
A Benchmark for Evaluating Software Engineering
Techniques for Improving Medical Processes

Stefan C. Christov
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
christov@cs.umass.edu

George S. Avrunin
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
avrunin@cs.umass.edu

Lori A. Clarke
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
clarke@cs.umass.edu

Leon J. Osterweil
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
ljo@cs.umass.edu

Elizabeth A. Henneman
School of Nursing

University of Massachusetts
Amherst, MA 01003

henneman@nursing.umass.edu

ABSTRACT
The software engineering and medical informatics communi-
ties have been developing a range of approaches for reason-
ing about medical processes. To facilitate the comparison
of such approaches, it would be desirable to have a set of
medical examples, or benchmarks, that are easily available,
described in considerable detail, and characterized in terms
of the real-world complexities they capture. This paper
presents one such benchmark and discusses a list of desider-
ata that medical benchmarks can be evaluated against.

1. INTRODUCTION
Problems in health care have gained prominence in recent

years. A 2009 US National Research Council report [14] ar-
gues that “these persistent problems do not reflect incompe-
tence on the part of health care professionals—rather, they
are a consequence of the inherent intellectual complexity of
health care taken as a whole and a medical care environment
that has not been adequately structured to help clinicians
avoid mistakes or to systematically improve their decision
making and practice.” This report also notes that current
health care information technology is rarely used to support
data-driven process improvement. To address such concerns,
the software engineering and medical informatics communi-
ties have been developing a range of approaches for evaluat-
ing medical processes (e.g., [3, 6, 15]). The complex nature
of medical processes—for example, the possible involvement
of a diverse set of medical professionals, the abundance of
exceptional situations, and the concurrent execution of ac-
tivities —makes these processes hard to model and analyze
and the corresponding methodologies hard to evaluate.

Because of the complexity of medical processes, it is im-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEHC ’10 May 3-4, 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-973-2/10/05 ...$10.00.

portant to automate, at least partially, the reasoning about
them. Researchers have thus used modeling notations with
formal semantics to make the process models amenable to
automated analysis. In this paper, we refer to a process
model created in such notations with rigorous, formal se-
mantics as a process definition.

To empirically evaluate process modeling notations and
analysis techniques, researchers have applied them to differ-
ent examples from the medical domain. For instance, the
Little-JIL process definition language and the FLAVERS
finite-state verification analysis technique have been applied
to discover defects and suggest improvements in both blood
transfusion and chemotherapy processes [3, 4]; the Asbru
language and the KIV theorem prover have been used to
reason about a jaundice protocol [15]; Message Sequence
Charts translated to guarded Labeled Transition Systems
have been combined with various kinds of static analyses to
reason about a cancer therapy process [6].

Evaluating such process modeling notations and analysis
techniques on medical examples is an important step to-
wards a rigorous discipline of process improvememt. An
important question arises: “What are the relevant strengths
and weaknesses of each modeling notation or analysis tech-
nique?” and consequently “For what kinds of medical pro-
cesses should one use a certain process modeling notation or
a certain analysis technique instead of another notation or
analysis technique?” Questions like these are difficult to an-
swer when each modeling notation or analysis technique has
been evaluated in the context of a different medical exam-
ple and when many of these medical examples are not easily
accessible, are ambiguously described, or are not carefully
characterized in terms of the real-world complexities they
are meant to capture. What seems to be needed is a set
of medical examples, or benchmarks. Ideally, these medical
benchmarks would be both easily accessible by the research
community and rigorously described to reduce ambiguity
and help ensure that different researchers are working on the
same example. Preferably, these benchmarks should also be
written in notations that are relatively easy to understand
and would be characterized in terms of the complexities of
the real-world medical processes that they capture. Such
characterizations would guide potential users in their choice
of benchmarks. A set of medical benchmarks would not only

facilitate the comparison of different process modeling nota-
tions and analysis techniques in terms of their applicability
to health care, but it could also provide an infrastructure for
controlled experimentation and reproducibility. In addition,
a set of medical benchmarks could help lessen the burden on
software engineering and informatics researchers of eliciting
these processes from medical domain experts. Our expe-
rience indicates that eliciting an adequate description of a
medical process can be very time-consuming for both the
domain experts and the computer scientists.

This paper presents one such medical benchmark, based
on a blood transfusion process. The components of this
benchmark include: a blood transfusion process definition
created in the Little-JIL language; a set of properties, or
requirements, that a blood transfusion process must satisfy;
and a set of bindings that establish the relationship between
the blood transfusion properties and process definition.

The contributions of this paper are the blood transfusion
medical benchmark and a list of desiderata against which
medical benchmarks can be evaluated.

2. RELATED WORK
The medical community has created many descriptions of

standard medical procedures (e.g., [17,18]) for purposes such
as promoting evidence-based practice or training health care
professionals. These medical process descriptions are usually
written using natural language as a narrative, as a check-
list, or as a high-level flow chart. They aim to provide im-
portant procedural details but have several drawbacks that
make them difficult to use directly as benchmarks. These
descriptions often contain poorly defined and inconsistently
used terms and tend to focus on the normative workflow,
omitting important details about exceptional scenarios.

The medical informatics community has created several
languages that can be used to represent medical processes
(e.g., EON [10], GLIF [11], Asbru [13]). These languages
tend to have well-defined semantics, and thus medical pro-
cess descriptions specified in these languages tend to be more
precise and less ambiguous than the natural language de-
scriptions mentioned above. Some of these languages also
have support for integrating domain ontologies into the pro-
cess description, which can further reduce ambiguity. In
this respect, medical process descriptions created in such
languages are a step closer to being usable as benchmarks.

Different languages have different strengths and weak-
nesses in terms of the semantic constructs they support,
such as concurrency, exceptional flow, and real time con-
straints. The degree to which process descriptions capture
such aspects is thus affected by the semantic richness of the
language used. To compare several languages for specifying
medical guidelines, Peleg et al. [12] specified portions of two
medical guidelines in these languages. These guidelines and
their corresponding descriptions focused on providing deci-
sion support to physicians about what tests to order and
treatments to prescribe. The benchmark presented in this
paper focuses mostly on the activities or how health-care
providers should perform to deliver the selected treatments.
We believe that both of these perspectives on medical pro-
cesses are important and that benchmarks from each per-
spective are needed.

Researchers have used process descriptions created in some
of the languages mentioned above to evaluate the applicabil-
ity of several software engineering techniques to health care

(e.g., [6, 15]). To the best of our knowledge, however, the
medical process descriptions that were used for these evalu-
ations are not publicly available to be used as benchmarks.

3. PROCESS DESCRIPTION DESIDERATA
This section discusses characteristics that should be taken

into account when considering candidate medical processes
as benchmarks. As the community develops a set of medical
benchmarks and gains more experience with their use, we
would expect this list to be augmented.
Detail and Precision. It is important that medical pro-
cess descriptions be detailed enough to support meaningful
reasoning about the process. For example, if one wishes to
reason about the risks that can arise if a paper copy of a
treatment plan becomes inconsistent with an electronic ver-
sion, the process description needs to provide enough detail
about the use of the paper and electronic versions to detect
such inconsistencies. If a medical process description is to be
utilized as a benchmark to compare the capabilities of differ-
ent, and probably automated, analysis approaches, then it
needs to be precise enough to avoid ambiguity and to ensure
that the results from applying these analyses are based on
process descriptions that are sufficiently complete and con-
sistent. To further help reduce ambiguity, it is desirable to
use a notation with well-defined semantics.
Artifacts. An artifact is an instance of a type of object
(e.g., a blood tube or a treatment plan) that is consumed,
produced, or used in a health care process. As mentioned
in the previous paragraph, reasoning about certain features
of a medical process may necessitate information about ar-
tifacts such as the versions of a treatment plan. Thus, it is
often desirable that a medical process description incorpo-
rate an explicit mechanism for specifying the artifact types
and instances that are involved in the process.
Agents. The involvement of a diverse group of medical pro-
fessionals is typical for many situations in health care. For
example, in a chemotherapy preparation and administration
process, physicians, nurses, pharmacists, and support staff
may all participate. For the purposes of this discussion,
we define an agent to be an instance of a type of human,
machine, or software system that is capable of performing
some set of activities (e.g., triage nurse or robot that per-
forms a surgery). To capture the complexity of real-world
medical processes, process descriptions often need to pro-
vide information about the different agent types, and some-
times about particular agent instances (e.g., physician Phil
or robot R2D2), involved in a process.

Medical professionals are continually making decisions in-
fluenced by both the patient’s medical condition and by their
own personal working style. As a result, such decisions can-
not be specified a priori and it is often desirable that medical
process descriptions provide support for letting agents make
decisions. For human agents, this might involve a sense of
“free choice”, while for automated agents this might be rep-
resented by nondeterminism.
Resources. Resources are typically artifacts or agents for
which there is contention. Health care processes often in-
volve a variety of such resources (e.g., surgeons, beds, and
X-ray machines). Resource availability can play a critical
role in the quality, efficiency, and cost of health care. Thus,
if a medical process description is to be used to reason about,
or to evaluate tools that can be used to reason about, such
issues, then that process description needs to contain ade-

quate representation of the resources used in the process.
Since resource utilization often involves contention, process
descriptions require additional information, such as access
control policies, priorities, and resource capacities.
Aspects of Process Flow. To provide an adequate rep-
resentation of real-world medical processes, process descrip-
tions often need to specify complex process flow, including
exception handling, concurrency, and real-time constraints.

Deviations from normal workflow occur in most medical
processes. For example, a nurse performing blood trans-
fusion can face a variety of non-normative events: the pa-
tient may be missing an ID band, be unconscious, or have
a transfusion reaction. In all these situations, the agent (in
this case a particular nurse) faces exceptional circumstances
and is forced to deviate from the normal execution of the
process to handle those circumstances appropriately. Our
experience with modeling medical processes indicates that
exceptional situations or deviations from the “happy path”
are common in the medical domain, suggesting that special
attention needs to be paid to them.

In many medical processes, different activities may hap-
pen simultaneously. For example, the activities of process-
ing and analyzing a patient’s test results (e.g., evaluation of
laboratory and X-ray results) could happen in parallel. In
addition, at different points in the process, information may
need to be exchanged or coordinated before other activities
can proceed. For example, surgery may not proceed until
the lab and X-ray results have both been received.

Time-critical activities are prevalent in certain types of
medical processes. During a surgery, for example, it may be
necessary for tasks to be performed within a certain time
frame.

4. THE BLOOD TRANSFUSION
BENCHMARK

This section starts with a high-level description of the
real-world in-patient blood transfusion process on which the
benchmark is based. Then, the individual components of
the benchmark as well as the tools used to produce and
analyze them are described. The full benchmark is available
at http://laser.cs.umass.edu/btbenchmark/.

The benchmark components were created in the course of
several years of collaboration between medical professionals
and computer scientists. The main goals of the project were
to define and analyze high-risk medical processes to improve
their safety and efficiency as well as to develop and improve
software engineering techniques for defining and reasoning
about processes. The benchmark components are based
on a standard blood transfusion process. Standard process
descriptions from the medical literature, however, tend to
lack precise specification of exceptional scenarios. Thus, the
knowledge of domain experts was used to describe common
exceptional scenarios in the process definition.

4.1 Overview of the Process
In the blood transfusion process, a nurse receives a physi-

cian’s order to transfuse one or more units of blood into a
patient. To carry out the order, the nurse performs several
subprocesses: 1) checking that the patient’s blood type and
screen are available and if they are not, obtaining a blood
specimen so that the type and screen can be performed; 2)
preparing documentation, and picking up the unit of blood

from the blood bank; 3) performing the transfusion; and
4) performing follow-up documentation. The blood trans-
fusion benchmark focuses mainly on the first and third of
these subprocesses, since they are the most safety-critical.

If the type and screen have not been performed, the nurse
needs to obtain a blood specimen from the patient so that
the type and screen can be performed. Before the nurse can
obtain the specimen, a physician’s order to do so is needed.
There is a possibility, however, that the computer system
is temporarily down, in which case the physician needs to
use a special downtime requisition form. Once the nurse has
the physician order, the nurse needs to obtain the appropri-
ate specimen labels and equipment for specimen collection,
verify the patient’s identity, confirm that the information
on the patient’s identification band matches the informa-
tion of the specimen label, label the specimen, perform the
blood draw, and send the blood specimen to the lab. This
subprocess must be conducted in the order described with
one exception—the blood label may be applied either prior
to or immediately after obtaining the specimen for type and
screen. An important safety property is that no other activi-
ties may occur between obtaining and labeling the specimen.
Complications can arise at several points in this subprocess
(e.g., the information on the patient’s ID band does not
match the information on the specimen label). All of these
details are important for a high-risk process such as blood
transfusion and, together with all of the above exceptional
scenarios that may arise, make the blood transfusion process
particularly challenging yet interesting to study.

The subprocess for performing the actual transfusion is
also complex. If a patient is losing a lot of blood, the physi-
cian may order the administration of several units if blood.
In that case, the nurse may need to manage several transfu-
sions simultaneously. Before administering a unit of blood,
the nurse needs to clinically assess the patient, obtain the
equipment necessary for transfusion, and perform bedside
checks. Each of these tasks has its own intricacies —the clin-
ical assessment may reveal problems in patient history that
need to be addressed before the transfusion can be started,
necessary equipment may be unavailable, or there could be
problems with verifying the patient’s identity. In addition,
the verification of the blood product information (part of
the bedside checks) needs to be performed in cooperation
by two different nurses as a safety measure.

Most of the activities in the blood transfusion process are
performed by a nurse. Tasks performed by other agents,
however, are also an important part of the process. Some
examples are blood bank staff tasks for preparing the cor-
rect unit of blood and physician tasks for ordering the blood
transfusion and deciding if the patient develops a transfu-
sion reaction. The blood transfusion process requires a rich
assortment of resources and artifacts (e.g., physician order,
patient ID band, unit of blood product, etc.). The blood
transfusion process is also interesting in terms of process
flow. The normative flow is complex and has many impor-
tant details itself, but elaborate deviations from the norma-
tive flow can also arise as a result of exceptional events. The
process exhibits some concurrency as a nurse may need to
perform multiple blood transfusions for the same patient si-
multaneously. Real time constraints are also inherent to the
process (e.g., the nurse needs to act within a certain time if
a patient develops a transfusion reaction).

Figure 1: Benchmark architecture

4.2 Benchmark components
Figure 1 shows an architectural view of how the bench-

mark components relate to each other and indicates some of
the tools and artifacts that could be used to populate these
components. The second column in Figure 1 (i.e., “Prop-
erties”, “Bindings”, “Process Definition”, etc.) corresponds
to benchmark components; the first column shows the tools
that we actually used to create some of these components;
the third column shows other tools that could utilize the
benchmark components for various kinds of analyses; and
the fourth column shows potential results that might be
generated from these tools. The shaded benchmark com-
ponents and tools are those for which specific instances are
being made available to the community for use. We have
utilized the Little-JIL editor to create a definition of the
blood transfusion process in Little-JIL [2] and the Propel
property elicitation tool [5] to create a set of blood trans-
fusion properties. To establish the correspondence between
the properties and the process definition, we used the Little-
JIL environment (not shown) to create a set of bindings be-
tween the events in the properties and the step names in the
Little-JIL definition, since these components are usually cre-
ated independently of each other. The Little-JIL definition,
the properties, and the bindings are input to the FLAVERS
finite-state verifier [8], which then checks if all possible traces
through the process conform to the stated properties. The
verification results consist of a confirmation that the blood
transfusion process definition satisfies a given property or
of a counterexample showing a process definition trace that
violates the property. The shaded components and tools are
described in more detail in the ensuing subsections.

The unshaded shapes in Figure 1 are components that
can potentially be added to the benchmark and tools that
can potentially operate on the existing or the newly added
benchmark components. These components serve as exam-
ples of how the benchmark can continue to grow and the
tools are ones that we currently have under development.

4.2.1 Process definition
The definition of the blood transfusion process included

in the benchmark was created in the Little-JIL process def-
inition language [2] using the Little-JIL editor. Little-JIL’s
support for concurrency and synchronization, exception han-
dling, resources and artifacts makes it suitable for model-
ing the complex aspects of medical processes, as discussed

above, and its formally defined semantics make processes
defined in it amenable to rigorous analysis. A Little-JIL
process definition consists of three main specifications—a
resource specification, an artifact specification, and a co-
ordination specification. The resource specification defines
the agents and resources (human and non-human) needed
to perform process activities. The artifact specification de-
fines the products of the process activities. The coordina-
tion specification brings these two together by defining which
agents, using which resources, perform which activities on
which artifacts at which times. The main building blocks of
the Little-JIL coordination specification are steps. A step
corresponds to an activity performed by a human or non-
human agent and, in the graphical representation, is shown
iconically by a black bar. A Little-JIL process definition is a
hierarchical decomposition of steps where each step can be
decomposed into substeps to an arbitrary level of detail.

Figure 2 illustrates some of the detail captured by the
Little-JIL definition of the blood transfusion process. It
shows the decomposition of the step perform pre-infusion
work, part of the larger blood transfusion process definition.
Perform pre-infusion work is a sequential step (indicated by
the right arrow in the step bar), meaning that the agent(s)1

need to perform the substeps in order from left to right.
Three of the substeps of perform pre-infusion work in Fig-

ure 2 can throw exceptions (indicated by the notes2 under
the step bars). When a Little-JIL step throws an excep-
tion, the exception propagates up the step hierarchy until
a matching exception handler is found, and then executed.
Thus, when the step assess patient throws ProblemFound-
InPatientHistory exception, the matching exception handler
handle ProblemFoundInPatientHistory is executed (excep-
tion handlers are connected to the “X” in the step bar of per-
form pre-infusion work). Similarly, when the other two sub-
steps of perform pre-infusion work throw exceptions, their
corresponding handlers are executed.

Exception handlers are themselves steps and can thus be
hierarchically decomposed to an arbitrary level of detail and
can throw exceptions. The handler handle ProblemFound-
InPatientHistory, for example, can throw ReceivedOrder-

1Agent and artifact information is elided from these dia-
grams. The types of agents involved in the blood transfusion
process are a nurse, a physician and blood bank staff.
2The notes are not part of the Little-JIL visual syntax but
they are included in the diagrams here for clarity.

Figure 2: Elaboration of perform pre-infusion work

ToDiscontinueTransfusion exception, which corresponds to
the situation when the physician has decided that blood
transfusion cannot be completed. When the handling of
an exception is completed, execution continues based on the
resumption semantics indicated in the handler. In the blood
transfusion process definition shown in Figure 2, after han-
dling the exception ProblemFoundInPatientHistory is com-
pleted, the parent step needs to be restarted by the nurse
if the physician decides that the problem is not significant
enough to stop the transfusion (this communication between
the physician and nurse is part of the exception handler).

All of the above steps are further decomposed in the full
process definition included in the benchmark, except for con-
firm presence of IV catheter and gather infusion materials).

4.2.2 Properties
A property is a requirement or a goal that a system or

process must satisfy. A property is usually independent of
any particular implementation of a specific process or system
and thus is required to hold across different processes, and
indeed often across different organizations at which the pro-
cesses are performed. The properties included in the bench-
mark are constraints on the event sequences that can occur
during the execution of a blood transfusion process. For
example, a property may state that one event cannot occur
until after another one has occurred, or that some particular
event must always occur after some other particular event.

Eliciting precise and accurate properties is known to be
difficult and error prone [5, 16]. To facilitate property elici-
tation and specification, we created a set of blood transfu-
sion properties using the Propel tool [5]. Propel provides
templates for most of the common finite-state verification
patterns identified in [7].

Propel aims to bridge the gap between natural language,
which is understandable but is also imprecise, and a math-
ematical formalism, which is precise but can be hard to un-
derstand. Each property specified with Propel has two
final representations—a finite state automaton and a disci-
plined natural language paragraph expressing the different
aspects of the property. We believe that the natural lan-
guage representation of the properties in the benchmark,
although verbose, makes them easier to understand, while
the formal representation is unambiguous.

To give a sense of the kinds of properties included in the
blood transfusion benchmark, we present one of the proper-
ties here3: “Before infusing each unit of blood product into
a patient, it must be checked that the medical record number

3The presented property is a simplified version of the prop-
erty in the benchmark.

(MRN) on that patient’s ID band matches the medical record
number on the tag affixed to the unit of blood product”. This
property has two main events, namely infuse unit of blood
product and check MRN on ID band and product tag match.

Each property has three elements: an alphabet, a scope,
and a behavior. The alphabet is the set of events of interest
for a given property. The scope specifies over what parts of
an execution of the process/system the property is required
to hold. The property presented in Figure 3, for example, is
required to hold throughout the entire execution of the blood
transfusion process but, in general, a scope can specify that a
property is required to hold before or after the occurrence of
a given event or between the occurrences of two events. The
scope can also indicate whether there are certain exceptional
events after whose occurrence the property may no longer
be required to hold. The behavior expresses the constraints
between the property events that are required to hold within
the specified scope. In addition to the events used to delimit
the scope, the primary events participating in the property
pattern, and any exceptional events, properties can also have
secondary events. Secondary events are events that might be
restricted or allowed to happen between primary events.

The DNL property statement in Figure 3 elaborates the
high-level property statement given informally above. The
finite-state machine in Figure 3 is an equivalent represen-
tation of the DNL representation of the property, but it is
formal and is thus amenable to automated analysis.

4.2.3 Bindings
To check whether a process definition satisfies a given

property, one needs to provide a mapping from the abstract
events used to define the property to the actual events that
take place in the course of execution of the process defini-
tion. We call such mapping a binding. Thus, to be able
to verify the property mentioned in the previous paragraph,
for example, the event check medical record number on ID
band and product tag match is bound to the execution of the
step confirm product tag matches patient ID band, which is
part of the elaboration of perform bedside checks shown in
Figure 2. The property event infuse a unit of blood product
is bound to the execution of the step infuse unit of blood
product, which is in a different part of the blood transfu-
sion process definition (not shown) that is executed after
the nurse has completed the step perform pre-infusion work.
Property events are frequently bound to the executions of
steps in a process definition, but they can also be bound to
the throwing of exceptions or to the creation or utilization
of artifacts during the execution of an activity.

Creating the bindings between the property events and

Figure 3: An example property.

the constructs from the process definition is a human inten-
sive process that can be difficult and error-prone. Given a
set of events from a property, one needs to choose what kind
of process construct to bind the events to (e.g., steps, pa-
rameters, exceptions) and also find the appropriate instance
of these process constructs (i.e., a particular step, parame-
ter, exception) in a potentially large process definition. The
provided tools somewhat facilitate the creation of bindings.

The need to bind abstract events of high-level properties
to concrete entities in a process definition is not specific to
the notations used here, but arises when verifying properties
specified in one notation against process definitions (or other
models) written in other formalisms. Analysis results and
performance can differ significantly with minor variations in
the bindings that do not initially appear significant. Thus,
including a set of bindings in the benchmark seems essential
if the properties and the process definition included in the
benchmark are to be used as the basis for evaluating different
analysis techniques.

4.3 Accompanying tools and components
In addition to the main benchmark components—the blood

transfusion process definition, properties, and bindings—we
also make available a set of tools. The toolset contains:
the Little-JIL editor, Visual-JIL, which can be used to view
the graphical representation of the process definition and to
modify that definition; Propel, which can be used to view
and modify the properties as well as to export the FSA rep-
resentation to standard external formats (e.g., XML); and
FLAVERS/Little-JIL, which can be used to create the bind-
ings and to run the finite-state verification analyses.

We also provide the finite-state verification results ob-
tained by applying FLAVERS/Little-JIL. FLAVERS/Little-
JIL automatically translates a Little-JIL process definition
into a model that represents all sequences of relevant events
that could occur on process executions, where the relevant
events include the primary, secondary, exceptional, and scope
events of the property being verified. Then FLAVERS uses
this model to algorithmically check whether the model sat-
isfies a given property. For the blood transfusion example
there are currently 23 properties in the benchmark. We
were able to specify 21 of them in Propel and verify all
of them using FLAVERS. The results are included in the
benchmark website. The other 2 properties involved real
time constraints and cannot be specified in Propel. We
expect to add more properties to the benchmark as we elicit
and formalize them.

5. DISCUSSION AND FUTURE WORK
Currently, the definition of the blood transfusion process

included in the benchmark covers most of the aspects of
medical processes discussed in section 3. The process defi-
nition provides a significant amount of detail for important
parts of the blood transfusion process (i.e., checking for pa-
tient blood type and screen and performing the infusion of
a unit of blood product) and its meaning is rigorous since it
is defined in Little-JIL, a language with formally defined se-
mantics. Exceptional scenarios, such as what happens when
the patient’s blood type and screen are unavailable, are also
well represented in the process definition. The agents re-
sponsible for the execution of the steps in the process are
specified, as well as the most important artifacts and re-
sources used in the process. This process definition contains
only a few examples of concurrent execution. The process
definition does not do a good job of representing the real
time constraints, since the Little-JIL language currently has
weak support for real time constraints.

Another limitation of the benchmark is that the process
definition is specified only in Little-JIL. Any choice of nota-
tion biases a benchmark toward information expressible in
that notation. The ease of expressing complex behavior and
the well-defined semantics of Little-JIL make it a good choice
over many process-modeling languages. We also believe that
a carefully elicited Little-JIL definition is preferable to a
natural-language description, since it tends to be more pre-
cise and to contain more details than would normally be
specified in a textual notation. Users of the process defi-
nition will need to familiarize themselves with Little-JIL’s
syntax and semantics to fully understand the definition of
the blood transfusion process. We are currently working on
a tool that automatically generates a natural language de-
scription from a Little-JIL process definition. Although use-

ful, this description is verbose and illustrates why naturally-
created, textual descriptions tend not to contain all the nec-
essary details. One could argue that a natural language de-
scription that is totally independent of any process definition
notation would be preferable to one generated from a specific
process definition. But we believe that for this description
to be accurate and to capture all necessary information, it
has to become very artificial, long, and detailed—similar to
the automatically generated one—and we are not optimistic
about a description that is independent of a formal notation
being sufficiently unambiguous and precise.

The set of blood transfusion properties included in the
benchmark covers a wide range of requirements, ranging
from policy and regulatory requirements to purely clinical
requirements. Moreover, they are high-level requirements
that should be applicable, with minor variations, to differ-
ent hospitals. A potential limitation of the set of properties
comes from the fact that Propel supports only event-based
properties. Event-based properties can encode constraints
on the order of occurrence of certain process events but are
weak in encoding constraints that involve state information.
The specification patterns that Propel is based on also do
not support real time constraints. There has been some
work on extending these specification patterns with support
for real-time constraints [9] and such extensions to Propel
will be considered in the future. Most of the properties that
we elicited from the domain experts, however, turned out to
be event-based properties with no real time constraints and
thus we were able to create formal FSA representations and
a detailed DNL descriptions for these properties. For the
few properties that involved real time constraints, we did
not create an FSA or a DNL description, but we provide
the high-level natural language statements.

The bindings included in the benchmark are tied to the
specific process definition and the semantics of the Little-
JIL language and to specific properties. Such bindings are
needed if the properties and process definition are developed
at all independently from each other. The mapping between
property events and constructs from a process definition are
not always trivial and the bindings included in the bench-
mark provide several such examples.

There has been evidence in the research literature that
even when easily accessible, unambiguously described, and
carefully characterized benchmarks are available, compar-
isons of different methodologies are still difficult to make [1],
and thus we acknowledge that a set of medical benchmarks,
like the one described in this paper, will not solve all prob-
lems in comparing different methodologies. We believe, how-
ever, that creating such benchmarks is an important step
and will constitute an improvement of the community’s abil-
ity to evaluate the relative strengths and weaknesses of dif-
ferent software engineering and medical informatics method-
ologies when applied to health care.

6. ACKNOWLEDGMENTS
This material is based upon work supported by the NSF

under awards CCF-0427071, CCF-0820198. Any opinions,
findings, and conclusions or recommendations expressed in
this publication are those of the author(s) and do not nec-
essarily reflect the views of the NSF.

The authors gratefully acknowledge the contributions of
Rachel Cobleigh, Huong Phan, Dr. Philip L. Henneman, Bin
Chen, Heather Conboy, and Alexander Wise.

7. REFERENCES
[1] G. S. Avrunin, J. C. Corbett, and M. B. Dwyer.

Benchmarking finite-state verifiers. Softw. Tools for
Technology Transfer, 2(4):317–320, 2000.

[2] A. G. Cass, B. S. Lerner, J. Stanley M. Sutton, E. K.
McCall, et al. Little-JIL/Juliette: a process definition
language and interpreter. In Proc. 22nd Intl. Conf.
Softw. Eng., 754–757, 2000.

[3] B. Chen, G. S. Avrunin, E. A. Henneman, L. A.
Clarke, et al. Analyzing medical processes. In Proc.
30th Intl. Conf. Softw. Eng., 623–632, 2008.

[4] S. Christov, B. Chen, G. S. Avrunin, L. A. Clarke, et
al. Rigorously defining and analyzing medical
processes: An experience report. MoDELS 2007
Wkshps, Springer, LNCS 5002 , 118–131, 2008.

[5] R. L. Cobleigh, G. S. Avrunin, and L. A. Clarke. User
guidance for creating precise and accessible property
specifications. In Proc. 14th ACM SIGSOFT Intl.
Symp. Found. Softw. Eng., 208–218, 2006.

[6] C. Damas, B. Lambeau, F. Roucoux, and A. van
Lamsweerde. Analyzing critical process models
through behavior model synthesis. In Proc. 2009 31st
Intl. Conf. Softw. Eng., 441–451, 2009.

[7] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett.
Patterns in property specifications for finite-state
verification. In Proc. 21st Intl. Conf. Softw. Eng.,
411–420, 1999.

[8] M. B. Dwyer, L. A. Clarke, J. M. Cobleigh, and
G. Naumovich. Flow analysis for verifying properties
of concurrent software systems. ACM Trans. Softw.
Eng. Methodol., 13(4):359–430, 2004.

[9] S. Konrad and B. H. C. Cheng. Real-time specification
patterns. In Proc. 27th Intl. Conf. Softw. Eng.,
372–381, 2005.

[10] S. T. Mark and M. A. Musen. A flexible approach to
guideline modeling. In Proc. AMIA Symp., 420–424,
1999.

[11] M. Peleg, A. Boxwala, O. Ogunyemi, Q. Zeng, et al.
GLIF3: The evolution of a guideline representation
format. In Proc. AMIA Symp., 645–649, 2000.

[12] M. Peleg, S. W. Tu, J. Bury, P. Ciccarese, et al.
Comparing computer-interpretable guideline models:
A case-study approach. JAMIA, 10:2003, 2002.

[13] Y. Shahar, S. Miksch, and P. Johnson. The Asgaard
project: A task-specific framework for the application
and critiquing of time-oriented clinical guidelines. In
A. I. in Med., 29–51, 1998.

[14] Computational Technology for Effective Health Care:
Immediate Steps and Strategic Directions. Nat. Acad.
Press, 2009.

[15] A. ten Teije, M. Marcos, M. Balser, J. van
Croonenborg, et al. Improving medical protocols by
formal methods. A. I. in Med., 36(3):193–209, 2006.

[16] A. van Lamsweerde. Formal specification: A roadmap.
In The Future of Software Engineering, 147–159. 2000.

[17] J. M. Wilkinson and K. V. Leuven. Procedure
checklist for administering a blood transfusion.
http://davisplus.fadavis.com/wilkinson/Procedure Checklists
/PC Ch36-01.doc.

[18] J. M. Wilkinson and K. Van Leuven. Fundamentals of
Nursing. F. A. Davis Company, 2007.

