. Symp. Found.
Softw. Eng., pages 141–151, 2006.

[14] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett.
Patterns in property specifications for finite-state
verification. In ICSE ’99: Proc. 21st Intl. Conf. Softw.
Eng., pages 411–420, 1999.

[15] M. B. Dwyer, L. A. Clarke, J. M. Cobleigh, and
G. Naumovich. Flow analysis for verifying properties
of concurrent software systems. ACM Trans. Softw.
Eng. Methodol., 13(4):359–430, 2004.

[16] Internation Telecommunication Union,
Standardization Sector. Message sequence charts,
recommendation Z.120.

[17] M. Kellner, P. Feiler, A. Finkelstein, T. Katayama,
L. Osterweil, M. Penedo, and H. Rombach. Software
process modeling example problem. In Proc. 6th Intl.
Softw. Process Workshop, pages 19–29, 1990.

[18] S. Konrad and B. H. C. Cheng. Real-time specification
patterns. In ICSE ’05: Proc. 27th Intl. Conf. Softw.
Eng., pages 372–381, 2005.

[19] J. Magee and J. Kramer. Concurrency: State Models
and Java Programs. Wiley, 2006.

[20] S. T. Mark and M. A. Musen. A flexible approach to
guideline modeling. In Proc. of AMIA Symposium,
pages 420–424, 1999.

[21] G. Naumovic, G. S. Avrunin, L. A. Clarke, and L. J.
Osterweil. Applying static analysis to software
architectures. In M. Jazayeri and H. Schauer, editors,
Software Engineering—ESEC/FSE ’97, volume 1301
of LNCS, pages 77–93, Zurich, 1997. Springer Verlag.

[22] M. Peleg, A. Boxwala, O. Ogunyemi, Q. Zeng, S. Tu,
R. Lacson, E. Bernstam, N. Ash, P. Mork,
L. Ohno-Machado, E. Shortliffe, and R. Greenes.
GLIF3: The evolution of a guideline representation
format. In Proc. AMIA Symposium, pages 645–649,
2000.

[23] M. Peleg, S. W. Tu, J. Bury, P. Ciccarese, J. Fox,
R. A. Greenes, R. Hall, P. D. Johnson, N. Jones,
A. Kumar, S. Miksch, S. Quaglini, A. Seyfang, E. H.
Shortliffe, and M. Stefanelli. Comparing
computer-interpretable guideline models: A case-study
approach. JAMIA, 10:2003, 2002.

[24] M. Raunak, L. Osterweil, A. Wise, L. Clarke, and
P. Henneman. Simulating patient flow through an
emergency department using process-driven discrete
event simulation. In SEHC ’09: Proc. 2009 ICSE
Workshop on Softw. Eng. in Health Care, pages
73–83,2009.

[25] Y. Shahar, S. Miksch, and P. Johnson. The Asgaard
project: A task-specific framework for the application
and critiquing of time-oriented clinical guidelines. In
Artificial Intelligence in Medicine, pages 29–51, 1998.

[26] D. H. Stamatis. Failure Mode and Effect Analysis:
FMEA from Theory to Execution. American Society
for Quality, 1995.

[27] W. W. Stead and H. S. Lin, editors. Computational
Technology for Effective Health Care: Immediate Steps
and Strategic Directions. National Academies Press,
2009.

[28] A. ten Teije, M. Marcos, M. Balser, J. van
Croonenborg, C. Duelli, F. van Harmelen, P. Lucas,
S. Miksch, W. Reif, K. Rosenbrand, and A. Seyfang.
Improving medical protocols by formal methods.
Artificial Intelligence in Medicine, 36(3):193–209,
2006.

[29] A. van Lamsweerde. Formal specification: A roadmap.
In A. Finkelstein, editor, The Future of Software
Engineering, pages 147–159. 2000.

[30] W. Vesely, F. Goldberg, N. Roberts, and D. Haasl.
Fault Tree Handbook (NUREG-0492). U.S. Nuclear
Regulatory Commission, Washington, D.C., 1981.

[31] J. M. Wilkinson and K. V. Leuven. Procedure
checklist for administering a blood transfusion.
http://davisplus.fadavis.com/wilkinson/Procedure Checklists
/PC Ch36-01.doc.

[32] J. M. Wilkinson and K. Van Leuven. Fundamentals of
Nursing. F. A. Davis Company, 2007.

[33] W. Zhang and B. Ryder. Constructing accurate
application call graphs for Java to model library
callbacks. In SCAM ’06: Proc. Sixth IEEE Intl.
Workshop on Source Code Analysis and Manipulation,
pages 63–74, 2006.

