
Distributed Inference and Query Processing for
RFID Tracking and Monitoring

Zhao Cao, Charles Sutton†, Yanlei Diao, Prashant Shenoy
Department of Computer Science †School of Informatics

University of Massachusetts, Amherst University of Edinburgh

ABSTRACT
In this paper, we present the design of a scalable, distributed stream
processing system for RFID tracking and monitoring. Since RFID
data lacks containment and location information, which is key to
query processing, we propose to combine location and containment
inference with stream query processing in a single architecture,
with inference as an enabling mechanism for high-level query pro-
cessing. We further consider challenges in instantiating such a sys-
tem over a large supply chain and design techniques for distributed
inference and query processing. Our technical contributions in-
clude (i) novel inference techniques that provide accurate estimates
of object locations and inter-object relationships such as contain-
ment in noisy, dynamic environments, and (ii) distributed infer-
ence and query processing techniques that minimize the computa-
tion state transferred across warehouses while approximating the
accuracy of centralized processing. Our experimental results, us-
ing both real-world data and large synthetic traces, demonstrate the
accuracy, efficiency, and scalability of our proposed techniques.

1. INTRODUCTION
RFID is a promising electronic identification technology that en-

ables a real-time information infrastructure to provide timely, high-
value content to monitoring and tracking applications. An RFID-
enabled information infrastructure is likely to revolutionize areas
such as supply chain management, health-care, and pharmaceuti-
cals [8]. Consider, for example, a distributed supply chain environ-
ment with multiple warehouses and millions of tagged objects that
move through this supply chain. Each warehouse is equipped with
RFID readers that scan objects and their associated cases and pal-
lets upon arrival and departure as well as while they are processed
in the warehouse. Such an RFID-based infrastructure offers an or-
ganization with unprecedented visibility into its distributed supply
chain, with the near-real-time ability to track and monitor objects
and detect anomalies as they occur. To illustrate, consider the fol-
lowing types of continuous queries that may be posed on the RFID
streams generated at the warehouses.
• Tracking queries, which include queries such as “report any

pallet that has deviated from its intended path,” or “list the
path taken by an item through the supply chain.” Tracking
queries are essentially location queries that require object lo-
cations or location histories.
• Containment queries, which include queries such as “raise an

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘10, September 13-17, 2010, Singapore
Copyright 2010 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

alert if a flammable item is not packed in a fireproof case,”
or “verify that food containing peanuts is never exposed to
other food cases for more than an hour.” This class of queries
involve inter-object relationships, e.g., containment between
objects, cases, and pallets, and are useful for enforcing pack-
aging and shipping regulations.
• Hybrid queries, which include “for any frozen food placed

outside a freezer, raise an alert if it has been exposed to room
temperature for 6 hours.” This class of queries combine sen-
sors streams (e.g., temperature) and RFID streams (e.g., ob-
ject location and containment) to detect various conditions.

Unfortunately, the nature of RFID data makes these queries diffi-
cult to answer. The key challenge is that although queries typically
involve object locations and inter-object relationships such as con-
tainment, the RFID data does not directly contain this information.
Rather, the data contains only the observed tag id and the reader
id; this is a fundamental limitation of RFID technology. To enable
queries on the data that is not actually available, the key is to ex-
ploit statistical regularities in the tag id and reader information so
that one can estimate object locations and object relationships. The
estimation problem is complex, however, because RFID readings
are inherently noisy. The read rates in actual deployments can be
as low as 60%-70% [10] due to the sensitivity of radio frequency
to environmental factors such as occluding metal objects and inter-
ference [6]. Objects can also be read by multiple readers in nearby
locations due to the overlap of their read ranges.

A second key challenge is that large supply chains are distributed
or even global in scope, for which a centralized approach may be
limiting. In a centralized approach, RFID streams from various
warehouses are sent to a central location for query processing. This
approach can fail to scale because of the bandwidth overheads in-
curred due to high data volume and can also potentially increase the
latency of detecting anomalous events, especially in geographically
large supply chains. In contrast, a distributed approach processes
data streams as they are generated, thereby reducing the delay of
answering queries. However, as objects move from one warehouse
to another, tracking and monitoring queries must also “move” with
these objects. To do so, both the state of objects and the state of
mornitoring queries relevant to these objects must be transferred to
the new location to seed the computation there.

Research contributions: In this paper, we present the design of
a scalable, distributed stream processing system for RFID tracking
and monitoring. Our system combines location and containment
inference with stream query processing into a single architecture,
with inference as an enabling mechanism for high-level query pro-
cessing for tracking and monitoring. Regarding inference, the key
novelty in our work is to introduce the notion of smoothing over ob-
ject relations, whereas all existing work on RFID data cleaning [7,
10] and location inference [13, 15] is limited to the traditional ap-
proach of smoothing over time. Our new notion of smoothing plays
a pivotal role in designing a simple, effective statistical system that
addresses the uncertainties about both individual objects (e.g., ob-
ject locations) and inter-object relationships (e.g., containment) in



a dynamic world with changes over time. We further present tech-
niques to scale such inference and thus enabled query processing
to large supply chains that span multiple warehouses and numer-
ous objects. More specifically, our contributions include:

Novel statistical framework (§3). Working within a principled
statistical machine learning framework, we present a novel graph-
ical model whose structure implicitly smooths over object rela-
tions. In contrast to prior work that uses temporal smoothing, in our
work smoothing over containment leads to a much simpler graph-
ical model, thereby allowing much more efficient inference tech-
niques. At the same time, our model and inference techniques can
still accurately estimate location and containment information, so
that high-level query processing can return high-quality answers.

Our general approach is as follows: (i) Our probabilistic model
describes a physical world comprising object locations, contain-
ment relationships, and noisy RFID readings. (ii) We devise an in-
ference algorithm, called RFINFER, for our model, working within
an expectation maximization (EM) framework. The design of our
model allows us to derive a simple customized M-step, which is
essential for working at scale but still offers provable optimality
in terms of maximizing the likelihood of the data. Furthermore,
our algorithm is developed in an unsupervised learning framework;
that is, it does not use machine learning techniques that require ac-
cess to any specially-generated training data. (iii) We finally ex-
tend our algorithm to also detect changes of containment using a
statistical method called change point detection.

Distributed inference and query processing (§4). To suit the
increasing scale of RFID tracking and monitoring, we develop a
distributed approach that performs inference and query processing
locally at each warehouse, but transfers the state of inference and
state of query processing as objects move across warehouses. A
naive inference algorithm would incur high transfer overhead by
requiring the entire history of observations collected from multiple
warehouses over a long period of time. Instead, we propose to
truncate history by sifting out the observations most informative
about the true containment, and further distill such useful history
into a few numbers for each object to minimize the inference state
transferred. In distributed processing of tracking and monitoring
queries, the main issue is that we need to transfer one copy of query
state for each object. Our work exploits the inference results, in
particular, stable containment to share query state among objects.

Performance evaluation (§5). Our evaluation, using both real-
world data and large synthetic traces, yields the following results:
(i) Our inference algorithm is highly accurate, with less than 7% er-
ror on containment and 0.5% error on location, for noisy traces with
stable containment. (ii) With containment changes, our algorithm
can achieve 85% accuracy when read rates reach 0.7 while keeping
up with stream speed, as demonstrated using both real lab traces
with various noise factors and simulations. (iii) Our distributed in-
ference method provides 3 orders of magnitude reduction in com-
munication cost over a centralized approach without compromising
accuracy. (iv) Our highly accurate inference results allow a query
processor to produce high-quality answers and further allow effec-
tive sharing of query state across objects for state migration.

We finally note that on a more general level, the idea behind
smoothing over object relationships—to exploit relationships among
entities in data cleaning—has potential application in a wide range
of problems, which we will explore in future work.

2. BACKGROUND
In this section, we provide background on RFID technology and

RFID tracking and monitoring applications. Our system targets a
distributed supply chain with multiple warehouses. Each item in
the supply chain is assumed to be packed into a case, and multiple

Locations:

Time
Containers

Objects
A

t = 1
1

3 4

2

5 6

B

t = 2
1

3 4

2

5 6

C D

t = 3
1

3 4

2

5 6
CE F

t = 4
1

3 4

2

5 6
DE

Figure 1: Example of noisy RFID readings and containment changes

cases packed onto a pallet, which yields a containment relationship
between items, cases and pallets. Items, cases, and pallets are as-
sumed to be tagged; each tag has a unique identity. We assume the
tags are passive RFID tags, which are battery-less and have a small
amount of on-board memory, e.g., 1-4 KB in the current generation
of tags and up to 64KB in the next generation. This memory is
writable and can be exploited to store supply-chain-specific object
state and enable “querying anytime anywhere”.1 We assume that
each warehouse employs multiple RFID readers: at the entry and
exit points as well as at the belt and shelves to scan resident ob-
jects. Each such reader periodically sends a radio signal to the tags
in its read range; the tags, powered by the radio energy, send back
their tag ids. The reader immediately returns the sensed data in the
form of (time, tag id, reader id). The local servers of a ware-
house collect raw RFID data streams from all of the readers and
process these streams. The data streams from different warehouses
are further aggregated to support global tracking and monitoring.

We next illustrate the tracking and monitoring queries that our
work aims to support. Such queries assume that events in the input
stream contain attributes (time, tag id, location, container) and
optional attributes describing object properties, such as the type of
food or type of container, which can be obtained from the manu-
facturer’s database. Note the different schemas for raw RFID read-
ings and events required for query processing—events in the latter
schema are produced by an inference module as we discuss shortly.

Query 1 below is an example of a hybrid query that combines
object locations, containment relationships, and other sensor read-
ings (e.g., temperature). This query raises an alert for any frozen
food that is outside a freezer and has been exposed to room tem-
perature for 6 hours. The query is written using the Continuous
Query Language [2] with an extension for event pattern matching
[1]. The inner (nested) query checks for each frozen food if its
container is not a freezer or does not exist, and if so retrieves the
temperature based on the object’s location. The outer query aggre-
gates the retrieved temperatures for the object and checks if it has
been exposed to room temperature for 6 hours. The query finally
returns all the temperature readings in the 6 hour period and the
tag id of the object—such information can assist a retail store in
deciding whether to dispose of the food.
Query 1:
Select tag id, A[].temp
From ( Select Rstream(R.tag id, R.loc, T.temp)

From FrozenFood [Now] as R, Temperature
[Partition By Sensor id Rows 1] as T

Where (!(R.container Is Type Of ‘freezer’) or
R.container = NULL) and

R.loc = T.loc and T.temp > 0 °C
) As S
[ Pattern SEQ(A+)
Where A[i].tag id = A[1].tag id and

A[A.len].time > A[1].time + 6 hrs]

3. INFERENCE ALGORITHM
In this section, we present our inference module that translates

the low-level, noisy, and incomplete data from RFID readers into a
1This technology trend motivated us to minimize the computation state as-
sociated with a tag, as discussed in §4, so it can be held in a tag’s local
memory to enable querying anytime anywhere in the future.



high-level event stream with object location and containment in-
formation. More specifically, it translates raw readings, (time,
tag id, reader id), into events (time, tag id, location, container)
optionally with other attributes for object properties from the man-
ufacturer. Our solution to this problem makes use of techniques
from probabilistic reasoning, statistics, and machine learning.

Intuitively, the idea is that whenever an object is read, its con-
tainer is likely to be read as well. Over time, we can use the co-
location history of containers and objects to derive the containment
relationships. To develop this intuition into a robust system, how-
ever, several design considerations must be addressed to effectively
handle the noisy and incomplete input. To explain these considera-
tions, we use the example in Figure 1: Each node represents a tag,
and each edge a containment relation. The shaded nodes represent
tags that were read (by the reader specified in the bottom row), and
the unshaded nodes are tags that were missed by all readers.

A main design consideration is how to handle low read rates. If
the read rate is in the 60%-70% range, it is difficult to accurately de-
termine object locations, which makes it also difficult to tell when
objects are co-located. If the containment relations were known for
certain, then a powerful way to determine object locations would
be to smooth over containment relations, meaning that whenever
we read one object in a container, we know that all of the other ob-
jects must be in the same place. For example, in Figure 1, at time
t = 3, we miss reading container 2, but we do read object 5. If we
knew that container 2 contained object 5, then we could correctly
infer that container 2 is also present at location C.

Unfortunately, the containment relationships are not known in
advance, so instead we use an iterative approach. First, we start
with the best available information about object locations and have
a guess about containment relationships based on co-location. Then
we can improve our understanding of object locations via smooth-
ing over containment relationships. For example, in Figure 1, con-
tainer 2 and object 5 are repeatedly co-located in the raw readings,
so we can infer a containment relationship right away. Given the
containment relationship, we can infer the location of container 2
at t = 3. The resulting better understanding of locations allows
us to further improve our understanding of containment relation-
ships. Revisit Figure 1. We did not have strong evidence about the
container for object 6, but with the new location information about
container 2, we see that it is consistently co-located with object 6.

A second main design consideration is how to detect changes in
containment relationships. Consider an object and a container that
have been consistently co-located, such as container 1 and object
4 in the first two time steps of Figure 1. If later on (t = 3 in
the example), we fail to read the object, then following the idea of
smoothing over containment, it is reasonable to infer than object 4
is still co-located with container 1. But at some point, if we repeat-
edly fail to read the object (as at t = 4), we may suspect that the
object has actually been moved. To distinguish between these two
competing explanations—either the object has been removed from
the container, or it has not moved but its tag has been missed—we
need a way to decide when there is enough recent evidence to con-
clude that the containment relationship has actually changed. How
much evidence is enough should depend on the read rate: if the
readers are less accurate, then we ought to demand more evidence.

To resolve these difficulties in a principled way, we propose a
new algorithm RFINFER for inferring containment and location
from RFID readings. To do so, we first construct a probabilistic
model of the observed data that depends on the object locations
and containment relationships (§ 3.1). We then infer the contain-
ment relationships using RFINFER (§ 3.2), which essentially com-
putes the set of containment relationships that best explains the data
and estimates object locations as a by-product. In statistics, this is

called a maximum likelihood approach. Furthermore, containment
changes can be detected by measuring how closely two different
models fit the data: one that includes such changes, and one that
does not (§ 3.3). This is a type of change point detection problem.

Finally, we require that inference keep up with stream speed so
that, for example, processing five minutes of data takes no more
than five minutes of computation time. This performance require-
ment poses a challenge for state-of-the-art machine learning tech-
niques. The techniques we employ include optimizations (described
in the appendix §9.1) and history truncation (detailed in § 4).

3.1 Graphical Model
In this section we describe a probabilistic model of container

locations, object locations, and RFID readings. The model is a
probability distribution over random variables that represent both
the true state of the world, which we do not observe, and the RFID
readings, which we do. For the purposes of describing the model,
we assume that we know the containment relationships exactly; in
fact, we infer them from RFID data, as explained in § 3.2.

We discretize both time and space: We divide time into a set of
discrete epochs of, for example, one second in duration. All RFID
readings that occur in the same epoch are treated as simultaneous.
As for locations, given the set of tracking and monitoring queries
we aim to support, such as those in the previous section, it suffices
to localize objects to the nearest reader. Therefore, we model lo-
cations as a discrete set R, which is the set of locations of all of
the static readers. Finally, we assume that there are N containers,
which we denote by integers c ∈ [1, N ], and that there are O ob-
jects, which we denote by integers o ∈ [1, O].

The random variables in the model are as follows. For each
epoch t, and each container c, let `tc be the true location of the
container. This is a random variable which takes values from the
set of locationsR. Similarly, let `to be the true location of each ob-
ject o. As for the readings, let xtrc be a binary random variable that
indicates whether the reader at location r ∈ R received a reading
of the container c. Define ytro similarly for each object o. To make
the notation more compact, let ` = {`tc|∀t, c} ∪ {`to|∀t, o} be the
vector of all the true object and container locations over all time,
and similarly define x = {xtrc|∀t, r, c} for the container readings
and y = {ytro|∀t, r, o} for the object readings. The model is a
joint distribution p(`,x,y) over all of these random variables.

Our model is depicted graphically in Figure 4. The figure shows
the model for a single epoch.

To describe the model, we explain how to sample from the proba-
bility distribution that describes the world, assuming that the world
behaves exactly according to our model. At every epoch t, first the
true location `tc is sampled for each container c. Because we do
not assume any prior knowledge about the layout of the factory, we
model this distribution as uniform over the set of all possible loca-
tions R. Now there is no need to sample object locations, because
each object must be in the same place as its container, so if object
o is contained within container c, then `to = `tc.

Now we can generate the RFID readings. Each reader has a read
rate, which we denote π(r, r̄), which is the chance of the reader at
location r reading an object which is actually at location r̄. Typi-
cally, we expect a reader to detect an object only if both are at the
same location. However, there is a small chance that a reader can
detect an object which is actually closer to a nearby reader. In an
actual deployment, it is possible to measure the read rates periodi-
cally by using reference tags fixed to known locations and listening
for these tags’ responses to a given number of interrogations [10,
15]. To sample the readings, each reader independently attempts to
read the tag on every container and the tag on every object. For-
mally, each binary observation variable xtrc is sampled indepen-



dently with probability according to the read rate; that is, xtrc is
true with probability π(r, `tc). We write this probability as

p(xtrc|`tc) =

(
π(r, `tc) if xtrc = 1 (tag read)

1− π(r, `tc) if xtrc = 0 (otherwise),
(1)

and similarly for ytro.
Putting it together, this defines a joint probability distribution as

p(`,x,y) =

TY
t=1

CY
c=1

p(`tc)
Y
r∈R

p(xtrc|`tc)
Y

o|(o,c)∈C

p(ytro|`to)

(2)

It can be seen that this model treats all time steps as independent
and all containers as independent. For each epoch and container,
it iterates over all readers and considers the probabilities of each
reader observing the container as well as its contained objects. Be-
cause the model treats all epochs as independent, it does not per-
form any temporal smoothing over readings; however, it compen-
sates for this by smoothing over containment relations instead. To
smooth the readings over time as well would add significant com-
plexity to the model, and significant computational cost to the in-
ference procedure. In § 5, we verify experimentally that smoothing
over containment relations is effective at inferring object locations.

An important quantity is the probability that the model assigns to
the observed data, that is, p(x,y) =

P
` p(`,x,y). This quantity

is called the likelihood of the data. Note that the likelihood is a
function of the containment relationships C. To emphasize this, we
define L(C) = log p(x,y). According to our model, this is

L(C) =

TX
t=1

CX
c=1

log
X
a∈R

p(`tc)
Y
r∈R

p(xtrc|`tc)
Y

o|(o,c)∈C

p(ytro|`to)

(3)

The log likelihood measures how probable the observed RFID read-
ings are under the current set of containment relationships. This
will be an important quantity for inferring the containment relation-
ships, because a set of containment relationships that have higher
log likelihood provide a better explanation of the readings.

3.2 Inferring Containment Relationships
To infer containment relationships from RFID readings, we use a

maximum likelihood framework, that is, we determine the contain-
ment relationships such that, according to the model, the observed
readings are most likely. Formally, this amounts to maximizing the
log likelihood L(C) with respect to the set of contaiment relation-
ships C. In this section, we describe the algorithm that performs
this maximization, which we call RFINFER.

The idea is that determining containment relationships would be
simple if, besides the RFID data, we also observed the true loca-
tions of all containers. However, the true container locations are
in fact unknown. To handle this, we propose an algorithm RFIN-
FER for inferring the containment relations. RFINFER is developed
in the EM framework, which offers a general approach for maxi-
mizing likelihood functions in the presence of missing data, in our
case the container locations. The algorithm alternates between two
steps. In the first step, the expectation step (or E-step), we infer a
distribution over the locations of each container, given some current
guess about the containment relations. In the second step, the maxi-
mization step (or M-step), we choose the best containment relations
given our current guess of the container locations. We iterate these
two steps until the containment relations do not change.

In the E-step, the distribution that we want to compute is the
conditional distribution p(`|x,y) over the location of each con-

tainer that results from the joint distribution of Eq (3)—this distri-
bution is called the posterior distribution of the container location
and sometimes denoted as qtc(·) for simplicity. From the definition
of conditional probability, it can be shown that

p(`tc|x,y) = S
Y
r∈R

p(xtrc|`tc)
Y

o|(o,c)∈C

p(ytro|`to), (4)

where S is a constant that does not depend on `tc.
In the M-step, we update the current estimates of containment

relationships based on the current belief about locations. We do
so by defining a score wco to measure the strength of co-location
between object o and container c:

wco =

TX
t=1

X
a∈R

p(`tc = a|x,y)
X
r∈R

log p(ytro|`to = a). (5)

This score measures how likely are the readings of object o if it
were always co-located with container c. To estimate the container
for o, we simply pick the best container C(o) = arg maxwco.

Note that RFINFER also computes location information. When
the algorithm has converged, the final values of p(`tc|x,y) are our
best estimates of the location of each container at each time step.

Finally, the following theorem states that our algorithm is guar-
anteed to converge to an optimum of the likelihood:

Theorem 1. The RFINFER algorithm converges, and the resulting
values C∗ are a local maximum of the likelihood defined in Eq (3).

The proof is given in the appendix § 9. The key step is to show that
our simple, custom M-step indeed maximizes the likelihood.

3.3 Change Point Detection
In this section, we describe how we infer changes in contain-

ment relationships. This type of problem, called change-point de-
tection, is the subject of a large literature in statistics (see [3] for
an overview). A change point is a time t at which the contain-
ment relationships change, that is, some object has either changed
containers or been removed altogether. Finding change points is
challenging because of the noise in RFID readings. For example,
in Figure 1 at t = 4, it may be unclear if object 4 has actually been
removed from container 1, or it has simply been “unlucky” enough
to be missed twice in a row. To distinguish these two possibilities,
we need to way to quantify the unluckiness of a set of readings.

We propose a statistical approach based on hypothesis testing.
Suppose that we have received readings from epochs [0, T ]. Then
we define a null hypothesis, which is that the containment relation-
ships have not changed at all during epochs [0, T ]. Then, if under
the null hypothesis, it turns out that the observed RFID readings
are highly unlikely, we reject the null hypothesis, concluding that
a change point has in fact occurred. To measure whether the ob-
served readings are unlikely, we again use the likelihood Eq (3).
Consider a single object o. Let C0:T be the maximum likelihood
containment relations based on the full data, so that L(C0:T ) is
the best possible likelihood if there is no change point. Alterna-
tively, suppose there is a change point at some time t′. Then let
C0:t′ and Ct′:T be the best containment relations that allow object
o to change locations at time t′. Maximizing over possible change
points, the best possible likelihood if there is any change point for o
is maxt′ L(C0:t′) + L(Ct′:T ). We perform change point detection
using the difference of these two log likelihoods, that is,

∆o(T ) = L(C0:T )− max
t′∈[0,T ]

[L(C0:t′) + L(Ct′:T )] (6)

Essentially, this measures how much better we can explain the data
if we use two different sets of containment relationships instead of



one. This is a type of generalized likelihood ratio statistic, which
is a fundamental tool in statistics. The change point detection pro-
cedure will signal that there has been a change point whenever the
value of ∆o(T ) is greater than a threshold δ.

Intuitively, to choose the threshold we would like to know what
values of ∆o(T ) would be typical if there were no change point.
Fortunately, we can obtain as much of this data as we want, simply
by sampling hypothetical observation sequences from the model,
exactly as described in § 3.1. Since none of the hypothetical se-
quences actually contain a change point, if our procedure signals a
change point on one of them, it must be a false positive. In practice,
all of the hypothetical ∆o(T ) values are quite small, so we choose
δ to be their maximum. Further, all of this computation can be done
in advance before any RFID data is observed.

In summary, the change point procedure is: First, before any
data arrives, choose the threshold δ as described previously. Then,
at every epoch T , for each object o, compute ∆o(T ) from Eq (6).
If ∆o(T ) < δ, then there is no change point for o. Otherwise, if
∆o(T ) ≥ δ, then we flag a change point at the time t′ that achieved
the maximum in Eq (6). Furthermore, we disregard the data from
0 . . . t′ in all subsequent calls to the change point algorithm, so that
we do not flag the same change point more than once.

Analysis, Optimizations, and Extensions. We refer the reader
to the appendix (§9) for the complexity analysis, implementation
details, optimizations, and extensions of our algorithm.

4. DISTRIBUTED PROCESSING
As the sizes of supply chains grow into dozens of warehouses

and millions of objects, the sheer volume of data poses a scalability
challenge to an RFID tracking and monitoring system. A central-
ized approach, like centralized warehousing, requires all the data
to be transferred to a single location for processing, but this incurs
both a delay in returning answers to queries and a high communi-
cation cost. Instead, we use a distributed approach that performs
local RFID stream processing at each warehouse. However, infer-
ence and query processing often require information from multiple
warehouses. To solve that problem, we perform state migration,
which transfers the state of inference and query processing for an
object when it moves across warehouses. State migration raises
new issues concerning how to minimize the state that is transferred
without sacrificing accuracy at answering queries, which we ad-
dress in § 4.1 for inference and in § 4.2 for query processing. Re-
ducing the amount of state also opens up the possibility of writing
the state to local storage of the RFID tags (once the technology
of writable tags matures for large deployments), thereby enabling
“querying anytime anywhere” when a tag is in sight.

4.1 Distributed Inference
In our distributed approach, we run inference separately at each

warehouse on the locally-generated RFID readings. As an object
leaves one warehouse for another, the history associated with this
object (i.e., the history table described in §9.1) needs to be trans-
ferred to the new location for use by the inference procedure there.
But transferring the complete history would incur both a high com-
munication cost across warehouses and a high processing cost at the
next warehouse, because inference scales linearly with the amount
of history. In this section, we describe two techniques for avoid-
ing these problems. First, we truncate the history by sifting out
the observations that are most informative about the true contain-
ment relationships, and retaining only those observations for fu-
ture processing. Second, when transferring inference state between
warehouses, we distill the history into one number (a co-location
strength) for each container-object pair, avoiding the overhead of
transferring the entirety of the readings.

-400

-350

-300

-250

-200

-150

-100

-50

 0

 50

 50  100  150  200  250  300

C
u
m

u
la

ti
v
e 

E
v
id

en
ce

 (
lo

g
)

Time t

R
NRC

NRNC

-400

-350

-300

-250

-200

-150

-100

-50

 0

 50

 50  100  150  200  250  300

C
u
m

u
la

ti
v
e 

E
v
id

en
ce

 (
lo

g
)

Time t

R
NRC

NRNC

(a) Cumulative evidence

-4

-3

-2

-1

 0

 50  100  150  200  250  300

P
o
in

t 
E

v
id

en
ce

 (
lo

g
)

Time t

R
NRC

NRNC
-4

-3

-2

-1

 0

 50  100  150  200  250  300

P
o
in

t 
E

v
id

en
ce

 (
lo

g
)

Time t

R
NRC

NRNC

(b) Point evidence

Figure 2: Evidence of co-location of three candidate containers.

Truncating History. The goal of history truncation is to de-
termine the time steps whose observations are most informative for
determining containment. This can be accomplished by monitoring
the strength of co-location computed in our containment inference
algorithm RFINFER. Recall that in the M-step of Algorithm 1, the
co-location strength wco for each object o and container c is a sum
over all time steps of a quantity that we will call the point evidence
of co-location, denoted

eco(t) =
X
a∈R

qtc(a)
X
r∈R

log p(ytro|`to = a).

Then the cumulative evidence of co-location isEco(t) =
Pt

t′=1 eco(t′).
To see how these quantites are used, suppose that an object started
at the entry door at time 0, was scanned on the conveyor belt around
time 100, and then placed on a shelf at time 150. Consider three
candidate containers that were co-located with this object at the en-
try door: the real container (denoted by R) that always travels with
the object, a second container (NRC) that was co-located at the
door and the shelf but not the belt, and a third container (NRNC)
that was never co-located after the door. Fig. 2(a) shows the cumu-
lative evidence of co-location of three candidate containers with an
object. Around time 100, the belt reader scanned the real container
alone with the object, causing the cumulative evidence of the other
two containers to dropped fast. This is exactly the kind of infor-
mative region that we want to find during history truncation. The
information afterwards is less useful, beacuse the false container
NRC becomes co-located the object again on the shelf, while the
container NRNC was already eliminated from contention by the
belt reader. So, if we truncate the entire history associated with the
object to those few readings from the belt scans, we may still have
enough information to infer the true container.

Our history truncation method aims to find a subsequence of
readings, called the critical region, that distinguish the true con-
tainer from others, and discards other readings. While our intuition
was explained using the cumulative evidence of co-location, our al-
gorithm actually uses the point evidence of co-location, as shown
in Fig. 2(b) (in log space). During the critical region around time
100, the real container has much higher point evidence than the two
false containers; this is not true either before or after the region.

The history truncation algorithm, which runs after containment
inference is complete, examines the point evidence for the candi-
date containers of each object. It searches through time by applying
a sliding window [t−w, t]. For each window, it computes the sum
of point evidence

Pt
t′=t−w eco(t′) for each container, and com-

putes the difference in evidence between the best container and sec-
ond best. If this difference is above a threshold, it includes all the
readings in the current window into the critical region CR, over-
writing the past set of readings in CR if existent. When the search
reaches the end, all readings not in CR are simply discarded.

After running this algorithm, we have compressed the entire his-
tory from [0, T ] to a small sequence CR. When the new readings



arrive in the time period [T, T ′], rather than running inference over
the entire period [0, T ′], we run inference only over the data in the
the critical region CR and in a period of recent history denoted by
H . If containment is stable, it suffices to have H = [T , T ′], i.e.,
including all new readings obtained since last inference. To support
change point detection, however, we may need a somewhat larger
recent history H . According to Eq (6), the change point can be any
point in the entire history. In practice, it is more likely to be in the
recent history since it was not detected last time. However, it may
be imprudent to restrict the change point only to the most recent
period [T , T ′] because a change point before the time T might not
get sufficient evidence in the previous change point detection. Our
experimental results in §5.1 show that the sufficient size of H is
within a factor of 2 of T ′-T . As time elapses, the recent history H
moves forwards and we can compression all readings falling behind
H by applying the critical region algorithm.

Distilling History. When an object leaves a warehouse for the
next, the history about the object that is transferred is called the
inference state for the object. One option is to transfer the set of
readings of the object and its candidate containers in the critical
region CR and recent history H to the next warehouse. As such,
we can seed the inference for this object in the new location. How-
ever, the inference state for an object may still not be small since
each object can have dozens of candidate containers, and each con-
tainer and object can have hundreds of readings in CR and H . If
each RFID reading (time, tag id, reader id) takes 20 bytes, the
inference state for a single object can be up to, e.g., 200,000 bytes.

An alternative is to distill the history by transferring co-location
weights wco instead of the readings themselves. Then the infer-
ence algorithm simply adds the old transferred weights to the new
weights that are computed from readings in the new warehouse.
This dramatically reduces the inference state, because we only need
to store a single number wco for each candidate container of an ob-
ject, rather than a large number of readings. This approximation
can affect accuracy: if later evidence shows that the containment
inference results from the old warehouse were incorrect, we can no
longer revise the old location estimates as the readings have been
discarded. Even in this case, however, inference at the new ware-
house still has the potentially to get the containment right, because
readings obtained there can eventually overrule the old weights.

4.2 Distributed Query Processing
Given an event stream with object location and containment in-

formation, the query processor processes this stream and other sen-
sor streams to answer monitoring queries. Below, we discuss dis-
tributed query processing by assuming a relational stream processor
[1, 2] (support for more complex queries is discussed in §10).

To enable distributed query processing, as an object leaves one
warehouse for another, we need to identify the state of query pro-
cessing relevant to the object and transfer it to the next warehouse
to continue query processing there. Consider Query 1 in §2. While
part of the query can be performed locally at each warehouse, such
as joining the object stream and the temperature stream, other parts
of the query can span sites, such as detecting the pattern of con-
tinuous exposure to room temperature for 6 hours. Recent work
handles such complex pattern queries using automata-based eval-
uation [1], and compactly represents the query state using (i) the
current automaton state, (ii) the minimum set of values needed for
future automaton evaluation, e.g., the tag id and the time of the first
exposure to room temperature for Query 1, and (iii) the values that
the query returns, e.g., the tag id and the sequence of temperature
readings for Query 1 (details are available in [1]).

Since tracking and monitoring queries are evaluated on a per-
object basis, the key issue is that the query processor maintains a

Table 1: Parameters used for generating RFID streams.
Parameter Value(s) used
Number of warehouses (N ) 1 - 10
Frequency of pallet injection (fixed) 1 every 60 seconds
Cases per pallet (fixed) 5
Items per case (fixed) 20
Number of items in steady state (I) up to 32,000 / warehouse
Main read rate of readers (RR) [0.6, 1]
Overlap rate for shelf readers (OR) [0.2, 0.8]
Non-shelf reader frequency (fixed) 1 every second
Shelf reader frequency (fixed) 1 every 10 seconds
Frequency of anomalies (FA) 1 every 10 - 120 seconds

copy of query state for each object. To reduce the total amount
of state transferred for numerous objects, we exploit stable con-
tainment to share query state across objects. In particular, at the
exit door of a warehouse, we consider the objects in each container
relevant to a query, e.g., all of those being frozen food. These ob-
jects have the same container and location at present, but potentially
different history—for most queries, these objects often have com-
monalities in the query state. We propose a centroid-based sharing
technique. Let Qo denote the query state for object o. We choose
the most representative query state (the centroid) of all Qo’s based
on a distance function that counts the number of bytes that differ in
the query state of two objects. The centroid selection problem has
a O(n2) complexity, but since each case contains a small number
of objects, e.g., 20, this computation cost is not high. Given the
choice of the centroid, we compress the query state of every other
object based on its distance to the centroid.

5. PERFORMANCE EVALUATION
We have implemented a prototype of our inference approach,

connected it to a stream query processor [1], and extended the com-
bined system with state migration for distributed processing. We
evaluate our system using both synthetic traces emulating RFID-
based enterprise supply chains and real traces from a laboratory
warehouse setup. The parameters for our synthetic traces are sum-
marized in Table 1. Details of these parameters and our perfor-
mance metrics are described in the appendix (§11.1).

5.1 Single-Site Inference
We first evaluate the accuracy and efficiency of our RFINFER

inference algorithm on the synthetic RFID streams from a single
warehouse. By default, we run inference once every 300 seconds.

Inference with stable containment. We evaluate our inference
algorithm first using traces with stable containment. To deal with
traces of various lengths, we consider the Critical Region (CR)
method that we proposed for history truncation in distributed pro-
cessing (§4.1) as an optimization also for traces produced at a sin-
gle warehouse. This method results in the use of the critical re-
gion and a short recent history H (by default, the most recent 600
seconds) for inference. For comparison, we also include a sim-
ple window-based truncation method that keeps the most recent W
readings for inference (W=1200 seconds here).

We first test the sensitivity of these methods to the read rate RR.
As Fig. 3(a) shows, while all three methods offer high accuracy for
location inference, they differ widely for containment inference:
The window method has the worse accuracy because when the use-
ful observations, such as the belt readings, fall outside the window,
the inference algorithm can no longer use them to infer contain-
ment. Using the entire history or the CR method gives better accu-
racy as expected. Interestingly, while the CR method was initially
proposed for improving performance, it also improves over the ba-
sic algorithm in accuracy due to the removal of noise from infer-



 0

 2

 4

 6

 8

 10

0.6 0.7 0.8 0.9 1.0

E
rr

or
 R

at
e 

(%
)

Read Rate

Containment(W1200)
Containment(All)
Containment(CR)
Location(W1200)

Location(All)
Location(CR)

 0

 2

 4

 6

 8

 10

0.6 0.7 0.8 0.9 1.0

E
rr

or
 R

at
e 

(%
)

Read Rate

Containment(W1200)
Containment(All)
Containment(CR)
Location(W1200)

Location(All)
Location(CR)

(a) Basic (all history), fixed window, and history
truncation methods with varied read rates

 0

 100

 200

 300

 400

 500

 600

600 1200 1800 2400 3000 3600

T
im

e 
co

st
 (

s)

Trace length

Inference(W1200)
Inference(All)
Inference(CR)

 0

 100

 200

 300

 400

 500

 600

600 1200 1800 2400 3000 3600

T
im

e 
co

st
 (

s)

Trace length

Inference(W1200)
Inference(All)
Inference(CR)

(b) Basic (all history), fixed window, and history
truncation methods with varied trace lengths

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  20  40  60  80  100  120

T
im

e 
co

st
 (

s)

Containment change interval

RR=0.8 H=400

RR=0.6 H=600

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  20  40  60  80  100  120

T
im

e 
co

st
 (

s)

Containment change interval

RR=0.8 H=400

RR=0.6 H=600

(c) Change point detection (using a larger H for
a lower RR to meet 85% accuracy)

 0

 5

 10

 15

 20

 25

 30

T1 T2 T3 T4 T5 T6 T7 T8

E
rr

or
 r

at
e 

(%
)

SMURF Cont.

SMURF Loc.

RFINFER Cont.

RFINFER Loc.

 0

 5

 10

 15

 20

 25

 30

T1 T2 T3 T4 T5 T6 T7 T8

E
rr

or
 r

at
e 

(%
)

SMURF Cont.

SMURF Loc.

RFINFER Cont.

RFINFER Loc.

(d) RFINFER vs. SMURF∗ using real lab traces

 0

 5

 10

 15

 20

 0.6  0.65  0.7  0.75  0.8  0.85  0.9  0.95  1

E
rr

or
 r

at
e 

(%
)

Read rate

None

CR+H

CR

Centralized

 0

 5

 10

 15

 20

 0.6  0.65  0.7  0.75  0.8  0.85  0.9  0.95  1

E
rr

or
 r

at
e 

(%
)

Read rate

None

CR+H

CR

Centralized

(e) Distributed inference with varied read rates

 0

 5

 10

 15

 20

 20  40  60  80  100  120

E
rr

or
 r

at
e 

(%
)

Containment change interval

None

CR+H

CR

Centralized

 0

 5

 10

 15

 20

 20  40  60  80  100  120

E
rr

or
 r

at
e 

(%
)

Containment change interval

None

CR+H

CR

Centralized

(f) Varied containment changes intervals

Figure 3: Experimental results for single-site inference (a-c), our lab warehouse deployment (d), and distributed inference (e and f ).

ence. Further, its sensitivity to the read rate is comparable to that
using the full history, which is the best that one would expect.

We next vary the trace length from 600 to 3600 seconds and
compute the total inference time when using the entire history, the
window, and the CR methods in Fig. 3(b). Here we see that using
the entire history severely penalizes the performance, the window
based truncation stays in the middle, and the CR method performs
the best with its running time insensitive to the trace length.

Containment change detection. We next employ the change
point detection algorithm presented in §3.3 to detect containment
changes. We use a recent history size ofH (600 seconds by default)
in addition to the detected critical region for inference with change
point detection. To generate events of interest, we inject anomalies
that randomly choose an item and move it to a different case in the
warehouse. The frequency of such anomalies is every 20 seconds
by default but also varied over a wide range. Each run simulates a
warehouse with 32,000 items in steady state over 4 hours.

Choice of threshold. We first examine the effect of the thresh-
old δ for change point detection by considering fixed values in a
range. We also evaluate the effectiveness of our offline method that
chooses δ by (1) sampling hypothetical observation sequences from
the graphical model, (2) computing a distribution of the ∆ statistics
(Eq. 6), and (3) selecting the largest ∆ sample (rounded to integer)
as the threshold. We created traces with varied read rates.

Threshold δ
10 20 30 40 50 60 70 80 90 100

RR=0.6 64 71 75 85 89 89 87 87 87 87
RR=0.7 85 88 90 92 94 96 94 93 91 90
RR=0.8 92 97 98 97 97 97 96 95 95 93
RR=0.9 83 98 97 97 97 97 97 96 96 95

The table above shows the F-measures for these traces as the thresh-
old takes various fixed values. The bold numbers indicate the F-
measures of the threshold chosen by our offline sampling algo-
rithm. As can be seen, the best fixed threshold that gives the opti-
mal F-measure varies across traces. Our chosen threshold always
approximates the optimal value within 2% across all read rates.

Tradeoff between accuracy and efficiency. Our change point de-
tection algorithm offers a tradeoff between accuracy and efficiency

depending on the read rate RR and the history length H . To de-
pict this tradeoff, we varied H from 300 to 900 and the RR from
0.6 to 0.9 and computed the F-measure and the time cost of each
combination of the two. The detailed results are in Table 3 in the
appendix. We found that, for a given read rate, longer histories
offer better accuracies but at the expense of higher time cost; for a
given history, a higher read rate offers higher accuracy. Overall, our
system needs H ≤ 600 to achieve above 85% accuracy. Fig. 3(c)
shows the time cost for two particular combinations of H and RR
to achieve the 85% accuracy. For the low value RR=0.6, we need
H=600 to meet the accuracy requirement; for the higher RR=0.8,
we only need H=400. Hence, they have different time costs, but
both show limited sensitivity to the containment change interval.

5.2 Evaluation of Lab RFID Deployment
To evaluate our system in real-world settings, we developed an

RFID lab with 2 ThingMagic Mercury5 readers connected to 7
circularly-polarized antennas, 20 cases containing 5 items each,
and Alien squiggle tags attached to all cases and items. We used
the 7 antennas to implement 1 entry door reader, 1 belt reader, 4
shelf readers, and 1 exit reader. Cases with contained items tran-
sitioned through the antennas in that order, receiving 5 interro-
gations from each nonshelf antenna and dozens from a shelf an-
tenna. The shelf antennas had overlapping read ranges as they
were placed close to each other. We created 8 traces with distinct
characteristics, by varying the environmental noise, overlap among
antennas, and tag orientations: T1 (RR=0.85, OR=0.25), high av-
erage read rates and limited overlap rates between antennas; T2

(RR=0.85, OR=0.5), high read rates and significant overlap rates;
T3 (RR=0.7,OR=0.25), lower read rates and limited overlap rates;
T4 (RR=0.7, OR=0.5), lower read rates and significant overlap
rates; T5 to T8 extend T1 to T4, respectively, with containment
changes to 35% of the cases. Further details of these traces are
given in the appendix (§11.2). Each trace is 15 minutes long with
15,000 to 22,000 readings. We ran inference every 5 minutes.

For comparison, we include an alternative method, called SMURF∗,
that extends the state-of-the-art SMURF[10] method for RFID clean-
ing and location inference, with heuristics for containment infer-



ence. This method is detailed in the appendix (§11.3).
Fig. 3(d) shows the inference error rates for RFINFER and SMURF∗.

As can be seen, RFINFER is much more accurate than SMURF∗

across all traces although they both use intuitions such as smooth-
ing and co-location. The key reason is that RFINFER uses smooth-
ing over containment relations and a principled approach for the it-
erative feedback between location and containment estimates. This
is shown to be more effective than smoothing over time for individ-
ual objects and then combining such location evidence in a heuristic
way to infer containment as in SMURF∗. For RFINFER, the location
error rates are low across all traces. The containment error rates are
within 5% in traces T1 to T4 despite the heterogeneous read rates,
added environmental noise, and significant overlap between anten-
nas. Containment changes cause containment error rates to rise,
especially given lower read rates or higher overlap rates, but with a
maximum of 13% with all the noise factors combined in T8.

5.3 Distributed Inference
We next compare centralized and distributed approaches to infer-

ence by simulating 10 warehouses for 4 hours. Each warehouse has
32,000 items in steady state, totally 0.32 million items. Our system
runs inference at stream speed for each warehouse. Fig. 3(e) shows
the error rates for varied read rates. The naive no state-transfer
method (labeled “None”) has a high error rate, while our critical
region (CR) method and its variant that transfers the weight of con-
tainers that co-located with an item in recent history (“CR+H”)
both perform close to the centralized method. The CR method has
a slightly lower error rate than CR+H, indicating that the weights
from the recent history are mostly noise and affect subsequent in-
ference. The communication costs (shown in the appendix) show
that our CR methods offer 3 orders of magnitude reduction in com-
munication cost over a centralized approach (which approximating
its accuracy). Finally, Fig. 3(f) shows a similar result regarding
these methods when the containment change frequency varies.

5.4 Distributed Inference and Querying
We finally extend our distributed inference experiment with query

processing. We run two queries: Q1 from §2, and Q2 that reports
the frozen food that has been exposed to temperature of higher than
10 degrees for 10 hours. The table below reports the F-measures for
different read rates and the total size of query state with and without
sharing the state using inferred containment (§4.2). We see that the
overall accuracy of query result is high (89% or higher). Also, state
sharing yields up to an order of magnitude reduction in query state
size. Finally, the accuracy and query state reduction ratio of Q1 are
lower than those of Q2. This is because Q1 combines inferred loca-
tion and containment, but Q2 only uses the inferred location which
is generally more accurate than inferred containment.

RR=0.6 RR=0.7 RR=0.8 RR=0.9

Q1
F-m.(%) 89.2 94 95.1 96
State w/o share(bytes) 65,500 66,000 67037 67,000
State w. share(bytes) 6,986 5,737 5,589 5,156

Q2
F-m.(%) 93.5 96.1 97.3 97.5
State w/o share(bytes) 80,248 85,510 87,029 87,000
State w. share(bytes) 7,296 6,108 5,341 5,273

6. RELATED WORK
RFID stream processing. Recent research has addressed RFID

data cleaning [7] and location inference for static readers [10, 13]
and mobile readers [15]. However, containment inference is more
challenging since inter-object relationships cannot be directly ob-
served. Our work is the first to employ smoothing over object re-
lations in RFID inference, with demonstrated performance. Our
work further supports distributed inference and querying.

RFID databases. Existing work has addressed RFID data archival
[16], event specification and extraction [17], integrating data cleans-
ing with query processing [12], and exploiting known constraints to
derive high-level information [18]. Our system addresses a differ-
ent problem: it processes raw data streams to infer object location
and containment, thereby enabling stream query processing, and
scales inference and query processing to distributed environments.

Inference in sensor networks. Various techniques [11, 5, 14, 9]
have been used to infer true values of temperature, light, object po-
sitions, etc., that a sensor network is deployed to measure. Our in-
ference problem differs because the inter-object relationships, such
as containment, cannot be directly measured, hence requiring dif-
ferent statistical models and inference techniques. We further ad-
dress distributed inference and query processing for scalability.

7. CONCLUSIONS
In this paper, we presented the design of a scalable, distributed

stream processing system for RFID tracking and monitoring. Our
technical contributions include (i) novel inference techniques that
provide accurate estimates of object locations and containment re-
lationships in noisy, dynamic environments, and (ii) distributed in-
ference and query processing techniques that minimize the com-
putation state transferred across warehouses while approximating
the accuracy of centralized processing. Our experimental results
demonstrated the accuracy, efficiency, and scalability of our tech-
niques. In future work, we plan to extend our work to include prob-
abilistic query processing, exploit on-board tag memory to hold
object state and enable anytime anywhere querying, and explore
smoothing over object relations for other data cleaning problems.

8. REFERENCES
[1] J. Agrawal, Y. Diao, et al. Efficient pattern matching over event

streams. In SIGMOD, 147–160, 2008.
[2] A. Arasu, S. Babu, et al. CQL: A language for continuous queries

over streams and relations. In DBPL, 1–19, 2003.
[3] M. Basseville and I. V. Nikiforov. Detection of Abrupt Changes:

Theory and Application. Prentice-Hall, 1993.
[4] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic

databases. VLDB J., 16(4):523–544, 2007.
[5] M. Cetin, L. Chen, et al. Distributed fusion in sensor networks. IEEE

Signal Processing Mag, 23:42–55, 2006.
[6] K. Finkenzeller. RFID handbook: radio frequency identification

fundamentals and applications. John Wiley and Sons, 1999.
[7] M. J. Franklin, S. R. Jeffery, et al. Design considerations for high

fan-in systems: The HiFi approach. In CIDR, 290–304, 2005.
[8] S. Garfinkel and B. Rosenberg, editors. RFID: Applications, Security,

and Privacy. Addison-Wesley, 2005.
[9] A. Ihler, J. Fisher, et al. Nonparametric belief propagation for

self-calibration in sensor networks. In In IPSN, 225–233, 2004.
[10] S. R. Jeffery, et al. An adaptive RFID middleware for supporting

metaphysical data independence. VLDB Journal, 17(2), 2007.
[11] M. Paskin, C. Guestrin, et al. A robust architecture for distributed

inference in sensor networks. In IPSN, 55–62, 2005.
[12] J. Rao, S. Doraiswamy, et al. A deferred cleansing method for RFID

data analytics. In VLDB, 175–186, 2006.
[13] C. Ré, J. Letchner, et al. Event queries on correlated probabilistic

streams. In SIGMOD, 715–728, 2008.
[14] J. Schiff, D. Antonelli, et al. Robust message-passing for statistical

inference in sensor networks. In IPSN, 109–118, 2007.
[15] T. Tran, C. Sutton, et al. Probabilistic inference over RFID streams in

mobile environments. In ICDE, 2009.
[16] F. Wang and P. Liu. Temporal management of RFID data. In VLDB,

1128–1139, 2005.
[17] E. Welbourne, et al. Cascadia: a system for specifying, detecting, and

managing RFID events. In MobiSys, 281–294, 2008.
[18] J. Xie, J. Yang, et al. A sampling-based approach to information

recovery. In ICDE, 476–485, 2008.



R Number of reader locations
N Number of containers
O Number of objects
o Index of a single object; o ∈ [1, O]
c Index of a single container; c ∈ [1, N ]
t Index of time epoch (e.g., 1 second long)
R Set of possible reader locations
`tc True location of container c at time t.
`to True location of object o at time t
π(r, r̄) Read rate. Probability that reader at location r ∈ R

detects an object at location r̄ ∈ R
ytro Binary variable indicating whether object o was read by

reader at location r at time t
xtrc Binary variable indicating whether container c was read

by reader at location r at time t
x Binary vector of all container readings
y Binary vector of all object readings
wco Strength of co-location between container c and object o
C Containment relations; set of pairs (object id,

container id)
L(C) Likelihood of the observed readings, given containment

relations C
∆o(T ) Change-point statistic for epoch T

Table 2: Notation used in this paper

Appendix
This appendix gives additional details of our algorithms and perfor-
mance results. The notation used in our algorithms is summarized
in Table 2.

9. ENHANCEMENTS OF RFINFER
In this section, we present additional details about our model, the

RFINFER inference algorithm, implementation and optimizations,
and finally two extensions of the inference algorithm.

Graphical Model. The graphical representation of our model is
given in Figure 4. This figure shows the structure of the probabilis-
tic model over a single epoch. Each node in the graph represents a
random variable, and the arcs are drawn between variables that are
most “closely” dependent (in a sense that is formalized in the theory
of graphical models). This example includes two containers and
four objects. The unshaded variables at top are the true container
locations `tc and true object locations `to. The shaded variables are
the RFID readings xtrc and ytro for all readers r, containers c, and
objects o. A variable xtrc exists whether or not container c was
read; if c was not read, then xtrc = 0. The containment relations
are reflected in the structure of the graph.

Algorithm and Proof. The pseudocode for RFINFER is shown
... ... ...

1

2

R

Container 1

... ... ...

1

2

R

�t,c=2

�t,o=3

Reader

xt,c=2 yt,o=3 yt,o=4

Reader

Container 2

�t,o=2

�t,o=1

yt,o=2xt,c=1 yt,o=1

�t,o=4
�t,c=1

Figure 4: Graphical model of locations and RFID readings.

Algorithm 1 Pseudocode of RFINFER for inferring contaiment
while not converged do

// E step: compute new q
for t = 0 to T do

for c = 1 to N do
5 for all a ∈ R do

qtc(a)←
Y

r∈R
p(xtrc|`tc = a)

Y
o|(o,c)∈C

p(ytro|`to = a)

// Now qtc(a) = S−1p(`tc = a|x,y)
S ←

P
a∈R qtc(a)

for all a ∈ R do
10 qtc(a)← qtc(a)/S

// Now qtc(a) = p(`tc = a|x,y)
// M step: compute new w
for o = 1 to O do

for c = 1 to N do

15 wco ←
TX

t=1

X
a∈R

qtc(a)
X
r∈R

log p(ytro|`to = a)

// M step: compute new containment set
C ← ∅
for o = 1 to O do
c∗ ← arg maxc∈[1,N ] wco

20 C ← C ∪ {(o, c∗)}

in Algorithm 1. We next prove Theorem 1 about the optimality of
the RFINFER algorithm.

Proof. We show that RFINFER (Algorithm 1) is guaranteed to con-
verge to a local maximum of the likelihood L(C) in (3). Following
the EM theory, we can interpret both the E-step and the M-step as
maximizing a lower bound on the likelihood, which is

L(C) ≥
TX

t=1

CX
c=1

X
a∈R

qtc(a) log
p(`tc = a,x,y)

qtc(a)
= O(C)

The fact that this is a lower bound can be proven by Jensen’s in-
equality. The E-step maximizes this bound with respect to qtc, and
the M-step with respect to C. In RFINFER, the E-step is identical
to the standard E-step of EM, but we use a custom M-step that is
specific to our model. So it suffices to prove that the M-step in
RFINFER indeed maximizes O(C).

When maximizing with respect to C, we can ignore terms that
do not depend on C. Expanding O(C) using Eq (3) and removing
irrelevant terms yields

max
C
O(C) = max

C

TX
t=1

CX
c=1

X
a∈R

qtc(a)
X

o|(o,c)∈C

log p(ytc|`to = a)

= max
{c(o),∀o}

OX
o=1

wc(o),o,

where c(o) denotes the container of object o, and ytc = {ytrc|∀r}.
In this last equation, notice that each containment decision c(o) that
we are maximizing over appears in only one term of the summa-
tion. This means that we can find the global maximum by maximiz-
ing each term independently, i.e., maxC O(C) =

P
o maxc′ wc′,o.

This is exactly what is computed in lines 12–20 of RFINFER.

Computation Complexity. Each iteration of RFINFER requires
O(TNOR2) time, where by iteration we mean a single execution
of lines 2–20. This is due to two reasons. First, the computation of
qtc(a) in line 6 requires O(OR) time, and is executed O(TNR)
times by the outer loops. Second, the computation ofwco in line 15
requires O(TR2) time, and is executed O(NO) times by its outer
loops. This is the running time of a naive implementation of the



algorithm; in Section 9.1, we describe several optimizations that
improve the performance significantly. Also, note that this is the
computational complexity per iteration; unforunately, it is difficult
to characterize the number of iterations required for EM to con-
verge, because this depends strongly on characteristics of the un-
known true distribution.

9.1 Implementation and Optimizations
In this section, we sketch the main data structures and optimiza-

tions that we use to implement the RFINFER algorithm together
with the change point detection extension.

Data structures. We use a series of tables: (1) The read rate
table (size: R × R) stores the read rates π(r, r̄). (2) Two history
tables: one for container readings x (size: T ×R×N ), and one for
object readings y (size: T ×R×O) (3) The posterior probability
table (T ×N×R) stores the posterior distribution qtc(a) over con-
tainer locations. (4) The weight table (N×O) stores the co-location
strengths wco. (5) Finally, the containment table (vector of length
O) stores the container inferred for each object. Although the his-
tory and posterior probability tables grow with time, in the next
section we describe a history truncation method that reduces the
memory requirement without sacrificing accuracy. Finally, many
of these tables, especially the history tables, are sparse, i.e., most
cells are 0, and so can be easily compressed to save memory.

Frequency of inference. We run RFINFER periodically as new
data arrives, for example, once every 300 epochs.

Optimizations. We further employ several optimizations to im-
prove inference efficiency. Recall from Section 3.2 that both the E-
step and M-step of our algorithm have the complexityO(TNOR2).
The E-step can be easily improved as each object is typically read
in only a small number of locations and each container contains a
small number of items. If both of those are bounded independently
of R and O, then the E-step requires only O(TNR) time. In a
similar way, the M-step also be improved by a factor of R.

Second, we propose an optimization, called candidate pruning,
to improve the M-step further to O(TOR), eliminating the factor
ofN . The idea is that in line 15, when computing the container that
is most strongly co-located with a given object, it is probably safe
to consider only containers that have been observed frequently with
the object. So as a heuristic, we restrict the set of candidate con-
tainers to those that were most frequently co-located during the first
several epochs. When testing for change points, we also include as
candidates the most frequently co-located containers from recent
epochs. Our experimental results show that candidate pruning is
effective at reducing the time cost without affecting the accuracy.

We further propose a memorization technique that avoids unnec-
essary computation: If the set of objects in a container did not
change in the previous EM iteration, then the location probabil-
ities and co-location strengths for that container cannot change at
the current iteration, so we can simply re-use the old values without
any extra work. This optimization does not introduce any error.

9.2 Extensions
We briefly discuss possible extensions to RFINFER. (1) Hier-

archical containment: Just as objects are grouped into containers,
containers may themselves be stored in larger containers, such as
pallets. It is easy to extend our model and algorithms to arbitrar-
ily nested containment hierarchies. (2) Probabilistic containment
output: If probabilistic query processing is desired, then we need
to produce a confidence value on the containment tuples in the out-
put. A natural confidence value is the co-location strength wco, but
this is not a probability because it is always negative (it is an aver-
age of log probabilities). Fortunately, a standard trick can be used
to convert wco into a distribution over containers co for object o,
by p(co) = exp{wco}/

P
c′ exp{wc′o}. This choice can be the-

oretically justified by appealing to an approximation algorithm for
graphical models called variational message passing.

10. DISCUSSION OF QUERY PROCESSING
We discuss how our system can provide support for relational

and probabilistic query processing. For query processing, our sys-
tem can use either data stream processing based on the traditional
relational model [1, 2], or probabilistic data stream processing based
on an uncertainty model [4, 13]. In the former approach, the events
are treated as deterministic, so the query processing results may
contain errors if inference is not entirely correct. However, this ap-
proach does not require any change of existing data stream systems
and is shown to yield only a small error given the high accuracy
of our inference algorithms (detailed in §5). The latter approach,
on the other hand, exposes the uncertainty in inference to the query
processor by explicitly including location and containment distri-
butions in the events. Probabilistic query processing then produces
answers with confidence values. The computation, however, can be
much more expensive than in the first approach. Our system sup-
ports this approach by extending the inference algorithms to output
both the location distribution and the containment distribution, as
described in §9.2. We leave the choice of approach to the discretion
of the application, but assume the first approach when discussing
the issues in distributed query processing for simplicity.

11. EXPERIMENTAL EVALUATION
In this section, we describe additional experimental results be-

yond the key results presented in the main body of the paper.

11.1 Experimental Setup
We first describe the methodology employed to generate the syn-

thetic traces summarized in Table 1. We developed a simulator us-
ing CSIM to emulate an RFID-based enterprise supply chain. Each
supply chain has N warehouses organized in a single-source di-
rected acyclic graph (DAG). Pallets of cases are injected at the sin-
gle source, and then move through a sequence of warehouses with
a scheduled delay in each warehouse and scheduled transit time
between two warehouses, until they reach final destinations. Our
simulator guarantees that in a period of time, the numbers of pallets
arriving at a warehouse and departing from it are about the same,
so there is no backlog in the system. For distributed processing and
scalability tests, our simulator can “bulk-load” a large number (I)
of items into the supply chain before starting to inject pallets at the
source and consume pallets at the destinations.

Within a warehouse, pallets first arrive at the entry door and are
read by the reader there. They are then unpacked. By default, each
warehouse has a reader at the conveyor belt that scans the cases one
at a time. The cases are then placed onto shelves and scanned by
the shelf readers. After a period of stay, cases are removed from the
shelves and repackaged. The newly assembled pallets are finally
read at the exit door and dispatched to subsequent warehouses in a
round-robin fashion. In the simulation, all readers have a read rate
RR for its location, uniformly sampled from [0.6, 1] unless stated
otherwise. There is significant overlap between adjacent shelf read-
ers: a shelf reader can read objects in a nearby location with proba-
bility OR uniformly sampled from [0.2, 0.8]. Two separate param-
eters are used to control the read frequencies of shelf readers and
non-shelf readers as in many real-world deployments. Finally, to
stress test our containment change detection algorithm, our simula-
tor can inject anomalies that randomly pick an item and place it in
a different case, with the frequency specified by the parameter FA.

Our evaluation uses the following metrics: Error rate (%): To
measure accuracy, we compare the inference results with the ground
truth and compute the error rate. F-measure: For change point



detection, we evaluate the accuracy of the reported changes. We
use precision to capture the percentage of reported changes that
are consistent with the ground truth, and recall to capture the per-
centage of changes in the ground truth that are reported by our al-
gorithm. We combine them into F -measure = 2 ∗ precision ∗
recall/(precision + recall). Running cost: We report the time
taken to evaluate a trace using a single-threaded implementation
running on a server with an Intel Xeon 3GHz CPU and running Java
HotSpot 64-bit server VM 1.6 with maximum heap size 1.5GB.

11.2 Lab RFID Deployment
Using our lab setup, we created 8 traces with distinct characteris-

tics, by varying the environmental noise, overlap among antennas,
and tag orientations:
• T1 (RR=0.85, OR=0.25) represents the case of high read

rates, an average of 0.85 across antennas, and limited overlap
rates, an average of 0.25 for shelf antennas using low power.
• T2 (RR=0.85, OR=0.5) is case of high read rates and signif-

icant overlap rates (using high power), an average of 0.5.
• T3 (RR=0.7,OR=0.25) involves lower read rates due to added

environmental noise, i.e., a metal bar placed on each shelf that
is 1/3 the length of the shelf.
• T4 (RR=0.7, OR=0.5) further has higher overlap rates.
• T5 to T8 extend T1 to T4, respectively, with containment changes.

When all 20 cases were placed on shelves, 3 items were moved
from one case to another and 1 item was simply removed,
causing containment changes in 35% of the cases.

We also obtained traces with varied tag orientations but observed
little impact of this factor, verifying that squiggle tags are orientation-
insensitive when used with circularly-polarized antennas.

11.3 Alternative Method for Comparison
We describe the design of the SMURF∗ method used in both

the lab experiment and in simulations using synthetic traces. This
method first uses SMURF to smooth raw readings of objects to es-
timate their locations separately. It then uses heuristics to infer
containment changes: Given an item and a time t, if the most fre-
quently co-located case before time t is the same as that after time
t, then there is no containment change. Otherwise, it further checks
if none of the top-k co-located cases before time t is in the top-k
co-located case after time t. If so, it reports a containment change
for this item at time t. Note that the second check is needed because
due to the missing readings, the real container may not be the most
frequently co-located case. Once a containment change is signaled,
it picks the best co-located container from t to the present.

11.4 Single-Site Inference
We describe several additional results for our inference methods

when run on a single warehouse.
Basic inference algorithm. In the first experiment, we evaluate

the basic algorithm presented in §3.2 for its sensitivity to various
noise factors. We began with short 1500-second traces and ran in-
ference each time with all the readings obtained thus far. We first
varied the read rateRR from 0.6 to 1. Fig. 5(a) shows the inference
error rates. In particular, location inference is highly accurate, with
the error rate less than 0.5% for all read rates. Containment infer-
ence is more sensitive to the read rate but still achieves an error rate
less than 7% for the 0.6 read rate. The sensitivity of containment
inference to the read rate is due to its use of co-location informa-
tion: the chance of reading both an item and its container reduces
quadratically with the read rate. Fortunately, the use of history alle-
viates the problem and keeps the error rate low. The high accuracy
of location inference is due to the effect of “smoothing over con-
tainment”: once we understand containment correctly, the location

of an object can be revealed by the readings of any other object(s)
in the container.

We also varied the overlap rate OR from 0.2 to 0.8 while fixing
the read rateRR at 0.7. Results show that neither location nor con-
tainment inference is sensitive to the overlap rate: the error rate of
containment inference is flat at 2.3% and that of location inference
is flat at 0.08%.

History truncation method. In addition to the total inference
time that we presented in Fig. 3(b), we also computed the errors
rates of the three methods. Fig. 5(b) shows the error rates of con-
tainment inference using the above methods (the error rates of lo-
cation inference are always low in the 0.05% to 1% range, hence
omitted). Again, we observe the naive window-based truncation to
be inaccurate. Its error rate increases for longer traces because our
simulation generates the belt readings useful for containment infer-
ence in the first half of the warehouse setup. In contrast, using the
full history or the CR method makes inference not very sensitive to
the trace length, with the CR method being somewhat better.

Containment change detection. We present additional results
to further analyze the tradeoff between accuracy and efficiency. Re-
call that the change point detection algorithm requires a recent his-
tory (whose size is H), besides the critical region in the past, to
detect containment changes. Since we run inference with the de-
fault frequency of once every 300 seconds, H has to be at least 300
seconds to include all new observations for inference. However, a
longer recent history may be needed to ensure accuracy of change
point detection while it may also increase inference cost. We next
varyH to study such tradeoff between accuracy and efficiency. We
created traces with varied read rates and for each trace, measured
F-measures and time costs as different H values were used.

Table 3: F-measures (%) and time costs (sec) of change point detection
with different recent history sizes (H) for different read rates (RR).

Recent history size H
300 400 500 600 700 800 900

RR=0.6 F-m. (%) 46 67 81 87 88 86 92
Time (s) 205 235 293 385 418 497 556

RR=0.7 F-m. (%) 72 91 90 90 93 93 94
Time (s) 182 229 288 344 403 469 523

RR=0.8 F-m. (%) 73 92 94 97 93 95 96
Time (s) 182 220 283 341 395 446 490

RR=0.9 F-m (%) 82 94 95 98 93 95 96
Time (s) 172 207 258 322 381 436 458

Table 3 shows the results. The overall trend with all traces is
that as H increases, the F-measure improves but the time cost also
increases. Among different read rates, we see that achieving high
accuracy for lower read rates such as 0.6 requires larger sizes of
H , while the time cost varies with H consistently across all read
rates. This implies two ways to trade off accuracy and efficiency:
(1) If the application requirement is to achieve best accuracy while
keeping up with stream speed, we should use the H sizes that yield
the time costs in bold in the table because they allow inference to
complete within 300 seconds, the interval before the next inference
starts. This way, our algorithm offers above 90% accuracy for read
rates≥ 0.7 and above 80% for the read rate = 0.6. (2) If the require-
ment is to optimize performance while satisfying certain accuracy,
say, 85%, we should use the H sizes that yield the F-measures in
bold in the table. In particular, when the read rate is high, we can
use a smaller size of H to reduce the time cost and enable more
frequent inference (e.g., for read rate=0.8, running inference every
212 seconds can keep up with the stream speed).

We finally show more results about the sensitivity of our algo-
rithm to the frequency of containment changes. The parameter var-
ied was the interval between two containment changes, from 10 to



 0

 2

 4

 6

 8

 10

0.6 0.7 0.8 0.9 1.0

E
rr

or
 R

at
e 

(%
)

Read Rate

Location

Containment

 0

 2

 4

 6

 8

 10

0.6 0.7 0.8 0.9 1.0

E
rr

or
 R

at
e 

(%
)

Read Rate

Location

Containment

(a) Basic algorithm with varied read rates

 0

 2

 4

 6

 8

 10

600 1200 1800 2400 3000 3600

E
rr

or
 R

at
e 

(%
)

Trace length

Containment(W1200)
Containment(All)
Containment(CR)

 0

 2

 4

 6

 8

 10

600 1200 1800 2400 3000 3600

E
rr

or
 R

at
e 

(%
)

Trace length

Containment(W1200)
Containment(All)
Containment(CR)

(b) Basic, fixed window, and history truncation
methods with varied trace lengths

 20

 40

 60

 80

 100

 120

 140

 0  20  40  60  80  100  120

F
-m

ea
su

re

Containment change interval

RR=0.8 R=500
RR=0.7 R=500

RR=0.8 SMURF
RR=0.7 SMURF

 20

 40

 60

 80

 100

 120

 140

 0  20  40  60  80  100  120

F
-m

ea
su

re

Containment change interval

RR=0.8 R=500
RR=0.7 R=500

RR=0.8 SMURF
RR=0.7 SMURF

(c) Change point detection with varied frequen-
cies (against SMURF∗)

Figure 5: Experimental results for single-site inference

120 seconds. For comparison, we include the SMURF∗ algorithm
described in §11.3. Fig. 5(c) shows the F-measures of our algo-
rithm and SMURF∗. For our algorithm, we chose the H size to
keep up with stream speed based on Table 3, i.e., H=500 for both
RR=0.7 and RR=0.8. As can be seen, our algorithm has much
better accuracy than SMURF∗ and our accuracy is not so sensitive
to the containment change interval. SMURF∗ lacks of the iterative
feedback between location and containment estimates and a princi-
pled approach to doing so. Hence, it has very low F-measures, e.g.,
around 50% for read rate 0.7 and just above 60% for read rate 0.8,
hence of limited practice use.

Summary: The above results show that our inference algorithm
is highly accurate for various noisy traces with stable containment
(≤7% error rate for containment inference and around 0.5% for
containment inference). The critical region method can signifi-
cantly reduce inference cost for long traces while further improving
accuracy. With change point detection, our algorithm can achieve
85% accuracy in most cases when the read rate≥ 0.7 while keeping
up with stream speed, as demonstrated using both real lab traces
with various noise factors and simulations with different contain-
ment change frequencies.

11.5 Distributed Inference
We provide additional details of our comparison of distributed

and centralized inference. For the centralized approach, we assume
that all raw data is shipped to a central location for inference with
simple gzip compression of data. For the distributed approach, we
consider several methods for inference state management: a naive
method (“None”) that does not transfer any state for an item, the
critical region (CR) method that transfers only the weight of the
container that dominated others in the detected critical region, and
a variant of the CR method (CR+H) that also transfers the weights
of containers that co-located with an item in the recent history. We
report on the error rate (for inference results about both stable con-
tainment and changes) and communication costs of these methods.

We first varied the number of warehouses with a belt reader from
1 to 6, assuming that the source warehouse always has a belt reader.
By a belt reader, we mean a special reader that reads containers one
at a time, offering valuable information about the true container.
Fig. 6 shows the error rates. The centralized approach is always
the most accurate because it has all the data. As long as the source
warehouse with a belt reader, the two CR-based methods have al-
most the same accuracy as the centralized approach. In contrast,
the None method loses accuracy as the number of warehouses with
belt readers reduces. This implies that discarding inference state
leads to poor performance if the supply chain does not offer re-
peated special setups for containment inference.

Finally the communication overheads of the distributed and cen-
tralized approaches are shown in the following table. The figure

 0

 5

 10

 15

 20

 1  2  3  4  5  6

E
rr

or
 r

at
e 

(%
)

Number of belt

None

CR+H

CR

Centralized

 0

 5

 10

 15

 20

 1  2  3  4  5  6

E
rr

or
 r

at
e 

(%
)

Number of belt

None

CR+H

CR

Centralized

Figure 6: Accuracy for varying number of belt readers

shows that our CR methods offer an order of magnitude reduction
in communication costs.

Table 4: Communication costs (bytes) of a centralized approach and
three state migration methods for distributed inference.

Centralized None CR CR+H
RR=0.6 125,895,500 0 225,890 231,180
RR=0.7 145,858,950 0 223,790 224,480
RR=0.8 166,746,235 0 225,890 224,000
RR=0.9 187,589,810 0 225,890 224,000

Summary: Our results show that distributed inference using the
CR methods have accuracy that are close to the centralized ap-
proach, while incurring significantly lower communication costs.

Comment on scalability. In our simulation, our combined in-
ference and query processing system scaled to 32,000 items per
warehouse while keeping up with stream speed, totally 0.32 mil-
lion objects over 10 warehouses. While our simulation was limited
by a a single threaded implementation, a real-world implementa-
tion of our approach would employ a multi-threaded approach that
could exploit multi-cores on servers. This will allow us to easily
scale to over a million objects in the 10-warehouse supply chain
and even larger supply chains with more warehouses, while our re-
ported results on accuracy, performance, and communication costs
stay true.


