
Recognizing Patterns in Streams with
Imprecise Timestamps

Haopeng Zhang, Yanlei Diao, Neil Immerman
Department of Computer Science

University of Massachusetts, Amherst

ABSTRACT
Large-scale event systems are becoming increasingly popular in a
variety of domains. Event pattern evaluation plays a key role in
monitoring applications in these domains. Existing work on pat-
tern evaluation, however, assumes that the occurrence time of each
event is known precisely and the events from various sources can be
merged into a single stream with a total or partial order. We observe
that in real-world applications event occurrence times are often un-
known or imprecise. Therefore, we propose a temporal model that
assigns a time interval to each event to represent all of its possible
occurrence times and revisit pattern evaluation under this model. In
particular, we propose the formal semantics of such pattern evalua-
tion, two evaluation frameworks, and algorithms and optimizations
in these frameworks. Our evaluation results using both real traces
and synthetic systems show that the event-based framework always
outperforms the point-based framework and with optimizations, it
achieves high efficiency for a wide range of workloads tested.

1. INTRODUCTION
Large-scale event systems are becoming increasingly popular

in domains such as system and cluster monitoring, network moni-
toring, supply chain management, business process management,
and healthcare. These systems create high volumes of events, and
monitoring applications require events to be filtered and correlated
for complex pattern detection, aggregated on different temporal and
geographic scales, and transformed to new events that represent
high-level meaningful, actionable information.

Complex event processing (CEP) [1, 2, 4, 7, 8, 15, 17, 18, 22,
23] is a stream processing paradigm that addresses the above infor-
mation needs of monitoring applications. CEP extends relational
stream processing with a sequence-based model (in contrast to the
traditional set-based model), and hence considers a wide range of
pattern queries that address temporal correlations of events. Prior
research [1] has shown that such pattern queries are more expressive
than selection-join-aggregation queries and regular languages.

Existing work, however, fundamentally relies on two assumptions.
First, the occurrence time of each event is known precisely. Second,
events from various sources can be merged into a single stream such
that a binary relation (denoted by ≺) based on the event occurrence
time gives rise to a total order [1, 8, 14, 18, 23] or a partial order
[2, 3, 4, 7, 15, 22] on the event stream. These assumptions are
used in systems that consider either point-based or interval-based

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘10, September 13-17, 2010, Singapore
Copyright 2010 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

event occurrence times; the only difference between them is in the
specifics of the definition of of the binary relation (≺), but not in
the underlying assumptions.

We observe that in many real-world applications, the above as-
sumptions fail to hold for a variety of reasons:

Event occurrence times are often unknown or imprecise. For
instance, in RFID-based tracking and monitoring, raw RFID data
provides primitive information such as (time, tag id, reader id) and
is known to be lossy and even misleading. Meaningful events such
as object movements and containment changes are often derived
using probabilistic inference [16, 20]. The actual occurrence time of
object movement or containment change is unknown and can only
be estimated to be in a range with high probability.

Event occurrence times are subject to granularity mismatch. In
cluster monitoring, for instance, a commonly used monitoring sys-
tem, Ganglia [10], measures the max and average load on each node
once every 15 seconds, whereas the system log records the jobs
submitted to each node using the UNIX time at the granularity of
a microsecond. To identify the jobs that max out a compute node,
one has to deal with the uncertainty that the peak load can occur
anywhere in a 15-second period, making it hard to judge whether it
occurred before or after the submission of a particular job. That is,
the temporal relationship between a load measurement event and a
job submission event is non-deterministic, neither in total order or
in partial order (which we show formally in Section 2).

Events collected from a distributed system are subject to the
clock synchronization problem. Consider causal request tracing in
large concurrent, distributed applications [5, 11], which involves
numerous servers and system modules. As concurrent requests are
serviced by various servers and modules, an event logging infrastruc-
ture generates event streams to capture all system activity, including
thread resource consumption, packet transmission, and transfer of
control between modules. The challenge is to demultiplex the event
streams, accounting resource consumption by individual requests.
In particular, the clock synchronization problem makes it hard to
order events relevant to each request properly [11].

In this paper, we address pattern query evaluation in streams
with imprecise occurrence times of events—-such events preclude
the models based on a total order or partial order of events. A
starting point of our work is to employ a temporal uncertainty model
that assigns a time interval to each event for representing all of its
possible occurrence times and to revisit pattern query evaluation
under this new temporal model. Our technical contributions include:

Formal Semantics. We propose the formal semantics of pat-
tern query evaluation under the temporal uncertainty model, which
includes two parts: pattern matching in possible worlds of determin-
istic timestamps, and match collapsing into a succinct result format.
This formal semantics offers a foundation for reasoning about the
correctness of implementations and yet provides useful results.

Evaluation Frameworks and Optimizations. We propose two
evaluation frameworks that generate query matches according to
the formal semantics, but without enumerating a large number
of possible worlds. The first evaluation framework, called point-

based, requires minimum change of an existing pattern query engine,
hence easy to use. The second evaluation framework, called event
based, directly operates on events carrying uncertainty intervals.
We present evaluation methods in these frameworks, prove their
correctness, and further devise optimizations to improve efficiency.

Evaluation. Our evaluation using both real traces in MapReduce
cluster monitoring and synthetic streams yields interesting results:
(i) Despite the simplicity of the point-based framework, its perfor-
mance is dominated by the event-based framework. (ii) Queries that
use a traditionally simpler strategy to select only the first match of
each pattern component, instead of all possible matches, actually
incurs higher cost under temporal uncertainty. (iii) Optimizations of
the event-based framework are highly affective and offer thousands
to 10’s of thousands of events per second for all queries tested. (iv)
Our event-based methods achieve high efficiency in the case study
of cluster monitoring despite the large uncertainty intervals used.

2. MODEL AND SEMANTICS
In this section, we provide background on pattern query evalua-

tion, present our temporal uncertainty model, and formally define
the semantics of pattern query evaluation under our model.

2.1 Background on Pattern Queries
We begin by providing background on pattern queries [1, 4, 7, 18,

23] to offer a technical context for the discussion in the rest of the
paper. A pattern query addresses a sequence of events that occur in
order (not necessarily in contiguous positions) in the input stream
and are correlated based on the values of their attributes. Below,
we highlight the key features of pattern queries using the SASE
language adopted widely in recent work [1, 13, 15, 23]. The overall
structure of a pattern query is as follows:

PATTERN <pattern structure>
[WHERE <pattern matching condition>]
[WITHIN <time window>]
[RETURN <output specification>]

Query 1 below shows an example in cluster monitoring: for each
compute node in a MapReduce cluster, the query detects a map or
reduce task that causes the CPU to max out. The PATTERN clause
describes the structure of a sequence pattern, which in this example
contains four events of the specified types occurring in order. The
WHERE clause specifies further constraints on these events. The
common constraints are predicates that compare an attribute of an
event to a constant or compare the attributes of different events, as
shown in Query 1. In addition, the WHERE clause can further specify
the event selection strategy, e.g., using “skip till any match” in this
query (which we discuss more shortly). The WITHIN clause restricts
the pattern to a 15 second period. Finally, the RETURN clause selects
the events to be included in the pattern match. By default, all events
used to match the pattern are returned.

Query 1:
PATTERN SEQ(TaskStart a,CPU b,TaskFinish c,CPU d)
WHERE a.taskId = c.taskId AND

b.nodeId = a.nodeId AND
d.nodeId = a.nodeId AND
b.value > 95% AND
d.value <= 70% AND
skip till any match(a, b, c, d)

WITHIN 15 seconds
RETURN a, b, c

The event selection strategy addresses how to select the events
relevant to a pattern query, not necessarily in contiguous positions
in the input stream. For the purpose of this work, we consider
two common strategies (while referring the reader to [1] for details

of all possible strategies): (i) Skip till next match [1, 7]. In the
pattern matching process, the next relevant event does not need
to be contiguous to the previous one; all irrelevant events will be
skipped until the next relevant event is read. This strategy makes
the query insensitive to the presence of irrelevant events. (ii) Skip
till any match [1, 15, 23]. This strategy relaxes the previous one
by allowing non-deterministic actions on a relevant event: in one
instance, it selects the event to extend the current partial match of
the pattern; in another instance, it ignores this event and awaits a
future event, potentially resulting in a different match. For Query 1,
consider an event stream of five streams, denoted by “a, b1, b2, c,
d”. Skip till any match will return two matches that result from “a,
b1, c, d” and “a, b2, c, d”, respectively, whereas skip till next match
will return only the former because the arrival of b1 will move the
matching process permanently forward towards c.

2.2 Temporal Uncertainty Model
We now switch to consider events with uncertain occurrence

times and propose an event model that accommodates temporal
uncertainty. As in most temporal data model research [6], we assume
a discrete, totally ordered time domain T; without loss of generality,
we number the instants in T sequentially as 1, 2, . . . Each event
represents an atomic occurrence of interest at an instant. However,
the exact occurrence time of an event may not be available due to the
reasons mentioned in the previous section. To address this issue, our
model allows the event provider to specify an uncertainty interval,
UI: [lower, upper] ⊆ T, to bound the occurrence time of an event,
with an optional probability mass function p : UI → [0, 1] to
characterize the likelihood of occurrence in the uncertainty interval
(by default, a uniform distribution is used).

In summary, an event in our model has the following format:
(EventType, EventId, UI : [lower, upper], (p : UI → [0, 1])?,
Attributes), where EventType specifies the attributes allowed in
the events of this type and EventId is the unique event identifier.
For example, a1=(A, 1, [10, 13], (v1, v2, v3)) represents an event
of type A and id 1, an uncertainty interval from time point 10 to
time point 13, and three attributes required in this event type. If the
occurrence time of an event is certain, we simply set the upper and
lower bounds of the interval to the same point.

Ordering Properties. Given the temporal uncertainty model,
it is evident that we cannot find a binary relation (denoted by ≺)
based on the event occurrence time that ensures a total or partial
order on an arbitrary event stream. Consider a (strict) partial order,
defined to be a binary relation on a sequence S that is (1) irreflexive,
∀e ∈ S , ¬(e ≺ e); (2) asymmetric, if e1 ≺ e2 then ¬(e2 ≺ e1);
and (3) transitive, if e1 ≺ e2 and e2 ≺ e3 then e1 ≺ e3. Under the
temporal uncertainty model, it is easy to construct an event stream
with two events that violate the asymmetry requirement; that is, one
possibility of their occurrence times entails e1 ≺ e2, and another
possibility of their occurrence times entails e2 ≺ e1. Similarly, we
can show that there exists no total order on events under this model.

Arrival order is a different issue. In data stream systems, out-of-
order arrival is signaled if the arrival of events is not in increasing
order of their occurrence times [19]. In our problem, there is no
clear notion of “increasing order of the occurrence time”, so we
loosely define out-of-order arrival to be the case that e1 is seen
before e2 in the stream but the earliest possible occurrence time of
e1 is after the latest possible time of e2, i.e., e1.lower > e2.upper.
To facilitate query evaluation, we assume that using buffering or
advanced techniques for out-of-order streams [13, 19], we can feed
events into the pattern query engine such that if e1 is seen before e2,
with respect to the occurrence time, e1 either completely precedes e2
or overlaps with e2 in an arbitrary way, i.e., e1.lower ≤ e2.upper.

 PATTERN SEQ(A,B,C) WITHIN 4 seconds

(a) A pattern query

(b) A stream of four events
1 2 3 4 5

a1

c2

b3

(uniform dist.)

t

(uniform dist.)
(uniform dist.)

6 7

c4 (uniform dist.)

(c) Pattern matching in possible worlds

..

(a1,b3,c4)

∅

∅

∅

∅

(a1,b3,c2)

..

(a1,b3,c2)
(a1,b3,c4)

..

Match

1/225 75 6S225 5
..

51/225 43 5S124

..
3 541/225 1S17

....
441S4 31/225

31 31/225 6S3
31 31/225 5S2

1 431/225 3S1
c4.tb3.tc2.ta1.tProbPW

(Signature: (a1,b3,c2)
 Time Range: [1,5]
 Confidence: 15/225)

(d) Representation of the query match

(Signature: (a1,b3,c4)
 Time Range: [1,6]
 Confidence: 24/225)

Figure 1: Semantics of pattern query evaluation under our temporal uncertainty model.

2.3 Formal Semantics under the Model
We next introduce the formal semantics of pattern query evalua-

tion under our temporal uncertainty model. Our formal semantics
includes two parts: pattern matching in a set of possible worlds, and
collapsing the matches of possible worlds into query matches.

Pattern Matching in Possible Worlds. In our model, every
event has several possibilities of its occurrence time, i.e., at con-
secutive time points {(tj, p(tj))|j = 1, . . . , |UI|}. Given a se-
quence of events S ={e1, . . . , ei, . . . en} that fit in a time window, a
unique combination of the possible occurrence time of each event,
(tij, p(tij)), gives rise to a sequence Sk in which events have de-
terministic occurrence times and can be sorted by their occurrence
times (conceptually). Borrowing the familiar concept from the litera-
ture of probabilistic databases, we refer to Sk as a possible world for
pattern query evaluation, and compute its probability as P [Sk] =
∏n

i=1 p(tij). We then perform pattern matching in every possible
world Sk, as in any existing event system.

Example: Fig. 1(a) shows a sequence pattern with a 4-second
time window (assuming that a time unit is a second). Fig. 1(b)
shows a stream of four events, denoted by a1, c2, b3, and c4, and
their uncertainty intervals on the time line, all using the (default)
uniform distribution of the likelihood of occurrence. Since a1, c2,
b3, and c4 have 5, 3, 3, and 5 possible occurrence times, respectively,
there are 225 unique combinations of their occurrence times, hence
225 possible worlds. Fig. 1(c) shows these possible worlds, the
probabilities of these worlds, and the pattern matching result in
each possible world, strictly based on the query semantics for an
event stream with deterministic occurrence times. As can be seen, a
possible world can return zero, one, or multiple matches.

In general the number of events, N, that fit in a time window can
be large. If on average each event has an uncertainty interval of size
U, then there is an exponential number of possible worlds, O(UN).

Query Match Construction. The large number of possible
worlds can cause a large number of match sets to be returned from
these worlds. Returning all of them to the user (even if the compu-
tation is feasible) is undesirable. In our work , we instead present
these match sets in a succinct way. More specifically, we collect the
match set Qk from each possible world Sk and proceed as follows:
• Union the matches from all match sets Qk, k = 1, 2, . . .
• Group all of the matches by match signature, which is defined

to be the unique sequence of event ids in a match.
• For each group with a unique match signature, compute the

(tightest) time range that covers all of the matches, and com-
pute the confidence of the match as the sum of the probabilities
of the possible worlds that return a match of this signature.

Finally, the triples, {(signature, time range, confidence)}, are re-
turned as the query result at a particular time.

Example: In Fig. 1, the matches produced from the 225 possible
words have two distinct signatures: The first one is (a1, b3, c2). The
tightest time range that covers the matches of this signature is [1,5];
e.g., the match from the possible world S17 is on the points (1,3,4)

and that from S124 is on (3,4,5) . Further, 15 out of 225 possible
worlds return matches of this signature, yielding a confidence of
15/225. The second signature is (a1, b3, c4) with its time range and
confidence computed in a similar way. The complete query result at
t=7 is shown in Fig. 1(d).

3. POINT-BASED EVALUATION FRAMEWORK
Given our temporal uncertainty model and formal semantics of

pattern queries under this model, we next seek an efficient approach
to evaluating these queries. Evidently, the possible worlds semantics
does not offer an efficient evaluation strategy since the number of
possible worlds is exponential in the number of events in a time
window. We next introduce efficient evaluation frameworks that
guarantee correct query results according to the formal semantics,
but without enumerating the possible worlds.

In this section, we introduce our first evaluation framework, called
a point-based framework. Our design is motivated by the fact that
existing pattern query engines take events that occur at specific
instants, referred to as point events. If we can convert events with
uncertainty intervals to point events, we can then leverage existing
engines to do the heavy lifting in pattern evaluation. Our design
principal is to require minimum change of a pattern engine so that
the proposed framework can work easily with any existing engine.

There are three main issues to address in the design of a point-
based evaluation framework: First, existing pattern query engines
require that events be arranged in total or partial order based on their
occurrence times. As stated in §2.2, under our temporal uncertainty
model there is in general no total or partial order on events. As we
convert such events to point events, what ordering property can we
offer? Second, running an existing pattern query engine directly on
the converted point event stream does not produce results consistent
with our formal semantics. Our goal is to produce all the matches
that would be produced from the possible worlds, referred to as
the point matches. What is the minimum necessary change of an
existing engine to do so? Third, without enumerating all possible
worlds, how do we compute the time range and confidence for
each unique signature of point matches? By addressing the above
questions, we design an evaluation framework with three main steps,
as shown in Fig. 2(a). The notation used in the following discussion
is summarized in Table 1 in the appendix.

Step 1: Stream Expansion. We first illustrate a point event
stream using the example in Fig. 1(b). To generate the point event
stream, we (conceptually) iterate over all the time points, from 1, 2,
. . . At every point t, we collect each event e from the input whose
uncertainty interval spans t, and inject to the new stream a point
event that replaces e’s uncertainty interval with a fixed timestamp t.
In this example, the point event stream will contain a1

1, a2
1, a3

1, c3
2,

b3
3, a4

1, c4
2, b4

3, c4
4, . . . (where the superscript denotes the occurrence

time). As such, the new stream is sorted by the occurrence time.
Our implementation is more complex than the conceptual proce-

dure above due to the various event arrival orders. Recall from §2.2

that the only constraint on the arrival order in our work is that if e1
arrives before e2, then with respect to the occurrence time, e1 either
completely precedes e2 or overlaps with e2 (in an arbitrary way),
i.e., e1.lower ≤ e2.upper. To cope with this, our implementation
uses buffering (of limited size) to emit point events in order of the
occurrence time. Let e1, . . ., en−1 denote the events in the past and
en the newly arrived event. We create point events for all the in-
stants in en’s uncertainty interval and add them to a buffer (possibly
containing other point events). Further, let now be a time range
[lower = maxn

i=1(ei.lower), upper = maxn
i=1(ei.upper)]. Also

assume that the maximum uncertainty interval size for the event
stream is Umax (which can often be requested from event providers).
Then given the arrival order constraint, we know that any unseen
event must start after now.lower−Umax, labeled as temit. Now we
can safely output the buffered point events up to temit.

Step 2: Pattern Matching. We next evaluate pattern queries
over the point event stream by leveraging an existing pattern query
engine such as [1, 15]. The challenge is to configure the engine
properly and add minimum changes so that we can produce all the
point matches that would exist in the possible worlds.

First, we show that the pattern query engine must be configured
with the most flexible event selection strategy, “skip till any match”,
no matter what event selection strategy is actually used in the query.

Example. Fig. 2(b) shows all the time points of the four events in
Fig. 1(b). We can also visualize the dots as point events arranged
in increasing order of time. Consider all the point matches that
start with a2

1. While the formal semantics requires enumerating all
possible words that involve a2

1 (45 of them) to find those matches,
a more efficient algorithm can directly search through the point
events in query order and capture all possible ways of matching
points from distinct input events. In this example, the point event a2

1
matches the first component of the pattern (A,B,C). Then at time
t=3, we would naturally select b3

3 to extend the partial match to (a2
1,

b3
3); at the same time, we would also skip b3

3 to preserve the previous
partial match (a2

1). At t=4, we can select c4
2 to produce a match (a2

1,
b3

3, c4
2), or select c4

4 to produce a different match (a2
1, b3

3, c4
4). Again,

we can skip these events to preserve the partial match (a2
1, b3

3) so
that it can be later matched with the c events at t=5. In addition, at
t=4 we can select b4

3 to match with a2
1, yielding a new partial match

(a2
1, b4

3), which again will be extended with the c events at t=5.
In summary, given a point event that generates an initial partial

match of a pattern, we can use “skip till any match” to dynamically
construct a direct acyclic graph (DAG) rooted at this event and
spanning the point event stream, such that each path in this DAG
corresponds to a unique point match starting from the root (some
pruning may be needed to ensure correctness, as discussed below).

Next, we discuss the necessary changes of the function, next(),
that a pattern query engine uses to match events with successive
pattern components. For instance, the matching of a pattern (A,
B, C) will invoke next(∅), next((a1)), next((a1, b3)), . . . until a
match is generated. Our goal is to revise next() so that we produce
the exactly same set of point matches as in possible worlds. A simple
change is to disable the use of the points of the same event to match
different components of the pattern. For example, given a pattern
(A, B, A), we cannot use the same points of an ‘a’ event to match
the first and third components. We simply add an id check to next()
so that it ignores any point event sharing the id with any of those
already included in the partial match.

A more significant issue is to support different event selection
strategies used in queries. If a query uses skip till any match, we
already have the correct set of matches (which we prove in Appendix
B.2). However, if the query uses skip till next match, it means that
the matching process should always select the next relevant event

(a) Three main processing steps

1 2 3 4 5

a1

c2
b3

t6 7

c4

(c) For pattern (A, B), illustration of a1's
Next Event's Latest Time (NELT)

a1
b2
b3
b4
b5
b6

NELT:
b4 starts after
a1 ends, and
ends earliest.

1 2 3 4 7 t85 6 9

(b) Point matches starting with a1 at t=2

Event Stream

1. Stream Expansion

Point Event Stream

2. Pattern Matching

Query Matches

3. Match Collapsing

Point Matches

S2: {e } ,
t = now.lower
 - U

i
t

max
emit

S1: {e } , i
 [max (e .lower),
 max (e .upper)]

i
i

i
i

now =

S3: { point match
 ending at t }emit

S4: { (signiture, [l, u],
 conf.), u ≤ t }emit

Figure 2: The point-based evaluation framework.

to match the current pattern component in consideration. More
specifically, if multiple events in the stream can match the current
pattern component, the first event in occurrence time should be
selected to extend the partial match. While this selection strategy is
easier to support than skip till any match in a deterministic world, it
is actually more difficult under temporal uncertainty. Our algorithm
above that blindly runs skip till any match on the point event stream
may produce more matches than existent in the possible worlds.

Example. Fig. 2(c) shows a simple pattern (A,B) and an event
stream with a1 and five b events (in arrival order). Can any b event
be the next to a1 in some possible world? The answer is positive as
long as we can find a possible world in which a point of a1 precedes
a point of the b event with no other b in between. It is easy to see
that any b that overlaps with a1, e.g., b2 and b3, can be the next
event in some possible world. Further, b4 and b5 that start after a1
ends still have a chance to be the next event in a possible world.
For b4, one such possible world contains b2

2, b3
3, a4

1, b5
4, . . .; that is,

b2 and b3 occurred before a1, making room for b4 to be the next
event for a1. For b5, a possible world contains b2

2, b3
3, a4

1, b6
5, b7

4 . . .
However, it is impossible for b8

6 or any point of b6 to be the next b
in any possible world as they are always preceded by b7

4.
The above example illustrates our notation of the Next Event’s

Latest Time (NELT), a timestamp associated with any event that has
just been selected in a partial match. Consider a pattern (E1, . . . , E`)
and a partial match (em1 , . . . , emj), with emj being the last selected
event. Among all events that can match the next pattern component
Ej+1 and start after emj ends, the event that ends the earliest sets
the NELT of emj using the upper bound of its interval. In the above
example, with a1 selected in the partial match, its NELT is set to
b5.upper when b5 is seen. That is, any point event of b that occurs
after this timestamp cannot be next to a1 in any possible world. We
simply ignore such point events to ensure correct results and to save
time. In our implementation, we revise the function next() such
that it stops the matching when the timestamp NELT is signaled.
We prove the correctness of this method in Appendix B.2. The key
to our proof is the dichotomy property of NELT: if event e matches
pattern component Ej+1, any point of e that occurs before or at
emj ’s NELT can be in a point match, and none of the points of e that
occurs after emj ’s NELT can.

Step 3: Match Collapsing. The match collapsing module col-
lects point matches as they are produced by the pattern matching
module as the emit time, temit, advances (see Fig. 2). We first assign
match, m : (et1

m1 , . . . , et`
m`

), to a group corresponding to its signature,
i.e., its sequence of unique ids. All point matches of this signature
must have been reported by time em` .upper + W, where W is the
query window size. Thus when temit > em` .upper + W, we have

all the point matches of this signature, and then collapse them into
a succinct format defined in §2.3. Finding the tightest time range
for all the point matches is straightforward. The remaining task is
to compute the confidence.

Let Sα be the set of point matches of signature α = (em1 , . . . , em`).
For a skip till any match query, the confidence Cany(α) equals:

Cany(α) = ∑
m∈Sα

P
[
(et1

m1 , . . . , et`
m`

)
]
) = ∑

m∈Sα

`

∏
j=1

P
[
e

tj
mj

]
(1)

This calculation is correct because the probability of the point match
et1

m1 , . . . , et`
m`

is the product of the probabilities of its individual
events, and different point matches represent disjoint sets of possible
worlds, hence independent of each other.

Calculating the confidence, Cnext(α), of a skip till next match
query is more subtle because some matches require that there are
no intervening events of certain types. For example, for a2

1, c5
2, b3

3 to
be a match of the query in Fig. 1, we require that event c4 does not
occur at time 4. Thus we must multiply by the probability that no
intervening event spoils a given match.

Let α = {em1 , . . . , em`} be a match signature for a skip till next
match query and let m = (et1

m1 , . . . , et`
m`

) be a potential point match.
Then m is indeed a point match iff (1) t1 < . . . < t`, and (2) for
each e

tj
mj (2 ≤ j ≤ `), no point event matching Ej occurs between

e
tj−1
mj−1 and e

tj
mj . Let Θj(m) be the set of all such excluded point events.

Thus condition (2) may be written Θj(m) = ∅ for 2 ≤ j ≤ `, or
Θ(m) = ∅ for short. Then the confidence of the skip-till-next
match, Cnext(α), equals:

Cnext(α) = ∑
m∈Sα

P
[
(et1

m1 , . . . , et`
m`

)
]

= ∑
m∈Sα

`

∏
j=1

P
[
e

tj
mj

]
·P [Θ(m) = ∅]

(2)
We then consider two cases. In the first case, an event can match

at most one pattern component, due to the exclusiveness of the event
types and predicates using in the pattern components. Thus, any
event can occur in at most one of the Θj(m) sets. So the probabilities
of these sets being empty are independent of each other. Hence, we
can rewrite Eq. 2 as:

C1
next(α) = ∑

m∈Sα

∏`
j=2 P

[
e

tj−1
mj−1

]
·P
[
e

tj
mj

]
·P
[
Θj(m) = ∅

]
∏`−1

j=2 P
[
e

tj
mj

] (3)

The equation above leads to a memoization-based algorithm to
compute C1

next(α). For all point matches in Sα, it computes the

quantity P
[
e

tj−1
mj−1

]
P
[
e

tj
mj

]
P
[
Θj(m) = ∅

]
once and records it

for reuse for other point matches sharing this quantity. To efficiently
compute P

[
Θj(m) = ∅

]
, we construct an index on the fly to re-

member those events that can potentially match a pattern component.
P
[
Θj(m) = ∅

]
is the product of the probability of each of these

events occurring outside the range between e
tj−1
mj−1 and e

tj
mj . This

algorithm is detailed in Algorithm 1 in Appendix B.1.
The second case is more complex in that an event can match

more than one pattern component. The idea is that we can further
enumerate the points of those events, {Sq}, that have matched
multiple components. So conditioned on the specific points of events
in {Sq}, we can factorize Θj(m) = ∅ based on independence. So,

C2
next(α) = ∑

eqi∈{Sq}
∏

i
P
[
eti

qi

]
· ∑

m∈Sα

`

∏
j=1

P
[
e

tj
mj

]
·

`

∏
j=2

P
[
Θ(m) = ∅|{eti

qi}
]

(4)
The corresponding algorithm also uses the event index to compute
the quantity, P

[
Θ(m) = ∅|{eti

qi}
]
, as well as memoization.

4. AN EVENT-BASED FRAMEWORK
In this section, we present a second evaluation framework which

is event based rather than point based. This way, we can eliminate
the high cost of enumerating exponentially many possible point-
based matches. It is not obvious how to efficiently find exactly all
the possible matches in this way. Below, we describe two evaluation
methods and several optimizations that together achieve this goal.
It is worth noting that a few key algorithms developed in the point-
based framework can be shared in the event-based framework.

4.1 The Query Order Evaluation Method
To simplify the discussion, we start with two temporary assump-

tions: Fix a pattern p = (E1, . . . , E`). An event can match only
one of the ` components, and furthermore the events in a time win-
dow are presented to the matching module in query order. That is,
the events matching the component E1 are presented before those
matching the component E2, and so on. These assumptions will be
later eliminated using a flexible evaluation algorithm.

Even with these simplifying assumptions, it is still quite subtle to
find the event-based matches. To do so, we will conceptually walk
through the events three times: first forward, revising the lower end-
points of each event interval as we form a potential match, second
backwards, revising the upper endpoints of each event interval in
the match, and third backwards again, checking that all the matched
events can simultaneously fit within the query window, W.

Finding the Match Signature. We begin by introducing a boolean
function ext such that ext(m, e) is true iff event e may extend the
partial match m of pattern p. To compute ext(m, e), we inductively
define the concept valid lower bound (vlb). We write e |= Ej to
mean that event e matches the pattern component Ej. In the base
case, if e |= E1, then e.vlb = e.lower. Inductively, assume that
m = (em1 , . . . , emj) and emj .vlb is defined. If e |= Ej+1, define
e.vlb = max(emj .vlb + 1, e.lower). Thus, e.vlb is the first time
that e might occur in match m of pattern p.

Using vlb we can immediately define ext:

ext(m, e) ≡ (|m| < ` & e |= E|m|+1 & e.vlb ≤ e.upper)

This completes the first pass in which we have computed the poten-
tial match m = (em1 , . . . , em`) and its valid lower bounds.

Example. Fig. 3(a) revisits our running example. We (temporar-
ily) reorder events c2 and b3 so that they are presented in query
order (A, B, C). We compute the valid lower bounds of events and
evaluate the ext function as the same time. For example, a1.vlb = 1,
ext(∅, a1) = True; b3.vlb = 3, ext((a1), b3) = True; and
c2.vlb = 4, ext((a1, b3), c2) = True, yielding a match (a1,b3,c2).

Second Pass. Now we walk back down the potential match, m,
revising the upper bounds of each interval. We inductively define
revised upper bound (rub) analogously to vlb: In the base case,
em` .rub = em` .upper. Inductively, assuming emj+1 .rub is defined,
we let emj .rub = min(emj+1 .rub− 1, emj .upper). As we compute
the revised upper bounds, we check that each interval is nonempty.

Example. Fig. 3(b) shows the computation of the revised upper
bounds after the match (a1,b3,c2) is recognized. That is, c2.rub = 5,
b3.rub = 4, and a1.rub = 3.

Third Time Lucky. Finally we can consider the query win-
dow size, W. Since, the last possible time for em1 is em1 .rub, the
last possible time for em` is at most Tm = em1 .rub + W − 1. If
em` .rub ≤ Tm, then the revised upper bounds are in fact the valid up-
per bounds, and we have validated the match m. Otherwise, we must
walk back down the third time computing the valid upper bounds
(vub) as follows: em` .vub = Tm. Inductively, assuming emj+1 .vub
is defined, we let emj .vub = min(emj+1 .vub − 1, emj .rub). At
any timme during the third pass, if for some event emj , we have

1 2 3 4 5

a1

c2

b3

t6 7

(a) Setting valid lower bounds to find
the match signature (a1, b3, c2)

1 2 3 4 5

a1

t6 7

c4 c4

c2

b3

(b) Setting revised upper bounds

1 2 3 4

a1

c6

b5

(c) Pruning using the time window
(W=4) and valid upper/lower bounds.

5 t6 7 1 2 3 4 5

a1

c2

b3

6

(d) The any state evaluation method

1
23

4 (a1, -, c2)
(a1, -, -)

(-, -, c2)
(a1, b3, -)
(a1, b3, c2)
(-, b3, c2)
(-, b3, -)

7

1:
2:
3:
4:
5:
6:
7:

Figure 3: Illustration of the event-based evaluation (assuming that events are presented in query order).

emj .vub < emj .vlb, then the match fails.
Example. Fig. 3(c) shows an example using three events a1, b5,

and c6. In the first pass, we compute the valid lower bounds as:
a1.vlb = 1, b5.vlb = 2, and c6.vlb = 6. After the second pass,
we have: c6.rub = 7, b5.rub = 3, and a1.rub = 2. Then we have
Tm = a1.rub + W − 1 = 5. Since c6.rub = 7 > Tm = 5, we start
the third pass, in which we set c6.vub = Tm and can immediately
see that c6.vub = 5 < c6.vlb = 6. So the match is pruned.

Given the extended ext() function and events presented in query
order, we are now ready to evaluate patterns directly on the event
stream, using a method which we call a query order evaluation
method: If a query uses the skip till any match strategy, we run the
pattern engine using ext() and skip till any match. If a query uses
skip till next match instead, we further augment the pattern engine
using the NELT (Next Event’s Latest Time) based mechanism as
described in §3. For efficiency, our implementation actually uses a
one-pass, incremental algorithm as the ext function runs forwards on
the event stream, which is detailed in §C.1. We prove the correctness
of our query order evaluation method in §C.5.

Computing the Confidence. We last compute the confidence
of a match. Recall that in the point-based evaluation framework,
if skip till any match is used in a query, we can simply sum up
the probabilities of the point matches sharing the signature. In the
event-based framework, however, we are only given the events in
the match. Hence, we need to enumerate all valid point matches and
sum up their probabilities. This procedure is detailed in Algorithm
2 in Appendix C.4. We note here that this procedure employs
memoization to avoid repeated computation and can be performed
incrementally as events are selected. If skip till next match is used
in a query, we can reuse the confidence algorithm in the point-based
framework with a small change to first enumerate the points in the
valid lower and upper bounds of the events and create point matches.

4.2 The “Any State” Evaluation Method
We next relax the assumption that events are presented in query

order. Instead, we consider events in their arrival order. Fig. 3(d)
shows the events a1, c2, and b3 in their arrival order. If we run the
above algorithm, ext(∅, a1) will select a1, ext((a1), c2) will skip
c2, and ext((a1), b3) will select b3. However, we have permanently
missed the chance to extend (a1, b3) with c2. To address the issue,
we extend the pattern evaluation method so that it can begin from
any pattern component and attempt to select any event that can po-
tentially match others pattern components until the match completes
or fails—we call this new method an “any state” evaluation method.
To make our terminology clear, we reserve the term “partial match”
to mean a match of a prefix of the pattern, and refer to the partial
processing result using this flexible evaluation method as a “run”.

The main idea is the following: A new run is started if the current
event can match any of the pattern components, say Ei. When the
next event comes, if it can match any other pattern component Ej
and further satisfy the ordering constraints with the events already
selected by the run, then the current run is cloned: in one instance,
the new event is selected into the run; in the other instance, it

is ignored to preserve the previous run so that it can be matched
differently in the future. The details and optimizations of the method
are given in §C.2 and the correctness proof in §C.5.

Example. Fig. 3(d) shows the any state evaluation method for the
three events a1, c2, and b3. It lists the runs created as these events
arrive: a1 causes the creation of the run denoted by (a1,−,−). Then
c2 causes two new runs, (a1,−, c2) and (−,−, c2), to be created.
The arrival of b3 clones all three existing runs, then extends them
with b3, and add a new run (−, b3,−).

4.3 Optimizations
We next present two optimizations to improve the performance

of the event-based evaluation framework.
Sorting for Query Order Evaluation. We observe that there

is a significant difference in complexity between the query order
evaluation method, which assumes events to be presented in query
order, and the any state evaluation method, which evaluates events
in arrival order. If we can sort the input stream to present events
in query order for pattern evaluation, we might achieve an overall
reduced cost. Sorting based on query order is not always possible,
especially when an event can match multiple components of a pat-
tern. However, for many common queries, an event can match at
most one pattern component, due to the exclusiveness of the event
types and predicates used. In this case, we sort events such that
if two events match two different components, Ei and Ej (i < j),
and overlap in time, the one matching Ei will be output before the
other matching Ej, despite their arrival order. To do so, we use
buffering and exploit ordering information given by the arrival order
or heartbeats [19, 13, 21]. See the appendix (§C.3) for details.

Selectivity Order Evaluation. The any state evaluation method
can be applied to events ordered by any criterion, besides the ar-
rival order. Borrowing the idea from recent work [15], our second
optimization creates a buffer for each component Ej and triggers
pattern evaluation when all buffers become non-empty. At this time,
we output events from the buffers in order of the selectivity of Ej;
that is, we output events first for the highly selective components
and then for less selective components. This way, we can reduce the
number of runs created in the any state evaluation method.

5. PERFORMANCE EVALUATION
We have implemented both evaluation frameworks using the

SASE pattern query engine [1]. In this section, we evaluate these
frameworks with the relevant optimizations using both synthetic
event streams with controlled properties and real traces collected
from MapReduce-based cluster monitoring.

5.1 Evaluation using Synthetic Streams
We implemented an event generator that creates a stream of events

of a single attribute. The events form a series of increasing values
from 1 to 1000 and once reaching 1000, wrap around to start a new
series. Events arrive in increasing order of time t but each event has
an uncertainty interval [t− δ, t + δ]; we call δ the half uncertainty

 10

 100

 1000

 10000

 100000

 50 40 30 20 10 1

T
h

ro
u

g
h

p
u

t(
lo

g
)

Half Uncertainty Interval

Event-based
Point-based

(a) Varying uncertainty interval (skip-till-any)

 50000

 40000

 30000

 20000

 10000
 50 40 30 20 10 1

T
h

ro
u

g
h

p
u

t

Half Uncertainty Interval

Sorting
Selectivity
Any State

(b) Event-based optimizations with varied uncer-
tainty intervals (skip-till-any)

 70000

 60000

 50000

 40000

 30000

 20000

 10000

 6 5 4 3 2

T
h

ro
u

g
h

p
u

t

Pattern Length

Sorting
Selectivity
Any State

(c) Event-based optimizations with varied pattern
lengths (skip-till-any)

 50000

 40000

 30000

 20000

 10000
 5 10 15 20 25 30

T
h

ro
u

g
h

p
u

t

Percentage of First Event Type(%)

Selectivity
Sorting

Any State

(d) Event-based optimizations with varied event
selectivities (skip-till-any)

 10

 100

 1000

 10000

 100000

 50 40 30 20 10 1

T
h

ro
u

g
h

p
u

t(
lo

g
)

Half Uncertainty Interval

Event(Sorting)
Event(Selectivity)
Event(Any State)

Point-based

(e) Varying uncertainty interval (skip-till-next)

 1000

 10000

 100000

 1e+06

Q4Q3Q2Q1

T
h
ro

u
g
h
p
u
t(

lo
g
)

Any State
Sorting

Selectivity

(f) Case study of cluster monitoring

Figure 4: Performance results using synthetic event streams and real traces in cluster monitoring.

interval size. Each stream contains 0.1 to 1 million events to ensure
stable performance. Queries follow the following pattern:

SEQ(E1, . . ., E`) WHERE E1%v1 = 0, . . ., E`%v` = 0 WITHIN W
Our workloads are controlled by a set of parameters: the half

uncertainty interval size δ (default 5), the time window size W (de-
fault 100 units), the pattern length ` (default 3), the event selection
strategy (skill to any match or skip till any match), and the selectivity
of each pattern component controlled by the value vj (1 ≤ j ≤ `).

Point vs. Event based Evaluation (skip till any match). We
begin by comparing the point-based and event-based evaluation
methods (without optimizations) for skip till any match queries.
We first increase the half uncertainty interval size δ from 1 to 50.
Fig. 4(a) shows that the point-based method degrades its perfor-
mance fast because as δ increases, the number of point events also
increases. More points lead to more runs, in the worst case O(δ`),
hence a excessive cost. The event-based method is not sensitive to δ
as it does not enumerate points for pattern evaluation and hence has
a constant number of runs. Although to compute confidence it does
enumerate points in the valid intervals, this cost is relatively small.
Similar results for W and ` are shown in the appendix.

Optimizations of the Event based Method (skip till any match).
We next evaluate the two optimizations, sorting for query order eval-
uation and selectivity order evaluation, for enhancing the basic
event-based evaluation method, called the any state method.

Fig. 4(b) shows the results with varied δ. The performance of
the any state method degrades linearly with δ. This is because as
δ increases, there will be more matches to produce since events
overlap more. Moreover, each run needs to wait longer before it
can be pruned. Sorting for query order evaluation performs the
best, because pattern evaluation proceeds from E1 to E`, avoiding
the overhead of starting a run from any state. This can reduce the
number of runs significantly. The selectivity-based method lies
between the above two. It buffers events separately for every pattern
component. Before all buffers receive events, it can remove some
out-of-date events and hence reduce the number of runs started.

Fig. 4(c) compares these methods as the pattern length ` is in-

creased. The any state method loses performance quickly. Since a
run can start by matching any pattern component in this method, a
longer pattern means a higher chance for an event to match a com-
ponent and start a run. Sorting still works the best, alleviating the
performance penalty of the any state method. The selectivity method
degrades similarly to the any state method as it suffers from a similar
problem of starting more runs from the additional components.

We then examine the effect of event frequencies. We keep the
query selectivity roughly the same, increase the percentage of events
matching the first pattern component E1 by adjusting its predicate,
and decrease that for the last pattern component E` accordingly.
As a result, more events can match E1 and fewer can match E`.
Fig. 4(d) shows the results. In this case, sorting creates more runs
because it starts from E1, and is only slightly better than the any
state method. The selectivity method works the best, because it can
remove out-of-date events from the buffer of E1 before it sees events
in other buffers, especially that for El , hence avoiding many runs.

Point vs. Event based Evaluation (skip till next match). We
next consider queries using skip till next match. Without temporal
uncertainty, this strategy is more efficient than skip till any match in
the number of query matches produced because it only aims to find
the “first” match of each pattern component. Under temporal uncer-
tainty, however, it is in fact harder to find such first matches. We
next show the performance of the point based method and the event
based methods including the optimizations. Fig. 4(e) shows the re-
sults as δ is varied. Compared to Fig. 4(a), the point-based method
experiences an earlier drop in performance due to the combined
costs of numerous point events and the more complex confidence
computation. The event-based methods also reduce performance to
1000-2000 events/sec. As δ goes up, more matches are produced and
for each match, the confidence computation enumerates the points
in the events’ valid intervals. The cost of confidence computation
becomes dominant when δ ≥ 30.

5.2 Evaluation in Cluster Monitoring
To evaluate our techniques in real-world settings, we performed a

case study of Hadoop clustering monitoring: In a 11-node research
cluster, we ran a Hadoop job for inverted index construction on
457GB of web pages. This job used around 6800 map tasks and 40
reduce tasks on 10 compute nodes and ran for 150 minutes. The
Hadoop system logs events for the start and end times (in us) of
all map and reduce tasks as well as common operations such as
the pulling and merging of data in the reducers. For this job, the
Hadoop log contains 7 million events. In addition, this cluster uses
the Ganglia monitoring tool [10] to measure the max and average
load on each compute node, once every 15 seconds. By consulting
a research group on cluster computing, we constructed four useful
pattern queries, similar to Query 1 in §2, to study the effects of
different Hadoop operations on the load on each compute node.

Most notably, these monitoring queries require the use of uncer-
tainty intervals. The first reason is the granularity mismatch between
Hadoop events (in microsecond) and Ganglia events (once 15 sec-
onds). The second reason is that the the start and end timestamps in
the Hadoop log were based on the clock on the job tracker node, not
the actual compute nodes that ran these tasks and produced the Gan-
glia measurements. Thus, there is a further clock synchronization
issue. So, we rounded all Hadoop timestamps using 0.1 second as
a time unit, set δH = 0.5 second for Hadoop events, and δG = 7.5
seconds for Ganglia events. We ran our event based methods on the
merged trace of the Hadoop log and the Ganglia event stream.

Fig. 4(f) shows the throughput results. Again, the sorting and
selectivity methods significantly improve over the any state method.
In this study, the selectivity method outperforms sorting due to the
disparity of event frequencies: The Hadoop events are voluminous
whereas the Ganglia events are less frequent, among which the high
load events are even less common. The selectivity method can
exploit this fact to reduce the number of runs in pattern evaluation.
Nevertheless, both optimizations achieve high throughout, much
higher than the average arrival rate of 778 events per second.

6. RELATED WORK
We have discussed most relevant work on complex event process-

ing in earlier sections. Below, we survey a few broader areas.
Interval-based event processing. Several event processing sys-

tems [3, 2, 4, 7, 22] model events using a time interval, representing
the event validity in the interval. Our problem is different because
the events we consider are instantaneous but the occurrence times
are unknown or imprecise. Our intervals are used to bound the occur-
rence time and characterize likelihood of occurrence in the interval,
leading to different query semantics and evaluation techniques.

Out of order event streams have been intensively studied in
stream processing [3, 4, 13, 19]. Out-of-order arrival is detected
when the arrival of events does not present an increasing order of
application time, or event occurrence time in event processing [19].
Under the temporal uncertainty model, there is no clear notion of
“increasing order of event occurrence time”; hence, the notion of out
of order events is blurred. While we leverage existing work such
as [13, 19] to assume an arrival order as described §2.2, a thorough
study of the connection between events with imprecise timestamps
and out of events is deferred to our future work.

Probabilistic event processing. Although our work uses the pos-
sible world semantics to formally define query results, it differs from
probabilistic event processing [16] that addresses the uncertainty of
the values in events but not the timestamps.

Temporal databases are surveyed in [6]. The most relevant work
is supporting valid-time indeterminacy in temporal databases [9],
which uses a similar temporal model as ours. However, our formal
semantics differs in that it involves enumerating the possible worlds
involving both the events that match a pattern and those that do
not, which is not required in [9] but needed in our work to correctly

support complex event selection strategies on streams, such as skip
till next match. Furthermore, our work supports pattern queries over
live streams, as opposed to stored data, hence the need to deal with
arrival orders and employ incremental computation.

7. CONCLUSIONS
In this paper, we addressed pattern evaluation in event streams

with imprecise timestamps. We presented a temporal uncertainty
model for such events, formal semantics of pattern evaluation under
this model, novel evaluation frameworks, and methods and optimiza-
tions in these frameworks. Our evaluation results show that the best
of our methods achieves thousands to 10’s of thousands of events
per second both in a real-world application of cluster monitoring
and in a wide range of query workloads on synthetic streams. In the
future, we plan to extend our work to support advanced pattern fea-
tures such as negation and Kleene closure, consider more efficient
techniques when given a confidence threshold or requested to return
only a ranked list of matches based on confidence, and further study
out of order streams under the temporal uncertainty model.

8. REFERENCES
[1] J. Agrawal, Y. Diao, et al. Efficient pattern matching over event

streams. In SIGMOD, 147–160, 2008.
[2] M. Akdere, U. Çetintemel, et al. Plan-based complex event detection

across distributed sources. PVLDB, 1(1):66–77, 2008.
[3] M. H. Ali, C. Gerea, et al. Microsoft cep server and online behavioral

targeting. PVLDB, 2(2):1558–1561, 2009.
[4] R. S. Barga, J. Goldstein, et al. Consistent streaming through time: A

vision for event stream processing. In CIDR, 363–374, 2007.
[5] P. Barham, A. Donnelly, et al. Using Magpie for request extraction and

workload modelling. In OSDI, 259–272, 2004.
[6] M. H. Bhlen and C. S. Jensen. Temporal data model and query

language concepts. Encyclopedia of Information Systems, 2003.
[7] A. J. Demers, J. Gehrke, et al. Cayuga: A general purpose event

monitoring system. In CIDR, 412–422, 2007.
[8] L. Ding, S. Chen,et al. Runtime semantic query optimization for event

stream processing. In ICDE, 676–685, 2008.
[9] C. E. Dyreson and R. T. Snodgrass. Supporting valid-time

indeterminacy. ACM Trans. Database Syst., 23(1):1–57, 1998.
[10] Ganglia monitoring tool. http://ganglia.sourceforge.net/.
[11] E. Koskinen and J. Jannotti. Borderpatrol: isolating events for

black-box tracing. In EuroSys, 191–203, 2008.
[12] A. Lachmann and M. Riedewald. Finding relevant patterns in bursty

sequences. PVLDB, 1(1):78–89, 2008.
[13] M. Liu, M. Li, et al. Sequence pattern query processing over

out-of-order event streams. In ICDE, 784–795, 2009.
[14] E. Lo, B. Kao, et al. OLAP on sequence data. In SIGMOD Conference,

649–660, 2008.
[15] Y. Mei and S. Madden. ZStream: a cost-based query processor for

adaptively detecting composite events. In SIGMOD Conference,
193–206, 2009.

[16] C. Ré, J. Letchner, et al. Event queries on correlated probabilistic
streams. In SIGMOD, 715–728, 2008.

[17] S. Rizvi, S. R. Jeffery, et al. Events on the edge. In SIGMOD,
885–887, 2005.

[18] R. Sadri, C. Zaniolo, et al. Expressing and optimizing sequence
queries in database systems. ACM Trans. Database Syst.,
29(2):282–318, 2004.

[19] U. Srivastava and J. Widom. Flexible time management in data stream
systems. In PODS, 263–274, 2004.

[20] T. Tran, C. Sutton, et al. Probabilistic inference over RFID streams in
mobile environments. In ICDE, 2009.

[21] P. A. Tucker, D. Maier, et al. Using punctuation schemes to
characterize strategies for querying over data streams. IEEE Trans.
Knowl. Data Eng., 19(9):1227–1240, 2007.

[22] W. M. White, M. Riedewald, et al. What is ”next” in event processing?
In PODS, pages 263–272, 2007.

[23] E. Wu, Y. Diao, et al. High-performance complex event processing
over streams. In SIGMOD, 407–418, 2006.

APPENDIX
A. NOTATIONAL CONVENTION

Table 1 summarizes the notation used in this paper.

Pattern(`, W): (E1, . . . , E`) of length ` and time window W
Event sequence S: e1, . . . , en
Possible world j: pwj

Point match m: (et1
m1 , . . . , et`

m`
), t1 < ... < t`

Partial match m: (et1
m1 , . . . , e

tj
mj)

Query match Qm: given { m : (et1
m1 , . . . , et`

m`
) }, output:

signature: (em1 .id, . . ., em`
.id)

range: [minm(et1
m1 .lower), maxm(et`

m`
.upper)]

confidence: ∑pwj→(em1 ,...,em`
) P
[
pwj
]

Table 1: Notation used in this paper

B. POINT-BASED EVALUATION
In this appendix, we provide the pseudocode for computing the

confidence for skip till next match queries, prove the correctness of
our point-based evaluation method for skip till any match and skip
till next match queries, show additional implementation details, and
offer extended discussions of this method.

B.1 Pseudocode
Algorithm 1 shows the computation of the match confidence for

a skip till next match query in the point-based framework.

Algorithm 1 Compute the confidence for point-based framework.
Input: match m:(em1 , em2 , ...em`

), S̄m2 , ..., S̄m`
(S̄mi denotes the set

of events that can potentially extend a partial match ending at
emi−1)
1: if The query strategy is skip till any match then
2: Set q as the confidence of m using Equation (1)
3: else if The query strategy is skip till next match then
4: Pre-computation:
5: for Point match mp ∈ m do
6: for i=1 to i=` do
7: eti

mi = point event of mp at state i

8: eti+1
mi+1 = point event of mp at state i + 1

9: if P
[
eti

mi ≺ eti+1
mi+1

]
is not computed yet then

10: P
[
eti

mi ≺ eti+1
mi+1

]
= P

[
eti

mi

]
×P

[
eti+1

mi+1

]
11: P

[
None of S̄mi+1 occurs between[ti , ti+1]

]
=

∏emj∈S̄mi+1
P
[
emj not between [ti , ti+1]

]
12: end if
13: end for
14: end for
15: Con f idencem = 0
16: for Point match mp ∈ m do
17: for i = 1 to i = ` do
18: eti

mi = point event of mp at state i
19: end for

20: Con f idencem +=
∏`−1

i=1 P

[
e
ti
mi
≺e

ti+1
mi+1

]
×P
[
None of S̄mi+1 between [ti ,ti+1]

]
∏`−1

i=2 P
[
e
ti
mi

]
21: end for
22: end if

The above algorithm can be extended to support the more complex
case in which one event can match multiple pattern components. In
particular, when we index the events for Smi , we also keep track of
the events that can match more than one pattern component. Once
we find these events, then we could further enumerate these events
when we compute the confidence as shown in Eq. (4).

B.2 Correctness Proof
Skip till any match. We first prove the correctness of our point-

based evaluation framework when the skip till any match strategy is
used in a query.

PROOF. If a query uses the skip till any match strategy, pattern
matching in the point-based evaluation framework naturally runs
skip till any match on the point event stream.

We first show that any point match returned by the skip till any
match strategy exists in some possible world. This is because the
point match already satisfies the ordering constraint as well as query-
specified constraints such as predicates and the time window.

We next prove that any match that exists in some possible world
would be returned by the skip till any match strategy on the point
event stream. We prove this by contradiction. Assume that there is a
match m with signature (ei1

m1 , ei2
m2 , ...ei`

m`
) in one possible world, but

it is not returned by skip till any match on the point event stream.
Since m is a match, the constituent point events are in order, i.e.,
i1 < i2 < ... < i`, and satisfy query-specified constraints such as
predicates and the time window. In the expanded stream, points are
ordered by timestamps. So, we have (ei1

m1 ≺ ei2
m2 ≺ ... ≺ ei`

m`
) in

the point event stream. By definition, skip till any match will have
one such run that first selects ei1

m1 , ignores other point events until
ei2

m2 arrives, selects ei2
m2 , ignores other point events until ei3

m3 arrives,
and so on, resulting in a match. This contradicts the assumption
above. Hence our second statement is proved.

Skip till next match. We next prove the correctness of the point-
based evaluation framework when the skip till next match strategy
is used in a query. Recall that for such queries, our evaluation
framework uses the skip till any match strategy on the point event
stream and the modified next() function with the Next Event’s
Latest Time (NELT) as the termination criterion.

PROOF. Consider a pattern (E1, . . . , E`) and a partial match
(et1

m1 , . . . , e
tj
mj) (j ≥ 1), with emj being the last selected event. We

prove the following statements are true:
(1) Any point event, denoted by et

i , that starts after emj ’s NELT

cannot be used to extend the partial match (et1
m1 , . . . , e

tj
mj) in any

possible world when that possible world runs under the skip till next
match strategy. This is clear from the NELT definition: Among all
events that can match the next pattern component Ej+1 and start
after emj ends, the event that ends the earliest, denoted by ek, sets
the NELT of emj using ek.upper. Since et

i occurs after the emj ’s
NELT, it will surely be preceded by the point event eNELT

k in any
possible world, and hence cannot be the next to emj .

(2) Every point event, et
i , that can potentially match the pattern

component Ej+1 and starts before or at emj ’s NELT, can actually be

used to extend the partial match (et1
m1 , . . . , e

tj
mj) in a possible world

that runs under the skip till next match strategy. We construct one
such possible world as follows: (i) the event emj occurs at its last
time point; (ii) all events that can potentially match Ej+1 and overlap
with emj , excluding et

i , take a point before or at the same point as
emj , hence not meeting the ordering constraint; and (iii) all events
that can potentially match Ej+1 and occur after emj ends but before
emj ’s NELT, excluding et

i , take a point at or after NELT. This way,
all other events that can potentially match Ej+1 have made room for
et

i to be the first match of the pattern component Ej+1 (or one of the
first that occur at the same time NELT).

Given the above statements, it is easy to see that our implementa-
tion uses the skip till next match strategy to achieve (2) while using
the NELT to guarantee (1).

B.3 NELT Implementation
In the implementation of NELT, we incrementally compute the

NELT of an event e. Every time before ei selects its next event ei+1,
it compares its current NELT with ei+1.lower. If the ei+1.lower >
current NELT, then ei would not select ei+1. Otherwise, ei would
select it. Then it would compare its current NELT with ei+1.upper.
If current NELT is smaller, then the NELT would not change. If
the current NELT is larger, then we would update ei’s NELT to
ei+1.upper. At the same time, we need to prune runs that have
passed the previous NELT check, while would fail in the check
using the new NELT. In order to efficiently prune these runs, we
index them using ei as the key. So when an event is selected by a
run, it is not safe to say that it is possible to be the next event. For
similar reasons, when we find a match using skip till next match, we
do not output it immediately. While we buffer it until we are sure
that there would be no NELT updates that can prune this match.

B.4 Extended Discussions
The point-based evaluation framework offers three key benefits:

First, it has tremendous performance benefits over an evaluation
method based on the formal semantics—the latter is infeasible in
most workloads. More precisely, the point-based evaluation method
dynamically finds the possible worlds in which the order of point
events matches the query-specified order, and simply ignores other
possible worlds. Second, it requires the minimum change of an
existing pattern query engine, hence easy to use.

Third, when an application receives the query match (which is a
collapsed format) but wants the detailed point matches, it can run the
point-based evaluation method over the events in the query match,
if the query uses the skip till any match strategy. This re-evaluation
incurs little cost because it involves only a few events, as opposed
to many more in the window on the input stream. However, if the
query uses the skip till next match strategy, it is incorrect to rerun
the point-based evaluation over only the events in the query match.
Hence, the application cannot recover the point matches in this case.

This method, however, has its own set of drawbacks: The effi-
ciency can still be limited because the point event stream is much
larger than the original event stream, incurring significant costs in
both stream expansion and pattern matching. It further causes the
delay of returning matches due to the overhead of buffering point
events and emitting them in increasing order of occurrence time.

C. EVENT-BASED EVALUATION
In this appendix, we provide additional details and optimizations

of our evaluation methods, including the query order evaluation
method, the any state evaluation method, and the sorting-based
optimization. We also show the pseudocode for computing the
confidence for skip till any macth queries. We finally present the
correctness proofs of our evaluation methods.

C.1 An Incremental Method for Query Order
Evaluation

While the query evaluation evaluation method in §4.1 is described
using three passes over the events in a match, our implementation
actually takes one pass over events as the ext function runs forwards
on the input stream. Our one-pass algorithm employs incremental
computation of valid lower and upper bounds of events and incre-
mental evaluation of the window constraint. Using this algorithm,
the valid lower and upper bounds may not be as tight as the true
ones defined in the three-pass algorithm initially, but will converge
to the true ones when the matching process completes and generates
a match.

Consider a partial match m = ∅ or (em1 , . . . , emj), and the current
event e in the input. The one pass algorithm takes three steps:

1. Compute e’s valid lower bound given m. Initialize e’s valid
upper bound using its own upper bound.

2. If m is nonempty, update the valid upper bound of the events
in m in reverse pattern order, i.e., from emj down to em1 .

3. ext(m, e) = True if (1) e.vlb ≤ e.upper and (2) e.vlb <
em1 .vub + W.

The second condition in the last step uses the window constraint to
filter the current event, by comparing its valid lower bound with the
valid upper bound of the first event in the partial match.

Example. Fig. 3(c) shows an example using three events a1, b5,
and c6. Upon arrival of c6, we have a partial match (a1, b5). Step
1 above sets c6.vlb = 6 and c6.vub = 7. Step 2 sets b5.vub = 3
and a1.vub = 2. Then in Step 3, the window constraint W = 4 is
expressed as c6.vlb < a1.vub + 4. That is, the latest point in a1’s
valid interval and the earliest point in c6’s valid interval must fit in
the window; otherwise, c6 cannot be included in a match starting
with a1. In this example, e6 is pruned.

C.2 The Any State Evaluation Method
Details of the any state evaluation method. In our implemen-

tation, the any state evaluation method is an incremental algorithm
that runs directly on the event stream. Given an event e, a run γ, and
the set of events m selected in γ , our method proceeds as follows:

1. Type and Value Constraints: Check if e can match any new
pattern component Ej based on the event type and predicates.
If a predicate of Ej compares to other unmatched pattern com-
ponents, defer it until it is instantiated later. If e matches Ej
and can instantiate predicates between Ej and other matched
components, evaluate those predicates to filter e.

2. Temporal Constraints: Let Ei, . . . , Ej, . . . , Ek denote the con-
tiguous matched pattern components involving Ej, i ≤ j ≤ k.
Compute e’s valid lower bound using emj−1 ’s valid lower bound
if existent, or e’s lower bound otherwise. Compute e’s valid
upper bound using emj+1 ’s valid upper bound if existent, or e’s
upper bound otherwise. Update the valid lower bound of the
subsequent events emj+1 , . . . , emk if present. Update the valid
upper bound of the preceding events emi , . . . , emj−1 if present.
If these updates cause any of the events to have an empty valid
interval, i.e., vlb > vub, skip e. If e is retained, check the
time window between the events matching the current two
ends of the pattern to further filter e.

3. If e is retained, clone γ to γ′ and select e to match Ej in γ′.

Example. Fig. 3(d) shows the any state evaluation method for
the three events a1, c2, and b3. It lists the runs created as these
events arrive. Now consider the run (a1, b3, c2). Fig. 3(d) also
shows the computation of the valid intervals of these events. Be-
fore b3 came, the valid intervals of a1 and c2 were simply set
to their uncertainty intervals because they are not adjacent in the
match. When b3 arrives, four updates occur in order: (1) b3.vlb
= max(a1.vlb + 1, b3.lower) = 3; (2) b3.vub = min(c2.vub−
1, b3.upper) = 4; (3) c2.vlb = max(b3.vlb + 1, c2.lower) = 4;
(4) a1.vub = min(b3.vub− 1, a1.upper) = 3; These updates give
the same result as in Fig. 3(b) assuming the events in query order.

Pruning runs. We observe that the any state evaluation method
can create many runs. For efficiency, we prune nonviable runs using
the window. Consider a run γ and the set of events m selected. At
any point, we consider the smallest valid upper bound of the events
in m. The run can be alive at most until minj(emj .vub) + W, called
the time to live γtll . As more events are selected by γ, γtll will
only decrease but not increase. Recall from §3 that our system has
a notion now = [maxn

i=1(ei.lower), maxn
i=1(ei.upper)] defined on

all the events we have seen, and the maximum uncertainty interval

size Umax. Further, the arrival order constraint in our system implies
that any unseen event must start after now.lower−Umax. So, a run
γ can be safely pruned if γtll < now.lower−Umax.

Another pruning opportunity arises when a run γ has part of
the prefix unmatched; i.e., there is a pattern component Ej such
as Ej is matched but Ej−1 is not. We can prune γ based on the
arrival order constraint between emj and a future event matching
Ej−1. Since any unseen event must start after now.lower−Umax,
when emj .upper < now.lower −Umax, we know that no future
event can match Ej−1, and hence can safely prune γ.

C.3 Sorting for Query Order Evaluation
Recall that we proposed an optimization for sorting for query

order evaluation. More precisely, we sort events such that if two
events match two different pattern components, Ei and Ej (i < j),
and overlap in time, the one matching Ei will be output before the
other matching Ej, despite their arrival order. To do so, we create
a buffer for each pattern component Ej except the first (j > 1).
We buffer each event e matching Ej until a safe time to output it.
Depending on the information available, the safe output time for e
can be: (1) If we only have the arrival order constraint, then it is safe
to output e if all unseen events are known to occur after e.upper,
that is, e.upper < now.lower − Umax (the earliest time of an
unseen event given the arrival order constraint). (2) Many stream
systems use heartbeats [19] or punctuations [13, 21] to indicate that
all future events (or those of a particular type) will have a timestamp
greater than τ. If we know that every event that can match a pattern
component preceding Ej will have a start time after e.upper, then it
is safe to output e.

C.4 Pseudocode
Algorithm 2 shows the computation of the match confidence for

a skip till any match query in the event-based framework.

Algorithm 2 Compute the confidence for skip till any match in the
event-based framework.
Input: Run r with a partial match (em1 , ..., emj), l ≥ 1

1: if l = 1 then
2: for each point point1 ∈ em1 ’s valid interval do
3: Record (point1) as a partial point match ending at point1
4: end for
5: Con f idence← 1
6: else
7: Con f idence← 0
8: for each point pointj ∈ emj s valid interval do
9: for each point pointj−1 ∈ emj−1 s valid interval do

10: if pointj−1 occurs before pointj then
11: for each point match pathj−1 ending at pointj−1 do
12: pathj = (pathj−1, pointj)
13: P

[
pathj

]
= P

[
pathj−1

]
×P

[
pointj

]
14: Record pathj as a partial match ending at pointj

15: Con f idence += P
[
pathj

]
16: end for
17: end if
18: end for
19: end for
20: end if

C.5 Correctness Proofs
In order to show the correctness of our event-based framework,

we will show that it can get the same results as the point-based
framework.

Finding the Match Signature. We first show that the event-
based framework can find the same match signature as the point-

based framework.
PROOF. First we show that for any match signature found by the

point-based framework, the event-based framework can also find
it. When the pattern length is two, a point-match (et1

1 , et2
2) tells us

that t1 < t2. In the event-based framework, the boolean function
ext(e1, e2) would be true because e2.vlb ≤ t2 ≤ e2.upper. So
the event-based framework can also find this match signature. It is
trivial to extend the proof to any pattern length ` by induction.

Then we show that for any match signature found by the event-
based framework, the point-based framework would find one or
more point matches with the same signature. We can pick a point
from each interval to compose the match signature. We can prove
this by showing that we can simply pick the point at the valid lower
bound of each event. Because ei.vlb < ei+1.vlb, so we can use
these points to compose a point match with the same signature.
Hence the correctness of finding the match signature is proved.

Time Window Constraint. Since we have proved that both
frameworks can capture the same match signatures without con-
sidering the time window constraint, we need to show that the
event-based framework can support the time window correctly.

PROOF. First, we need to show that any match m satisfying the
time window W, which is returned by the event-based evaluation
framework, would have at least one point match using the same
signature. We can prove this by showing that we can pick the valid
lower bound of each event e from the match, because e.vlb <
em1 + W. So this point match satisfies the time window constraint.

Then we need to prove that there is no point match using the
same signature as any match pruned by the time window in the
event-based framework. We can show this by contradiction. We
assume that a match m is pruned by the time window in the event-
based framework, but there is a point match mp using the same
signature which satisfies the time window constraint. Since we
have this point match, according to the previous proof, we could
say that every point is during the valid range of its corresponding
event in m. Since the event match m violates the time window in
the event-based framework, so at least e`.vlb ≥ em1 .vub + W. So
we cannot pick a point from e` to compose the point match, which
contradicts with the assumption. Hence the correctness of the time
window constraint is proved.

Skip till next match. The previous proofs show that the event-
based framework can get the same results using the skip till any
match selection strategy. When we use the skip till next match
selection strategy, we can also apply the NELT check, such that we
can filter events that cannot make a match for this selection strategy.
In this way, the results of the event-based framework would stay the
same as the point-based framework.

Flexible Evaluation from Any State: We need to prove that
this method can capture the same set of matches as the query order
evaluation method does (but it directly operates on the events in
arrival order). We do not consider the case where the events arrive
in query order, because the any state method would have the same
process as the query order evaluation method.

PROOF. We need to show that by using the any state method, we
still can capture the order of two events correctly in pattern matching
(i.e., in query). Our ext function decides the order of two events
according to the query order and their uncertainty intervals, so the
arrival order or the order in which a run selects events in the any state
method would not affect the results. So we can say that the any state
method can capture the correct order between any two events. So
when the any state method decides whether or not it selects an event
into a run, it would not make any mistake. For skip till next match,
we can get the same NELT as in the query order evaluation method.

 10

 100

 1000

 10000

 100000

 0 50 100 150 200

T
h

ro
u

g
h

p
u

t(
lo

g
)

Time Window

Event-based
Point-based

(a) Varying time window (skip-till-any)

 10

 100

 1000

 10000

 100000

 6 5 4 3 2

T
h

ro
u

g
h

p
u

t(
lo

g
)

Pattern Length

Event-based
Point-based

(b) Varying pattern length (skip-till-any)

 10

 100

 1000

 10000

 100000

 6 5 4 3 2

T
h

ro
u

g
h

p
u

t(
lo

g
)

Pattern Length

Event(Sorting)
Event(Selectivity)
Event(Any State)

Point

(c) Varying sequence length (skip-till-next)

Figure 5: Additional performance results.

NELT is decided by the events that can potentially match the next
pattern component. Obviously, these events would be the same in
the query order evaluation method or in the any state method. So the
any state method can run skip till next match strategy correctly.

D. COMPLEXITY ANALYSIS
Our analysis below uses the following symbols: (i) U: the number

of instants in an event’s uncertainty interval. (ii) W: the size of
the time window used in the query. (iii) `: the number of pattern
components of query. (iv) Ri: the arrival rate for events of type i.
(v) N: the number of events in a time window.

Our analysis aims at a reasonable bound of the worst case perfor-
mance. The exact performance characteristics of the point-based
framework are presented in the evaluation section. In this regard, we
make several assumptions to simplify the analysis: We consider dif-
ferent event types for different components in the query. We assume
a uniform uncertainty interval size for all events. Furthermore, we
assume that events of different types have the same arrival rate (R1
= R2 = R3 = . . . = R), and expect to see roughly the same number
of events of each distinct type in a sufficiently large window.

Figure 6: Event sequences that cause worst-case performance.

Complexity for skip till any match. We identify the worst case
performance as the pattern evaluation involves the largest number
of partial matches, also called runs, for a given sequence of events
that could fit in a time window. The worst case requires the arrange-
ment of the relevant events in a certain order. In particular, pattern
evaluation incurs the largest number of runs if events are arranged
as shown in Fig. 6. In this arrangement, the events of the first type
(i.e., matching the first pattern component) appear first, before all
events of other types. The events of the second type immediately
follow the events of the first type. Then the events of the third type
immediately follow, and so on. The events of different event types
will not overlap at all.

For the point-based framework, #Runs = (RWU)`.
For the event-based framework, #Runs = (RW)`.
For the possible-world semantics, #Runs = N`, which is pattern-

agnostic (note that in general RW � N). If we consider only the
feasible runs in those possible worlds, i.e., satisfying the ordering
constraint, then #Runs = URW . But strictly based on the formal
semantics, one has to pay the N` cost to recognize the URW runs.

Complexity for skip till next match. The worst case of skip till
next match is the same with skip till any match. In this case, the
NELT would not invalidate any event because every event satisfying
the predicate starts before the NELT.

E. ADDITIONAL PERFORMANCE RESULTS
In this appendix, we provide more details of experimental setup

and additional evaluation results.
All of our experiments were obtained on a server with an Intel

Xeon 3GHz CPU and 8GB memory and running Java HotSpot 64-bit
server VM 1.6 with the maximum heap size set to 3GB.

Point vs. Event based Evaluation (skip till any match). To
study of the effect of the window size W, we increase it from 10
to 200 units. Fig. 5(a) shows the results about the point-based and
event-based frameworks, demonstrating the performance benefits
of the latter. We then consider the effect of the pattern length `. As
we vary ` from 2 to 6, we also adjust predicate selectivities so that
longer patterns still obtain matches. Fig. 5(b) shows that while both
methods are sensitive to `, the point-based method suffers much
severe performance penalty.

Point vs. Event based Evaluation (skip till next match). We
consider queries using skip till next match and report the perfor-
mance of the point based method and the event based methods
including the optimizations. Fig. 5(c) shows the results as ` in-
creases: Event-based methods work better than the point-based
method. However, with increased `, the cost of confidence computa-
tion also increases fast, hence the performance loss.

