
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— With the availability of powerful computational and

communication systems, scientists now readily access large,
complicated derived datasets and build on those results to produce,
through further processing, yet other derived datasets of interest to
themselves and others. The scientific processes used to create such
datasets must be clearly documented so that scientists can evaluate
their soundness, reproduce the results, and build upon them in
responsible and appropriate ways. Here, we present the concept of an
analytic web, which defines the scientific processes employed and
details the exact application of those processes in creating derived
datasets. The work described here is similar to work often referred to
as “scientific workflow”, but emphasizes the need for semantically
richer, more rigorously defined process definition languages, such as
those that were first developed to define software engineering
processes. We illustrate the information that comprises an analytic
web for a scientific process that measures and analyzes the flux of
water through a forested watershed. This is a complex and demanding
scientific process that illustrates the benefits of using a semantically
rich executable language for defining the process, supporting
automatic creation of process provenance metadata, assuring data
reproducibility, and supporting analysis of the data’s scientific
soundness.

Index Terms—Process Programming, Scientific Workflow,
Software Engineering.

I. INTRODUCTION

A. The Problem
Modern computation and communication systems have

dramatically changed the way in which science is done. These
systems enable scientists to work with datasets and to create
models of their research subjects that are far larger and more
detailed than were possible in the past. Faster computing

Manuscript received March 31, 2008. This material is based upon work
supported by the National Science Foundation under Award No. CCR-
0205575. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

 Leon J. Osterweil is with the University of Massachusetts, Department of
Computer Science, Amherst, Massachusetts 01003 USA (413-545- 2186; fax:
413-545-1249; e-mail: ljo@ cs.umass.edu).

Lori A. Clarke is with the University of Massachusetts, Department of
Computer Science, Amherst, Massachusetts 01003 USA (413-545- 1328; fax:
413-545-1249; e-mail: clarke@ cs.umass.edu).

Aaron M. Ellison is with Harvard University, Harvard Forest, Petersham,
Massachusetts 01366 USA (978-724-3302; fax: 978-724-3595; e-mail:
aellison@fas.harvard.edu).

Emery Boose is with Harvard University, Harvard Forest, Petersham,
Massachusetts 01366 USA (978-724-3302; fax:978-724-3595; e-mail:
boose@fas.harvard.edu).

 Rodion Podorozhny is with Texas State University, San Marcos, TX USA
(512-245-8472; fax: 512) 245-8750; e-mail: rp31@txstate.edu).

Alexander Wise is with the University of Massachusetts, Department of
Computer Science, Amherst, Massachusetts 01003 USA (413-545-4830; fax:
413-545-1249; e-mail: wise@ cs.umass.edu).

speeds enable far more ambitious analyses of these models,
leading to the production of far greater quantities of derived
scientific datasets. Ever faster global networks make these
datasets accessible to scientists around the world. While these
new computational and communications capabilities have
opened up the possibility of exciting new research, they have
also led to new challenges and problems. When new datasets
are generated by extensive processes, they are often
promulgated without adequate documentation that describes
their creation. If scientists are to make appropriate use of the
datasets produced by others and avoid misuse by inappropriate
application of subsequent processing, then it is imperative to
know how such datasets were produced. Indeed, before
scientific results can be accepted, they should be reproduced by
other scientists; reproducibility is a fundamental part of
science.

An obvious way to address these challenges is to associate
with each dataset as an annotation a precise description of the
dataset. Such annotations, essentially data items that describe
data, are called metadata. There have already been many calls
for the use of metadata, which typically document such details
as the date of generation of a dataset, the name of the
investigator, and perhaps some specifications of the hardware
and software systems used, as well as details of the individual
data items (variable name, numerical format, unit of
measurement, etc.). We argue that it is necessary to go further.
We suggest that a particular type of metadata annotation,
process provenance metadata, be attached to all datasets, and
when necessary to individual data items. The benefits of such
process provenance metadata include facilitation of the
reproduction of the data by others, expedited identification of
data items and datasets of interest, and better understanding of
which forms of subsequent processing should, and should not,
be applied to data items and datasets.

It is our view that concepts drawn from the domain of
software engineering can provide the basis for the generation
and association of such process provenance metadata with the
derived data items and datasets.

B. Analytic Webs
Scientific datasets can be viewed as products emerging from

a distributed enterprise: input datasets may be stored and
retrieved remotely, analytic services may be obtained from
external sources, and the datasets that are the products of a
scientist’s work are immediately accessible by others. The
totality of data and capabilities produced and consumed by a
working scientific team in pursuit of a particular scientific
objective can be thought of as a scientific (usually online) data
processing enterprise, and we refer to it by the term analytic
web [7; 19; 34]. By analogy, the purpose of an analytic web is

Applying Software Engineering Technology to Support the
Clear and Precise Specification of Scientific Processes

Leon J. Osterweil, Lori A. Clarke, Aaron M. Ellison, Emery Boose,
Rodion Podorozhny, Alexander Wise

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

to expedite the participation of a scientific team in the
marketplaces of scientific investigation. From this view there is
then a need to provide strong support for two distinct activities
that scientists engage in routinely, namely the production of
datasets for such marketplaces and the consumption of datasets
from such marketplaces, for use in subsequent scientific
investigation.

Production: As raw data are collected by individual

investigators or by sensors, they may be pre-processed with
data loggers, field computers, etc.; for example, many
environmental measurements (e.g., temperature, solar
radiation, carbon flux, water flow) are sampled at high
frequencies but only hourly averages are stored. Individual
researchers take these data and post-process them, entering
them into data repositories such as spreadsheets, checking
them for errors, and transforming them into datasets used for
analysis by the investigators themselves or by others. These
datasets are often stored on the investigator’s personal
computer, where they might be further analyzed (and in the
process new datasets may be created) and condensed for
publication. The producers of these datasets could use help
in managing the execution of these increasingly intricate
processes, in documenting exactly what processing was
applied to which data items, and in reasoning about the
soundness of the resulting data items and datasets. These
data items and datasets, on which publications are often
based, are archived on institutional servers or within national
repositories, where it is expected that they may be accessed
and used by others: i.e., dataset consumers.

Consumption: Datasets collected by other investigators

increasingly are available via the Internet and may be
reanalyzed to verify existing models and results or used to
generate new models, hypotheses, and scientific insights. We
refer to this use of previously existing datasets as dataset
consumption. It is not atypical for a consumer who
synthesizes datasets to subsequently become a producer of
new (synthetic) datasets that are consumed by others (who
then may become producers of further datasets).

The conceptualization of dataset production and
consumption suggests specific ways in which an analytic web
should support a scientific team’s activities. Support for
production should consist of facilities for generating and
storing new data items and datasets. In recognition that others
may consume these datasets, the datasets and when necessary
the individual data items should be annotated with precise
process provenance metadata. An analytic web should provide
facilities for accessing such metadata and evaluating its
subsequent use. This may entail reproducing the dataset,
evaluating its use in further scientific data processing, or using
the process generation metadata as a guide to generation of
other datasets.

To make this conceptual vision of an analytic web a useful
reality, we propose that a specific analytic web be realized by a
set of tools aimed at creating, analyzing, and managing two
types of closely interrelated graph structures, namely Dataset
Derivation Graphs (DDGs) and Process Derivation Graphs
(PDGs). The purpose of a DDG is to organize datasets into a

structure based upon the way in which the datasets are derived
from each other. The purpose of a PDG is to define precisely
the processes by which these derivations are performed. The
PDG also serves as the vehicle for executing the process
definition and generating subsequent data items and datasets.
Moreover, execution of a PDG can result in the automatic
creation of the DDG for each of these data items and datasets.

In this paper we provide a concrete example of the way in
which an analytic web can support the activities of a specific
scientific research team. This example illustrates that DDGs
are likely to be large structures that need to be defined in detail
and with great care. Our example illustrates the importance of
automatically executing the PDG and, during that execution,
automatically generating the corresponding DDGs. A major
objective of this example is to demonstrate a set of semantic
features that seem essential in a process definition language
employed to define the PDGs used by actual working scientific
teams. An existing process definition language, Little-JIL [44;
43; 10], incorporates many of these semantic features. Key
features of Little-JIL are highly effective in defining the PDGs
needed to support our example scientific process, but some
important semantic features are missing.

II. MOTIVATING EXAMPLE
Measuring and forecasting water flux and storage in the

ecosystem (including ground water, soils, surface water, snow
pack, vegetation, and atmospheric boundary layer) is of
tremendous importance to society, of pressing interest to
scientists, and a central focus of major scientific investigation
efforts, such as NEON (http://www.neoninc.org/) and the
Waters Network (http://www.watersnet.org/). Such forecasts
require detailed hydrological measurements of natural and
human-dominated ecosystems; these measurements come from
vast networks of real-time sensors and are subjected to
elaborate real-time adjustments and considerable, perhaps
iterative, post-processing over ensuing months or years.
Producers of such datasets could use help in systematically and
correctly applying various processing and analysis tools.
Consumers of these datasets will require support to help them
understand the datasets, to reproduce them if desired, and to
use them appropriately in further processing.

To address this scientific problem, a group of ecologists at
the Harvard Forest Long-Term Ecological Research (LTER)
site (http://harvardforest.fas.harvard.edu/) is designing a real-
time system for estimating water budgets for three small
forested watersheds at their site. Their system is being
designed to calculate change in water storage using the water
balance equation: dS = P – ET – Q, where the change in water
storage (dS) is a linear function of precipitation (P),
evapotranspiration (ET), and surface discharge or streamflow
(Q). The complete system will include additional
measurements of snow pack, soil moisture, ground water, etc.
Equation inputs come initially from five real-time data streams
from three sources:

• Precipitation (P) – 15-minute precipitation totals (P1,
P2) measured at two rain gauges. Two gauges are used to
guard against data missing due to sensor drift and failure.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

• Surface Discharge (Q) – 15-minute average stream
flow values measured at a stream gauge. Short gaps in Q
caused by sensor failure, excessive ice build-up, etc. can
be filled by modeling Q as a function of preceding
measurements of P and Q.

• Evapotranspiration (ET) – 30-minute average ET
values measured at an eddy-flux tower.

• Photosynthetically active radiation (PAR) – 30-
minute average PAR values measured at the eddy-flux
tower. PAR is measured continuously because over short
time spans (up to several weeks) PAR is the environmental
variable most often highly correlated with ET. Thus, PAR
can be used to estimate ET when it cannot be accurately
measured directly for any of a variety of reasons.

This system will incorporate three features that are typical of
virtually any sensor network and raise challenging issues for
dataset producers as well as dataset consumers:

1. Real-time quality control entails non-trivial processing,
much of it determined on the fly, which may cause different
data items in a dataset to have different process provenance.
For example such systems may incorporate duplicate sensors

(here P1 and P2), real-time modeling (yielding estimates Q̂

and
∧

ET of Q and ET, respectively), and rules for value
selection. Thus, in this case the two precipitation
measurements are to be compared and specific actions taken if
the values differ by more than a specified amount. To check for
instrument problems, Q and ET are to be compared to their

modeled values (Q̂ and
∧

ET) using respectively (i) verified
runoff models and recent precipitation and flow values and (ii)
regressions of recent ET and PAR values. Modeled values also
may be substituted (imputed) for measured values when
sensors fail or wind conditions do not support reliable eddy-
flux measurements.

2. Regularly scheduled post-processing of data (e.g., after 30
days) is used so that individual imputed data values can be
computed using models that take into account values coming
from both preceding and subsequent measurements. This
feature is necessary because real-time modeling is retrospective
only (i.e., based on past data). Thus, post-processing is
important especially for times when the ecosystem is
undergoing rapid change (e.g., during spring leaf-out or when
soils become saturated during heavy or prolonged
precipitation).

3. Alternative past measurements also may become available
and may then be included in additional datasets. This may be
desirable, for example, to make use of recent measurements
that did not arrive in time for real-time processing, corrections
of earlier measurements as a result of later detection of sensor
drift, or replacement or imputation of faulty or missing values
with measurements from other sources. Note that the
substitution of alternative measurements must be accompanied
by post-processing of a sufficient number of preceding and
subsequent values to ensure that any “ripple effects” – possible
impacts on subsequent modeled values – are accounted for.

This indicates another way in which it becomes possible for
each data item of a dataset to be the product of a different
process.

Fig. 1 is a representation of the water budget process using a
data flow graph (DFG). In this DFG, rounded boxes represent
types of tools or subprocesses while types of datasets are
represented by boxes with a clipped corner. Edges connecting
these boxes represent the flow of data or datasets into and out
of the tools and subprocesses. In this figure, the Real-time
Selection Criteria box represents the on-the-fly processing of
the Real-time Data that is used to create new or updated

Models and to update the model variables Q̂ and
∧

ET .
Similarly, the Retrospective Selection Criteria and the
Alternative Selection Criteria boxes represent the
reprocessing of the Real-time and Retrospective Data,
respectively, and can also result in new Models and updated
model values. In subsequent sections of this paper we indicate
shortcomings of this DFG representation and suggest another
graph notation that seems to offer better facilities for
representing complex processes such as this one.

III. PROPOSED MODEL OF AN ANALYTIC WEB
The next section of this paper demonstrates how the data

management issues indicated in the previous section can be
supported by analytic webs. In this section we describe
formalisms used to define the graphs comprising such analytic
webs.

A. Dataset Derivation Graph
A DDG documents the specific data items or dataset

instances created when a producer applies processes (e.g.
perhaps defined using a PDG), using specific tools and
subprocesses on specific input data items or dataset instances.
A DDG thus contains detailed metadata about the process
sequences used to build all of its datasets. This metadata is an
example of the process provenance metadata needed to inform
consumers about how a dataset was generated and to support
reproduction of the dataset by other scientists. A DDG, as
depicted in Fig. 2, uses rectangles to represent specific data
items and dataset instances and ovals to represent specific tools
or subprocess instances. There is an edge from each data item
and dataset instance node to the process instance node from
which it was derived (unless the data item or dataset instance
represents raw data that was not previously processed). Each
oval process instance node is connected by one or more edges
to the data item(s) and dataset instance(s) that it used as
input(s) to derive the indicated output data item or dataset
instance. Each time a process is executed, a new set of data
items and dataset instances is created, and these data items and
dataset instances, as well as the process instances that created
them, must be added as nodes of the evolving DDG. Each
DDG node instance can be stored independently with a unique
URL for identification.

Data items and dataset instances, such as those represented
by DDG nodes, are the usual focus of scientific attention and
thus are the objects intended to be documented with metadata
such as specified by Ecological Metadata Language (EML;
http://knb.ecoinformatics.org/software/eml/). For example,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

Transpiration Data For 2/26/06 is a specific instance of type
transpiration data and thus is depicted in Fig. 2 by a box. Fig. 2
also shows that Aaron’s outlier rejection parameters is
another dataset instance. These two instances are taken as
inputs by a specific processing tool, namely Reject Outlying
Data, to produce the output dataset instance, Cleaned
2/26/06 Data. This dataset instance is, in turn, taken as input
to the processing tool Least Squares Interpolation using
System R 9/22/06, producing as output the dataset instance
Cleaned, Interpolated 2/26/06 Data. Note that the
specification of the specific interpolation tool, complete with
version number and date of application, is important as it
specifies precisely which tool or system was applied to the
dataset instance. Different versions of a tool may produce
different results. Consumers who want to fully understand the
provenance of a dataset, and producers who want to reproduce
it exactly, require the documentation provided by a DDG: the
specific datasets and tools that were actually used. The
quantity and intricacy of this documentation is considerable,
but it can be produced automatically with the aid of a suitable
suite of tools, as described below.

To make this clearer, Fig. 3 illustrates a DDG that could
have been generated by executing a sequence of tools and
subprocesses represented as a path through the boxes in the
diagram shown in Fig. 1. Note that this DDG shows the result
of two iterations, represented by two traversals through a loop
in the diagram in Fig. 1, resulting in the creation of three
instances of Revised Data, denoted here by Revised Data
1, Revised Data 2, and Revised Data 3. Revised
Data 1 is simply the set of data items that resulted from
filtering the initial real-time data stream by applying some
specific filtering criterion. This generally results in a dataset
where some data item values are missing, most often due to
intentional deletion. Revised Data 2 results from applying

initial Q̂ and
∧

ET models to this dataset, thereby filling in
missing data item values and replacing others. Revised Data
3 results from creating and applying a second pair of Q̂

and
∧

ET models, (e.g., from regularly scheduled post-
processing) and applying them to Revised Data 2. This
DDG provides documentation of the exact processing steps
that were taken to produce these datasets. It specifies what
datasets must be generated to reproduce these processing steps,
and thus the dataset that is their final result.

B. Process Derivation Graphs
A Process Derivation Graph (PDG) is a precise

representation of the sequences of steps used to process the
data items and datasets in a scientific process. Many different
formalisms could be used to define PDGs. But our example
suggests that such semantic issues as concurrency, abstraction,
exception handling, and agent specification are important to the
clear specification of actual scientific processes. The absence
from a formalism of capabilities for specifying these semantics
restricts the utility of that formalism in supporting specification
of PDGs. Thus, while a DFG could, in relatively simple cases,
be used to specify a PDG, the DFGs relative paucity of
semantic power limits its utility in supporting the clear and

precise definition of more realistic scientific processes. Thus,
for example, DFGs make it hard to distinguish between those
paths that are intended to be part of a scientific process and
those that are not, and thus do not reliably specify which paths
through the graph can be used safely to generate additional
DDG nodes. For example, the DFG in Fig. 1 does not preclude
the retroactive processing loop from preceding the real-time
processing loop for the same dataset.

Thus, in this paper we use Little-JIL, a visual process
definition language originally developed for defining software
engineering processes, as to define PDGs. The next section
uses Little-JIL to define processes that are part of the example
presented in Section II in order to demonstrate how semantic
features such as concurrency, exception handling, and
abstraction facilitate the specification of PDGs for realistic
scientific processes.

C. Semantics of Little-JIL
A process is defined in Little-JIL using hierarchically

decomposable steps [43; 44], where a step represents a task to
be done by an assigned agent. Each step has a name and a set
of badges that represent control flow among its sub-steps, its
interface (a specification of its input and output data), the
exceptions it handles, etc. A step with no substeps is called a
leaf step and represents an activity to be performed by an
agent, without any guidance from the process.

Resources and Agents: As part of its interface, each Little-
JIL step contains a specification of the type of agent that is
required to assume responsibility for the step’s execution. The
agent specification is a specification of a capability. It is
assumed that this specification will be considered by a separate
Resource Manager that is expected to identify a specific
resource instance to be bound as the agent in response to the
step’s need for a specified capability. Little-JIL agents may be
either humans or automated devices, and there are =cases
where either might be appropriate. A step may also specify the
need for resources other than the agent.

Substep Decomposition: Little-JIL steps may be
decomposed into substeps of two different kinds, ordinary
substeps and exception handlers. The ordinary substeps define
the details of how the step is to be executed. They are
connected to the parent step by edges that may be annotated by
specifications of the artifacts that flow between parent and
substep, and also by cardinality specifications. Cardinality
specifications define the number of times the substep is to be
instantiated and may be a fixed number, a Kleene * (for zero or
more times), a Kleene + (for one or more times), or a Boolean
expression (indicating whether the substep is to be instantiated
or not). Exception handlers define the way in which exceptions
thrown by the step’s descendants are to be handled. The edge
connecting an exception handler to its parent is annotated with
the type of the exception being handled, and with an indication
of how execution is to continue after the exception has been
handled.

Step sequencing: Every non-leaf step has a sequencing
badge (an icon embedded in the left portion of the step bar;
e.g., the right arrow in Fig. 4), which defines the order in which
its substeps execute. For example, a sequential step (right
arrow) indicates that its substeps are to be executed
sequentially from left to right. A parallel step (equal sign)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

indicates that its substeps can be executed in any (possibly
arbitrarily interleaved) order. A choice step (circle slashed with
a horizontal line) indicates that the agent executing the step is
to make a choice among any of the step’s substeps. A try step
(right arrow with an X on its tail) mandates a sequence in
which substeps are to be tried in any order until one completes
successfully.

Artifacts and artifact flows: An artifact is an entity (e.g., a
datum or dataset) that is used or produced by a step. Parameter
declarations are specified in the interface to a step (circle atop
the step bar) as lists of the artifacts used by the step (IN
parameters) and the artifacts produced by the step (OUT
parameters). Artifact flow through steps can be defined to take
place in either of two different ways, 1) hierarchically, as the
flow of artifacts between parent and child steps, and 2) by
means of channels. The flow of artifacts between parent and
child steps is (as noted above) indicated by attaching to the
edges between parent and child identification of the artifacts as
well as arrows indicating the direction of flow of each artifact.

Channels: Channels are named entities that directly
(without the need for hierarchical flow) deliver artifacts
produced by specifically identified source step(s) as arguments
to specific destination step(s). A Little-JIL channel is defined
at present as a FIFO queue. Steps that use the channel either
write to the end of the channel, take data from the front of the
channel, or read, without removing, data from the front of the
channel. The channel construct can be used as a vehicle to
coordinate and synchronize steps executing in parallel. On the
other hand, as the example below shows, it is restrictive to use
only a FIFO queue to model the channel’s handling of data.

Requisites: Requisites are optional and enable the checking
of a specified condition either as a precondition for step
execution or as a postcondition check to assure that the step
execution has been completed acceptably. A downward
arrowhead to the left of the step bar represents a prerequisite,
and an upward arrowhead to the right of the step bar represents
a post-requisite. If a requisite fails, an exception is triggered.

Exception Handling: A step in Little-JIL can define
exceptional conditions when some aspects of the step’s
execution fail (e.g., one of the step’s requisites is violated).
This violation triggers the execution of a matching exception
handler associated with the parent of the step that throws the
exception. An exception handler is represented as a step
attached by an edge to an X on the right of the step bar (as
shown in Fig. 4. = Little-JIL currently supports specifying four
different ways that execution can proceed after execution of an
exception handler.

Scoping and Recursion: The parent step and all of its
descendants represent a scope, specifying what data are
considered local to that scope. Little-JIL also supports
recursive execution of steps, which specifies the iterative
application of a process step to specified inputs.

IV. USING LITTLE-JIL TO DEFINE AND EXECUTE A PDG AND
TO CREATE A DDG

The purpose of the Water Budget process is to provide
estimates of the rate of change of water storage dS over various
time intervals on the basis of time-ordered sequences of
readings from sensors that measure various parameters. While

this process may at first glance appear to be relatively
straightforward, in Section II we indicated that there are a
number of aspects of the fully elaborated process that are
challenging to define precisely. We now use a Little-JIL
definition of the Water Budget process that illustrate some of
these difficulties and some of the semantic features that are
useful in a defining them clearly and precisely through the use
of an analytic web. The process step definitions are illustrated
here by step diagrams that have been created using the Little-
JIL editor. In the interest of reducing clutter, the editor does not
depict all the details and annotations of all step definitions
unless specifically requested by the user. The user may obtain
complete detailed information about any aspect of a process
definition by moving the cursor over the appropriate icon. To
suggest the nature of this additional information we append to
each figure a legend that contains such additional explanatory
information. Information about a step begins with the name of
the step, followed by the step’s input and output parameter
types, any channels used by the step, and the types of data
items carried by these channels. For some steps there is also a
specification of exceptions that may be thrown by the step
and/or exceptions that may be handled by the step. For edges,
the information begins with a specification of the pair of steps
that define the edge, followed by information about parameter
flow between parent and child steps. There may also be
comments that informally describe the general purpose or
approach of a step or edge. Much of the information being
provided by these legends could be specified through extension
of existing annotation schemes, such as EML..

A. The Sensor Data Management step: use of
decomposition and concurrency
We begin by describing the step Sensor Data

Management (Fig. 5). Sensor Data Management, the root
of the Water Budget process, is a parallel step consisting of the
execution of three substeps; Get Measurements collects data
from the sensors; Model Stream Data Gen creates new
predictive models for this data; and Process Data processes
the data for publication. The collected data and created models
are communicated to Process Data via channels that are
declared in Sensor Data Management and are accessible to
all of its substeps. The sensorStream channel is declared to
be a FIFO channel, so that data are removed in the order in
which they are put into the channel. The modelStream
channel is a singleton channel, meaning that at most one item
can be in the channel at a time.

The first two substeps are described in Sections B and E
below. The third substep, Model Stream Data Gen,
represents the generation of new models. The annotation
indicates that this step is done by human experts, each of
whom executes a different instantiation of this step (as
indicated by the Kleene * on the edge leading into this step),
thereby allowing for the parallel and asynchronous generation
of new models. The use of a channel allows for the possibility
that new models can be dynamically placed into the channel at
any time during the execution of this process. Doing so makes
the model available for application to subsequent data items.
Note also that there is a different step for the generation of
each type of model. Gen New P Model is the step that is
responsible for the generation of new P models, while Gen

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

New Q Model is responsible for the generation of new Q
models. The example shows only two such substeps for
simplicity, but the complete process definition would require a
substep for each model type.

Because each of these steps can be executed in parallel, each
can proceed at its own pace. Sensor data streams in as it is
generated and new models are derived as needed by human
scientists, presumably at a far slower pace. The processing of
the data streams (including application of the models as
needed) is driven by interval timers and human curiosity. The
PDG represents this parallelism and indicates which models
are applied to which data items as part of which datasets.

B. The Get Measurements step: support for multiple
data streams
The Get Measurements step (Fig. 6) reads and processes

the values from the sensors and sends the results to the real
time stream. This is done by having different subprocesses,
Get Met Station Data, Get Flux Tower Data, and Get
Stream Gauge Data, take responsibility for examining the
three types of data sources. Each of these substeps can execute
independently and in parallel with the other two, and each may
throw a different type of exception if difficulties arise with
their sensors.

The Get Met Station Data step has two substeps, Get P1
and Get P2, each of which is responsible for dealing with
measurements coming from one of the two precipitation
measurement gauges. Similarly, the Get Flux Tower Data
step has four substeps, each of which is responsible for
handling data items coming from each of the various sensors
on the flux tower and Get Stream Gauge Data has one
substep for handling surface discharge data.

The substeps that access the individual data items also are
responsible for annotating each data item with some
provenance information. At present this consists of attaching
very rudimentary metadata, specifically a date/time stamp and
a quality flag. Below we describe how a DDG improves
significantly upon the current quality flag.

C. The Handle MS Sensor Timeout step: use of
exception management
Each substep of the Get Measurements step is responsible

for acquiring data from its sensors, and each also is responsible
for defining the subprocess to be employed if exceptional
conditions arise. The Get Met Station Data step deals with
situations where some, or all, of the expected data items do not
arrive by throwing an exception. For example, the substep Get
P1 attempts to obtain a precipitation reading from
meteorological sensor 1. If this access succeeds, then the value
is passed as P1, annotated with the observation date and time
and with the measured quality attribute. The Get P1 step is
also responsible, however, for determining when new P1 data
is not available and then, subsequently, for throwing an
exception that is to be handled by Handle MS Sensor
Timeout step, passing the identifier of this sensor (namely
sensor #1) as a parameter. The other two substeps of the Get
Measurements step, Get Flux Tower Data and Get Stream
Gauge Data, carry out their responsibilities similarly to Get
Met Station Data. The final output of the Get
Measurements step is exactly one datum of each of the types

P1, P2, ET, Q, PAR, VPD, and UStar, each accompanied by
provenance annotations.

In this context, the Handle MS Sensor Timeout step (Fig. 7)
is specified as the handler for the Sensor Timeout exception
that can be thrown in the Get Met Station Data step. The
Handle MS Sensor Timeout begins its processing by choosing,
based on the value of the input parameter, Reread Precipitation
1 or Reread Precipitation 2. We do not show the details of
either Reread Precipitation step here, but include these steps
only to illustrate that it is possible for the developers of this
process to decide that unusual (and presumably expensive)
measures might be taken under these circumstances to attempt
to extract the desired data directly from the sensor, rather than
from the data stream. If this direct request to the sensor
succeeds then output of this step is annotated with the date and
time and quality flag. If the selected Reread Precipitation (1 or
2) step fails (e.g. because the sensor is inoperative), a Sensor
Down exception is thrown (inside of the Handle MS Sensor
Timeout exception handler itself). The Sensor Down handler
executes the Get Airport step, which attempts to obtain the
desired reading by getting it from a local airport. Here again,
nested exception handling capabilities are used to define the
handling of still further failure. Thus, if the Get Airport step
succeeds, then the resulting datum is annotated with the date
and time, source, and the measured quality attribute. If the Get
Airport step also fails (e.g. because the airport is also unable to
provide the precipitation data), then it must also throw an
exception, which would then be caught by the Put Null
Reading step of the Get Airport exception handler, to produce
as output a null value for P1 (or P2) and a quality attribute
“missing”. A “missing” value will not take place unless all
three exception-handling alternatives have been explored in
sequence.

D. Using the process definition to create the DDG
The above process results in the creation of two data items,

P1 and P2, each of which might have been arrived at in a
number of different ways. Specifically, each of the two
measurements might be arrived at by any of the following
sequences of process steps:

1. Pi arrives in a timely fashion and is recorded.
2. Pi does not arrive in time, a timeout exception is

thrown, Reread Precipitation is executed, and Pi is
obtained.

3. Pi does not arrive in time, a timeout exception is
thrown, Reread Precipitation is executed, Pi still does
not arrive, a Sensor Down exception is thrown, the
Airport Read step is executed, and Pi arrives.

4. Pi does not arrive in time, a timeout exception is
thrown, Reread Precipitation is executed, Pi still does
not arrive, a Sensor Down exception is thrown, the
Airport Read step is executed, Pi does not arrive, an
Airport Data Read Failure exception is thrown, the Put
Null Value step is executed, providing a null value for Pi.

The differences among these four possibilities are important
to subsequent process steps. Accordingly, the current process
specifies that a quality flag, mentioned previously, be attached
to Pi. This quality flag is currently a simple annotation, at this
point having the following values:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

missing - no measured value is available (e.g. because the
sensor is down);
estimated - a measured value is available from another
location (e.g., the airport)
measured – the measured value is available, but it is
unknown whether or not it is within prespecified bounds;

Unfortunately, the current process specifies that Pi is
annotated as measured in the first two cases we have just
enumerated (making it impossible to distinguish between
them), as estimated in the third case (but without documenting
the measurement location), and as missing in the fourth case,
again leaving out all of the details describing what alternatives
had been tried. We note, however, that each of the four
different sequences of process steps can be thought of as a
different trace through the process, illustrating the importance
of annotating each value with process provenance information,
as provided in the DDG.

Examples of the DDGs that represent cases #3 and #4 are
shown in Fig. 8. Note that the boxes in this figure represent
actual data instances, namely the actual data values that are
bound at execution time to the type specifications in the
process definition. Thus, for example, one of the boxes at the
top of Fig. 8 is annotated by sensor1 null @”try1 time”,
indicating that this box represents the actual (null) value that
was delivered at the specific time, “try 1 time”. The adjacent
box likewise represents the specific (null) value that was
delivered at the specific time “try 2 time”.

The ovals in Fig. 8 represent the process step instances that
were the actual producers and consumers of the actual data
items. Thus, there is an oval labeled Get Airport that indicates
that an instance of the Get Airport step was used to generate
the data item in the box shown below this oval. This step
instance represents the instance of Get Airport that was
invoked as the process’s response to the two null readings.
Two arrows from this oval connect it to two boxes,
representing the fact that the values represented by these boxes
were used as inputs to the step represented by that oval. In this
case, the use that is made of these data items is simply to note
that they are both Null, causing the Get Airport step to be
executed to produce this output. Other ovals may make more
substantive use of their inputs in generating their outputs. Thus,
for example, in the left-hand DDG of Fig. 8, the result of the
execution of the instance of the Get Airport step is an actual
value, annotated with date and time information, which is taken
as the final value of Pi. In this case, no actual step is used to
generate that value, and instead the DDG indicates that the
value is produced as a consequence of the parameter binding
operation that occurs as an integral part of the execution of
every step. The fact that this oval does not represent an actual
step is indicated by the use of italics in its annotation. In the
other case, a null reading is obtained, and a null value is then
the final value of P1. Thus such DDGs provide more useful
information about the provenance of the resulting value of P1
than a mere annotation, measured, estimated, or missing.

Although the structures shown in Fig. 8 seem to be large
annotations, they can be represented efficiently as sequences of
pointers to process definition steps, parameter values, and the
actual data item instances. Further, these pointers can be
generated as side effects of the actual execution of the process
represented by the PDG shown in the preceding figures. This

suggests that DDGs might be generated at a modest
incremental cost during execution of the process and
represented relatively efficiently when intermediate datasets
are being stored.

E. The Process Data step: alternative approaches to
processing the data
The second subprocess, Process Data, in the root Sensor

Data Management process, shown in Fig. 5, is described and
elaborated in Fig. 9. This step takes input from sensors and
investigators, as described above, and produces a time-ordered
sequence denoted <dS>, where each dS estimates change in
water storage over the previous time interval. Note that <dS>
(also dS) is a type and that <dS> instances are generated by
each of three different subprocesses of Process Data, namely
RT Periodic Processing, PP Periodic Processing, and Alt
Model Processing. Process Data indicates that these three
subprocesses can be executed in parallel, but whether the
actual executions of these steps overlap in time will depend on
decisions of the agents bound to perform these substeps and,
most importantly, upon the availability of the input data.

RT Periodic Processing produces a <dS> dataset every 24
hours, based on the data that was collected over the proceeding
24 hour period. PP Periodic Processing also produces a
<dS> dataset every 24 hours, but it is for a 24-hour period 30
days before. This subprocess has the advantage of doing
interpolation that uses data obtained both prior and
subsequently to the data in need of interpolation. Alt Model
Processing allows investigators to experiment with alternative
models and time periods. Here we describe each of these
subprocesses in turn. Note that in the DDG, it is important to
know which subprocess was responsible for generating each of
the different <dS> instances and their different individual data
items. As illustrated above, the process definitions provide a
basis for generating DDGs that document these differences.

F. The RT Periodic Processing step: handling of real-
time streaming data
The RT Periodic Processing step is connected to its parent

by an edge annotated with a Kleene +, prescribing that the
Little-JIL interpreter will keep instantiating a new instance of
this child step indefinitely (the decision to terminate iteration is
made by the agent bound to the iterated child step). The agent
for this step is an interval timer that initiates step execution
every 24 hours. The Get RT Datum step specifies the actual
processing of the real-time data and the rate of execution is
determined by the availability of data from the sensors and the
resources required for the processing of that data.

G. The Get RT Datum step: dealing with individual data
items
The Get RT Datum step, shown in Fig. 10, defines the heart

of the Water Budget process, specifying how the real-time data
items are subjected to cleaning. This step retrieves the readings
collected from the sensors as they become available, filters the
readings to ensure each reading is within predefined bounds,
tags each reading to indicate how it was obtained, and appends
readings to corresponding time-ordered sequences. This step is
defined as the sequential execution of its substeps and results

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

in an instance of dS, which has data items of type ET, Q, P,
PAR, VPD and UStar as its components. The set dS is then
appended to the time ordered sequence <dS> as each new set
of data items is processed.

The first and second substeps of Get RT Datum are
relatively straightforward, but each adds further useful
provenance information to data items. The Check Ranges
step takes as input a measurement artifact that was output by a
sensor and determines whether it is beyond preset bounds.
While the details of the range checking are not particularly
difficult or interesting as process features, the specification of
the details of the check are important provenance information
that should be associated with the data item.

Fig. 11 shows the DDG that results from the application of
such a filter. The box labeled Filter Range Data represents
the specific values used in applying the filtering to the data
item, and the oval labeled Check Ranges represents the
application of that step to the value represented by the box
labeled P1, using the values specified by Filter Range Data.
This results in the creation of a new instance that is bound to
the variable P1. Note that this DDG documents the exact
quality criterion that was applied in checking the plausibility of
the resulting data item. If an investigator wanted to experiment
with a different filtering criterion it could be reapplied to the
previous data items available from this provenance
documentation.

Similarly, the Select Values of P step selects one of the
two values P1 and P2 and assigns it as its output artifact,
namely P. This example show that this selection is done by an
“Expert P Selector” type agent. This specification does not
preclude the possibility that the agent might be a human or an
automated agent having expertise in selecting the preferred
value. The choice is relegated to an automated resource
management system, which would presumably use execution
state data as the basis for this decision. This choice would then
be documented in the DDG, as illustrated in Fig. 12. Note that
the range checking of P2 (which would precede Select Values
of P) has been omitted here for brevity. Fig. 12 shows the case
where Sensor 2 had succeeded in delivering a datum on the
first request and where the human agent decided to accept this
value as the final value of P. The figure contains an italicized
annotation indicating that the chosen value was the one
provided by P2, but the actual DDG need only contain the
value. The fact that this value had been provided by P2 would
be inferable by inspecting the two input values to the Select
Values of P step, both of which would be available as nodes
in the DDG.

The comparison of measured and modeled values (like the
comparison of redundant sensors) also provides a form of real-
time quality control and may provide an early warning of a
sensor problem. The essence of the Apply Models step, in the
Get RT Datum step of Fig. 10 is to effect the use of an
empirical formula, called a model, to fill in data readings in
such cases. As noted above, these models have been created by
scientists for the purpose of interpolating values in place of
those that are missing or suspect. The models are designed to
provide replacements for such values, by using other data items
and formulas that are believed to accurately capture the
relations of these data items to the missing or suspect data.
There are generally a number of alternative models that can be

applied in these circumstances and these models are the
subjects of considerable research. The model selected and
applied to a data item is important provenance information that
should be attached to that item. We indicate the way in which
this additional provenance information is generated as part of
the execution of the Apply Models step of this example.

The models themselves are often structured into sets of
models of different types, for example, different types of
regression models (e.g. linear or second-order) or different
probabilistic models. The suitability of a model is then
evaluated by a human, perhaps supported by various statistical
tools. Eventually a model is chosen and then used to create a
data value, which is substituted for the original data value. As
this sort of synergy between humans and tools in the evaluation
and application of models seems to be at the heart of many
scientific activities, it is important to detail it here.

H. The Apply Models step: use of abstraction
The purpose of the Apply Models step is to replace the data

readings obtained from the sensors when the quality attribute
of the reading is either missing or determined to be out of
range (by the Check Ranges step). Although models can be
applied to any number of data items, Fig. 13 shows the
application of models to only two types of data, ET and Q. The
definition of this step illustrates the value of abstraction in
defining processes, since here the Apply A Model step is
simply instantiated once for each type of data requiring the
application of a model. Each Apply A Model substep has a
prerequisite (not shown here) whose purpose is to examine the
incoming data item and determine whether it has a quality
attribute of “missing” or “out of range”. Either attribute causes
the prerequisite to be satisfied and the main body of the step to
be executed.

Also note that the output of this step is a triple of items,
namely the original ET value (ET.original), a replacement ET
value that has been produced by the model that has been
selected (ET.modeled), and an identifier (ETModelID)
indicating which model was used to generate the replacement
value. In fact, the first and third elements of this triple are
redundant with information contained in the DDG, which
provides more precise detail about the way in which ET was
derived. The triple specified here is included as an indication
that such annotations might be derived and included to help
users by providing such information as documentation. Thus,
this step provides the basis for distinguishing among different
data items and different data streams that have been produced
by different applications of different models by different
scientists at different times. Note, in addition, that all three of
the steps are carried out by agents who are required to be of
type “HumanExpert”. Each of the two substeps is defined to
have as “local data” a set of readings that can be used by a
selected model in computing the model-generated output of
this step. Thus it is important that the language used to define
the PDG for this process allows for the possibility of such
“local data”. Further the example illustrates the value of
incorporating scoping semantics into the language that support
specification of how such “local data” can be collected and
held in the defined local scope, presumably in any way that the
model and its agent decides.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

I. The Apply A Model step: synergizing the efforts of
humans and tools and representing a history of human
decision-making
The purpose of this step is to consider iteratively each model

selected from the pool of models available, and then to select
and apply the model that appears to be most effective in
replacing the datum that has been identified for replacement.
The step is comprised of two substeps, executed in sequence.
The step also incorporates an exception handler to deal with
the case in which no model is selected and applied.

The first substep of Apply A Model, Eval Models is shown
in Fig. 14 and is the iterative consideration of the set of
candidate models. Note that the agent for this step is identified
as being of type “Model selector”. Here too, this agent might
be a human or an automated system capable of performing
preliminary evaluations of models. This process does not
mandate either, but allows this to be determined at runtime.

Eval Models iteratively evaluates each model in the
collection of currently available models by first checking the
model’s applicability (represented by the pre-requisite) and
then consulting an expert to evaluate the model and the results
that it gives. Note that Eval Model is to be executed by an
agent of type “human expert”, indicating that human expertise
is required. We do not show the details of this step, but it could
entail the use of statistical tools to evaluate model fit. Although
a human expert here executes Eval Model, some of its
substeps could be executed by automated agents.

The edge leading into Eval Model has a Kleene +
annotation, indicating that this step is to be instantiated as
many times as there are models. Combined with the pre-
requisite, the net effect of this is to instantiate a step for the
consideration of only those models that the step’s agent deems
worthwhile. It is important to note that Eval Models also has
access to a cache of data values collected and stored locally to
this step that can be used to help in deciding the suitability of
each candidate model.

The output of the Eval Models step is a set of pairs, where
each pair consists of a model and the output that it produces.
Once this stream of sets of ordered pairs has been created the
next substep of Apply A Model, Select Best Model,
considers all of these candidate models and selects the one
deemed best. Here a “human expert” is required to perform the
Select Best Model step. This value then becomes a third
component of the ordered triple, (sensordatum.original,
sensordatum.modeled, Model ID), that is the final output of
the Apply A Model step. Again, the first and third elements of
this triple are redundant with the more precise derivation
information contained in the DDG and should be regarded as
documentation intended to be of value to the user.

Fig. 15 provides an example of a DDG that might be
generated from one possible execution of this step. In this case,
it is assumed that three different models (shown as PModel1,
PModel2, and PModel3) are selected from the channel
containing the accesses to all possible P Models. Each of the
three is subsequently evaluated by the Eval Selected Model
step, using Cached Data, the set of data instances that has
been cached by the process, thereby producing three instances
of Sensor Datum (namely Sensor Datum 1, Sensor Datum
2, and Sensor Datum 3). These three instances of Sensor

Datum, and the three models that produced them, are then
input to Select Best Model, which then produces as output
the ordered triple (sensordatum.original,
sensordatum.modeled, Model ID). The original sensor
datum, an input parameter to this step, is now referred to as
sensordatum.original.

The two DDGs described in Fig. 12 and Fig. 15 are both
necessary to provide the complete provenance of
SensorDatum.modeled. The DDG in Fig. 15 represents the
evolution of SensorDatum.modeled from the datum that was
selected as the result of the process depicted in Fig. 14. The
combined DDG is shown in Fig. 16. This DDG accurately
documents that it is this P value that is bound as the actual
datum taken as the subject for consideration for replacement by
the alternative models.

After Apply Models has executed, the new values that have
been obtained from all of the sensors, or their modeled values,
are appended to the end of the data streams that are being
accumulated by the RT Periodic Processing step (Fig. 9).
Each datum in the data stream is shown as a packet that
contains information that is redundant with the DDG. This
redundant information should be thought of as documentation
intended to be helpful to the user. In this example, the packet
consists of SensorDatum.original along with appropriate
information about its provenance, such as the date and time of
the original measurement, the sensordatum.modeled, the
model used to generate sensordatum.modeled, and the date
and time that model was applied.

This stream of ordered triples is the real-time output of this
process and could be made available in real time. We assume
that such data streams also will be labeled by a unique process
identifier and the DDG representing the precise trace through
the process, and with further annotations indicating the places,
dates, and times at which the data streams were collected. As
this information consists largely of pointers into the DDG,
most of the cost of carrying this provenance information lies in
the cost of the DDG itself, which should be relatively
efficiently represented as a collection of pointers.

J. The PP Periodic Processing and Alt Model
Processing steps: abstraction supporting process reuse
Recall from the Process Data step shown in Fig. 9 that the

real-time data stream is not the only data stream that is
produced by this process. The Water Budget process calls for
automatic post-processing of newly collected data streams
exactly 30 days later. As noted above, the correction of missing
or out-of-bounds data during real-time processing must rely
only upon retrospective data, and we have shown that this can
be done by allowing for the caching of such data locally in the
Apply A Model step. But post-processing after 30 days allows
data gathered both before and after the selected data item to be
taken into consideration. This post-processing is done in the
PP Periodic Processing substep of Process Data. In
addition, consideration of further models is made at irregular
intervals, resulting in the creation of new models and their
application to various historical data streams. The way this is
done is defined in the Alt Model Processing substep of
Process Data. Note that the Process Data definition
indicates that PP Periodic Processing is invoked every 24
hours, using an interval timer mechanism that works

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

analogously to the way in which a timer is used to trigger
processing in the RT Periodic Processing step.

The Process PP Datum step (Fig. 17) consists of the
reinstantiation of the step structure that supported the Process
RT Datum step, described previously. In particular, Process
PP Datum consists of a first substep, Get Last Month Data,
followed sequentially by Get RT Datum. The purpose of Get
Last Month Data is to identify the data stream produced
exactly 30 days earlier and to output the information needed to
access that stream. That having been done, the stream is then
taken as the inputs to this new instantiation of Get RT Datum.
The process steps required to carry out Process PP Datum
are then the same as those needed to carry out Process RT
Datum, and differ only in that 1) the data streams to be
processed are now historical rather than streaming in real-time,
and 2) some additional models, namely models that make use
of prospective data, as well as retrospective data, can now be
used to deal with missing or out of bounds data items. Thus
some different channels are indicated as the inputs to the
Process RT Datum step, but the step structure used to
process them is identical.

To illustrate this, Fig. 18 depicts the DDG that would result
from the execution of the Process PP Datum step, where for
simplicity we assume that only one additional model is selected
for application to the sensor datum. Note, in particular, that the
sensor datum under consideration is actually the triple that has
resulted from the execution of the Get RT Datum step shown
in Fig. 10. . Thus, Fig. 18 shows that a fourth instance of
sensor datum, Sensor Datum 4, has been produced by
consideration of an additional model, and that this is now
compared with SensorDatum.modeled, which had been the
result of the prior comparison of three modeled data items and
the original sensor reading. The result shown is the next
instance of SensorDatum.modeled (indicated by italics),
which is now made available for possible future consideration.
Note that subsequent comparisons of SensorDatum.modeled
with the results of other models would be represented as
successive elaborations of the DDG shown in Fig. 18.

The reused subprocess steps of Get RT Datum must be
designed to be applicable in both the RT Periodic Processing
and PP Periodic Processing contexts. For example, the data
measurements that are cached for use in the Apply A Model
steps of Apply Models must include prospective data
(acquired by some sort of look-ahead) in the PP Periodic
Processing context, whereas they will have only retrospective
data in the RT Periodic Processing context.

The reuse of modular capabilities is an inherent abstraction
capability in programming languages that usually requires
careful design choices. Thus, it should not be a surprise that the
reuse of process definitions in a process language also requires
some care.

Finally, note that the Alt Model Processing step is defined
in a manner that is analogous to the definition of the PP
Periodic Processing step. This step defines the way in which
scientists can recall historical datasets and apply new models to
them, thus offering new ways to replace missing or out of
bounds data. The step is to be executed at any time that a
scientist wishes to reanalyze a particular dataset. In all other
ways, however, this process is virtually identical to the PP

Periodic Processing step. Thus, in particular, the first substep
of Alt Model Processing is a step whose only role is to
identify historical datasets to be reanalyzed and to pass the
information needed to access them as handles to channels. The
sequentially executed next step is again Get RT Datum.

V. EVALUATION
The Water Budget example has provided a vehicle for

demonstrating how an analytic web provides provenance
information needed by both producers and consumers of
scientific datasets. More specifically this example has
demonstrated that a broad range of semantic capabilities,
including hierarchical decomposition, abstraction, concurrency,
exception management, and complex data handling facilities,
are needed to define modern scientific processes. We now
present a more detailed analysis of what the need for these
capabilities tells us about desiderata for the semantic features
of languages such as Little-JIL that are to be used as the basis
for defining an analytic web’s PDG.

A. Strengths and weaknesses of Little-JIL
Little-JIL is not simply a vehicle for supporting hierarchical

decomposition (as is the case in many other process
languages), but is better thought of as a vehicle for
implementing abstraction. The difference is that a Little-JIL
step is accurately thought of as the definition of an abstract
concept, capable of being made a concrete specification by its
bindings to concrete artifacts and placement in a specific
execution context. A step defines a scope, and thus establishes
a context. One key mechanism for context definition is the
binding of artifacts as a step’s inputs and outputs. This
capability is tantamount to a capability for passing arguments
to a procedure. By varying the argument stream to and from a
step, the step is made to perform somewhat differently in
different contexts. Steps also provide different contexts by
providing different exception handling capabilities. Every step
may define a set of handlers for the various types of exceptions
that may be raised in its scope. Different instantiations of a step
may offer different exception handlers, thereby establishing
different execution contexts.

The Water Budget example made interesting use of facilities
for abstraction, for example, by its reuse of the Get RT Datum
step. Reuse of this step emphasized the strong similarities in
the ways in which RT Periodic Processing, PP Periodic
Processing and Alt Model Processing perform their work.
This reuse shortens the process definitions and clarifies the
data consumer’s understanding of these processes. Another
application of this concept was seen in the Apply Models step,
which consisted of two different instances of the Apply A
Model step. This step definition emphasized the iterative
nature of the step, yet left little doubt about the differences
between the two invocations of its substeps, namely the
differences in their arguments.

Some of the complexity in the Water Budget process is
attributable to the way in which different activities occur in
parallel. Data streams from various sensors are processed in
parallel, and the data must be processed in real-time as data are
gathered and transmitted concurrently. Simultaneously, the
much slower activity of generating new models and evaluating

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

both new and existing models occurs. A parallel step is
effective in defining what activities are executed concurrently
with each other. Channels were effective in defining data
streams between steps that were distant from each other in the
architecture of the Water Budget process. Channels also
supported synchronization. For example, the parallelism
defined by the top step in Sensor Data Management clearly
depicted the way in which sensor data was generated and
processed.

In this example channel semantics were limited to FIFO
queues and parameters passed by copy. But this process
requires more semantic power. For example, the Eval Model
step accesses a more or less static collection of models but it
must retrieve a new copy at each access in case any of the
existing models have been modified or new models have been
added. Transaction-like semantics might better support the
implementation of a step of this kind. Transactions would also
support the manipulation of data at different levels of
granularity. For example Get RT Datum produces a single
result, but is used by PP Periodic Processing to produce a
dataset containing all of the results from a 24-hour period.
Transaction-like semantics could permit Get RT Datum to
release individual results, but allow PP Periodic Processing
to control the visibility until a complete dataset has been
constructed.

The exception management facilities in Little-JIL enabled us
to define features of the Water Budget process that contributed
to its reliability and robustness. Thus these features seem
important to include in any language used to define PDGs. For
example, the Get Met Station Data step indicated both how
to identify and how to respond to the lack of needed sensor
readings. Requisites are particularly clear devices for showing
where missing data can be detected, and exception handlers
(such as Handle MS Sensor Timeout) were placed to clearly
indicate where responsibility for responding to such
contingencies was located. This example also showed the
importance of dealing with exceptions that occur during the
handling of exceptions themselves. The nested exception
handling in the Get Met Station Data step provided an
example of this. Such situations also emphasize the importance
of providing facilities for specifying how to continue execution
upon completion of exception handling.

The example also showed the importance of supporting the
late-binding of resources to steps to permit flexible reactions to
contingencies (e.g. by the run-time selection of agents to retry
an execution of a step). For example, in the elaboration of the
Handle MS Sensor Timeout step, the process defined the
need to execute a step to obtain a data value. The required
agent was specified only as an agent having the capability to
provide a precipitation reading. The choice of the agent was
left to a Resource Manager having a repository of agents, some
of which offered this capability. The indicated facility for
specifying a needed capability, rather than a specific agent,
enables the late-binding of any of a number of possible agents
to this step. It therefore enables a separate Resource Manager
to keep track of the agents that are able to deal with a request at
any given time, and thus supports the real-time selection of one
that is actually able to satisfy the request.

In summary, using Little-JIL to support the specification of
the PDG for this example helped clarify semantics needed in a

language used to define PDGs. Little-JIL offered many
specification language features that seemed quite useful and
effective, but some important deficiencies were also noted.
There is a striking similarity between these needs of the
scientific community and what is generally provided by
modern programming languages. This supports our intuition
that scientific processes bear some strong similarities to
computer software, and thus the challenges of defining them
have strong parallels with the challenges of programming
complex software systems. Thus, it is not surprising to find that
a process language needs to incorporate the salient control
features of modern programming languages. It is, moreover,
not surprising to also find that modern capabilities for dealing
with data, such as typing mechanisms, also seem important to
the precise specification of processes. Indeed, another
weakness of Little-JIL as a language for specifying processes
seems to be its relatively weak support for defining data
objects.

B. DDG Evaluation
The example of the Water Budget process also showed how

DDGs can be built incrementally as the execution of a PDG
proceeds and can be defined as traces through the PDG.
Dataset Derivation Graphs grow as directed acyclic graphs
(DAGs), increasing in depth as PDG execution proceeds;
iteration of processing steps is manifest as additional levels in
the DDG DAG (e.g., Fig. 18 is an elaboration of the leaves of
Fig. 16, which in turn elaborates DDGs shown in earlier
figures). Each iteration of the steps of a PDG creates a new
scope, and such scopes are root nodes in successive DDGs.
This emphasizes the role of these steps in establishing scopes,
and the DDG clearly illustrates this role.

DDGs that are derived from the executions of lengthy
processes seem large and cumbersome. But it is the pictorial
depiction of an entire DDG that is large. Their internal
representations are typical tree-like structures that are
amenable to terse internal representation. In addition, the
depiction of the entire DDG is not likely to be of interest in
most cases; simplified versions would probably suffice in
many cases. Tools for allowing viewers of DDGs to tailor their
views through devices such as elision seem necessary.

Clear depiction of the features of the DDG of greatest
interest to dataset producers and consumers may prove to be a
challenge. Long and complex process executions will yield
DDGs whose depictions are indeed large and potentially
confusing. Fig. 18 may seem daunting, certainly at first. But
DDGs will be produced automatically from executing PDGs
and have the virtues of being precise and accurate. We do
worry about their size, as it may be considerable in the case of
a long or elaborate process. Especially in view of this, we are
also concerned about clarity. Thus efficient internal
representation of DDGs, and clear DDG presentation is are an
important focus of future research.

VI. RELATED WORK
There are numerous other scientific workflow projects, many

of which have been presented at meetings, such as [14; 38; 41].
Most of these projects (e.g. Kepler [30; 3; 2], Taverna [45; 33],
and JOpera [35; 28]) base their specification of process flow

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

upon the use of various kinds of DFGs (e.g., Fig. 1). For
example, Kepler is based upon Ptolemy II [18; 6; 36], which
uses a powerful and flexible DFG structure to specify how
datasets can be moved between processing capabilities. Kepler
integrates a broad range of support tools that help with such
key activities as specification, execution, and visualization of
scientific data processes. It seems particularly effective in
supporting the processing of streaming data, such as data
produced by sensors and intended for real-time processing.
Chimera [26; 25; 16] was one of the earliest scientific
workflow systems. It emphasized the use of pictorial
visualizations to represent scientific processes. Chimera’s
pictorial representations depicted a form of a DFG. Taverna
[45; 33] is a more recent system that seems to focus on
supporting the integration of web services, particularly for the
creation of bioinformatics applications. Taverna’s integration
mechanism is a workflow notation that is also based upon a
DFG formalism. More recently JOpera [35; 28] has suggested
the use of XML to specify scientific workflows as plugins that
could be integrated using Eclipse. JOpera workflows also are
based upon the use of a DFG formalism to represent scientific
processes. Teuta [22; 23] represents scientific processes
through UML diagrams that offer some features, such as
limited forms of concurrency, that go beyond the semantic
features of a basic DFG.

We believe that the reliance of all of these other scientific
workflow systems upon the DFG as their basis for the
specification of processes is a major drawback. The DFG-
based systems described above, for example, make it very
difficult to support specification of any but the most
straightforward kinds of looping. The example presented in this
paper indicates some ways in which complex iterative control
is essential to scientific inquiry. Moreover DFG-based process
definitions complicate the clear depiction of such semantic
features as exceptions and abstraction, whose importance was
also demonstrated by the example in this paper. Fig. 1 is a
DFG of the Water Budget process but it is not a satisfactory
PDG as it lacks the ability to specify the details of all the
different cases that can arise during execution of a scientific
process. On the other hand, a DFG can often provide an
intuitive depiction of how information flows through a system.
Thus, a DFG might be useful as a complementary
representation to the PDG for defining an initial, high-level
view of the process. But difficulties arise in trying to maintain
consistency between the PDG and DFG, especially at lower
levels of hierarchical elaboration, where typical data- or
control-flow-oriented graphs have been found to be clumsy for
representing more detailed flow. Indeed, we have developed a
tool that translates Little-JIL-based PDGs into internal
representations that are essentially equivalent to DFGs. Our
experimentation with this tool has shown that even modest
amounts of use of concurrency and exception handling can
cause the number of nodes in the generated DFG to be
hundreds or thousands of times as large as the number of steps
in the original PDG.

There is also a substantial amount of work aimed at
supporting the documentation of the provenance of scientific
datasets. Many of the approaches to provenance documentation

are summarized in [39; 40]. Indeed, these approaches have
been compared to each other more formally in [31]. These
approaches seem to fall generally into two categories. In one
approach (e.g. [8; 29; 1] each data artifact generated by
execution of a scientific process is annotated with detailed
information about the tool or system used to create the artifact,
along with precise specification of the input artifacts used, and
the output artifacts created. Each such annotation is then stored
in a database. The complete documentation of the provenance
of an artifact can then be obtained by recursively querying the
database for the annotations that describe the activities that
produced as outputs the artifacts used as inputs to the query.
The second approach entails building a derivation graph on the
fly as execution of the scientific process proceeds (e.g., [25]
and Kepler [4]) .We note that these two approaches are
essentially equivalent to each other. Both collect provenance
information by documenting the execution trace that has led to
the creation of the data artifact being documented. In the
former, the provenance structure is stored implicitly and is
created upon demand by database queries. In the latter, the
derivation structure is built incrementally during execution.

Our own approach falls into the latter category, entailing the
on-the-fly construction of a derivation structure, namely the
DDG. What distinguishes our work from the prior efforts is
that our DDG depicts the progress of execution through our
PDG, a process definition structure that can define and depict
more complex semantic structures such as concurrency,
exception handling, non-trivial iteration, and abstraction. Our
DDGs offer depictions of how these semantic features are used
to contribute to the development of data artifacts. Thus, for
example, artifacts produced on different iterations through a
given activity are shown as the roots of distinctly different
subgraphs of a DDG in which the context of each activity
execution is provided by the DDG. Our work is strongly
reminiscent of earlier work on the Odin project [12] that
documented the ways in which collections of software tools
were applied to produce software products. As in the case of
the work described herein, Odin maintained two coordinated
structures, a type structure, showing which types of software
objects can be generated through the applications of which
software tools, and an instance structure that recorded the
specific software artifacts generated by a specific sequence of
applications of tools.

The Odin Project was aimed at supporting the clear and
precise documentation of how various software artifacts
resulted from somewhat different applications of somewhat
different versions of various tools. It could use that
documentation to make smart decisions about what data to
store and what data to re-derive, as well as to determine when
to automatically do the derivation based on desired outputs. It
thus extended earlier work on software configuration
management (SCM), such as Make [24] and SCCS [37]. It
seems significant, therefore, to note that fundamental problems
in documenting scientific data artifact provenance bear a
striking resemblance to fundamental problems in SCM [21]. In
both cases there is a need to document and communicate a
clear and precise understanding of how artifacts of interest

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

have come into existence. In both cases, the derivation history
may be quite complex, and must be maintained despite such
complications as changes in versions of tools, reworking of
artifacts, concurrent activities by diverse agents, etc. Thus, it is
not surprising that the solution approach suggested in this
paper is strongly reminiscent of approaches taken in early work
in SCM. Indeed, we note that other recent work in scientific
data provenance has also started to recognize the problem of
documenting provenance in situations where the scientific
process is evolving [4; 9] and we suspect that future work in
the area of scientific data provenance documentation is likely
to follow closely the progress of the SCM field.

VII. FUTURE WORK
We believe that the semantic features in Little-JIL present a

useful starting point for considering the features that should be
incorporated into languages that are used as the basis for
defining the PDG, but we have also noted a number of
shortcomings. Further investigation of the essential
requirements for the semantics of a PDG is needed. Specific
details of DDGs also require further evaluation. For example,
we need to evaluate various internal representations of DDGs
to determine how to store them efficiently while still
supporting efficient creation of needed visual representations.
Moreover, datasets represented by the nodes of the DDG might
be best regenerated from scratch or they could be cached to
expedite generation of subsequent datasets. Specific strategies
for determining when and what to cache should be the subject
of future research. While DDGs can be used as the basis for the
creation and attachment of process metadata to datasets, further
research is needed to determine how this is done best. Metadata
standards such as EML are starting to appear and process
provenance metadata might be most usefully seen as an
augmentation of standard annotations of this sort.

The value of an analytic web will be greatly enhanced by the
availability of a tool set that supports such capabilities as the
creation of the PDG, the execution of the PDG, the automatic
creation of the DDG, viewing and querying these graph
structures, and reasoning about the soundness of the scientific
processes defined. We have begun the creation of such a
prototype toolset, called SciWalker Our existing prototype
provides weak and preliminary support for dataset producers,
and virtually no support for dataset consumers. Future work
will integrate our existing Little-JIL language support into
SciWalker and will capture dataset products of Little-JIL
execution to support DDG creation and management.
Extensive work on the development and evaluation of user
interfaces to these tools, particularly emphasizing the sorts of
visual depictions of the PDG and DDG, is clearly required as
well.

Of particular interest is the possibility of using PDGs as
vehicles for integrating other systems that support scientific
workflow. Our view is that the basis of most of these systems
upon a DFG model of such processes is severely limiting, and
that the effective representation of such processes requires
more expressive semantic features, such as those supported by
the PDG presented here. But we also note that our concept of a
PDG supports the idea that PDG steps can be performed by

different agents, either human or automated. We suggest that
existing scientific workflow systems, such as Kepler, might be
used to define lower level scientific processes (e.g., those not
entailing complex iteration or exception management), and that
those process fragments might then be considered to be the
agents responsible for performing PDG steps. Such an
approach could make good use of the better developed
performance features of established systems such as Kepler
and the needed semantic features offered by PDGs.

We also propose to add an important new dimension of
support for dataset consumers by integrating powerful
analyzers into SciWalker. One form of analysis that seems
particularly important to dataset consumers is finite-state
verification, which is capable of examining a PDG in order to
determine whether or not it is possible to execute inappropriate
sequences of functional capabilities [5; 17; 13]. For example,
faulty scientific inferences can result from the application by
dataset consumers of certain types of interpolation models to
datasets that already had been smoothed in certain ways by the
dataset producer. This inappropriate sequence of events may
occur only for certain combinations of executions of the
producer’s process with the consumer’s process. Such potential
combinations can be detected by finite-state analysis of PDGs
representing both processes. We suggest that it is important to
investigate how best to integrate such analysis capabilities into
a toolkit such as SciWalker

Finally, we believe that the best way to make the progress
needed in developing the ideas just outlined is to continue to
create analytic webs to represent scientific processes of various
kinds. Our work with ecological processes is encouraging, yet
preliminary. We hope that there will be much more work of
this sort, not just in ecology, but also in the representation of
processes in a wide range of other sciences. This work should
shed important light on the nature of languages needed to
represent such processes, and tools needed to make them
accessible to working scientists.

VIII. ACKNOWLEDGEMENTS
We are grateful to many colleagues who supported this work

and contributed key ideas. In particular, we wish to thank Ed
Riseman, Al Hanson, David Jensen, David Foster, Julian
Hadley, Paul Kuzeja, Howard Schultz, Bert Rawert, George
Avrunin, and Mohammed Raunak for their advice, support,
encouragement, and many stimulating conversations.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

References
[1] A. Aiken, J. Chen, M. Stonebraker, A. Woodruff, “Tioga-2: A Direct

Manipulation Database Visualization Environment”. Intl. Conf. on Data
Engineering, 1996.

[2] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, S. Mock,
system demonstration, “Kepler: An Extensible System for Design and
Execution of Scientific Workflows”, 16th Intl. Conf. on Scientific and
Statistical Database Management, 2004.

[3] I. Altintas, A. Birnbaum, K. Baldridge, W. Sudholt, M. Miller, C.
Amoreira, Y. Potier, B. Ludäscher. “A Framework for the Design and
Reuse of Grid Workflows”. Intl. Workshop on Scientific Applications
on Grid Computing , Springer LNCS 3458, 2005.

[4] I. Altintas, O. Barney, and E. Jaeger-Frank. “Provenance collection
support in the Kepler Scientific Workflow System”. International
Provenance and Annotation Workshop, Springer LNCS, Provenance
and Annotation of Data, 4145: 118-132, 2006

[5] G.S. Avrunin, J.C. Corbett, and M.B. Dwyer. “Benchmarking Finite-
State Verifiers”, Intl. Journal on Software Tools for Technology
Transfer, 2 (4), 317-320, 2000.

[6] P. Baldwin, S. Kohli, E.A. Lee, X. Liu, and Y. Zhao. “Modeling of
Sensor Nets in Ptolemy II. Information Processing in Sensor Networks”,
359-368, 2004.

[7] E. R. Boose, A. M. Ellison, L. J. Osterweil, L.A. Clarke, R.
Podorozhny, J. L. Hadley, A. Wise, D. R. Foster. “Ensuring Reliable
Datasets for Environmental Models and Forecasts”, Ecological
Informatics, , Vol. 2, No. 3, 2007, Elsevier, pp. 237-247.

[8] P. Buneman, S. Khanna, and W.C. Tan. “Why and Where: A
Characterization of Data Provenance”. J. Van den Bussche and V.
Vianu, editors, Intl. Conf. on Database Theory, pp. 316-330. Springer,
LNCS 1973, 2001.

[9] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and H. Vo.
“Managing the Evolution of Dataflows with VisTrails”. IEEE
Workshop on Workflow and Data Flow for Scientific Applications.

[10] A. G. Cass, B.S. Lerner, E. K. McCall, L. J. Osterweil, S. M. Sutton, Jr.,
Alexander Wise. “Little-JIL/Juliette: A Process Definition Language
and Interpreter”. 22nd Intl. Conf. on Software Engineering, Limerick,
Ireland, pp. 754-757, June 2000.

[11] http://cleaner.ncsa.uiuc.edu/home/
[12] G.M. Clemm, L.J. Osterweil. "A Mechanism for Environment

Integration." ACM Transactions on Programming Languages and
Systems (1990) 12(1): 1-25.

[13] J.M. Cobleigh, L.A. Clarke, L.J. Osterweil. “Verifying Properties of
Process Definitions”. ACM SIGSOFT Intl. Symp. on SW Testing &
Analysis. Portland, OR: ACM Press, 2000:96-101.

[14] B.F Cooper, R.S Barga. “Report on SciFlow 2006: IEEE Intl.
Workshop on Workflow and Data Flow for Scientific Applications”.
SIGMOD Record, Volume 35, Number 3, p.54-56 (2006)

[15] http://www.cuahsi.org/
[16] E. Deelman, J. Blythe, Y. Gil, C. Kesselman. “Workflow Management

in GriPhyN”. 14th Intl. Conf. on Scientific and Statistical Database
Management, J. Nabrzyski, J. Schopf, J. Weglarz editors, Kluwer, 2003.

[17] M.B. Dwyer, L.A. Clarke, J.M. Cobleigh, G. Naumovich. “Flow
Analysis for Verifying Properties of Concurrent Software Systems”.
ACM Trans. on Software Engineering and Methodology
2004;13(4):359-430.

[18] S.A. Edwards, E.A. Lee. “The Semantics and Execution of a
Synchronous Block-Diagram Language”. Science of Computer
Programming, Vol. 48, no. 1, July 2003, pp. 21-42.

[19] A. M. Ellison, L. J. Osterweil, J. L. Hadley, A. Wise, E. Boose, L. A.
Clarke, D. R. Foster, A. Hanson, D. Jensen, P. Kuzeja, E. Riseman, H.
Schultz. “Analytic Webs Support the Synthesis of Ecological Data
Sets”. Ecology V. 87, No. 6, pp. 1345-1358, June 2006.

[20] http://knb.ecoinformatics.org/software/eml/
[21] J. Estublier, D. Leblang, A. Van der Hoek, R. Conradi, G. Clemm, W.

Tichy, D. Wiborg-Weber. “Impact of Software Engineering Research
on the Practice of Software Configuration Management”, ACM Trans.
on Software Engineering and Methodology, v. 14, 4 (2005) pp. 383-430.

[22] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. Seragiotto, and H.
Truong. “ASKALON: A Tool Set for Cluster and Grid Computing”.
Concurrency and Computation: Practice and Experience, 17(2-4):143-
169, 2005.

[23] T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin, M.
Siddiqui, H.-L. Truong, A. Villazon, M. Wieczorek. “ASKALON: A
Grid Application Development and Computing Environment”. 6th
IEEE/ACM Intl. Workshop on Grid Computing, November 2005.

[24] S.I. Feldman. "Make- a Program for Maintaining Computer Programs."
Software - Practice and Experience. (1979) 9(4): 255-265.

[25] I.T. Foster, J.-S. Voeckler, M. Wilde, Y. Zhao. “Chimera: A Virtual
Data System for Representing, Querying, and Automating Data
Derivation”. 14th Intl. Conf. on Scientific and Statistical Database
Management, 2002.

[26] I. T. Foster, J.-S. Vöckler, M. Wilde, Y. Zhao, “The Virtual Data Grid:
A New Model and Architecture for Data-Intensive Collaboration”.
Conf. on Innovative Data Systems Research, 2003.

[27] http://harvardforest.fas.harvard.edu/neon/neon.html
[28] T. Heinis, C. Pautasso, G. Alonso. “Mirroring Resources or Mapping

Requests: Implementing WS-RF for Grid Workflows”. pp. 497-504.
[29] D.P. Lanter, “Design of a Lineage-based Meta-data Base for GIS”,

Cartography and Geographic Information Systems, 18(4) pp. 255-261,
1991

[30] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M.
Jones, E. Lee, J. Tao, Y. Zhao, “Scientific Workflow Management and
the Kepler System”, Concurrency and Computation: Practice &
Experience, 18(10), pp. 1039-1065, 2006.

[31] L. Moreau, B. Ludäscher, I. Altintas, R.S. Barga, S. Bowers, S.
Callahan, B. Clifford, S. Cohen, S. Cohen-Boulakia, S. Davidson, E.
Deelman, L. Digiampietri, I. Foster, J. Freire, J. Frew, J. Futrelle, T.
Gibson, Y. Gil, C. Goble, J. Golbeck, P. Groth, D.A. Holland, S. Jiang,
J. Kim, D. Koop, A. Krenek, T. McPhillips, G. Mehta, S. Miles, D.
Metzger, S. Munroe, J. Myers, B. Plale, N. Podhorszki, V. Ratnakar, E.
Santos, C. Scheidegger, K. Schuchardt, M. Seltzer, Y.L. Simmhan, C.
Silva, P. Slaughter, E. Stephan, R. Stevens, D. Turi, H. Vo, M. Wilde, J.
Zhao, Y. Zhao. “The First Provenance Challenge”, Concurrency and
Computation: Practice and Experience, Wiley InterScience , 2007.

[32] http://www.neoninc.org/
[33] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T.

Carver, K. Glover, M. R. Pocock, A. Wipat, P. Li. “Taverna: A Tool for
the Composition and Enactment of Bioinformatics Workflows”.
Bioinformatics Journal 20(17) pp 3045-3054, 2004.

[34] L. J. Osterweil, A. Wise, L.A. Clarke, A. M. Ellison, J. L. Hadley, E.
Boose, D. R. Foster. “Process Technology To Facilitate the Conduct of
Science”. Software Process Workshop, Springer-Verlag Lecture Notes
in Computer Science, Vol. 3840, pp. 403-415, 2005.

[35] C. Pautasso, G. Alonso, “The JOpera visual composition language”.
Journal of Visual Language Computation 16, pp. 119-152 (2005).

[36] http://ptolemy.eecs.berkeley.edu/ptolemyII/
[37] M.J. Rochkind. "The Source Code Control System." IEEE Transactions

on Software Engineering (1975) SE-1: 364-370.
[38] Scientific Applications of Grid Computing: First Intl. Workshop,

Beijing, Springer LNCS3458 (3), pp 119-132, 2004.
[39] Y.L. Simmhan, B. Plale, and D. Gannon. “A Survey of Data

Provenance Techniques”. Technical report 612 , Comp. Sci. Dept.,
Indiana University, 2005

[40] Y.L. Simmhan, B. Plale, D. Gannon, “A Survey of Data Provenance in
e-Science”. SIGMOD Rec. 34(3) pp. 31-36, 2005.

[41] 16th Intl. Conf. on Scientific and Statistical Database Management,
2004.

[42] http://www4.nas.edu/webcr.nsf/MeetingDisplay1/WSTB-U-05-
0A?OpenDocument&ExpandSection=1

[43] A. Wise, A. G. Cass, B. S. Lerner, E. K. McCall, L. J. Osterweil, S. M.
Sutton, Jr. “Using Little-JIL to Coordinate Agents in Software
Engineering” Automated Software Engineering Conf. 2000, 155-163,
2000.

[44] A. Wise. “Little-JIL 1.5 Language Report”. Computer Science, U. of
Massachusetts, Amherst, October 2006. (UM-CS-2006-51)

[45] K. Wolstencroft, T. Oinn, C. Goble, J. Ferris, C. Wroe, P. Lord, K.
Glover, R. Stevens. “Panoply of Utilities in Taverna”, in Proc E-Science
2005, 1st IEEE Intl Conf on e-Science and Grid Technologies, 2005

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

15

Fig. 4. A Little-JIL step icon

 Fig. 1. A data flow graph of the water budget process. Each processing loop
(real-time, retrospective, and alternative processing as well as model
maintenance) is represented in a different color, with each edge colored by the
same color as the node it emanates from.)

Fig. 2. An example of a Dataset Derivation Graph

Fig. 1. The DDG showing the complete provenance
of Revised Data 3

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

16

Fig. 8: The DDG of the original acquisition of P data

Step: RT Periodic Processing
Comments: the channels sensorStream and modelStream are accessed from an
 enclosing scope
Outputs: seqofdS <dS>;

Fig. 9. The Process Data step

Step: Get RT Datum
Inputs: SetOfET {et}; SetOfQ {q}; SetOfP {p}; SetOfPAR {par};
 SetOfVPD {vpd};SetOfUStar {uStar};ET et; Q q; P p;
 PAR par; VPD vpd; UStar uStar; // taken from the
 channel sensorStream
Outputs: SetOfETout {et}; SetOfQout {q}; SetOfPout {p};
 SetOfPARout {par};SetOfVPDout {vpd};
 SetOfUStarOut {uStar};

Step: Select Values of P
Inputs: PrecReading p1, p2;
Outputs: PrecReading p;

Fig. 10. The Get RT Datum step

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

17

Fig. 12. The DDG representing the selection of P as a choice between

P1 and P2

Fig. 11. The DDG representing the application of
range filtering

Step: Apply Models
Outputs: ModeledETtriple (ET.original, ET.modeled, ETModelID);

ModeledQtriple (Q.original, Q.modeled, QModelID);

Step: Apply A Model
Inputs: EvapReading et;
Outputs: ModeledETtriple (ET.original, ET.modeled, ETModelID);
Comments: the modelStream from Sensor Data Management is used in
 this step

Step: Apply A Model
Inputs: Qreading q;
Outputs: ModeledQtriple (Q.original, Q.modeled, QModelID);
Comments: the channel modelStream from Sensor Data Management is
 used in this step

Fig. 13. The Apply Models step

Step: Apply a Model
Outputs: ModeledDatumTriple modeledDatum =
 new ModeledDatumTriple (sensorDatum.original, sensorDatum.modeled, modelID);
Exceptions caught: “No Model Selected” with “No Model Selected Handler”

Step: Eval Models
Inputs: SensorReading sensorDatum; Cache readingsCache;
Outputs: SetOfModelIDandDatumPairs {datumPairs}; //
 where datumPairs=new DatumPairTuple(ModelID, SensorDatum.modeled);

Step: Select Best Model
Agent: human expert
Inputs: Cache readingsCache; SensorReading sensorDatum.original; SetOfModelIDandDatumPairs
datumPairs //
 where datumPairs=new DatumPairTuple(ModelID, SensorDatum.modeled);
Outputs: ModeledDatumTriple modeledDatumTriple =
 new ModeledDatumTriple(sensorDatum.original, sensorDatum.modeled, modelID);
Exceptions raised: No Model Selected

Step: Eval Model
Inputs: SensorReading sensorDatum; Cache readingsCache; ModelType model;
Outputs: DatumPairTuple = new DatumPairTuple(ModelID, SensorDatum.modeled);

Fig. 14. The Apply a Model step

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

18

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

19

Fig. 15. The DDG representing the selection and application of a

model to generate a modeled value for P

Fig. 16. The DDG formed by combining the DDGs of Fig. 12 and Fig. 15

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

20

Step: Process PP Datum
Outputs: SetOfET {et}; SetOfQ {q}; SetOfP {p}; SetOfPAR {par};
 SetOfVPD {vpd};SetOfUStar {uStar}

Step: Get Last Month Data
FIFO Channel SensorStream sensorStream = new SensorStream();
 // to be populated with"last month" data items

Step: Get RT Datum
Comments: “Augmented model set” is a set of models that also
includes models that can benefit from prospective data, now available,
as well as retrospective data

Fig. 17. The Process PP Datum step

Fig. 18. The DDG showing the results of the execution of Process PP Datum

