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Abstract— With the availability of powerful computational and 

communication systems, scientists now readily access large, 
complicated derived datasets and build on those results to produce, 
through further processing, yet other derived datasets of interest to 
themselves and others. The scientific processes used to create such 
datasets must be clearly documented so that scientists can evaluate 
their soundness, reproduce the results, and build upon them in 
responsible and appropriate ways. Here, we present the concept of an 
analytic web, which defines the scientific processes employed and 
details the exact application of those processes in creating derived 
datasets. The work described here is similar to work often referred to 
as “scientific workflow”, but emphasizes the need for semantically 
richer, more rigorously defined process definition languages, such as 
those that were first developed to define software engineering 
processes. We illustrate the information that comprises an analytic 
web for a scientific process that measures and analyzes the flux of 
water through a forested watershed. This is a complex and demanding 
scientific process that illustrates the benefits of using a semantically 
rich executable language for defining the process, supporting 
automatic creation of process provenance metadata, assuring data 
reproducibility, and supporting analysis of the data’s scientific 
soundness. 
 

Index Terms—Process Programming, Scientific Workflow, 
Software Engineering.  

I. INTRODUCTION 

A. The Problem 
Modern computation and communication systems have 

dramatically changed the way in which science is done. These 
systems enable scientists to work with datasets and to create 
models of their research subjects that are far larger and more 
detailed than were possible in the past. Faster computing 
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speeds enable far more ambitious analyses of these models, 
leading to the production of far greater quantities of derived 
scientific datasets. Ever faster global networks make these 
datasets accessible to scientists around the world. While these 
new computational and communications capabilities have 
opened up the possibility of exciting new research, they have 
also led to new challenges and problems. When new datasets 
are generated by extensive processes, they are often 
promulgated without adequate documentation that describes 
their creation. If scientists are to make appropriate use of the 
datasets produced by others and avoid misuse by inappropriate 
application of subsequent processing, then it is imperative to 
know how such datasets were produced. Indeed, before 
scientific results can be accepted, they should be reproduced by 
other scientists; reproducibility is a fundamental part of 
science.  

An obvious way to address these challenges is to associate 
with each dataset as an annotation a precise description of the 
dataset. Such annotations, essentially data items that describe 
data, are called metadata. There have already been many calls 
for the use of metadata, which typically document such details 
as the date of generation of a dataset, the name of the 
investigator, and perhaps some specifications of the hardware 
and software systems used, as well as details of the individual 
data items (variable name, numerical format, unit of 
measurement, etc.). We argue that it is necessary to go further. 
We suggest that a particular type of metadata annotation, 
process provenance metadata, be attached to all datasets, and 
when necessary to individual data items. The benefits of such 
process provenance metadata include facilitation of the 
reproduction of the data by others, expedited identification of 
data items and datasets of interest, and better understanding of 
which forms of subsequent processing should, and should not, 
be applied to data items and datasets.  

It is our view that concepts drawn from the domain of 
software engineering can provide the basis for the generation 
and association of such process provenance metadata with the 
derived data items and datasets.  

B. Analytic Webs 
Scientific datasets can be viewed as products emerging from 

a distributed enterprise: input datasets may be stored and 
retrieved remotely, analytic services may be obtained from 
external sources, and the datasets that are the products of a 
scientist’s work are immediately accessible by others. The 
totality of data and capabilities produced and consumed by a 
working scientific team in pursuit of a particular scientific 
objective can be thought of as a scientific (usually online) data 
processing enterprise, and we refer to it by the term analytic 
web [7; 19; 34]. By analogy, the purpose of an analytic web is 
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to expedite the participation of a scientific team in the 
marketplaces of scientific investigation. From this view there is 
then a need to provide strong support for two distinct activities 
that scientists engage in routinely, namely the production of 
datasets for such marketplaces and the consumption of datasets 
from such marketplaces, for use in subsequent scientific 
investigation.  

 
Production: As raw data are collected by individual 

investigators or by sensors, they may be pre-processed with 
data loggers, field computers, etc.; for example, many 
environmental measurements (e.g., temperature, solar 
radiation, carbon flux, water flow) are sampled at high 
frequencies but only hourly averages are stored. Individual 
researchers take these data and post-process them, entering 
them into data repositories such as spreadsheets, checking 
them for errors, and transforming them into datasets used for 
analysis by the investigators themselves or by others. These 
datasets are often stored on the investigator’s personal 
computer, where they might be further analyzed (and in the 
process new datasets may be created) and condensed for 
publication. The producers of these datasets could use help 
in managing the execution of these increasingly intricate 
processes, in documenting exactly what processing was 
applied to which data items, and in reasoning about the 
soundness of the resulting data items and datasets. These 
data items and datasets, on which publications are often 
based, are archived on institutional servers or within national 
repositories, where it is expected that they may be accessed 
and used by others: i.e., dataset consumers. 

 
Consumption: Datasets collected by other investigators 

increasingly are available via the Internet and may be 
reanalyzed to verify existing models and results or used to 
generate new models, hypotheses, and scientific insights. We 
refer to this use of previously existing datasets as dataset 
consumption. It is not atypical for a consumer who 
synthesizes datasets to subsequently become a producer of 
new (synthetic) datasets that are consumed by others (who 
then may become producers of further datasets).  

The conceptualization of dataset production and 
consumption suggests specific ways in which an analytic web 
should support a scientific team’s activities. Support for 
production should consist of facilities for generating and 
storing new data items and datasets. In recognition that others 
may consume these datasets, the datasets and when necessary 
the individual data items should be annotated with precise 
process provenance metadata. An analytic web should provide 
facilities for accessing such metadata and evaluating its 
subsequent use. This may entail reproducing the dataset, 
evaluating its use in further scientific data processing, or using 
the process generation metadata as a guide to generation of 
other datasets. 

To make this conceptual vision of an analytic web a useful 
reality, we propose that a specific analytic web be realized by a 
set of tools aimed at creating, analyzing, and managing two 
types of closely interrelated graph structures, namely Dataset 
Derivation Graphs (DDGs) and Process Derivation Graphs 
(PDGs). The purpose of a DDG is to organize datasets into a 

structure based upon the way in which the datasets are derived 
from each other. The purpose of a PDG is to define precisely 
the processes by which these derivations are performed. The 
PDG also serves as the vehicle for executing the process 
definition and generating subsequent data items and datasets. 
Moreover, execution of a PDG can result in the automatic 
creation of the DDG for each of these data items and datasets.  

In this paper we provide a concrete example of the way in 
which an analytic web can support the activities of a specific 
scientific research team. This example illustrates that DDGs 
are likely to be large structures that need to be defined in detail 
and with great care. Our example illustrates the importance of 
automatically executing the PDG and, during that execution, 
automatically generating the corresponding DDGs. A major 
objective of this example is to demonstrate a set of semantic 
features that seem essential in a process definition language 
employed to define the PDGs used by actual working scientific 
teams. An existing process definition language, Little-JIL [44; 
43; 10], incorporates many of these semantic features. Key 
features of Little-JIL are highly effective in defining the PDGs 
needed to support our example scientific process, but some 
important semantic features are missing.  

II. MOTIVATING EXAMPLE 
Measuring and forecasting water flux and storage in the 

ecosystem (including ground water, soils, surface water, snow 
pack, vegetation, and atmospheric boundary layer) is of 
tremendous importance to society, of pressing interest to 
scientists, and a central focus of major scientific investigation 
efforts, such as NEON (http://www.neoninc.org/) and the 
Waters Network (http://www.watersnet.org/). Such forecasts 
require detailed hydrological measurements of natural and 
human-dominated ecosystems; these measurements come from 
vast networks of real-time sensors and are subjected to 
elaborate real-time adjustments and considerable, perhaps 
iterative, post-processing over ensuing months or years. 
Producers of such datasets could use help in systematically and 
correctly applying various processing and analysis tools. 
Consumers of these datasets will require support to help them 
understand the datasets, to reproduce them if desired, and to 
use them appropriately in further processing. 

To address this scientific problem, a group of ecologists at 
the Harvard Forest Long-Term Ecological Research (LTER) 
site (http://harvardforest.fas.harvard.edu/) is designing a real-
time system for estimating water budgets for three small 
forested watersheds at their site. Their system is being 
designed to calculate change in water storage using the water 
balance equation: dS = P – ET – Q, where the change in water 
storage (dS) is a linear function of precipitation (P), 
evapotranspiration (ET), and surface discharge or streamflow 
(Q). The complete system will include additional 
measurements of snow pack, soil moisture, ground water, etc. 
Equation inputs come initially from five real-time data streams 
from three sources:  

• Precipitation (P) – 15-minute precipitation totals (P1, 
P2) measured at two rain gauges. Two gauges are used to 
guard against data missing due to sensor drift and failure. 
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• Surface Discharge (Q) – 15-minute average stream 
flow values measured at a stream gauge. Short gaps in Q 
caused by sensor failure, excessive ice build-up, etc. can 
be filled by modeling Q as a function of preceding 
measurements of P and Q. 

• Evapotranspiration (ET) – 30-minute average ET 
values measured at an eddy-flux tower.  

• Photosynthetically active radiation (PAR) – 30-
minute average PAR values measured at the eddy-flux 
tower. PAR is measured continuously because over short 
time spans (up to several weeks) PAR is the environmental 
variable most often highly correlated with ET. Thus, PAR 
can be used to estimate ET when it cannot be accurately 
measured directly for any of a variety of reasons.  

This system will incorporate three features that are typical of 
virtually any sensor network and raise challenging issues for 
dataset producers as well as dataset consumers: 

1. Real-time quality control entails non-trivial processing, 
much of it determined on the fly, which may cause different 
data items in a dataset to have different process provenance. 
For example such systems may incorporate duplicate sensors 

(here P1 and P2), real-time modeling (yielding estimates Q̂  

and
∧

ET  of Q and ET, respectively), and rules for value 
selection. Thus, in this case the two precipitation 
measurements are to be compared and specific actions taken if 
the values differ by more than a specified amount. To check for 
instrument problems, Q and ET are to be compared to their 

modeled values ( Q̂  and
∧

ET ) using respectively (i) verified 
runoff models and recent precipitation and flow values and (ii) 
regressions of recent ET and PAR values. Modeled values also 
may be substituted (imputed) for measured values when 
sensors fail or wind conditions do not support reliable eddy-
flux measurements.  

2. Regularly scheduled post-processing of data (e.g., after 30 
days) is used so that individual imputed data values can be 
computed using models that take into account values coming 
from both preceding and subsequent measurements. This 
feature is necessary because real-time modeling is retrospective 
only (i.e., based on past data). Thus, post-processing is 
important especially for times when the ecosystem is 
undergoing rapid change (e.g., during spring leaf-out or when 
soils become saturated during heavy or prolonged 
precipitation).  

3. Alternative past measurements also may become available 
and may then be included in additional datasets. This may be 
desirable, for example, to make use of recent measurements 
that did not arrive in time for real-time processing, corrections 
of earlier measurements as a result of later detection of sensor 
drift, or replacement or imputation of faulty or missing values 
with measurements from other sources. Note that the 
substitution of alternative measurements must be accompanied 
by post-processing of a sufficient number of preceding and 
subsequent values to ensure that any “ripple effects” – possible 
impacts on subsequent modeled values – are accounted for. 

This indicates another way in which it becomes possible for 
each data item of a dataset to be the product of a different 
process.  

Fig. 1 is a representation of the water budget process using a 
data flow graph (DFG). In this DFG, rounded boxes represent 
types of tools or subprocesses while types of datasets are 
represented by boxes with a clipped corner. Edges connecting 
these boxes represent the flow of data or datasets into and out 
of the tools and subprocesses. In this figure, the Real-time 
Selection Criteria box represents the on-the-fly processing of 
the Real-time Data that is used to create new or updated 

Models and to update the model variables Q̂  and
∧

ET . 
Similarly, the Retrospective Selection Criteria and the 
Alternative Selection Criteria boxes represent the 
reprocessing of the Real-time and Retrospective Data, 
respectively, and can also result in new Models and updated 
model values. In subsequent sections of this paper we indicate 
shortcomings of this DFG representation and suggest another 
graph notation that seems to offer better facilities for 
representing complex processes such as this one. 

III. PROPOSED MODEL OF AN ANALYTIC WEB 
The next section of this paper demonstrates how the data 

management issues indicated in the previous section can be 
supported by analytic webs.  In this section we describe 
formalisms used to define the graphs comprising such analytic 
webs.   

A. Dataset Derivation Graph  
A DDG documents the specific data items or dataset 

instances created when a producer applies processes (e.g. 
perhaps defined using a PDG), using specific tools and 
subprocesses on specific input data items or dataset instances. 
A DDG thus contains detailed metadata about the process 
sequences used to build all of its datasets. This metadata is an 
example of the process provenance metadata needed to inform 
consumers about how a dataset was generated and to support 
reproduction of the dataset by other scientists. A DDG, as 
depicted in Fig. 2, uses rectangles to represent specific data 
items and dataset instances and ovals to represent specific tools 
or subprocess instances. There is an edge from each data item 
and dataset instance node to the process instance node from 
which it was derived (unless the data item or dataset instance 
represents raw data that was not previously processed). Each 
oval process instance node is connected by one or more edges 
to the data item(s) and dataset instance(s) that it used as 
input(s) to derive the indicated output data item or dataset 
instance. Each time a process is executed, a new set of data 
items and dataset instances is created, and these data items and 
dataset instances, as well as the process instances that created 
them, must be added as nodes of the evolving DDG. Each 
DDG node instance can be stored independently with a unique 
URL for identification.  

Data items and dataset instances, such as those represented 
by DDG nodes, are the usual focus of scientific attention and 
thus are the objects intended to be documented with metadata 
such as specified by Ecological Metadata Language (EML; 
http://knb.ecoinformatics.org/software/eml/). For example, 
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Transpiration Data For 2/26/06 is a specific instance of type 
transpiration data and thus is depicted in Fig. 2 by a box. Fig. 2 
also shows that Aaron’s outlier rejection parameters is 
another dataset instance. These two instances are taken as 
inputs by a specific processing tool, namely Reject Outlying 
Data, to produce the output dataset instance, Cleaned 
2/26/06 Data. This dataset instance is, in turn, taken as input 
to the processing tool Least Squares Interpolation using 
System R 9/22/06, producing as output the dataset instance 
Cleaned, Interpolated 2/26/06 Data. Note that the 
specification of the specific interpolation tool, complete with 
version number and date of application, is important as it 
specifies precisely which tool or system was applied to the 
dataset instance. Different versions of a tool may produce 
different results. Consumers who want to fully understand the 
provenance of a dataset, and producers who want to reproduce 
it exactly, require the documentation provided by a DDG: the 
specific datasets and tools that were actually used. The 
quantity and intricacy of this documentation is considerable, 
but it can be produced automatically with the aid of a suitable 
suite of tools, as described below. 

To make this clearer, Fig. 3 illustrates a DDG that could 
have been generated by executing a sequence of tools and 
subprocesses represented as a path through the boxes in the 
diagram shown in Fig. 1. Note that this DDG shows the result 
of two iterations, represented by two traversals through a loop 
in the diagram in Fig. 1, resulting in the creation of three 
instances of Revised Data, denoted here by Revised Data 
1, Revised Data 2, and Revised Data 3. Revised 
Data 1 is simply the set of data items that resulted from 
filtering the initial real-time data stream by applying some 
specific filtering criterion. This generally results in a dataset 
where some data item values are missing, most often due to 
intentional deletion. Revised Data 2 results from applying 

initial Q̂ and
∧

ET models to this dataset, thereby filling in 
missing data item values and replacing others. Revised Data 
3 results from creating and applying a second pair of Q̂  

and
∧

ET models, (e.g., from regularly scheduled post-
processing) and applying them to Revised Data 2. This 
DDG provides documentation of the exact processing steps 
that were taken to produce these datasets. It specifies what 
datasets must be generated to reproduce these processing steps, 
and thus the dataset that is their final result. 

B.  Process Derivation Graphs 
A Process Derivation Graph (PDG) is a precise 

representation of the sequences of steps used to process the 
data items and datasets in a scientific process.  Many different 
formalisms could be used to define PDGs.  But our example 
suggests that such semantic issues as concurrency, abstraction, 
exception handling, and agent specification are important to the 
clear specification of actual scientific processes.  The absence 
from a formalism of capabilities for specifying these semantics 
restricts the utility of that formalism in supporting specification 
of PDGs.  Thus, while a DFG could, in relatively simple cases, 
be used to specify a PDG, the DFGs relative paucity of 
semantic power limits its utility in supporting the clear and 

precise definition of more realistic scientific processes.  Thus, 
for example, DFGs make it hard to distinguish between those 
paths that are intended to be part of a scientific process and 
those that are not, and thus do not reliably specify which paths 
through the graph can be used safely to generate additional 
DDG nodes. For example, the DFG in Fig. 1 does not preclude 
the retroactive processing loop from preceding the real-time 
processing loop for the same dataset.  

Thus, in this paper we use Little-JIL, a visual process 
definition language originally developed for defining software 
engineering processes, as to define PDGs. The next section 
uses Little-JIL to define processes that are part of the example 
presented in Section II in order to demonstrate how semantic 
features such as concurrency, exception handling, and 
abstraction facilitate the specification of PDGs for realistic 
scientific processes.   

C. Semantics of Little-JIL 
A process is defined in Little-JIL using hierarchically 

decomposable steps [43; 44], where a step represents a task to 
be done by an assigned agent. Each step has a name and a set 
of badges that represent control flow among its sub-steps, its 
interface (a specification of its input and output data), the 
exceptions it handles, etc. A step with no substeps is called a 
leaf step and represents an activity to be performed by an 
agent, without any guidance from the process.  

Resources and Agents: As part of its interface, each Little-
JIL step contains a specification of the type of agent that is 
required to assume responsibility for the step’s execution. The 
agent specification is a specification of a capability. It is 
assumed that this specification will be considered by a separate 
Resource Manager that is expected to identify a specific 
resource instance to be bound as the agent in response to the 
step’s need for a specified capability. Little-JIL agents may be 
either humans or automated devices, and there are =cases 
where either might be appropriate. A step may also specify the 
need for resources other than the agent. 

Substep Decomposition: Little-JIL steps may be 
decomposed into substeps of two different kinds, ordinary 
substeps and exception handlers. The ordinary substeps define 
the details of how the step is to be executed. They are 
connected to the parent step by edges that may be annotated by 
specifications of the artifacts that flow between parent and 
substep, and also by cardinality specifications. Cardinality 
specifications define the number of times the substep is to be 
instantiated and may be a fixed number, a Kleene * (for zero or 
more times), a Kleene + (for one or more times), or a Boolean 
expression (indicating whether the substep is to be instantiated 
or not). Exception handlers define the way in which exceptions 
thrown by the step’s descendants are to be handled. The edge 
connecting an exception handler to its parent is annotated with 
the type of the exception being handled, and with an indication 
of how execution is to continue after the exception has been 
handled. 

Step sequencing: Every non-leaf step has a sequencing 
badge (an icon embedded in the left portion of the step bar; 
e.g., the right arrow in Fig. 4), which defines the order in which 
its substeps execute. For example, a sequential step (right 
arrow) indicates that its substeps are to be executed 
sequentially from left to right. A parallel step (equal sign) 
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indicates that its substeps can be executed in any (possibly 
arbitrarily interleaved) order. A choice step (circle slashed with 
a horizontal line) indicates that the agent executing the step is 
to make a choice among any of the step’s substeps.  A try step 
(right arrow with an X on its tail) mandates a sequence in 
which substeps are to be tried in any order until one completes 
successfully.  

Artifacts and artifact flows: An artifact is an entity (e.g., a 
datum or dataset) that is used or produced by a step. Parameter 
declarations are specified in the interface to a step (circle atop 
the step bar) as lists of the artifacts used by the step (IN 
parameters) and the artifacts produced by the step (OUT 
parameters). Artifact flow through steps can be defined to take 
place in either of two different ways, 1) hierarchically, as the 
flow of artifacts between parent and child steps, and 2) by 
means of channels. The flow of artifacts between parent and 
child steps is (as noted above) indicated by attaching to the 
edges between parent and child identification of the artifacts as 
well as arrows indicating the direction of flow of each artifact.  

Channels: Channels are named entities that directly 
(without the need for hierarchical flow) deliver artifacts 
produced by specifically identified source step(s) as arguments 
to specific destination step(s). A Little-JIL channel is defined 
at present as a FIFO queue. Steps that use the channel either 
write to the end of the channel, take data from the front of the 
channel, or read, without removing, data from the front of the 
channel. The channel construct can be used as a vehicle to 
coordinate and synchronize steps executing in parallel. On the 
other hand, as the example below shows, it is restrictive to use 
only a FIFO queue to model the channel’s handling of data.  

Requisites: Requisites are optional and enable the checking 
of a specified condition either as a precondition for step 
execution or as a postcondition check to assure that the step 
execution has been completed acceptably. A downward 
arrowhead to the left of the step bar represents a prerequisite, 
and an upward arrowhead to the right of the step bar represents 
a post-requisite. If a requisite fails, an exception is triggered.  

Exception Handling: A step in Little-JIL can define 
exceptional conditions when some aspects of the step’s 
execution fail (e.g., one of the step’s requisites is violated). 
This violation triggers the execution of a matching exception 
handler associated with the parent of the step that throws the 
exception. An exception handler is represented as a step 
attached by an edge to an X on the right of the step bar (as 
shown in Fig. 4. =  Little-JIL currently supports specifying four 
different ways that execution can proceed after execution of an 
exception handler. 

Scoping and Recursion: The parent step and all of its 
descendants represent a scope, specifying what data are 
considered local to that scope. Little-JIL also supports 
recursive execution of steps, which specifies the iterative 
application of a process step to specified inputs.  

IV. USING LITTLE-JIL TO DEFINE AND EXECUTE A PDG AND 
TO CREATE A DDG 

The purpose of the Water Budget process is to provide 
estimates of the rate of change of water storage dS over various 
time intervals on the basis of time-ordered sequences of 
readings from sensors that measure various parameters. While 

this process may at first glance appear to be relatively 
straightforward, in Section II we indicated that there are a 
number of aspects of the fully elaborated process that are 
challenging to define precisely.  We now use a Little-JIL 
definition of the Water Budget process that illustrate some of 
these difficulties and some of the semantic features that are 
useful in a defining them clearly and precisely through the use 
of an analytic web. The process step definitions are illustrated 
here by step diagrams that have been created using the Little-
JIL editor. In the interest of reducing clutter, the editor does not 
depict all the details and annotations of all step definitions 
unless specifically requested by the user. The user may obtain 
complete detailed information about any aspect of a process 
definition by moving the cursor over the appropriate icon. To 
suggest the nature of this additional information we append to 
each figure a legend that contains such additional explanatory 
information. Information about a step begins with the name of 
the step, followed by the step’s input and output parameter 
types, any channels used by the step, and the types of data 
items carried by these channels. For some steps there is also a 
specification of exceptions that may be thrown by the step 
and/or exceptions that may be handled by the step. For edges, 
the information begins with a specification of the pair of steps 
that define the edge, followed by information about parameter 
flow between parent and child steps. There may also be 
comments that informally describe the general purpose or 
approach of a step or edge. Much of the information being 
provided by these legends could be specified through extension 
of existing annotation schemes, such as EML..  

A. The Sensor Data Management step: use of 
decomposition and concurrency 
We begin by describing the step Sensor Data 

Management (Fig. 5). Sensor Data Management, the root 
of the Water Budget process, is a parallel step consisting of the 
execution of three substeps; Get Measurements collects data 
from the sensors; Model Stream Data Gen creates new 
predictive models for this data; and Process Data processes 
the data for publication. The collected data and created models 
are communicated to Process Data via channels that are 
declared in Sensor Data Management and are accessible to 
all of its substeps. The sensorStream channel is declared to 
be a FIFO channel, so that data are removed in the order in 
which they are put into the channel. The modelStream 
channel is a singleton channel, meaning that at most one item 
can be in the channel at a time. 

The first two substeps are described in Sections B and E 
below. The third substep, Model Stream Data Gen, 
represents the generation of new models. The annotation 
indicates that this step is done by human experts, each of 
whom executes a different instantiation of this step (as 
indicated by the Kleene * on the edge leading into this step), 
thereby allowing for the parallel and asynchronous generation 
of new models. The use of a channel allows for the possibility 
that new models can be dynamically placed into the channel at 
any time during the execution of this process. Doing so makes 
the model available for application to subsequent data items. 
Note also that there is a different step for the generation of 
each type of model. Gen New P Model is the step that is 
responsible for the generation of new P models, while Gen 
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New Q Model is responsible for the generation of new Q 
models. The example shows only two such substeps for 
simplicity, but the complete process definition would require a 
substep for each model type. 

Because each of these steps can be executed in parallel, each 
can proceed at its own pace. Sensor data streams in as it is 
generated and new models are derived as needed by human 
scientists, presumably at a far slower pace. The processing of 
the data streams (including application of the models as 
needed) is driven by interval timers and human curiosity. The 
PDG represents this parallelism and indicates which models 
are applied to which data items as part of which datasets. 

B. The Get Measurements step: support for multiple 
data streams 
The Get Measurements step (Fig. 6) reads and processes 

the values from the sensors and sends the results to the real 
time stream. This is done by having different subprocesses, 
Get Met Station Data, Get Flux Tower Data, and Get 
Stream Gauge Data, take responsibility for examining the 
three types of data sources. Each of these substeps can execute 
independently and in parallel with the other two, and each may 
throw a different type of exception if difficulties arise with 
their sensors. 

The Get Met Station Data step has two substeps, Get P1 
and Get P2, each of which is responsible for dealing with 
measurements coming from one of the two precipitation 
measurement gauges. Similarly, the Get Flux Tower Data 
step has four substeps, each of which is responsible for 
handling data items coming from each of the various sensors 
on the flux tower and Get Stream Gauge Data has one 
substep for handling surface discharge data.  

The substeps that access the individual data items also are 
responsible for annotating each data item with some 
provenance information. At present this consists of attaching 
very rudimentary metadata, specifically a date/time stamp and 
a quality flag. Below we describe how a DDG improves 
significantly upon the current quality flag.  

C. The Handle MS Sensor Timeout step: use of 
exception management  
Each substep of the Get Measurements step is responsible 

for acquiring data from its sensors, and each also is responsible 
for defining the subprocess to be employed if exceptional 
conditions arise. The Get Met Station Data step deals with 
situations where some, or all, of the expected data items do not 
arrive by throwing an exception. For example, the substep Get 
P1 attempts to obtain a precipitation reading from 
meteorological sensor 1. If this access succeeds, then the value 
is passed as P1, annotated with the observation date and time 
and with the measured quality attribute. The Get P1 step is 
also responsible, however, for determining when new P1 data 
is not available and then, subsequently, for throwing an 
exception that is to be handled by Handle MS Sensor 
Timeout step, passing the identifier of this sensor (namely 
sensor #1) as a parameter. The other two substeps of the Get 
Measurements step, Get Flux Tower Data and Get Stream 
Gauge Data, carry out their responsibilities similarly to Get 
Met Station Data. The final output of the Get 
Measurements step is exactly one datum of each of the types 

P1, P2, ET, Q, PAR, VPD, and UStar, each accompanied by 
provenance annotations. 

In this context, the Handle MS Sensor Timeout step (Fig. 7) 
is specified as the handler for the Sensor Timeout exception 
that can be thrown in the Get Met Station Data step. The 
Handle MS Sensor Timeout begins its processing by choosing, 
based on the value of the input parameter, Reread Precipitation 
1 or Reread Precipitation 2. We do not show the details of 
either Reread Precipitation step here, but include these steps 
only to illustrate that it is possible for the developers of this 
process to decide that unusual (and presumably expensive) 
measures might be taken under these circumstances to attempt 
to extract the desired data directly from the sensor, rather than 
from the data stream. If this direct request to the sensor 
succeeds then output of this step is annotated with the date and 
time and quality flag. If the selected Reread Precipitation (1 or 
2) step fails (e.g. because the sensor is inoperative), a Sensor 
Down exception is thrown (inside of the Handle MS Sensor 
Timeout exception handler itself). The Sensor Down handler 
executes the Get Airport step, which attempts to obtain the 
desired reading by getting it from a local airport. Here again, 
nested exception handling capabilities are used to define the 
handling of still further failure. Thus, if the Get Airport step 
succeeds, then the resulting datum is annotated with the date 
and time, source, and the measured quality attribute. If the Get 
Airport step also fails (e.g. because the airport is also unable to 
provide the precipitation data), then it must also throw an 
exception, which would then be caught by the Put Null 
Reading step of the Get Airport exception handler, to produce 
as output a null value for P1 (or P2) and a quality attribute 
“missing”. A “missing” value will not take place unless all 
three exception-handling alternatives have been explored in 
sequence.   

D. Using the process definition to create the DDG 
The above process results in the creation of two data items, 

P1 and P2, each of which might have been arrived at in a 
number of different ways. Specifically, each of the two 
measurements might be arrived at by any of the following 
sequences of process steps: 

1. Pi arrives in a timely fashion and is recorded.  
2. Pi does not arrive in time, a timeout exception is 

thrown, Reread Precipitation is executed, and Pi is 
obtained.  

3. Pi does not arrive in time, a timeout exception is 
thrown, Reread Precipitation is executed, Pi still does 
not arrive, a Sensor Down exception is thrown, the 
Airport Read step is executed, and Pi arrives. 

4. Pi does not arrive in time, a timeout exception is 
thrown, Reread Precipitation is executed, Pi still does 
not arrive, a Sensor Down exception is thrown, the 
Airport Read step is executed, Pi does not arrive, an 
Airport Data Read Failure exception is thrown, the Put 
Null Value step is executed, providing a null value for Pi. 

The differences among these four possibilities are important 
to subsequent process steps. Accordingly, the current process 
specifies that a quality flag, mentioned previously, be attached 
to Pi. This quality flag is currently a simple annotation, at this 
point having the following values:  
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missing - no measured value is available (e.g. because the 
sensor is down);  
estimated - a measured value is available from another 
location (e.g., the airport) 
measured – the measured value is available, but it is 
unknown whether or not it is within prespecified bounds; 

Unfortunately, the current process specifies that Pi is 
annotated as measured in the first two cases we have just 
enumerated (making it impossible to distinguish between 
them), as estimated in the third case (but without documenting 
the measurement location), and as missing in the fourth case, 
again leaving out all of the details describing what alternatives 
had been tried. We note, however, that each of the four 
different sequences of process steps can be thought of as a 
different trace through the process, illustrating the importance 
of annotating each value with process provenance information, 
as provided in the DDG.  

Examples of the DDGs that represent cases #3 and #4 are 
shown in Fig. 8. Note that the boxes in this figure represent 
actual data instances, namely the actual data values that are 
bound at execution time to the type specifications in the 
process definition. Thus, for example, one of the boxes at the 
top of Fig. 8 is annotated by sensor1 null @”try1 time”, 
indicating that this box represents the actual (null) value that 
was delivered at the specific time, “try 1 time”. The adjacent 
box likewise represents the specific (null) value that was 
delivered at the specific time “try 2 time”.  

The ovals in Fig. 8 represent the process step instances that 
were the actual producers and consumers of the actual data 
items. Thus, there is an oval labeled Get Airport that indicates 
that an instance of the Get Airport step was used to generate 
the data item in the box shown below this oval. This step 
instance represents the instance of Get Airport that was 
invoked as the process’s response to the two null readings. 
Two arrows from this oval connect it to two boxes, 
representing the fact that the values represented by these boxes 
were used as inputs to the step represented by that oval. In this 
case, the use that is made of these data items is simply to note 
that they are both Null, causing the Get Airport step to be 
executed to produce this output. Other ovals may make more 
substantive use of their inputs in generating their outputs. Thus, 
for example, in the left-hand DDG of Fig. 8, the result of the 
execution of the instance of the Get Airport step is an actual 
value, annotated with date and time information, which is taken 
as the final value of Pi. In this case, no actual step is used to 
generate that value, and instead the DDG indicates that the 
value is produced as a consequence of the parameter binding 
operation that occurs as an integral part of the execution of 
every step. The fact that this oval does not represent an actual 
step is indicated by the use of italics in its annotation. In the 
other case, a null reading is obtained, and a null value is then 
the final value of P1. Thus such DDGs provide more useful 
information about the provenance of the resulting value of P1 
than a mere annotation, measured, estimated, or missing. 

Although the structures shown in Fig. 8 seem to be large 
annotations, they can be represented efficiently as sequences of 
pointers to process definition steps, parameter values, and the 
actual data item instances. Further, these pointers can be 
generated as side effects of the actual execution of the process 
represented by the PDG shown in the preceding figures. This 

suggests that DDGs might be generated at a modest 
incremental cost during execution of the process and  
represented relatively efficiently when intermediate datasets 
are being stored. 

E. The Process Data step: alternative approaches to 
processing the data 
The second subprocess, Process Data, in the root Sensor 

Data Management process, shown in Fig. 5, is described and 
elaborated in Fig. 9. This step takes input from sensors and 
investigators, as described above, and produces a time-ordered 
sequence denoted <dS>, where each dS estimates change in 
water storage over the previous time interval. Note that <dS> 
(also dS) is a type and that <dS> instances are generated by 
each of three different subprocesses of Process Data, namely 
RT Periodic Processing, PP Periodic Processing, and Alt 
Model Processing. Process Data indicates that these three 
subprocesses can be executed in parallel, but whether the 
actual executions of these steps overlap in time will depend on 
decisions of the agents bound to perform these substeps and, 
most importantly, upon the availability of the input data.  

RT Periodic Processing produces a <dS> dataset every 24 
hours, based on the data that was collected over the proceeding 
24 hour period. PP Periodic Processing also produces a 
<dS> dataset every 24 hours, but it is for a 24-hour period 30 
days before. This subprocess has the advantage of doing 
interpolation that uses data obtained both prior and 
subsequently to the data in need of interpolation. Alt Model 
Processing allows investigators to experiment with alternative 
models and time periods. Here we describe each of these 
subprocesses in turn. Note that in the DDG, it is important to 
know which subprocess was responsible for generating each of 
the different <dS> instances and their different individual data 
items. As illustrated above, the process definitions provide a 
basis for generating DDGs that document these differences. 

F. The RT Periodic Processing step: handling of real-
time streaming data  
The RT Periodic Processing step is connected to its parent 

by an edge annotated with a Kleene +, prescribing that the 
Little-JIL interpreter will keep instantiating a new instance of 
this child step indefinitely (the decision to terminate iteration is 
made by the agent bound to the iterated child step). The agent 
for this step is an interval timer that initiates step execution 
every 24 hours. The Get RT Datum step specifies the actual 
processing of the real-time data and the rate of execution is 
determined by the availability of data from the sensors and the 
resources required for the processing of that data. 

 

G. The Get RT Datum step: dealing with individual data 
items 
The Get RT Datum step, shown in Fig. 10, defines the heart 

of the Water Budget process, specifying how the real-time data 
items are subjected to cleaning. This step retrieves the readings 
collected from the sensors as they become available, filters the 
readings to ensure each reading is within predefined bounds, 
tags each reading to indicate how it was obtained, and appends 
readings to corresponding time-ordered sequences. This step is 
defined as the sequential execution of its substeps and results 
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in an instance of dS, which has data items of type ET, Q, P, 
PAR, VPD and UStar as its components. The set dS is then 
appended to the time ordered sequence <dS> as each new set 
of data items is processed.  

The first and second substeps of Get RT Datum are 
relatively straightforward, but each adds further useful 
provenance information to data items. The Check Ranges 
step takes as input a measurement artifact that was output by a 
sensor and determines whether it is beyond preset bounds. 
While the details of the range checking are not particularly 
difficult or interesting as process features, the specification of 
the details of the check are important provenance information 
that should be associated with the data item. 

Fig. 11 shows the DDG that results from the application of 
such a filter. The box labeled Filter Range Data represents 
the specific values used in applying the filtering to the data 
item, and the oval labeled Check Ranges represents the 
application of that step to the value represented by the box 
labeled P1, using the values specified by Filter Range Data. 
This results in the creation of a new instance that is bound to 
the variable P1. Note that this DDG documents the exact 
quality criterion that was applied in checking the plausibility of 
the resulting data item. If an investigator wanted to experiment 
with a different filtering criterion it could be reapplied to the 
previous data items available from this provenance 
documentation. 

Similarly, the Select Values of P step selects one of the 
two values P1 and P2 and assigns it as its output artifact, 
namely P. This example show that  this selection is done by an 
“Expert P Selector”  type agent. This specification does not 
preclude the possibility that the agent might be a human or an 
automated agent having expertise in selecting the preferred 
value. The choice is relegated to an automated resource 
management system, which would presumably use execution 
state data as the basis for this decision. This choice would then 
be documented in the DDG, as illustrated in Fig. 12. Note that 
the range checking of P2 (which would precede Select Values 
of P) has been omitted here for brevity. Fig. 12 shows the case 
where Sensor 2 had succeeded in delivering a datum on the 
first request and where the human agent decided to accept this 
value as the final value of P. The figure contains an italicized 
annotation indicating that the chosen value was the one 
provided by P2, but the actual DDG need only contain the 
value. The fact that this value had been provided by P2 would 
be inferable by inspecting the two input values to the Select 
Values of P step, both of which would be available as nodes 
in the DDG.  

The comparison of measured and modeled values (like the 
comparison of redundant sensors) also provides a form of real-
time quality control and may provide an early warning of a 
sensor problem. The essence of the Apply Models step, in the 
Get RT Datum step of Fig. 10 is to effect the use of an 
empirical formula, called a model, to fill in data readings in 
such cases. As noted above, these models have been created by 
scientists for the purpose of interpolating values in place of 
those that are missing or suspect. The models are designed to 
provide replacements for such values, by using other data items 
and formulas that are believed to accurately capture the 
relations of these data items to the missing or suspect data. 
There are generally a number of alternative models that can be 

applied in these circumstances and these models are the 
subjects of considerable research. The model selected and 
applied to a data item is important provenance information that 
should be attached to that item. We indicate the way in which 
this additional provenance information is generated as part of 
the execution of the Apply Models step of this example.  

The models themselves are often structured into sets of 
models of different types, for example, different types of 
regression models (e.g. linear or second-order) or different 
probabilistic models. The suitability of a model is then 
evaluated by a human, perhaps supported by various statistical 
tools. Eventually a model is chosen and then used to create a 
data value, which is substituted for the original data value. As 
this sort of synergy between humans and tools in the evaluation 
and application of models seems to be at the heart of many 
scientific activities, it is important to detail it here. 

H. The Apply Models step: use of abstraction 
The purpose of the Apply Models step is to replace the data 

readings obtained from the sensors when the quality attribute 
of the reading is either missing or determined to be out of 
range (by the Check Ranges step). Although models can be 
applied to any number of data items, Fig. 13 shows the 
application of models to only two types of data, ET and Q. The 
definition of this step illustrates the value of abstraction in 
defining processes, since here the Apply A Model step is 
simply instantiated once for each type of data requiring the 
application of a model. Each Apply A Model substep has a 
prerequisite (not shown here) whose purpose is to examine the 
incoming data item and determine whether it has a quality 
attribute of “missing” or “out of range”. Either attribute causes 
the prerequisite to be satisfied and the main body of the step to 
be executed. 

Also note that the output of this step is a triple of items, 
namely the original ET value (ET.original), a replacement ET 
value that has been produced by the model that has been 
selected (ET.modeled), and an identifier (ETModelID) 
indicating which model was used to generate the replacement 
value. In fact, the first and third elements of this triple are 
redundant with information contained in the DDG, which 
provides more precise detail about the way in which ET was 
derived. The triple specified here is included as an indication 
that such annotations might be derived and included to help 
users by providing such information as documentation. Thus, 
this step provides the basis for distinguishing among different 
data items and different data streams that have been produced 
by different applications of different models by different 
scientists at different times. Note, in addition, that all three of 
the steps are carried out by agents who are required to be of 
type “HumanExpert”. Each of the two substeps is defined to 
have as “local data” a set of readings that can be used by a 
selected model in computing the model-generated output of 
this step. Thus it is important that the language used to define 
the PDG for this process allows for the possibility of such 
“local data”. Further the example illustrates the value of 
incorporating scoping semantics into the language that support 
specification of how such “local data” can be collected and 
held in the defined local scope, presumably in any way that the 
model and its agent decides.  
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I. The Apply A Model step: synergizing the efforts of 
humans and tools and representing a history of human 
decision-making 
The purpose of this step is to consider iteratively each model 

selected from the pool of models available, and then to select 
and apply the model that appears to be most effective in 
replacing the datum that has been identified for replacement. 
The step is comprised of two substeps, executed in sequence. 
The step also incorporates an exception handler to deal with 
the case in which no model is selected and applied. 

The first substep of Apply A Model, Eval Models is shown 
in Fig. 14 and is the iterative consideration of the set of 
candidate models. Note that the agent for this step is identified 
as being of type “Model selector”. Here too,  this agent might 
be a human or an automated system capable of performing 
preliminary evaluations of models. This process does not 
mandate either, but allows this to be determined at runtime.  

Eval Models iteratively evaluates each model in the 
collection of currently available models by first checking the 
model’s applicability (represented by the pre-requisite) and 
then consulting an expert to evaluate the model and the results 
that it gives. Note that Eval Model is to be executed by an 
agent of type “human expert”, indicating that human expertise 
is required. We do not show the details of this step, but it could 
entail the use of statistical tools to evaluate model fit. Although 
a human expert here executes Eval Model, some of its 
substeps could be executed by automated agents.  

The edge leading into Eval Model has a Kleene + 
annotation, indicating that this step is to be instantiated as 
many times as there are models. Combined with the pre-
requisite, the net effect of this is to instantiate a step for the 
consideration of only those models that the step’s agent deems 
worthwhile. It is important to note that Eval Models also has 
access to a cache of data values collected and stored locally to 
this step that can be used to help in deciding the suitability of 
each candidate model. 

The output of the Eval Models step is a set of pairs, where 
each pair consists of a model and the output that it produces. 
Once this stream of sets of ordered pairs has been created the 
next substep of Apply A Model, Select Best Model, 
considers all of these candidate models and selects the one 
deemed best. Here a “human expert” is required to perform the 
Select Best Model step. This value then becomes a third 
component of the ordered triple, (sensordatum.original, 
sensordatum.modeled, Model ID), that is the final output of 
the Apply A Model step. Again, the first and third elements of 
this triple are redundant with the more precise derivation 
information contained in the DDG and should be regarded as 
documentation intended to be of value to the user. 

Fig. 15 provides an example of a DDG that might be 
generated from one possible execution of this step. In this case, 
it is assumed that three different models (shown as PModel1, 
PModel2, and PModel3) are selected from the channel 
containing the accesses to all possible P Models. Each of the 
three is subsequently evaluated by the Eval Selected Model 
step, using Cached Data, the set of data instances that has 
been cached by the process, thereby producing three instances 
of Sensor Datum (namely Sensor Datum 1, Sensor Datum 
2, and Sensor Datum 3). These three instances of Sensor 

Datum, and the three models that produced them, are then 
input to Select Best Model, which then produces as output 
the ordered triple (sensordatum.original, 
sensordatum.modeled, Model ID). The original sensor 
datum, an input parameter to this step, is now referred to as 
sensordatum.original.  

The two DDGs described in Fig. 12 and Fig. 15 are both 
necessary to provide the complete provenance of 
SensorDatum.modeled. The DDG in Fig. 15 represents the 
evolution of SensorDatum.modeled from the datum that was 
selected as the result of the process depicted in Fig. 14. The 
combined DDG is shown in Fig. 16. This DDG accurately 
documents that it is this P value that is bound as the actual 
datum taken as the subject for consideration for replacement by 
the alternative models.  

After Apply Models has executed, the new values that have 
been obtained from all of the sensors, or their modeled values, 
are appended to the end of the data streams that are being 
accumulated by the RT Periodic Processing step (Fig. 9). 
Each datum in the data stream is shown as a packet that 
contains information that is redundant with the DDG. This 
redundant information should be thought of as documentation 
intended to be helpful to the user. In this example, the packet 
consists of SensorDatum.original along with appropriate 
information about its provenance, such as the date and time of 
the original measurement, the sensordatum.modeled, the 
model used to generate sensordatum.modeled, and the date 
and time that model was applied.  

This stream of ordered triples is the real-time output of this 
process and could be made available in real time. We assume 
that such data streams also will be labeled by a unique process 
identifier and the DDG representing the precise trace through 
the process, and with further annotations indicating the places, 
dates, and times at which the data streams were collected. As 
this information consists largely of pointers into the DDG, 
most of the cost of carrying this provenance information lies in 
the cost of the DDG itself, which should be relatively 
efficiently represented as a collection of pointers. 

J. The PP Periodic Processing and Alt Model 
Processing steps: abstraction supporting process reuse 
Recall from the Process Data step shown in Fig. 9 that the 

real-time data stream is not the only data stream that is 
produced by this process. The Water Budget process calls for 
automatic post-processing of newly collected data streams 
exactly 30 days later. As noted above, the correction of missing 
or out-of-bounds data during real-time processing must rely 
only upon retrospective data, and we have shown that this can 
be done by allowing for the caching of such data locally in the 
Apply A Model step. But post-processing after 30 days allows 
data gathered both before and after the selected data item to be 
taken into consideration. This post-processing is done in the 
PP Periodic Processing substep of Process Data. In 
addition, consideration of further models is made at irregular 
intervals, resulting in the creation of new models and their 
application to various historical data streams. The way this is 
done is defined in the Alt Model Processing substep of 
Process Data. Note that the Process Data definition 
indicates that PP Periodic Processing is invoked every 24 
hours, using an interval timer mechanism that works 
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analogously to the way in which a timer is used to trigger 
processing in the RT Periodic Processing step.  

The Process PP Datum step (Fig. 17) consists of the 
reinstantiation of the step structure that supported the Process 
RT Datum step, described previously. In particular, Process 
PP Datum consists of a first substep, Get Last Month Data, 
followed sequentially by Get RT Datum. The purpose of Get 
Last Month Data is to identify the data stream produced 
exactly 30 days earlier and to output the information needed to 
access that stream. That having been done, the stream is then 
taken as the inputs to this new instantiation of Get RT Datum. 
The process steps required to carry out Process PP Datum 
are then the same as those needed to carry out Process RT 
Datum, and differ only in that 1) the data streams to be 
processed are now historical rather than streaming in real-time, 
and 2) some additional models, namely models that make use 
of prospective data, as well as retrospective data, can now be 
used to deal with missing or out of bounds data items. Thus 
some different channels are indicated as the inputs to the 
Process RT Datum step, but the step structure used to 
process them is identical. 

To illustrate this, Fig. 18 depicts the DDG that would result 
from the execution of the Process PP Datum step, where for 
simplicity we assume that only one additional model is selected 
for application to the sensor datum. Note, in particular, that the 
sensor datum under consideration is actually the triple that has 
resulted from the execution of the Get RT Datum step shown 
in Fig. 10.  . Thus, Fig. 18 shows that a fourth instance of 
sensor datum, Sensor Datum 4, has been produced by 
consideration of an additional model, and that this is now 
compared with SensorDatum.modeled, which had been the 
result of the prior comparison of three modeled data items and 
the original sensor reading. The result shown is the next 
instance of SensorDatum.modeled (indicated by italics), 
which is now made available for possible future consideration. 
Note that subsequent comparisons of SensorDatum.modeled 
with the results of other models would be represented as 
successive elaborations of the DDG shown in Fig. 18.  

The reused subprocess steps of Get RT Datum must be 
designed to be applicable in both the RT Periodic Processing 
and PP Periodic Processing contexts. For example, the data 
measurements that are cached for use in the Apply A Model 
steps of Apply Models must include prospective data 
(acquired by some sort of look-ahead) in the PP Periodic 
Processing context, whereas they will have only retrospective 
data in the RT Periodic Processing context. 

The reuse of modular capabilities is an inherent abstraction 
capability in programming languages that usually requires 
careful design choices. Thus, it should not be a surprise that the 
reuse of process definitions in a process language also requires 
some care.  

Finally, note that the Alt Model Processing step is defined 
in a manner that is analogous to the definition of the PP 
Periodic Processing step. This step defines the way in which 
scientists can recall historical datasets and apply new models to 
them, thus offering new ways to replace missing or out of 
bounds data. The step is to be executed at any time that a 
scientist wishes to reanalyze a particular dataset. In all other 
ways, however, this process is virtually identical to the PP 

Periodic Processing step. Thus, in particular, the first substep 
of Alt Model Processing is a step whose only role is to 
identify historical datasets to be reanalyzed and to pass the 
information needed to access them as handles to channels. The 
sequentially executed next step is again Get RT Datum.  

V. EVALUATION 
The Water Budget example has provided a vehicle for 

demonstrating how an analytic web provides provenance 
information needed by both producers and consumers of 
scientific datasets. More specifically this example has 
demonstrated that a broad range of semantic capabilities, 
including hierarchical decomposition, abstraction, concurrency, 
exception management, and complex data handling facilities, 
are needed to define modern scientific processes. We now 
present a more detailed analysis of what the need for these 
capabilities tells us about desiderata for the semantic features 
of languages such as Little-JIL that are to be used as the basis 
for defining an analytic web’s PDG. 

A. Strengths and weaknesses of Little-JIL 
Little-JIL is not simply a vehicle for supporting hierarchical 

decomposition (as is the case in many other process 
languages), but is better thought of as a vehicle for 
implementing abstraction. The difference is that a Little-JIL 
step is accurately thought of as the definition of an abstract 
concept, capable of being made a concrete specification by its 
bindings to concrete artifacts and placement in a specific 
execution context. A step defines a scope, and thus establishes 
a context. One key mechanism for context definition is the 
binding of artifacts as a step’s inputs and outputs. This 
capability is tantamount to a capability for passing arguments 
to a procedure. By varying the argument stream to and from a 
step, the step is made to perform somewhat differently in 
different contexts. Steps also provide different contexts by 
providing different exception handling capabilities. Every step 
may define a set of handlers for the various types of exceptions 
that may be raised in its scope. Different instantiations of a step 
may offer different exception handlers, thereby establishing 
different execution contexts. 

The Water Budget example made interesting use of  facilities 
for abstraction, for example, by its reuse of the Get RT Datum 
step. Reuse of this step emphasized the strong similarities in 
the ways in which RT Periodic Processing, PP Periodic 
Processing and Alt Model Processing perform their work. 
This reuse shortens the process definitions and clarifies the 
data consumer’s understanding of these processes. Another 
application of this concept was seen in the Apply Models step, 
which consisted of two different instances of the Apply A 
Model step. This step definition emphasized the iterative 
nature of the step, yet left little doubt about the differences 
between the two invocations of its substeps, namely the 
differences in their arguments.  

Some of the complexity in the Water Budget process is 
attributable to the way in which different activities occur in 
parallel. Data streams from various sensors are processed in 
parallel, and the data must be processed in real-time as data are 
gathered and transmitted concurrently. Simultaneously, the 
much slower activity of generating new models and evaluating 
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both new and existing models occurs. A parallel step is 
effective in defining what activities are executed concurrently 
with each other. Channels were effective in defining data 
streams between steps that were distant from each other in the 
architecture of the Water Budget process. Channels also 
supported synchronization. For example, the parallelism 
defined by the top step in Sensor Data Management clearly 
depicted the way in which sensor data was generated and 
processed.  

In this example channel semantics were limited to FIFO 
queues and parameters passed by copy. But this process 
requires more semantic power. For example, the Eval Model 
step accesses a more or less static collection of models but it 
must retrieve a new copy at each access in case any of the 
existing models have been modified or new models have been 
added. Transaction-like semantics might better support the 
implementation of a step of this kind. Transactions would also 
support the manipulation of data at different levels of 
granularity. For example Get RT Datum produces a single 
result, but is used by PP Periodic Processing to produce a 
dataset containing all of the results from a 24-hour period. 
Transaction-like semantics could permit Get RT Datum to 
release individual results, but allow PP Periodic Processing 
to control the visibility until a complete dataset has been 
constructed.  

The exception management facilities in Little-JIL enabled us 
to define features of the Water Budget process that contributed 
to its reliability and robustness. Thus these features seem 
important to include in any language used to define PDGs. For 
example, the Get Met Station Data step indicated both how 
to identify and how to respond to the lack of needed sensor 
readings. Requisites are particularly clear devices for showing 
where missing data can be detected, and exception handlers 
(such as Handle MS Sensor Timeout) were placed to clearly 
indicate where responsibility for responding to such 
contingencies was located. This example also showed the 
importance of dealing with exceptions that occur during the 
handling of exceptions themselves. The nested exception 
handling in the Get Met Station Data step provided an 
example of this. Such situations also emphasize the importance 
of providing facilities for specifying how to continue execution 
upon completion of exception handling.  

The example also showed the importance of supporting the 
late-binding of resources to steps to permit flexible reactions to 
contingencies (e.g. by the run-time selection of agents to retry 
an execution of a step). For example, in the elaboration of the 
Handle MS Sensor Timeout step, the process defined the 
need to execute a step to obtain a data value. The required 
agent was specified only as an agent having the capability to 
provide a precipitation reading. The choice of the agent was 
left to a Resource Manager having a repository of agents, some 
of which offered this capability. The indicated facility for 
specifying a needed capability, rather than a specific agent, 
enables the late-binding of any of a number of possible agents 
to this step. It therefore enables a separate Resource Manager 
to keep track of the agents that are able to deal with a request at 
any given time, and thus supports the real-time selection of one 
that is actually able to satisfy the request.  

In summary, using Little-JIL to support the specification of 
the PDG for this example helped clarify semantics needed in a 

language used to define PDGs. Little-JIL offered many 
specification language features that seemed quite useful and 
effective, but some important deficiencies were also noted. 
There is a striking similarity between these needs of the 
scientific community and what is generally provided by 
modern programming languages. This supports our intuition 
that scientific processes bear some strong similarities to 
computer software, and thus the challenges of defining them 
have strong parallels with the challenges of programming 
complex software systems. Thus, it is not surprising to find that 
a process language needs to incorporate the salient control 
features of modern programming languages. It is, moreover, 
not surprising to also find that modern capabilities for dealing 
with data, such as typing mechanisms, also seem important to 
the precise specification of processes. Indeed, another 
weakness of Little-JIL as a language for specifying processes 
seems to be its relatively weak support for defining data 
objects. 

B. DDG Evaluation 
The example of the Water Budget process also showed how 

DDGs can be built incrementally as the execution of a PDG 
proceeds and can be defined as traces through the PDG. 
Dataset Derivation Graphs grow as directed acyclic graphs 
(DAGs), increasing in depth as PDG execution proceeds; 
iteration of processing steps is manifest as additional levels in 
the DDG DAG (e.g., Fig. 18 is an elaboration of the leaves of 
Fig. 16, which in turn elaborates DDGs shown in earlier 
figures). Each iteration of the steps of a PDG creates a new 
scope, and such scopes are root nodes in successive DDGs. 
This emphasizes the role of these steps in establishing scopes, 
and the DDG clearly illustrates this role. 

DDGs that are derived from the executions of lengthy 
processes seem large and cumbersome. But it is the pictorial 
depiction of an entire DDG that is large. Their internal 
representations are typical tree-like structures that are 
amenable to terse internal representation. In addition, the 
depiction of the entire DDG is not likely to be of interest in 
most cases; simplified versions would probably suffice in 
many cases. Tools for allowing viewers of DDGs to tailor their 
views through devices such as elision seem necessary.  

Clear depiction of the features of the DDG of greatest 
interest to dataset producers and consumers may prove to be a 
challenge. Long and complex process executions will yield 
DDGs whose depictions are indeed large and potentially 
confusing. Fig. 18 may seem daunting, certainly at first. But 
DDGs will be produced automatically from executing PDGs 
and have the virtues of being precise and accurate. We do 
worry about their size, as it may be considerable in the case of 
a long or elaborate process. Especially in view of this, we are 
also concerned about clarity. Thus efficient internal 
representation of DDGs, and clear DDG presentation is are an 
important focus of future research. 

VI. RELATED WORK 
There are numerous other scientific workflow projects, many 

of which have been presented at meetings, such as [14; 38; 41]. 
Most of these projects (e.g. Kepler [30; 3; 2], Taverna [45; 33], 
and JOpera [35; 28]) base their specification of process flow 
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upon the use of various kinds of DFGs (e.g., Fig. 1). For 
example, Kepler is based upon Ptolemy II [18; 6; 36], which 
uses a powerful and flexible DFG structure to specify how 
datasets can be moved between processing capabilities. Kepler 
integrates a broad range of support tools that help with such 
key activities as specification, execution, and visualization of 
scientific data processes. It seems particularly effective in 
supporting the processing of streaming data, such as data 
produced by sensors and intended for real-time processing. 
Chimera [26; 25; 16] was one of the earliest scientific 
workflow systems. It emphasized the use of pictorial 
visualizations to represent scientific processes. Chimera’s 
pictorial representations depicted a form of a DFG. Taverna 
[45; 33] is a more recent system that seems to focus on 
supporting the integration of web services, particularly for the 
creation of bioinformatics applications. Taverna’s integration 
mechanism is a workflow notation that is also based upon a 
DFG formalism. More recently JOpera [35; 28] has suggested 
the use of XML to specify scientific workflows as plugins that 
could be integrated using Eclipse. JOpera workflows also are 
based upon the use of a DFG formalism to represent scientific 
processes. Teuta [22; 23] represents scientific processes 
through UML diagrams that offer some features, such as 
limited forms of concurrency, that go beyond the semantic 
features of a basic DFG.  

We believe that the reliance of all of these other scientific 
workflow systems upon the DFG as their basis for the 
specification of processes is a major drawback. The DFG-
based systems described above, for example, make it very 
difficult to support specification of any but the most 
straightforward kinds of looping. The example presented in this 
paper indicates some ways in which complex iterative control 
is essential to scientific inquiry. Moreover DFG-based process 
definitions complicate the clear depiction of such semantic 
features as exceptions and abstraction, whose importance was 
also demonstrated by the example in this paper. Fig. 1 is a 
DFG of the Water Budget process but it is not a satisfactory 
PDG as it lacks the ability to specify the details of all the 
different cases that can arise during execution of a scientific 
process. On the other hand, a DFG can often provide an 
intuitive depiction of how information flows through a system. 
Thus, a DFG might be useful as a complementary 
representation to the PDG for defining an initial, high-level 
view of the process. But difficulties arise in trying to maintain 
consistency between the PDG and DFG, especially at lower 
levels of hierarchical elaboration, where typical data- or 
control-flow-oriented graphs have been found to be clumsy for 
representing more detailed flow. Indeed, we have developed a 
tool that translates Little-JIL-based PDGs into internal 
representations that are essentially equivalent to DFGs. Our 
experimentation with this tool has shown that even modest 
amounts of use of concurrency and exception handling can 
cause the number of nodes in the generated DFG to be 
hundreds or thousands of times as large as the number of steps 
in the original PDG.  

There is also a substantial amount of work aimed at 
supporting the documentation of the provenance of scientific 
datasets. Many of the approaches to provenance documentation 

are summarized in [39; 40]. Indeed, these approaches have 
been compared to each other more formally in [31]. These 
approaches seem to fall generally into two categories. In one 
approach (e.g. [8; 29; 1] each data artifact generated by 
execution of a scientific process is annotated with detailed 
information about the tool or system used to create the artifact, 
along with precise specification of the input artifacts used, and 
the output artifacts created. Each such annotation is then stored 
in a database. The complete documentation of the provenance 
of an artifact can then be obtained by recursively querying the 
database for the annotations that describe the activities that 
produced as outputs the artifacts used as inputs to the query. 
The second approach entails building a derivation graph on the 
fly as execution of the scientific process proceeds (e.g., [25] 
and Kepler [4]) .We note that these two approaches are 
essentially equivalent to each other. Both collect provenance 
information by documenting the execution trace that has led to 
the creation of the data artifact being documented. In the 
former, the provenance structure is stored implicitly and is 
created upon demand by database queries. In the latter, the 
derivation structure is built incrementally during execution.  

Our own approach falls into the latter category, entailing the 
on-the-fly construction of a derivation structure, namely the 
DDG. What distinguishes our work from the prior efforts is 
that our DDG depicts the progress of execution through our 
PDG, a process definition structure that can define and depict 
more complex semantic structures such as concurrency, 
exception handling, non-trivial iteration, and abstraction. Our 
DDGs offer depictions of how these semantic features are used 
to contribute to the development of data artifacts. Thus, for 
example, artifacts produced on different iterations through a 
given activity are shown as the roots of distinctly different 
subgraphs of a DDG in which the context of each activity 
execution is provided by the DDG. Our work is strongly 
reminiscent of earlier work on the Odin project [12] that 
documented the ways in which collections of software tools 
were applied to produce software products. As in the case of 
the work described herein, Odin maintained two coordinated 
structures, a type structure, showing which types of software 
objects can be generated through the applications of which 
software tools, and an instance structure that recorded the 
specific software artifacts generated by a specific sequence of 
applications of tools. 

The Odin Project was aimed at supporting the clear and 
precise documentation of how various software artifacts 
resulted from somewhat different applications of somewhat 
different versions of various tools. It could use that 
documentation to make smart decisions about what data to 
store and what data to re-derive, as well as to determine when 
to automatically do the derivation based on desired outputs. It 
thus extended earlier work on software configuration 
management (SCM), such as Make [24] and SCCS [37]. It 
seems significant, therefore, to note that fundamental problems 
in documenting scientific data artifact provenance bear a 
striking resemblance to fundamental problems in SCM [21]. In 
both cases there is a need to document and communicate a 
clear and precise understanding of how artifacts of interest 
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have come into existence. In both cases, the derivation history 
may be quite complex, and must be maintained despite such 
complications as changes in versions of tools, reworking of 
artifacts, concurrent activities by diverse agents, etc. Thus, it is 
not surprising that the solution approach suggested in this 
paper is strongly reminiscent of approaches taken in early work 
in SCM. Indeed, we note that other recent work in scientific 
data provenance has also started to recognize the problem of 
documenting provenance in situations where the scientific 
process is evolving [4; 9] and we suspect that future work in 
the area of scientific data provenance documentation is likely 
to follow closely the progress of the SCM field. 

VII. FUTURE WORK 
We believe that the semantic features in Little-JIL present a 

useful starting point for considering the features that should be 
incorporated into languages that are used as the basis for 
defining the PDG, but we have also noted a number of 
shortcomings. Further investigation of the essential 
requirements for the semantics of a PDG is needed. Specific 
details of DDGs also require further evaluation. For example, 
we need to evaluate various internal representations of DDGs 
to determine how to store them efficiently while still 
supporting efficient creation of needed visual representations. 
Moreover, datasets represented by the nodes of the DDG might 
be best regenerated from scratch or they could be cached to 
expedite generation of subsequent datasets. Specific strategies 
for determining when and what to cache should be the subject 
of future research. While DDGs can be used as the basis for the 
creation and attachment of process metadata to datasets, further 
research is needed to determine how this is done best. Metadata 
standards such as EML are starting to appear and process 
provenance metadata might be most usefully seen as an 
augmentation of standard annotations of this sort.  

The value of an analytic web will be greatly enhanced by the 
availability of a tool set that supports such capabilities as the 
creation of the PDG, the execution of the PDG, the automatic 
creation of the DDG, viewing and querying these graph 
structures, and reasoning about the soundness of the scientific 
processes defined. We have begun the creation of such a 
prototype toolset, called SciWalker Our existing prototype 
provides weak and preliminary support for dataset producers, 
and virtually no support for dataset consumers. Future work 
will integrate our existing Little-JIL language support into 
SciWalker and will capture dataset products of Little-JIL 
execution to support DDG creation and management. 
Extensive work on the development and evaluation of user 
interfaces to these tools, particularly emphasizing the sorts of 
visual depictions of the PDG and DDG, is clearly required as 
well. 

Of particular interest is the possibility of using PDGs as 
vehicles for integrating other systems that support scientific 
workflow. Our view is that the basis of most of these systems 
upon a DFG model of such processes is severely limiting, and 
that the effective representation of such processes requires 
more expressive semantic features, such as those supported by 
the PDG presented here. But we also note that our concept of a 
PDG supports the idea that PDG steps can be performed by 

different agents, either human or automated. We suggest that 
existing scientific workflow systems, such as Kepler, might be 
used to define lower level scientific processes (e.g., those not 
entailing complex iteration or exception management), and that 
those process fragments might then be considered to be the 
agents responsible for performing PDG steps. Such an 
approach could make good use of the better developed 
performance features of established systems such as Kepler 
and the needed semantic features offered by PDGs. 

We also propose to add an important new dimension of 
support for dataset consumers by integrating powerful 
analyzers into SciWalker. One form of analysis that seems 
particularly important to dataset consumers is finite-state 
verification, which is capable of examining a PDG in order to 
determine whether or not it is possible to execute inappropriate 
sequences of functional capabilities [5; 17; 13]. For example, 
faulty scientific inferences can result from the application by 
dataset consumers of certain types of interpolation models to 
datasets that already had been smoothed in certain ways by the 
dataset producer. This inappropriate sequence of events may 
occur only for certain combinations of executions of the 
producer’s process with the consumer’s process. Such potential 
combinations can be detected by finite-state analysis of PDGs 
representing both processes. We suggest that it is important to 
investigate how best to integrate such analysis capabilities into 
a toolkit such as SciWalker 

Finally, we believe that the best way to make the progress 
needed in developing the ideas just outlined is to continue to 
create analytic webs to represent scientific processes of various 
kinds. Our work with ecological processes is encouraging, yet 
preliminary. We hope that there will be much more work of 
this sort, not just in ecology, but also in the representation of 
processes in a wide range of other sciences. This work should 
shed important light on the nature of languages needed to 
represent such processes, and tools needed to make them 
accessible to working scientists. 
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Fig. 4. A Little-JIL step icon 

 
 Fig. 1. A data flow graph of the water budget process. Each processing loop 
(real-time, retrospective, and alternative processing as well as model 
maintenance) is represented in a different color, with each edge colored by the 
same color as the node it emanates from.) 

 
 
 
 
 
 
 
 
 
 

 
Fig. 2. An example of a Dataset Derivation Graph 

 

 
Fig. 1. The DDG showing the complete provenance 
of Revised Data 3 
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Fig. 8: The DDG of the original acquisition of P data 

 

 
Step: RT Periodic Processing 
Comments: the channels sensorStream and modelStream are accessed from an 
 enclosing scope 
Outputs: seqofdS <dS>; 

Fig. 9. The Process Data step 

 
Step: Get RT Datum 
Inputs: SetOfET {et}; SetOfQ {q}; SetOfP {p}; SetOfPAR {par}; 
 SetOfVPD {vpd};SetOfUStar {uStar};ET et; Q q; P p; 
 PAR par; VPD vpd; UStar uStar; // taken from the 
 channel sensorStream 
Outputs: SetOfETout {et}; SetOfQout {q}; SetOfPout {p}; 
 SetOfPARout {par};SetOfVPDout {vpd}; 
 SetOfUStarOut {uStar}; 

 
Step: Select Values of P 
Inputs: PrecReading p1, p2;  
Outputs: PrecReading p;  

Fig. 10. The Get RT Datum step 
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Fig. 12. The DDG representing the selection of P as a choice between 

P1 and P2 

 

 
Fig. 11. The DDG representing the application of  
range filtering 

 

 
Step: Apply Models 
Outputs: ModeledETtriple (ET.original, ET.modeled, ETModelID);  

ModeledQtriple (Q.original, Q.modeled, QModelID); 
 

Step: Apply A Model 
Inputs: EvapReading et; 
Outputs: ModeledETtriple (ET.original, ET.modeled, ETModelID); 
Comments: the modelStream from Sensor Data Management is used in 
  this step 
 
Step: Apply A Model 
Inputs: Qreading q; 
Outputs: ModeledQtriple (Q.original, Q.modeled, QModelID); 
Comments: the channel modelStream from Sensor Data Management is 
  used in this step 

Fig. 13. The Apply Models step 

 
Step: Apply a Model  
Outputs: ModeledDatumTriple modeledDatum =  
 new ModeledDatumTriple (sensorDatum.original, sensorDatum.modeled, modelID); 
Exceptions caught: “No Model Selected” with “No Model Selected Handler” 
 
Step: Eval Models 
Inputs: SensorReading sensorDatum; Cache readingsCache; 
Outputs: SetOfModelIDandDatumPairs {datumPairs}; // 
 where datumPairs=new DatumPairTuple( ModelID, SensorDatum.modeled); 
 
Step: Select Best Model 
Agent: human expert 
Inputs: Cache readingsCache; SensorReading sensorDatum.original;  SetOfModelIDandDatumPairs 
datumPairs // 
  where datumPairs=new DatumPairTuple(ModelID, SensorDatum.modeled); 
Outputs: ModeledDatumTriple modeledDatumTriple = 
  new ModeledDatumTriple(sensorDatum.original, sensorDatum.modeled, modelID); 
Exceptions raised: No Model Selected 
 
Step: Eval Model 
Inputs: SensorReading sensorDatum; Cache readingsCache; ModelType model; 
Outputs: DatumPairTuple = new DatumPairTuple(ModelID, SensorDatum.modeled); 

Fig. 14. The Apply a Model step 
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Fig. 15. The DDG representing the selection and application of a 

model to generate a modeled value for P 

 

 
Fig. 16. The DDG formed by combining the DDGs of Fig. 12 and Fig. 15 
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Step: Process PP Datum 
Outputs: SetOfET {et}; SetOfQ {q}; SetOfP {p}; SetOfPAR {par}; 
 SetOfVPD {vpd};SetOfUStar {uStar} 
 
Step: Get Last Month Data 
FIFO Channel SensorStream sensorStream = new SensorStream();  
 // to be populated with"last month" data items 
 
Step: Get RT Datum 
Comments: “Augmented model set” is a set of models that also 
includes models that can benefit from prospective data, now available, 
as well as retrospective data 

Fig. 17. The Process PP Datum step 

 

 
Fig. 18. The DDG showing the results of the execution of Process PP Datum 


