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Abstract

The ability to place surface samples with Poisson disk distribution
can benefit a variety of graphics applications. Such a distribution
satisfies the blue noise property, i.e. lack of low frequency noise and
structural bias in the Fourier power spectrum. While many tech-
niques are available for sampling the plane, challenges remain for
sampling arbitrary surfaces. In this paper, we present new meth-
ods for Poisson disk sampling with spectrum analysis on arbitrary
manifold surfaces. Our first contribution is a parallel dart throwing
algorithm that generates high-quality surface samples at interactive
rates. It is flexible and can be extended to adaptive sampling given a
user-specified radius field. Our second contribution is a new method
for analyzing the spectral quality of surface samples. Using the
spectral mesh basis derived from the discrete mesh Laplacian oper-
ator, we extend standard concepts in power spectrum analysis such
as radial means and anisotropy to arbitrary manifold surfaces. This
provides a way to directly evaluate the spectral distribution quality
of surface samples without requiring mesh parameterization. Fi-
nally, we implement our Poisson disk sampling algorithm on the
GPU, and demonstrate practical applications involving interactive
sampling and texturing on arbitrary surfaces.

Keywords:

1 Introduction

Surface sampling can benefit a variety of graphics applications,
such as texturing [Turk 2001; Wei and Levoy 2001], remesh-
ing [Turk 1992; Alliez et al. 2002; Qu and Meyer 2006], subsurface
scattering [Jensen and Buhler 2002], global illumination [Lehti-
nen et al. 2008; Cheslack-Postava et al. 2008], non-photorealistic
rendering [Meier 1996], and point-based rendering [Grossman and
Dally 1998]. These applications often desire surface samples with
a uniform and random distribution. Such a distribution satisfies the
blue noise property, i.e. lack of low frequency noise and structural
bias in the Fourier power spectrum.

A rich literature of work exists for generating blue noise distribu-
tion on the plane. However, it remains difficult to efficiently sample
arbitrary non-planar surfaces. Several existing algorithms distribute
surface samples using point repulsion [Turk 1992], stratified sam-
pling [Nehab and Shilane 2004], dart throwing [Cline et al. 2009],
or pre-computed data sets [Ostromoukhov 2007; Li et al. 2008].
Many of these techniques are either computationally expensive or
require surface parameterization, and hence are not suitable for ap-
plications involving real-time dynamic or deformable objects with
potentially complex shapes.

With respect to spectrum analysis, standard Fourier transform has
been successfully applied in examining the spectral quality of the
sample distribution [Lagae and Dutré 2008]. These methods, how-
ever, are only available for planar sampling, and are not yet appli-
cable to sample distributions on arbitrary mesh surfaces.

In this paper we present new methods for Poisson disk sampling
with spectrum analysis on surfaces. Our first contribution is a par-
allel dart throwing algorithm for efficient Poisson disk sampling on
arbitrary manifold surfaces. Dart throwing [Cook 1986] is a clas-
sic method for generating Poisson disk distribution, in which the

Figure 1: A ray traced image showing Poisson disk samples computed us-
ing our algorithm on the dragon model. Our algorithm performs at 180,000
sample points per second on complex models.

samples are randomly located but remain at least a minimum dis-
tance r away from each other. Although it is only one way of blue
noise sampling, it exhibits excellent distribution quality, while be-
ing simple and amenable for acceleration. For planar sampling,
efficient dart throwing can be achieved using a repertoire of accel-
eration [Jones 2006; Dunbar and Humphreys 2006; White et al.
2007] and parallelization [Wei 2008] techniques. For surface sam-
pling, [Cline et al. 2009] introduces an optimized dart throwing al-
gorithm, but it requires sequential computation. We present the first
data-parallel algorithm for Poisson disk sampling on surfaces. Our
main idea is to sample the surface into a dense point cloud, and
then draw Poisson disk samples from within the set. To account for
geodesic distance, we propose a fast approximation that is easy to
compute and accurate for close-by sample points.

Our second contribution is a new method for analyzing the spectral
distribution quality of surface samples. In planar sampling, the dis-
tribution quality is typically measured in terms of the radial means
and anisotropy of the Fourier power spectrum [Lagae and Dutré
2008]. We extend these concepts to arbitrary manifold surfaces by
employing spectral mesh basis functions, derived as the eigenfunc-
tions of the discrete mesh Laplacian operator [Levy 2006]. These
functions define a Fourier-style basis set that exists on the mesh
surface, and hence can be used to evaluate the power spectrum of
samples distributed over the mesh. We show that regardless of the
surface shape and topology, the ideal radial means and anisotropy of
the power spectrum are consistent with well-known results obtained
in planar sampling. Because the spectral mesh basis obeys surface
geodesic distance and does not require any mesh parametrization,
it provides a convenient way to study and compare the quality of
different surface sampling algorithms.

Finally, we present an implementation of our sampling algorithm
on modern GPUs. Our implementation achieves 180,000 samples
computed per second using approximated geodesic distance. This
is close to an order of magnitude faster than the state of the art
in [Cline et al. 2009]. Since we represent the surface as a large
point cloud, our algorithm is flexible with respect to different sur-
face representations, and its speed is insensitive to the mesh com-
plexity. Therefore our algorithm is suitable for applications involv-
ing dynamically changing or deformable geometry.

2 Background

Blue noise sampling A blue noise distribution refers to a sam-
ple set that has a uniform and unbiased distribution in the spatial



domain as well as absence of low frequency noise and structured
bias in the frequency domain. Due to its desirable spatial and spec-
tral properties, blue noise sampling has been widely employed and
received significant research attention [Lloyd 1982; Cook 1986;
Mitchell 1987; McCool and Fiume 1992; Ostromoukhov et al.
2004; Jones 2006; Dunbar and Humphreys 2006; Kopf et al. 2006;
Ostromoukhov 2007; White et al. 2007; Wei 2008; Fu and Zhou
2008; Balzer et al. 2009; Cline et al. 2009].

Surface sampling Among the numerous techniques for blue
noise sampling, we are particularly interested in surface sampling,
which can benefit a variety of graphics applications in texturing,
rendering, remeshing, and point-based graphics. However, many
existing methods are either slow or rely on pre-computed data sets
(e.g. point hierarchy [Pastor et al. 2003], parameterization [Al-
liez et al. 2002], or dual parameterization [Li et al. 2008]) and are
thus unsuitable for applications that require fast computation on
dynamic/deformable geometry. To overcome these limitations, we
aim to provide a surface sampling method that is both parallel (and
thus can run fast on parallel processors such as the GPU), and also
capable of computing samples on the fly on arbitrary surfaces with-
out parametrization. Our method draws inspirations mainly from
the following prior work: [Nehab and Shilane 2004] for the use of
voxel grid to store samples, [Wei 2008] for parallel dart throwing,
and [Fu and Zhou 2008; Cline et al. 2009] for surface sampling
under geodesic distance metric.

Quality analysis As discussed in [Lagae and Dutré 2008], two
primary methods have been utilized for measuring quality of blue
noise sample distribution on Euclidean planes. One is spatial uni-
formity via the relative radius. and the other is Fourier spectrum
analysis. Given a set of N samples {pk}k=0 to N−1, its Fourier
spectrum F (f) (with f being the frequency) can be computed us-
ing standard Fourier transform. For the purpose of analysis, three
quantities can be derived from the power spectrum: the power spec-
trum/periodogram |F (f)|2, and the corresponding radial mean and
variance/anisotropy. For a sample set to satisfy the blue noise cri-
teria, it must exhibit lack of low frequency noise in the radial mean
and absence of any structural bias, i.e. a low and flat radial vari-
ance/anisotropy. Between these two metrics, the spatial uniformity
ρ can be easily extended to Riemannian surfaces but not the power
spectrum for which the ordinary Fourier basis does not apply. We
address this issue by extending Fourier power spectrum analysis to
arbitrary manifold surfaces using the spectral mesh basis.

Mesh Laplacian and spectral basis The spectral mesh ba-
sis [Karni and Gotsman 2000; Levy 2006], derived from discrete
mesh Laplacian, provides a set of Fourier-style basis functions for
manifold surfaces. As such, classical Fourier analysis can be easily
extended to functions defined over the surface of a mesh. Due to its
flexibility and generality, spectral mesh basis has found many ap-
plications in computer graphics. These applications include mesh
simplification [Karni and Gotsman 2000], remeshing [Dong et al.
2006], morphing [Alexa 2002], and watermarking [Praun et al.
1999]. Our work is the first to show the application of the spec-
tral basis on analyzing surface sample distributions. By using the
spectral basis, we found that the ideal radial means and anisotropy
for general surface sampling are consistent with familiar examples
in planar sampling.

There are several practical issues for efficiently computing such ba-
sis, including the cost of solving a large matrix eigenvalue problem,
and the associated numerical stability problems. [Karni and Gots-
man 2000] reduced the cost of constructing the basis by subdivid-
ing a large input mesh into smaller partitions, thus deriving basis

functions for each partition individually. [Vallet and Lévy 2008] in-
troduced a spectral shift method that is suitable for computing a
large number of basis functions at significantly reduced cost. [Dyer
et al. 2007] investigated the spectral robustness of different mesh
Laplacians with respect to the mesh connectivity and tessellation.

3 Parallel Uniform Sampling on Surfaces

Given a surfaceM, Poisson disk sampling computes a set of sam-
ples S that are randomly distributed on the surface but remain a
minimum distance of r away from each other. Mathematically, this
means d (si, sj) ≥ r, ∀ si, sj ∈ S, where d is a given distance
metric. Brute force dart throwing generates such a sample set by
repeatedly drawing a random point on the surface, checking the
point’s distance to existing samples, and accepting it if no viola-
tion is found. Due to its high computation cost, brute force dart
throwing is only feasible for generating a small set of samples.

We propose a parallel dart throwing algorithm for efficient Poisson
disk sampling on surfaces. In this section we describe our algorithm
for uniform surface sampling, where the radius r is uniform every-
where on the surface. We start with Euclidean distance, then extend
it to geodesic distance using a fast approximation. For simplicity
we only consider triangle mesh surfaces, but other surface types can
be easily incorporated. We do not require mesh parametrization.

Our algorithm builds upon [Wei 2008], which performs parallel dart
throwing in a continuous n-dimensional Euclidean space. Using
3D as an example: their algorithm starts by partitioning the domain
(unit cube) into grid cells (voxel) of size r√
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, thus the diagonal of

each cell is r. Given the minimum distance requirement, each cell
can contain at most one Poisson disk sample. For each cell, the
algorithm makes up to k trials to draw a random point that satis-
fies the minimum distance requirement with existing samples in the
neighboring cells. If all k trials are rejected, the cell is left empty.
To achieve parallelism, they organize cells into subsets called phase
groups. All cells in a phase group are separated by at least a dis-
tance of r from each other, thus can be processed in parallel without
causing conflicts. They process each group sequentially, and use a
random ordering of the groups to reduce bias.

3.1 Sampling with Euclidean Distance

Sample space. To perform sampling on surfaces, assuming Eu-
clidean distance, we can use the same grid cell structure as above.
However, we must make sure that the random points at each cell
are drawn on the mesh surface. One possible solution is to main-
tain a list of triangles that potentially overlap with each cell, then
generate trial points by uniformly sampling the triangles. However,
as the triangles are often bigger than the cell size, many generated
trial points will be outside the cell and hence be discarded.

Our solution is to compute a large set of initial random points Si by
uniformly sampling the entire surface, then partition these points to
grid cells, and finally draw Poisson disk samples from the points
contained in each cell. Thus we have S ⊂ Si. Essentially this
means our sample space is a dense set of points that discretely rep-
resents the surface. As long as Si is sufficiently large and its dis-
tribution is uniform with respect to surface area, no additional bias
will be introduced in the subsequent Poisson disk sampling process.

To generate Si for a triangle mesh, we use a standard algorithm
that repeatedly selects a triangle with probability proportional to
its area, and then uniformly sample the selected triangle using
barycentric coordinates computed as u = 1 −

√
ξ1, v = ξ2

√
ξ1.

Here ξ1, ξ2 ∈ [0, 1] are two uniform random numbers. This step
can be easily parallelized since the computation of the random
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Figure 2: (a) shows that our Poisson disk samples (red) are drawn from
the discrete random points assigned to each cell; (b) shows a 2D example of
3×3 phase groups with random ordering.

points are independent of each other. We store the 3D position,
triangle id, and barycentric coordinates of each point in a single
1D array. Once Si is generated, the triangle mesh is no longer
needed. Thus our algorithm is flexible with respect to different sur-
face types: all we need is a generator that provides uniform random
(i.e. white noise) samples on the surface.

Grid partition. Our next step is to partition the points Si into
grid cells. To do so, we build a 3D grid around the bounding box of
Si, using r√
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as the grid cell size. For each point in Si, we compute

which cell it belongs to, and assign it the cell id. We then use a
parallel global sorting to sort the points according to their cell ids,
so that those belonging to the same cell are stored together in the
resulting array. Note that since the points are initially randomly
generated on the surface, after sorting their spatial positions remain
in random order within each cell.

A cell is valid (non-empty) if there is at least one point assigned to
it; otherwise it is invalid (empty). For each valid cell, we keep track
of its starting point in the sorted Si array, so that we can access
the list of random points assigned to it. Note that because a mesh
surface has 2D topology, only a small percentage of the cells are
valid. Invalid cells do not contain any actual point and should not be
stored or processed. For efficiency, we use a hash table to achieve a
sparse representation of the valid cells, as described later.

Parallel sampling by phase groups. Once the grid partition-
ing is completed, we can then perform sampling in each cell. As
described in [Wei 2008], the key to enabling parallel sampling is
to allow multiple cells, organized as disjoint phase groups, to be
sampled concurrently. Each phase group contains a set of regularly
spaced cells that are sufficiently far apart and thus will not cause
conflicts when processed in parallel. Figure 2(b) shows an exam-
ple of the phase groups. Cells with the same color belong to the
same phase group. A random ordering of groups is used to reduce
sampling bias. It can be shown in 3D space, the minimum number
of phase groups is 3×3×3. Increasing the number of phase groups
will help reduce sampling bias, but it also reduces the number of
cells per phase group, thus decreasing parallelism.

In contrast to sampling in continuous space, we draw samples from
the discrete set of random points assigned to each cell, as shown in
Figure 2(a). Since valid cells are sparse, we need to compact them
to avoid wasting computation on invalid cells. This can be done
using a parallel list compaction [Harris et al. 2007], which collects
the valid cells of each phase group before performing sampling.

Program 1 lists our sampling algorithm, which is similar to [Wei
2008]. For each valid cell in a phase group, we select a trial sample
from its list of random points, and check its conflicts with exist-
ing samples in the neighboring cells. If no conflict is found, the
point is stored as a successful sample. The algorithm then pro-

function hashtable← ParallelUniformSurfaceSampling(Si, r, k)
// Si: a dense set of random points sampled on the surface
// k: maximum number of trials per grid cell
// n: sample space dimensionality
µ← r√

n
// cell size

box← BoundingBox(Si)
grid← d box.max−box.min

µ
en

parallel CalculateCellId(Si, box, µ)
parallel SortPointCloudByCellId(Si)
parallel hashtable← InitializeHashtable(Si)
{p} ← parallel ComputeCompactedPhaseGroups(hashtable, grid)
foreach trial t from 1 to k

foreach phase group p ∈ {p}
parallel foreach cell id c ∈ p
cell← hashtable.search(c)
if Si[cell.first index+ t] 6= Si[cell.first index]

break // no more random points for the cell
s←Si[cell.first index+ t]
conflict← false
foreach neighboring cell id cj

if cellj ← hashtable.search(cj) is not null
if distance(s, cellj .sample) < r
conflict←true
break

if conflict == false
cell.sample← s

parallel end
end

end

Program 1: Pseudo-code for parallel uniform surface sampling under Eu-
clidean distance. Extension for geodesic distance is in Section 3.2.

ceeds to the next phase group. As in [Wei 2008], we perform the k
loop outside the phase groups. Note, however, we do not perform
multi-resolution sampling as suggested in their work. There are two
reasons. One is computation efficiency: multi-resolution sampling
would require re-assigning the initial random points Si to grid cells
at each different resolution level, which can cause significant slow-
down. The other reason is that in practice, applying the k loops
outside the phase groups is already quite effective at eliminating
the bias caused by a fixed grid resolution.

Storing cells using hash table. Since valid cells are sparse,
we use a hash table to store them and their associated Poisson disk
samples. We use the global cell id as a hash key, and a simple mod-
ulo operator as the hash function: hash idx = key % hash table size.
Our hash table size is 3∼4 times the total number of valid cells. To
handle hash collision, we allocate Nb = 5 buckets for each hash
entry. Cells mapped to the same entry are stored sequentially in the
buckets. Figure 3 shows a diagram of the hash table. Each bucket
stores the cell id, a pointer to the beginning of the random point list
assigned to the cell, and a Poisson disk sample if it has any. Due
to sparsity, the total amount of storage for the entire hash table is
quite reasonable (∼50 MB) even for a high resolution grid. While
we could use a more sophisticated parallel hashing algorithm such
as [Alcantara et al. 2009], our simple hash table is easy to imple-
ment and works well in practice.

The hash table is created after the initial random points Si are sorted
into grid cells. To do so, for every point in parallel, we check its
cell id against its previous point. If the two ids are different, the
current point must be the beginning point of a valid cell, therefore
we write its cell id into a bucket at the corresponding hash entry.
Each hash entry has an index that keeps track of the next available
bucket. We use atomic instructions to update the index, ensuring
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Figure 3: Our hash table that stores the samples for valid cells.

that concurrent writes to the same hash entry are serialized.

When the number of cells mapped to the same hash entry exceeds
the number of buckets, we have an overflow situation. Although
our hash table is not guaranteed to be overflow-free, in practice we
almost never encounter such a situation. When it does happen, we
simply discard the cell that cannot be held in the buckets. Alterna-
tively, we let the program re-allocate a larger hash table with more
entries and/or more buckets to resolve this issue.

In order to search a cell in the hash table, we find its entry in the
table using the cell id, and then linearly scan through the buckets to
find a matching id. If no match is found, the cell must be invalid.
Otherwise the search returns as soon as a matching id is found.
Since each cell can contain at most one Poisson disk sample, there
can only be one bucket with the matching id.

3.2 Sampling with Geodesic Distance

For complex shapes with thin features, sampling with the Euclidean
distance metric can lead to undesirable distribution. This is because
it measures the shortest distance in 3D space as opposed to the sur-
face. In this case, we need to account for geodesic distance, for
which we make the following changes to our algorithm.

Geodesic distance approximation. The first change is to re-
place the distance function d with an approximation that quickly
estimates the geodesic distance between two surface points. While
techniques are available for computing accurate geodesic dis-
tance [Sethian 1995; Surazhsky et al. 2005], they are often expen-
sive to compute and difficult to parallelize on millions of points.
Since we represent the surface as a large point cloud, we ideally
want a simple approximation that only relies on the points and not
on the mesh connectivity or parametrization.

Assume two surface points p1, p2 with normals ~n1, ~n2, respec-
tively. The Euclidean distance between the two points is de =
‖p2 − p1‖, and the normalized vector connecting the two points
is ~v = (p2 − p1)/de. We compute c1 = ~n1 · ~v and c2 = ~n2 · ~v,
which are the cosine angles of the two normals with the direction ~v.

We assume that there is a smooth curve on the surface that passes
through the two points, and we estimate the geodesic distance dg as
the length of this curve. However, explicitly constructing this curve
would be non-trivial, since ~n1, ~n2, and ~v may not be co-planar.
Instead, we use a direct integral to estimate dg . Specifically, we take
differential steps along ~v. At each step t, we estimate the cosine
angle c(t) between the curve normal at this point and direction ~v
as: c(t) = (1− t) c1 + t c2, which is simply a linear interpolation
between c1 and c2. Using c(t) we can estimate the differential curve
length that is along the tangent direction (see Fig. 4). Finally we

c1 c2

t t+dt

n1 n2

v

Figure 4: Geodesic distance approximation. The blue line indicates the
differential curve length at integration step t.

integrate the differential curve length and obtain dg as:

dg =

∫ 1

0

de√
1− [(1− t) c1 + t c2]2

dt =
arcsin c1 − arcsin c1

c1 − c2
de

(1)
Note that the integral has an analytic solution, and it is a simple
scaling of the Euclidean distance de. Also note that if c1 = c2, the
formula reduces to de√

1−c21
using L’Hospital’s rule.

When p1, p2 are sampled on a plane, we can easily see that our
formula gives dg = de. Moreover, it can be shown that when p1

and p2 are two points sampled on a sphere, our estimated dg gives
the exact geodesic distance: dg = 2R arcsin de

2R
. Therefore the

formula is correct for these two special cases.

The main advantage of this approximation is that it is fast to com-
pute and can easily fit into existing algorithms. On the other hand,
since it completely ignores the underlying mesh, it is only accurate
when the surface changes smoothly between p1 and p2. Note, how-
ever, we only need to compute the geodesic distance when de < r,
because if de ≥ r the two points cannot possibly have a conflict as
dg ≥ de. Usually we are only interested in cases where r is small,
thus the two points must be quite close-by spatially, and our sur-
faces typically do not contain high-frequency changes at this scale
level. Therefore in practice we found our approximation to work
well in many cases. In Section 5 we discuss the error of this ap-
proximation by comparing it to ground truth geodesic distances.

Number of samples per cell. In the Euclidean setting, we can
safely assume that each grid cell contains at most one sample. How-
ever, this is no longer true for the geodesic setting, as two points in
a cell can have dg > r. We handle this case by explicitly allow-
ing the same cell to appear multiple times in the hash table, so that
each cell instance can store a different sample. This increases the
expected searching time as we must scan through all the available
buckets at a hash entry to find all matching cells. But we found this
additional overhead to be relatively small. In practice, as we rarely
observe any cell that contains more than 2-3 samples, especially
when generating a large number of samples using a small radius.
Therefore we provide an option for the user to enable or disable
multiple samples per cell at run-time, to achieve a better tradeoff
between quality and performance.

Number of trials. When allowing for multiple samples per cell,
we also need to increase the number of trials k in order to increase
the likelihood of finding the additional samples. Ideally k should
be proportional to the surface area contained in the cell. In practice
this can be easily estimated using the number of random points as-
signed to each cell, because the initial random points Si are drawn
uniformly from the surface. Again, when generating a large number
of samples, we found the effect of varying k per cell to be insignif-
icant in most cases. Therefore our implementation leaves this as an
option for the user to adjust at run-time.

Implementation. We implement our parallel surface sampling
algorithms on the GPU using NVIDIA’s CUDA programming lan-
guage. The main steps are listed in Program 1. We make use of
several parallel computation primitives such as global sorting and
list compaction, all of which are available in the CUDPP 1.1 library.
For random number generation, we pre-compute a few sets of ran-
dom numbers on the CPU and upload them as textures on the GPU
to be accessed by our CUDA programs.

We typically generate 1∼4 million initial random sample points,
which are sufficient for computing a few hundred thousand sam-
ples. Our k ranges between 5∼10. We use 3×3×3 phase groups



as it results in more valid cells per phase group, thus beneficial for
high GPU utilization. For conflict checking, we search the 5×5×5
neighborhood around each cell, in an inside-to-outside fashion sim-
ilar to [Wei 2008]. When using the Geodesic distance approxima-
tion, these configurations are the same as the Geodesic distance is
no less than the Euclidean distance. Note that when enabling multi-
ple samples per cell, the conflict checking must include the current
cell itself (in addition to neighbors), as it may contain another sam-
ple that could cause a potential radius conflict within the cell.

4 Spectrum Analysis

Our parallel surface sampling algorithm may introduce bias due to
several factors: the size of the initial random point set Si, the num-
ber of trials k, and the geodesic distance approximation. Conse-
quently we need a way to evaluate the distribution quality of our
samples. While it is possible to parameterize the surface and per-
form spectrum analysis using standard Fourier transform, the re-
sults are often not accurate enough due to the inherent distortion
by surface parameterization. Fortunately, there is a correspondence
of Fourier basis on manifold surfaces called the spectral mesh ba-
sis [Karni and Gotsman 2000], which allows us to perform spec-
trum analysis directly on surfaces without parametrization. Below
we provide a brief review of the basis, explain how to use it to eval-
uate surface sampling bias, and then discuss a few practical issues
and show our results.

Review of spectral mesh basis. Consider a manifold surface
defined by a triangle mesh M: such a mesh consists of a set of
vertices V and their connectivity. We can define a function f that
exists on the mesh by specifying its values at the vertices of the
mesh; then the interior values can be linearly interpolated from the
vertices using the triangle’s barycentric coordinates. IfM has M
vertices, f will be represented with a M -dimensional vector.

The second order derivative of a mesh function can be approx-
imated by a discrete mesh Laplacian L, which locally takes a
weighted average of the differences between the value of f at a
vertex i with its one-ring of neighboring vertices:

(Lf)i =
1

ai

∑
j∈N(i)

wij(fi − fj) (2)

where N(i) is the set of one-ring neighbors of vertex i, wij are
symmetric weights such that wij = wji, and ai is a positive value,
which in our case is the delta area occupied by each vertex. Thus
the sum of ai over all vertices is the total surface area of the mesh.

SinceL is a linear operator, it can be represented as an n×nmatrix,
thus Eq. 2 can be expressed in matrix form as L = A−1Q, where
A is a diagonal matrix whose diagonal elements are the ai, Q is
a symmetric matrix whose diagonal elements are given by Qii =∑
j wij and whose off-diagonal entries are −wij .

It is well-known that the eigenvectors of L define a set of Fourier-
style basis that exists on the mesh, and the associated eigenvalues
capture the frequencies of the basis functions. For example, the
smallest eigenvalue is always 0, and the associated eigenvector is a
constant vector, indicating a zero-frequency (or DC) basis. Larger
eigenvalues correspond to higher-frequency basis.

A number of different choices exist to define the weights wij . We
use the cotangent weighting in [Desbrun et al. 2002], which model
the differential Laplacian on a smooth Riemannian manifold:

wij = (cotαij + cotβij)/2 (3)

whereαij and βij are the two angles opposite to the edge (i, j). Us-
ing the cotangent weights, the derived basis set provides expected

solutions to a few familiar cases. For example, whenM represents
a 2D plane, the result is the real form of 2D Fourier basis; similarly,
whenM is a sphere, the result is real spherical harmonics.

Since the basis set is represented as discrete functions sampled on
the mesh vertices, its robustness may be sensitive to changes in the
mesh connectivity and tessellation. As examined by [Dyer et al.
2007], the cotangent weights provide the best spectral robustness
among several other choices. Of course to obtain high-frequency
basis functions accurately, a fine tessellation of the mesh is still
required in order to avoid aliasing.

Frequency spectrum of surface samples. Computing the
spectral basis for a meshM simply involves constructing the mesh
Laplacian matrix L and finding its eigenvectors. We then define
each eigenvector as a spectral basis function Bk, and the magni-
tude of the associated eigenvalue |λk| as the frequency ωk. In Fig-
ure 5 we show the frequency plots for several models with different
shapes and genuses. In all cases we observe that the squared fre-
quencies ω2

k largely follow a continuous linear curve, and hence
the frequencies ωk follow an inverse quadratic curve. One special
case is the sphere, for which the frequencies exhibit discrete values.
Each discrete frequency at level ` contains 2` + 1 basis functions,
which conforms with the well-known spherical harmonics.

With the basis set, we can easily obtain the frequency spectrum of
a function by projecting it onto each basis Bk. In particular, if the
function is a discrete set of N surface samples, the projection is:

bk =

∫
M

Bk(x)
1

N

N∑
j=1

δ(x− sj) dx =
1

N

N∑
j=1

Bk(sj) (4)

which is simply the average of Bk evaluated at every sample sj .
Note that the basis value at an arbitrary surface sample is interpo-
lated from the triangle vertices. In order to analyze the distribution
of the samples, we compute the power spectrum |bk|2, which is the
square magnitude of |bk|; we then multiply it by the total surface
area of the mesh to normalize the results.

Radial mean and anisotropy. In planar sampling, the distri-
bution property of random samples is typically measured by the ra-
dial mean and anisotropy of the power spectrum [Lagae and Dutré
2008]. It is straightforward to extend these concepts to general sur-
face sampling. To begin with, we partition the entire range of fre-
quencies into a number of equally spaced bands, each with a band-
width of ωB . Thus each band contains frequencies in the range
of [(` − 1)ωB , ` ωB ], where ` is the band index. As observed in
Figure 5, for all models we tested, the frequency plot roughly fol-
lows an inverse quadratic curve. This means that when partitioning
the frequencies to equally spaced bands, each band will contain a
linearly increasing number of basis functions, which is similar to
spherical harmonics. Thus in many cases we can just follow spher-
ical harmonics, assigning 2` + 1 basis functions to each band in
order.

Next, we collect the set of power spectrum values {|bk|2} whose
associated frequencies ωk fall into each band:

{|bk|2}` = {|bk|2, ∀ k such that ωk ∈ [(`− 1)ωB , ` ωB ]} (5)

Finally we compute the average and the relative variance of the val-
ues in the set {|bk|2}`, and the results correspond directly to the ra-
dial mean and anisotropy in standard power spectrum analysis [La-
gae and Dutré 2008]. Figure 5 shows the results computed for sev-
eral models with different sampling algorithms including ours.



Double (|S|=420) Bunny (|S|=450) Cup (|S|=433) Hand (|S|=525) Dragon (|S|=490)

Figure 5: Spectrum analysis for models with different shapes and genuses. Top row shows the frequency plot of the derived basis set; the next three rows
compare the radial means (blue) and anisotropy (green) of samples generated using [Turk 1992], our method, and a reference algorithm (using brute force dart
throwing). |S| indicates the average number of samples used for each test. We use 10 runs for each test.

Implementation details. We implement the computation of
mesh basis in MATLAB. A few practical issues must be considered.
First, the mesh needs to be finely tessellated in order to get accurate
results for high-frequency basis. We typically subdivide our mod-
els to n = 100, 000 vertices. This means the Laplacian matrix L
can be very large. Fortunately since L is extremely sparse, we can
make use of the sparse matrix routines in MATLAB to handle such
large matrices. Note that the tessellation is only needed in order
to verify the sample distribution, while the computation of Poisson
disk samples does not require any mesh subdivision.

Second, L is generally not symmetric, but is similar to a real sym-
metric matrix O = A−

1
2QA−

1
2 . Therefore its eigenvalues can be

solved by computing an svd ofQ, which is more stable. The details
can be found in [Dyer et al. 2007]. In addition, we use the spectral
shift method described in [Vallet and Lévy 2008] for efficient com-
putation of a large number of singular values. This can be easily
implemented via MATLAB’s svds routine.

Finally, in order to perform spectrum analysis on a decent number
of surface samples (at least a few hundred), we need a relatively
large number of basis functions. Essentially the highest frequency
in the basis set determines the number of samples we are able to
analyze successfully: a denser set of samples causes the spectrum
analysis graph to shift to the right, preventing us from observing the
desired pattern. Note that increasing the highest frequency leads to
a quadratic increase in the number of basis functions, therefore sig-
nificantly increasing the computation time. In practice, we usually
compute 10,000 basis functions, thus the highest relative frequency
is roughly 100. We found this sufficient for evaluating 300 ∼ 500
surface samples. The typical computation time for 10,000 basis
functions on an 100,000-vertex model is about 2 hours in all our
tests.

White noise calibration. Due to numerical inaccuracies in the
basis computation, we have observed a slight linear decay in the cal-
culated spectral power, as shown in Figure 6(b). To correct for this
error, we use white noise spectrum to calibrate the decay. Specif-
ically, we use white noise (uniform random) samples generated on
the surface to compute the spectrum, average the results over many
runs, and then plot the results. In theory this should give a straight
line that is roughly constant. In practice we get a slanted line that
declines at a roughly constant rate. We calculate the slope of the
line, and scale the power spectrum by the inverse of the decay to
bring the white noise spectrum back to straight. For most models
we tested, the decay is about -0.2∼-0.25 over 10,000 basis func-
tions. We apply the correction on the power spectrum |bk|2 com-
puted in all our tests.

Verification of our method. We verify our spectrum analy-
sis method by using the plane and sphere as two special cases, for
which the analytic basis functions are known. Figure 6(c) and (d)
show the results comparing our results with the ground truth. In
both cases we generate Poisson disk samples using brute force dart
throwing, and average the results over 10 runs. The radial mean
plots exhibit familiar blue noise patterns in both examples. How-
ever, one important difference is that our anisotropy plot is centered
around the -7.0dB line instead of the -10dB line in the ground truth.
Thus there is a difference by a factor of 2. This difference is consis-
tent throughout our tests. One possible explanation is that our de-
rived mesh basis functions are the real forms of the analytic Fourier
basis/spherical harmonics. This causes the anisotropy, which mea-
sures the variance of the power spectrum, to differ by a factor of 2,
while the radial means remain the same.

Through experiments, we found that our method works well for
general manifold surfaces, regardless of their shape and topology.
Specifically, the ideal radial means and anisotropy using our anal-



(a) Frequency plot (b) White noise calibration (c) Radial means (d) Anisotropy

Figure 6: Verification of our spectrum analysis method using plane and sphere. The ground truth are generated by analytic Fourier basis and spherical
harmonics respectively. We generate∼270 samples for the plane and∼320 samples for the sphere using brute force dart throwing, and average the results over
10 runs. Note that our radial means are consistent with the ground truth, but the anisotropies differ by a factor of 2 (-7dB vs. -10dB).

ysis are consistent with the blue noise patterns found in familiar
examples. These results are shown in Figure 5 on various models.
Therefore we conclude that our method provides an effective way
for evaluating the distribution quality of surface samples.

5 Results and Applications

We test our parallel sampling algorithms on a 2.66 GHz PC with
an NVIDIA 280 GTX graphics card. Our programs make use of
CUDPP 1.1 and are compiled using CUDA 2.3. We typically use
1∼4 million initial random sample points Si; the phase group size
is 3×3×3, and the number of trials k = 5 ∼ 10. Figure 9 shows
examples of Poisson disk samples we generated for several models
using different radii, resulting in different sampling densities.

Performance. Figure 7 plots the performance of our algorithm
tested under both Euclidean and approximated Geodesic distance
metrics for three models and two choices of k. The timing includes
all steps listed in Program 1. The breakdown is: ∼8% for global
sorting, ∼40% for computing compacted phase groups, and ∼50%
for the Poisson sampling loop. The remaining steps take an in-
significant amount of time. The plots show that the performance
remains roughly the same for all models. This shouldn’t be sur-
prising as our algorithm converts all models to a dense point cloud
before sampling, thus the performance is nearly uniform regardless
of the mesh complexity.

We observed that increasing the number of trials k from 5 to 10
generally results in about 10∼15% of drop in performance. On
the other hand, using the approximated geodesic distance vs Eu-
clidean only results in very small performance differences. This
is because 1) our geodesic distance approximation is very fast to
compute; and 2) it results in more sample points being placed on
the surface, therefore increasing the relative performance with re-
spect to the number of samples per second. Overall we are able to
achieve about 180,000 samples per second, which is 5∼10 times
faster than the state of the art such as [Cline et al. 2009].

Efficiency. When the Poisson disk radius is large, there will be
only a small number of valid cells, which leads to poor utilization
of the GPU. Ideally we need a large number of valid cells in order
to achieve high efficiency on the GPU. Thus our algorithm is more
efficient at generating a large number of sample points. In Fig-
ure 8 we show statistics on the number of valid cells and the num-
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Figure 7: Performance of our algorithm on three different models.

ber of Poisson disk samples computed using three different radii.
For these examples, the number of valid cells is sufficiently large
to keep the GPU fully utilized. Note that the number of computed
samples is typically around 1/5 ∼ 1/6 of the number of valid cells,
which is consistent in all our examples.

Quality. We measure the quality of our Poisson disk sampling
using two criteria. First, to verify the density of sample points, we
calculate the radius statistics ρ [Lagae and Dutré 2008] defined as:

ρ =
r/2

(2
√

3 ·N/AM)−1/2
(6)

where r is the Poisson disk radius (note that the typical convention
of the Poisson radius is half of our r), N is the total number of
Poisson disk samples computed, and AM is the surface area of the
mesh. The results are included in Figure 8. In all cases, our ρ
values fall between 0.71∼0.75, which is within the ideal range of
0.65∼0.85 recommended by [Lagae and Dutré 2008].

Second, we apply our proposed spectrum analysis to examine the
radial means and anisotropy. To do so, we tessellate the test models
to about 100,000 vertices, and compute 10,000 spectral mesh basis
functions as described in Section 4, then evaluate the radial means
and anisotropy of the samples’ power spectrum averaged over 10



r=0.0089 r=0.0111 r=0.0139
model #tri area #v.c. #s. r.s. #v.c. #s. r.s. #v.c. #s. r.s.
Bunny 5k 12.37 508k 93k 0.715 354k 61k 0.726 239k 40k 0.736
Dragon 239k 3.99 193k 32k 0.739 128k 21k 0.741 83k 13k 0.743

Lion 306k 3.17 156k 26k 0.741 103k 16k 0.742 67k 11k 0.742
Hand 50k 7.48 338k 58k 0.727 228k 38k 0.736 151k 25k 0.740

Figure 8: From left to right, the table
lists the number of triangles and surface
area for eachtest model, the number of
valid cells (#v.c.) and Poisson disk sam-
ples (#s) computed using our algorithm
with three difference radii (r), and the
corresponding radius statistics (r.s.).

Figure 9: Poisson disk sampling using our algorithm for three models: Dragon, Buddha, and Lion. For each model we generate three density levels, at
approximately 5K, 10K and 50K sample points. The images are generated at high resolution to allow for zoom-in examination.

k = 1, |Si| = 1M ; k = 10, |Si| = 1000 k = 10, |Si| = 1M

Figure 10: Here we show the comparisons of the radial means and
anisotropy when adjusting the parameters k and |Si|. The tests were per-
formed on the Bunny model (refer to Figure 5.

runs. The number of available mesh basis functions allow us to
evaluate 300∼500 sample points and observe the expected patterns.
The results are shown in Figure 5. For comparison, we provide re-
sults for two additional sampling algorithms: the point repulsion al-
gorithm by [Turk 1992], and a brute force dart throwing algorithm
(using our geodesic distance approximation) as reference. Note that
our results are qualitatively similar to the reference. We do observe
some bias around the principle frequencies, manifested by the im-
perfect shapes of radial means and the slightly higher anisotropy
around those regions. However, overall the results look consistent
with expected blue noise distribution patterns. The point repulsion
algorithm, on the other hand, produces relatively large bias, espe-
cially in the radial means.

A number of parameters influence the quality, such as the number
of trials k and the size of initial sample points Si. In Figure 10 we
show the radial means and anisotropy for sampling on the Bunny
model when reducing k to 1, or reducing the size of the initial sam-
ple points to |Si| = 1000. Note that in both cases the radial means
become flatter compared to when k = 1 and |Si| = 1000, 000.

Geodesic distance approximation. To examine the accu-
racy of our geodesic distance approximation, in Figure 11 we com-

pute the percentage of correct distance checking results under both
Euclidean and our approximated Geodesic distance metrics. We
generate a large number of uniform random points on the sur-
face. Then for every pair of points that have an Euclidean distance
smaller than the Poisson radius r, we obtain their truth geodesic dis-
tance using [Surazhsky et al. 2005]. This provides the ground truth
answer as to whether the two points should reject or accept each
other. At the same time we use our approximated geodesic distance
to compute the prediction, and report the rate of correct predictions.
Note that the Euclidean distance will always predict rejection since
we only consider points within a Euclidean distance of r. This re-
sults in errors when the true geodesic distance is in fact ≥ r. In
Figure 11 we can see that in most cases our approximation provides
more accurate answers, especially for smooth surfaces such as the
double torus. We perform the analysis this way because it’s unreal-
istic and unnecessary for us to have an accurate geodesic distance
approximation over large distances.

Interactive surface sampling. Our parallel surface sampling
algorithm is fast and hence suitable for interactive settings where
the user changes the sampling density in real-time. Figure 12 shows
an example where we apply our algorithm on a deformable model,
and the samples are updated interactively in response to the surface
changes. Notice that even though we do not explicitly enforce tem-
poral coherence (as in [Vanderhaeghe et al. 2007; Yu et al. 2009]),
our results nevertheless appear relatively coherent in general. If
stricter coherence is required we could possibly incorporate similar
mechanisms as in [Yu et al. 2009] into our framework.

Surface texturing application. One direct application of our
method is surface texturing. This includes a variety of different
types of textures, such as 2D textures, 3D geometry, spatially vary-
ing BRDF textures, or BTF textures. These can all be achieved



Figure 11: Comparison of Euclidean vs. our approximated geodesic distance. We generate the ground truth geodesic distance using [Surazhsky 2005]; then
for a number of different Poisson disk radius r, we select a large number of uniform sample points on the surface, and report the rate of correct acceptance or
rejection for any two points that have an Euclidean distance smaller than r.

Figure 12: Sampling in real-time on a deformable Bunny model. Note how
the samples change according to the surface changes to maintain a uniform
distribution.

Figure 13: Samples generated by our adaptive sampling algorithm, guided
by user-painted radius function. While not real-time, our adaptive algorithm
is still capable of computing more than 10,000 points in 1∼2 seconds. The
right image shows an offline rendering.

in real-time using a method similar to texture-bombing [Glanville
2004]. The basic idea is to assume that a texture exemplar is placed
at the center of every Poisson disk sample; then for every surface
point to be textured, we find its closest samples, project the point at
each sample’s local frame to obtain the texture coords, then inter-
polate the results to achieve smooth blending. Our implementation
gains an additional benefit in that our hash table is already a spatial
data structure that we can directly use to search the closest sam-
ples for a query point. Figure 14 shows several examples of surface
texturing using our Poisson disk samples. Again, by changing the
Poisson disk radius, the user can adjust the distribution of textures
in real-time. This does not require any surface parametrization.

Parallel adaptive surface sampling. We can extend our par-
allel uniform sampling algorithm to adaptive sampling, where the
Poisson disk radius r is defined by a spatially varying function r(·)
on the surface. Assuming that r(·) has an upper bound rmax, (i.e.
the maximum radius defined by the function), our algorithm works
similarly to before: first, we partition the initial random points Si
into grid cells using rmax√

3
as the cell size; then, we compute the

compacted phase groups, and draw samples in parallel for each
valid cell belonging to the same phase group. When checking the
radius conflicts, we use max(r(s), r(s′)) as the distance threshold,
where s is an existing sample and s′ is a trial sample. Note that by
using rmax to compute the cell size, no two cells being processed
in parallel can place conflicting samples. On the other hand, each

cell must be allowed to contain multiple samples. While this is al-
ready allowed in our hash table (see Section 3.2), here we need to
suitably enlarge the number of trials k as well as the buckets size of
each hash entry in order to accommodate additional samples.

In general we can view the grid cells as a simple space partitioning
scheme that allows multiple regions of the surface to be sampled in
parallel. On the downside, it is not adaptive, so its efficiency can
decrease significantly if the radius function r(·) changes dramati-
cally over the surface. In this case, the number of samples placed
in each cell will be highly non-uniform, causing increased search-
ing time in the hash table and divergence in parallel computation.
A more efficient solution would be to use an hierarchical approach
similar to [Wei 2008]. This remains our future work.

Figure 13 shows an example of our adaptive surface sampling algo-
rithm: the user directly paints onto the mesh to indicate a desired
radius function r(·). Our algorithm then recomputes adaptive sur-
face samples according to r(·). While not yet real-time, our algo-
rithm is still reasonably fast, capable of computing 10,000 sample
points in 1∼2 seconds.

6 Limitations and Future Work

In summary, we have presented a parallel Poisson disk sampling
algorithm suitable for fast sampling on arbitrary surfaces. Our al-
gorithm is flexible and produces high-quality surface samples at in-
teractive rates. For analysis, we introduce a new method, based on
the spectral mesh basis, to evaluate the spectral distribution qual-
ity of surface samples using radial means and anisotropy. Our
method perform power spectrum analysis directly on manifold sur-
faces without requiring parametrization.

There are several limitations of our work that should be addressed
in future work. First, a number of design decisions we made for
the parallel sampling algorithm are centered around high perfor-
mance on a parallel processor. For example, we favor a small num-
ber of phase groups to improve GPU utilization, we use a simple
geodesic distance approximation to avoid expensive computation,
and we currently do not use hierarchical sampling in order to avoid
the overhead in building the associated data structures. Some of
these choices can lead to sampling bias that needs to be examined
more carefully. Second, our spectrum analysis is currently limited
to a small number of basis functions due to the cost of computing
them. This prevents us from analyzing a large number of surface
samples. In addition, the analysis currently does not apply to adap-
tive sampling, which we would like to address in the future. Finally,
although we’ve shown the extension of our algorithm to adaptive
surface sampling, it is not currently running at interactive rates. We
would like to exploit hierarchical sampling or other methods that
are more suitable for spatially non-uniform sampling patterns.
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DESBRUN, M., MEYER, M., SCHRÖDER, P., AND BARR, A. H. 2002.
Discrete differential-geometry operators for triangulated 2-manifolds. In
Visualization and Mathematics III, Springer-Verlag, 35–57.

DONG, S., BREMER, P.-T., GARLAND, M., PASCUCCI, V., AND HART,
J. C. 2006. Spectral surface quadrangulation. ACM Trans. Graph. 25,
3, 1057–1066.

DUNBAR, D., AND HUMPHREYS, G. 2006. A spatial data structure for
fast poisson-disk sample generation. In SIGGRAPH ’06, 503–508.

DYER, R., ZHANG, H., MOELLER, T., AND CLEMENTS, A. 2007. An
investigation of the spectral robustness of mesh laplacians. Tech. Rep.
TR-2007-17, School of Computing Science, Simon Fraser University.

FU, Y., AND ZHOU, B. 2008. Direct sampling on surfaces for high quality
remeshing. In SPM ’08: Proceedings of the 2008 ACM symposium on
Solid and physical modeling, 115–124.

GLANVILLE, S. 2004. Texture bombing. In GPU Gems.

GROSSMAN, J. P., AND DALLY, W. J. 1998. Point sample rendering. In
Rendering Techniques, 181–192.

HARRIS, M., SENGUPTA, S., AND OWENS, J. 2007. GPU Gems 3 –
Parallel Prefix Sum (Scan) with CUDA. 851–876.

JENSEN, H. W., AND BUHLER, J. 2002. A rapid hierarchical rendering
technique for translucent materials. In SIGGRAPH ’02, 576–581.

JONES, T. R. 2006. Efficient generation of poisson-disk sampling patterns.
journal of graphics tools 11, 2, 27–36.

KARNI, Z., AND GOTSMAN, C. 2000. Spectral compression of mesh
geometry. In SIGGRAPH ’00, 279–286.

KOPF, J., COHEN-OR, D., DEUSSEN, O., AND LISCHINSKI, D. 2006.
Recursive wang tiles for real-time blue noise. In SIGGRAPH ’06, 509–
518.
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