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ABSTRACT
Uncertain data streams are increasingly common in real-world de-
ployments and monitoring applications require the evaluation of
complex queries on such streams. In this paper, we consider com-
plex queries involving conditioning (e.g., selections and group by’s)
and aggregation operations on uncertain data streams. To character-
ize the uncertainty of answers to these queries, one generally has to
compute the full probability distribution of each operation used in
the query. Computing distributions of aggregates given conditioned
tuple distributions is a hard, unsolved problem. Our work employs
a new evaluation framework that includes a general data model,
approximation metrics, and approximate representations. Within
this framework we design fast data-stream algorithms, both deter-
ministic and randomized, for returning approximate distributions
with bounded errors as answers to those complex queries. Our ex-
perimental results demonstrate the accuracy and efficiency of our
approximation techniques and offer insights into the strengths and
limitations of deterministic and randomized algorithms.

1. INTRODUCTION
Uncertain data streams are arising in a growing number of en-

vironments, such as traditional sensor networks [7], GPS systems
for locationing [13], RFID networks for object tracking [21], radar
networks for severe weather monitoring [14], and telescope surveys
for astrophysical pattern detection [18]. As more applications are
developed on such streams, there is growing demand to support com-
plex queries for real-time tracking and monitoring despite various
kinds of data uncertainty. Consider the following two examples.

RFID Tracking and Monitoring. RFID readers deployed in a
storage area return readings of the tagged objects. Techniques for
RFID data cleaning and inference [21] can translate noisy raw RFID
data into a location tuple stream (time, tag id, weight, xp), where
the x location, a continuous-valued attribute, is probabilistic in
nature (denoted by the letter p) due to the use of inference. (For
simplicity, we omit the y and z locations in this example.) A fire
monitoring application could use the RFID deployment to detect
violations of a fire code: storage of flammable merchandise shall
not exceed 200 pounds in each unit area. Query Q1 detects such
violations on the location tuple stream: It keeps the most recent
location tuple for each object in the query window and groups the
tuples in the window by the unit area to which they belong (where
the AreaId() function retrieves the id of the area given the object
location and the unit area length). For each group, it computes the
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total weight of objects and reports the group if the weight exceeds
200 pounds. The query is written as if the x location were precise.

Q1: Select group id, sum(S.weight)
From Locations S [Partition By tag id Rows 1]
Group By AreaId(S.x, AreaLength) as group id
Having sum(S.weight) > 200

Computational Astrophysics. There have been several recent ini-
tiatives to apply relational techniques to computational astrophysics.
As detailed in a recent workshop paper [18], massive astrophysical
surveys will soon generate observations of 108 stars and galaxies
at nightly data rates of 0.5TB to 20TB. The observations are in-
herently noisy as the objects can be too dim to be recognized in a
single image. However, repeated observations (up to a thousand
times) allow scientists to model the location, brightness, and color
of objects using appropriate distributions, represented as (id, time,
(x, y)p, luminosityp, colorp). Then queries can be issued to detect
dynamic features, transient events, and anomalous behaviors. Query
Q2 below detects regions of the sky of high luminosity from the
observations in the past hour. Similar to Q1, it groups the objects
into the predefined regions and for the regions with the maximum
luminosity above a threshold it reports the maximum luminosity.

Q2: Select group id, max(S.luminosity)
From Observations S [Range 1 hour]
Group By AreaId(S.(x,y), AreaDef) as group id
Having max(S.luminosity) > 20

There are several commonalities between the above two exam-
ples. First, the uncertain attributes are continuous-valued and usually
modeled by a probability density functions (pdf). Unfortunately, as
noted in recent workshop papers [1, 18], such attributes have been
under-addressed in the probabilistic databases and data streams lit-
erature. Second, both queries involve complex relational operations
on continuous-valued uncertain attributes. In particular, group by’s
are a form of conditioning operations that restrict the pdf of an un-
certain attribute to a region specified in the group condition. Then an
aggregate is applied to the tuples in each group with conditioned dis-
tributions. The aggregate result of each group can be further filtered
using the having clause (another form of conditioning operation).
Third, such complex operations are performed in real-time as tuples
arrive. These commonalities characterize the problem we address in
this paper: to support conditioning and aggregation operations on
data streams involving continuous-valued uncertain attributes.
Challenges. The most salient challenge arises from the fact that to
characterize the uncertainty of query results, one generally has to
compute the probability distributions of uncertain attributes in both
intermediate and final query results. Take Query Q2 for example.
Without knowing the distribution of the maximum luminosity in
each region of the sky, it is impossible to evaluate the predicate,
max(S.luminosity) > 20, to any quantity that characterizes the
confidence of the query result. (The paper [18] made a similar argu-
ment for the need to compute distributions.) However, computing
distributions of query results under conditioning and aggregation
operations raises a host of issues.



First, even if the input stream contains only continuous-valued
uncertain attributes, which are modeled by continuous random vari-
ables, conditioning operations can introduce uncertainty about the
tuple existence, which needs to be modeled by discrete random
variables. Hence, for complex queries involving conditioning and
aggregation, we must compute distributions for both continuous and
discrete random variables. (This aspect is detailed in Section 2.)

Second, given tuples with conditioned distributions, computing
distributions of aggregates is a hard, unsolved problem. In the
discrete setting, it is easy to truncate a discrete distribution and add
the tuple existence probability as a special value in the distribution.
However, computing the distribution of an aggregate (e.g., sum) of n
discrete random variables may require enumerating an exponential
number (e.g., 2n) of possible worlds, hence intractable for large
n. In the continuous setting, if data uncertainty is modeled by
Gaussian Mixture Models (GMMs), our previous work [20] provides
exact, closed-form solutions to aggregates. Conditioning operations,
however, result in truncated GMMs with an existence probability.
Extending solutions in this case remains an open problem.

Third, given a mix of conditioning operations (e.g., filters and
group by’s) and aggregates in a query, offering query answers with
bounded errors is crucial for the utility of the processing system.
State-of-the-art systems compute distributions of complex queries
using Monte Carlo simulation [8, 10, 17] without bounded errors.

Fourth, to support monitoring queries on data streams, query
processing needs to employ incremental computation as tuples arrive
and be efficient for high-volume data streams.
Relationship to Previous Work. Previous work on computing ag-
gregates in probabilistic data streams was restricted to considering
expectations of max and min [11, 12, 4], the expectation and vari-
ance of sum, and some higher moments of count [4]. In contrast,
our work aims to characterize final query answers with full dis-
tributions of these aggregates. Furthermore, just knowing a few
moments of an aggregate at intermediate stages of query processing
may not be enough to answer queries accurately. Take Query Q2
for example. The state-of-the-art data-stream algorithm [11] returns
an estimate of the expectation of max . However, to evaluate the
having clause, the expectation, µ = E [max(S.luminosity)], only
allows us to conclude that P [max(S.luminosity) > 20] is in a wide
range, [0, min(1, µ/20)], using Markov’s inequality. Even if the
variance of an aggregate can be obtained, as in the case of sum,
the probability for the having clause can still take a large range of
values according to the Chebyshev bound. We demonstrate the poor
accuracy of using only the moments in our performance study.1

In the literature of probabilistic databases, the most relevant work
is estimating the probability of a predicate aggregate in the having
clause for uncertain data modeled by discrete random variables
[5, 16]. Besides the restriction to discrete random variables, this
work returns only the expectations of the uncertain attributes in
query results. Regarding the having clause, it evaluates the predicate
aggregate to a probability using Monte Carlo simulation, whereas
our work explores a wider range of algorithms, both deterministic
and randomized, and demonstrates the benefits of deterministic
algorithms over randomized ones in most cases.
Contributions. In this paper, we present a probabilistic data stream
system that evaluates queries involving conditioning operations
(filters and group by’s) and aggregates. Our contributions include:

An Evaluation Framework. To handle queries described above,
we propose an evaluation framework that includes three components:
(i) Our data model characterizes uncertainties associated with both

1Other work in the theory community has considered estimating distances
between distributions in the data stream model (see, e.g., [9]). However, this
does not solve our problem as the distribution of interest, the true density
function of an aggregate, is not given and needs to be computed instead.

attributes in a tuple, modeled by an arbitrary mix of continuous and
discrete random variables, and the tuple existence probability. (ii)
Our approximation metrics based on the Kolmogorov-Smirnov (KS)
distance offer a unified theoretical foundation for bounding errors of
both deterministic and randomized approximation algorithms. (iii)
We further employ two data types, called StepCDF and LinCDF,
for approximate representations of probability distributions. They
work well with the KS-based approximation metrics and can capture
important aspects of distributions in practice as we show in our
performance study.

Approximation Algorithms for Aggregates. Within our framework
we develop stream-speed approximation algorithms with guaranteed
error bounds. We first devise such algorithms for the aggregates,
max, min, sum, count, and avg, given tuples with conditioned
distributions. The max/min algorithm uses a splitting scheme to
efficiently maintain an approximate distribution as the stream is
processed, and bounds the total error regardless of the number of
tuples processed. The sum/count algorithm employs repeated
rounding of our approximate representations as tuples are processed
and further optimizes this process using advanced statistical theory.
We also offer a general randomized algorithm based on Monte Carlo
simulation and bound the error for all five aggregates.

Approximate Answers to Complex Queries. We consider approxi-
mate answers to complex queries that involve a mix of conditioning
and aggregation operations. We quantify the errors of intermediate
and final query results by keeping track of errors associated with
both the attribute distributions and the tuple existence probability.
We further develop a query planning approach that given a query
accuracy requirement, provisions each operator with an appropriate
error bound. To the best of our knowledge, our work is the first to
guarantee error bounds for such complex queries.

Our experimental results show that for the class of queries con-
sidered, our system can meet arbitrary accuracy requirements while
achieving throughput of thousands of tuples per second. In addi-
tion, our deterministic algorithm for max/min always outperforms
the randomized algorithm, whereas our deterministic algorithm for
sum/count works better given high accuracy requirements, which
are desirable in most cases. Finally, using the only expectation and
variance of an aggregate yields poor accuracy even if we are only
concerned with the existence probabilities of query answers.

2. DATA MODEL AND OVERVIEW
In this section, we define our data model for relational processing.

This model is particularly designed to accommodate conditioning
operations on uncertain attributes. We also discuss the implications
of this model on evaluation of other relational operations, thereby
motivating the approximation techniques in the subsequent sections.

2.1 Data Model
Input model. An uncertain data stream is an infinite sequence of
tuples that conform to the schema Ad ∪Ap. The attributes in Ad

are deterministic attributes, like those in traditional databases. The
attributes in Ap are continuous-valued uncertain attributes, such
as the location of an object and the luminosity of a star. In each
tuple, the m attributes in Ap are modeled by a vector of continuous
random variables, X, that have a joint pdf, fAp (x), defined on Rm.
The joint pdf may be further partitioned if attributes are independent.

Attribute distributions can be generated from real-world data in a
variety of ways. Common techniques include (i) Kalman filters that
derive a distribution of the true internal state of a linear dynamic
system given noisy data, e.g., estimating the true object speed using
GPS measurements [13], (ii) particle filters that derive such distribu-
tions for non-linear dynamic systems, e.g., estimating the true object
location given raw RFID data [21], and (iii) density estimation that



fits distributions using repeated measurements [18] or samples ob-
tained from the Fourier Transform on time series data [20]. Such
derived distributions often follow Gaussian distributions, e.g., the
luminosity of a star [18], multivariate Gaussian distributions, e.g.,
the x and y positions of an object [20], or Gaussian mixture models,
e.g., the radial velocity of a tornado in a specific area [20].
Mixed-type model for relational processing. To support relational
processing of uncertain data in our input model, we propose a richer
model that characterizes the uncertainty associated with tuples in
intermediate and final query results. Our model, called the mixed-
type model, essentially states that with probability p, the tuple exists
and when it exists, the deterministic attributes take their original
values and the uncertain attributes follow a joint distribution.

Definition 1 Given a tuple with m continuous uncertain attributes,
denoted by Ax, n discrete uncertain attributes, denoted by Ay, and
other deterministic attributes Ad, its mixed-type distribution g is a
pair (p, f ): p ∈ [0, 1] is the tuple existence probability (TEP), and
f is the joint density function for all uncertain attributes, defined
as f (x, y) = fAx |Ay (x|y) ·P [Ay = y]. Further, g characterizes a

random vector (X, Y, Z) over (Rm ×Un ×Ad) ∪ {⊥}, where

P [(X, Y, Z) = ⊥] = (1− p),

P
[
X ⊆ I, Y = y, Z = Ad

]
= p ·

∫
I

f (x, y)dx, I ⊆ Rm, y ∈ Un.

Note that the input model is a special case of the above definition
where p = 1 and n = 0.

We make several notes on the mixed-type model. First, it com-
bines the tuple-level uncertainty (i.e., TEP) with the attribute-level
uncertainty. In fact, the TEP requires every attribute of the tuple,
when used in query processing, to be modeled by a random variable:
if an attribute was deterministic before, it is now modeled by a
Bernoulli variable for taking its original value with probability p
and ⊥ otherwise; for the uncertain attributes, their random variables
now model the joint event that the tuple exists and the attributes fol-
low a distribution. Second, discrete uncertain attributes can emerge
as derived attributes in relational processing, e.g., as the result of
aggregating a set of Bernoulli variables. Third, we have a general
definition of the joint attribute distribution. In any implementation,
it can be factorized based on the independence among attributes and
each individual distribution can be described by a known parametric
distribution like Gaussian mixture models [20] or an approximate
representation as we propose in the following sections.

Our current data model does not handle correlations among tuples.
Inter-tuple correlations can be handled using lineage [3] and Monte
Carlo simulation [10]. This paper focuses on the simpler case
where tuples are independent of each other and explores stream-
speed approximation in this setting. Our work can be viewed as an
optimization of the general systems mentioned above when query
processing does not produce correlated intermediate results.2

2.2 Relational Operations under the Model
We next consider relational operations under the mixed-type

model. This model is especially designed for conditioning opera-
tions that commonly arise in relational processing. Formally, we
define a conditioning operation as follows:

Definition 2 Given a tuple t with a mixed-type distribution g =
(p, f ), let S be the support of f (x, y) such that S is a subset of the
domain of f , and f (x, y) 6= 0 for any (x, y) in S. A conditioning
operation, C, applies a range predicate I to one of the uncertain
2The class of queries we support appears to be broader than safe queries
defined in [5] as we can handle operations with exponential complexities
(e.g., sum), which are not safe, using fast approximation.
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Figure 1: Execution of Q1 in the mixed-type model.

attributes in t. Let t̄ denote the result tuple. Then its distribution
ḡ = (p̄, f̄ ) is defined as: f̄ (x, y) = f (x, y)/q with the support
S̄ = S ∩ I, p̄ = p · q, and q =

∫
S∩I f (x, y)dxdy.

The above definition states that a conditioning operation applies a
range predicate I to a tuple. It yields a truncated joint attribute distri-
bution whose support is restricted to the intersection of the original
support S and the predicate range I, but normalized. Furthermore,
it reduces the tuple existence probability by the factor equal to the
probability mass covered by the truncated distribution. In relational
algebra, both selections and group by’s are conditioning operations,
as described below using our running examples.

Example: Execution of Q1 in the mixed-type model. Fig. 1(a)
shows three input tuples to the query, where the weight is a determin-
istic attribute, and the x location is a continuous-valued uncertain
attribute. The group by operation involves repeated conditioning op-
erations on the input tuples, with a different condition for each group.
For instance, the condition of the ith group is x ∈ [iL, (i + 1)L],
where L denotes the length of a unit area. The conditioning op-
eration for the ith group results in the table depicted in Fig. 1(b):
The truncated distribution for the x attribute is omitted since it is
not used later in the query, but the probability mass covered by the
truncated distribution in each tuple becomes its existence proba-
bility (i.e., TEP) in this group. The TEP translates the aggregate,
sum(weight), into a weighted sum of Bernoulli variables. The
aggregate result includes a discrete distribution of the weight sum
and the TEP of this result, as shown in Fig. 1(c). Finally, the having
clause, modeled by a selection in relational algebra, conditions the
tuple in Fig. 1(c) with the predicate sum(weight) > 200. This will
yield the reduced support of the distribution of the weight sum and
reduced TEP of the aggregate result, as shown in Fig. 1(d).

Example: Execution of Q2 in the mixed-type model is simi-
lar to that of Q1, with the main difference that the aggregate,
max(S.luminosity), is the max of a set of continuous random vari-
ables. So Q1 and Q2 show that aggregates and post-aggregate
operations must support both continuous and discrete variables.
Other Operators. We have formally defined the semantics of other
relational operators under the mixed type model. Due to space con-
straints, we leave such formal semantics to our technical report [19].
Regarding evaluation, our recent work [20] has shown that in the
absence of conditioning operations, there are exact closed-form
solutions to the result distributions of joins, projections, and aggre-
gates. By delaying selections based on commutativity, we see that
a crucial set of relational algebra where the closed-form solutions
do not apply is the aggregation of tuples with conditioned distribu-
tions (the interested reader can find further details in Appendix A).
Hence, supporting aggregates and post-aggregate operations given
conditioned tuple distributions is a main focus of our paper.

3. DISTRIBUTIONS OF AGGREGATES
In this section, we present an approximation framework for ag-

gregation of tuples in a probabilistic data stream. This framework
allows us to devise fast algorithms that construct approximate distri-
butions of aggregates with guaranteed error bounds.



3.1 Approximation Framework
Since aggregate functions are applied to a single attribute, the ap-

proximation framework presented below concerns a single random
variable, which can be discrete or continuous.
Representations. We employ cumulative distribution functions
(CDF’s) to approximate distributions of aggregates due to two desir-
able properties of a CDF: (1) it is a non-decreasing function ranging
from 0 to 1, and (2) it can be defined on any point in the real domain;
e.g., the CDF of a discrete random variable can be represented as
a step function. We employ two specific CDF functions, StepCDF
and LinCDF, for approximate representations.

Definition 3 Given a set of points P = {(x1, y1), . . . , (xk, yk)}
where x1 ≤ x2 ≤ . . . ≤ xk and 0 ≤ y1 ≤ . . . ≤ yk = 1,
StepCDFP is the piecewise constant function that interpolates be-
tween the points whereas LinCDFP is a piecewise linear function
that interpolates between the points:

StepCDFP(x) =


0 if x < x1

yi if xi ≤ x < xi+1
1 if x ≥ xk

LinCDFP(x) =


0 if x < x1

yi + x−xi
xi+1−xi

(yi+1 − yi) if xi ≤ x < xi+1

1 if x ≥ xk

.

Metric. Our approximation metric is based on a standard measure in
statistics, called the Kolmogorov-Smirnov distance, for quantifying
the distance between two distributions over the real domain.

Definition 4 The Kolmogorov-Smirnov (KS) distance between two
one-dimensional cumulative distribution functions F, F̃ : R →
[0, 1] is defined as KS(F, F̃) = supx |F(x)− F̃(x)|. We say that a
(randomized) algorithm returns an (ε, δ) approximation if the KS
distance between the approximate distribution and its corresponding
exact distribution is at most ε with probability 1− δ.

This metric offers two key benefits: First, it offers a unified theo-
retical foundation for us to bound the errors of both deterministic
and Monte-Carlo algorithms as shown in this section—in particu-
lar, the state-of-the-art Monte-Carlo approach [8, 10, 17] currently
lacks guaranteed bounded errors. Second, this metric is particularly
suitable for answering questions like “what is the probability that an
uncertain attribute is in the range I”, which commonly arises with
selection operations. We return to this aspect in Section 4.
Objectives. Given the above approximate representations and met-
ric, we devise algorithms that construct approximate distributions of
aggregates over probabilistic data. We consider processing a series
of tuples and define Yt to be a random variable that characterizes
the aggregate attribute in the t-th tuple. Our goal is to approximate
the distribution of the random variable At = A(Y1, . . . , Yt), where
A is a real-valued aggregate. If FA

t is the cumulative distribution
of At, we seek an algorithm that maintains an approximation F̃A

t
incrementally as data arrives while satisfying a given error bound.

3.2 Bounded-Error Monte-Carlo Simulation
Our randomized algorithm is based on Monte-Carlo simulations.

In contrast to prior work, we establish accuracy guarantees in our
evaluation framework. We consider any aggregate A for which there
exists an efficient stream algorithm Φ for computing A(y1, . . . , yt)
given the deterministic stream 〈y1, . . . , yt〉. The algorithm to com-
pute an (ε, δ) approximate distribution Φ∗ proceeds as follows:
• On seeing the t-th tuple, generate m ≥ ln(2δ−1)/(2ε2)

values y1
t , . . . , ym

t independently from the distribution of Yt.

• Run m copies of Φ: run the i-th copy on the stream 〈yi
1, . . . , yi

t〉
and compute ai = A(yi

1, . . . , yi
t), 1 ≤ i ≤ m.

• Return F̃A
t (x) = 1

m ∑i∈[m] 1[ai ,∞)(x).

Theorem 3.1 For any aggregate A for which there exists an exact
algorithm Φ for computing aggregate A on a non-probabilistic
stream, the proposed randomized algorithm Φ∗ computes an (ε, δ)
approximation of the distribution of A on a probabilistic stream. The
space and update time used by Φ∗ is only a factor O(ε−2 log δ−1)
greater than the space and update time required by Φ.

The proof of the theorem is shown in Appendix B.3. We see that
this theorem applies to aggregates such as sum, count, avg, min,
and max. This theorem subsumes existing work based on Monte
Carlo sampling [8, 10, 17] since it can determine the number of sam-
ples sufficient for meeting an accuracy requirement, in contrast to
taking the number of samples as an input parameter to the algorithm.
The Monte Carlo simulation in [16] only estimates the probability
of an aggregate predicate in the having clause, but does not compute
the full distribution of an aggregate. When restricted to evaluating
the having clause, our randomized algorithm is more general due to
the use of a stronger theorem and yet has similar complexity.

3.3 Distributions of MAX and MIN
In this section, we present a deterministic algorithm to compute

approximate distributions of max and min. Since the algorithm is
similar for both aggregates, our discussion below focuses on max.

We define the random variable Mt = max(Y1, . . . , Yt) where Yt
is the random variable corresponding to the t-th tuple, and let FM

t
be the corresponding CDF. To provide a uniform solution for both
discrete and continuous random variables, we first consider inputs
modeled by discrete distributions and later extend to the continuous
case. We assume that each Yt takes λ values from a finite universe
of size U, without loss of generality, [1, n], or shortly [n].

A useful property of max is that FM
t (x) can be easily computed

for any specific value of x, if x is known ahead of time, because
FM

t (x) = ∏i∈[t] P [Yi ≤ x]. Consequently, it suffices for the algo-
rithm to maintain a value cx, initially 1, for each x in the universe,
and on processing the t-th tuple we update cx with cx ·P [Yt ≤ x].
This computes the exact distribution of max with the update cost per
tuple O(U), which is inefficient for stream processing. Probabilistic
databases compute the distribution of max based on the extensional
semantics [5], with the total cost of O(tU) for a relation of t tuples;
further, this is not an incremental algorithm.

A natural attempt to turn the above observation into an algorithm
that returns a good approximation F̃M

t for FM
t would be to evaluate

FM
t (x) for a fixed set of values of x0, x1, . . . , xk and then define F̃M

t
to be the k piecewise linear function that interpolates between these
values. Unfortunately, this approach does not work because it is im-
possible to choose appropriate values of x0, x1, . . . , xk without first
processing the stream. For example, if we space the values evenly,
i.e., xi = i · n/k, and observe that every Yj takes values in the
range [2, n/k], then our algorithm determines that FM

t (x0) = 0 and
FM

t (x1) = . . . = FM
t (xk) = 1. Consequently, the interpolation

F̃M
t does not satisfy the necessary approximation guarantees.
The main idea of our algorithm is to dynamically partition the

universe into consecutive intervals. For each interval, we maintain
the estimates of the cumulative probabilities of its two ends. Because
the CDF is non-decreasing, if the cumulative probability estimates
of the two ends are sufficiently close, either of these estimates is a
good estimate for all the intermediate points.
Approximate Representation with Invariants. We employ an
approximate representation based on StepCDF for F̃M

t . The universe
is partitioned into consecutive intervals: [1, n] = ∪i[ai, bi], where



ai+1 = bi + 1. For each interval [a, b], we maintain ca and cb to be
the estimates of cumulative probabilities at a and b. Each interval
[a, b] is then viewed as a broad step, which contains a straight line
from a to b− 1 and possibly a jump at b if cb 6= ca, as illustrated in
intervals I1 and I3 in Fig. 2(a). This yields a StepCDF defined over
the point set {a1, b1, a2, b2, . . .}.

The algorithm has the following invariants. At any point, given
any interval [ai, bi] and a constant parameter ε′ (see Theorem 3.2 on
how to set ε′ as a function of the accuracy requirement ε) , we have:

(1) cbi
≤ cai (1 + ε′), (2) cai+1 ≥ cai

√
1 + ε′

Invariant 1 guarantees that the estimates of the two ends of an
interval are close, so the estimate errors for the points in between
can be bounded. Invariant 2 ensures that the estimates of any two
adjacent intervals are separated by at least a certain factor. Given
the range [0, 1] of CDF’s, the number of intervals to be maintained
is hence bounded, which in turn gives an upper bound on the time
and space required for the algorithm.
MAX Algorithm. This algorithm computes the approximate distri-
bution of max incrementally. The algorithm first initializes F̃M

t (x)
with one interval, I = {[1..n]}, c1 = cn = 1. When a new tuple
arrives, the algorithm proceeds by updating the intervals in I , sub-
partitioning and adjusting some intervals when necessary. When an
approximation is required, a StepCDF based on the intervals and
estimates is returned. Below are the main steps performed per-tuple.
The pseudocode is available in Appendix B.4.

0. Preprocessing: Construct a CDF from λ values in the tuple Yt.
1. Updating and Pruning: For each interval I = [a, b] in the

current max distribution, update its estimates with the new tuple:
c′a = ca ·P [Yt ≤ a] and c′b = cb ·P [Yt ≤ b] (see Fig 2b & c). If
after updating, c′b < ε, discard the interval. Note that after updating,
the ratio between the estimates of the two ends can only increase.

2. Subpartitioning: This step is performed to ensure that Invariant
1 is satisfied. If updating with the new tuple results in c′b > c′a(1 +
ε′) for some interval I = [a, b], we subpartition that interval into
subintervals I1 = [a1, b1], . . . , Ik = [ak, bk] with a1 = a, ai+1 =
bi + 1, so that Invariant 1 holds (see Fig 2d). The implementation
ensures that the interval is not partitioned excessively. Then, for
each x ∈ {a1, b1, a2, b2, . . . , bk}, we update cx as cxP [Yt ≤ x].

3. Adjusting: This step deals with a subtle issue regarding the
efficiency of the algorithm. If, among the intervals after subparti-
tioning, there exists an interval Ii, whose width is greater than half
of the width of the original interval I, we split it into two intervals
Ii1, Ii2 with equal width. This step ensures that each new interval
is at most half the width of I. However, this results in Ii1 and Ii2
having the same estimates; to ensure Invariant 2, one of the interval
is shifted by a factor

√
1 + ε′. Fig. 2e illustrates this step.

Analysis. We define two properties for any interval: The generation
g of an interval is the number of splits made to generate that interval.
Note that the algorithm starts with one interval having g = 0. The
net shifting effect s of an interval is the net number of times the
interval has been shifted. s is incremented by 1 when the interval is
shifted up, and decremented by 1 when shifted down. The proofs of
the following lemmas and theorem are deferred to Appendix B.4.

Lemma 3.1 For any interval I = [a, b] of generation g and net
shifting effect s, after t tuples have been processed, for v ∈ {a, b},

FM
t (v) ∈ [cv/(

√
1 + ε′)s, cv/(

√
1 + ε′)s · (1 + ε′)g] .

Furthermore, for any x ∈ [a, b],

FM
t (x) ∈ [ca/(

√
1 + ε′)s, cb/(

√
1 + ε′)s · (1 + ε′)g] .

Lemma 3.2 At any step in the algorithm, the number of intervals is
bounded as follows: |I| ≤ 2 log(ε−1)/ log(1 + ε′).

Lemma 3.3 The maximum generation of an interval is log U.

Theorem 3.2 The algorithm for max maintains an (ε, 0) approx-
imation for FM

t where ε′ = ε(1 + 0.5εeε)−1(log U + 1)−1. The
space use is O(ε−1 log U ln ε−1) and the update time per-tuple is
O(min(λt, ε−1 log U ln ε−1) + λ).

Supporting Continuous Distributions. When input tuples are
modeled by continuous random variables, e.g., Gaussian distri-
butions for object locations, a general approach is to consider a
real universe of size 264. The complexity is then proportional to
log U = 64. In most applications, the universe size depends on the
range and precision of measurements, often with smaller values of
U and the number of values per tuple λ further less than U. This
combined effect can yield a fast algorithm (as shown in Section 5.1).

3.4 Distributions of SUM and COUNT
In this section, we consider the aggregates sum and count.

Since count is a special case of sum, we focus on sum in the
discussion below. We define the random variable St = ∑i∈[t] Yi and
let FS

t be the corresponding CDF, where Yi is the random variable
corresponding to the i-th tuple. If the mean and variance of each Yi
are bounded, then the Central Limit Theorem (CLT) states that the
distribution of St tends towards a Gaussian distribution as t goes to
infinity. Later, we quantify the rate at which the distribution con-
verges and use this to achieve an algorithmic result when there are a
sufficiently large number of tuples. But for many applications, this
asymptotic result cannot be applied. In the probabilistic databases
where input tuples are modeled by discrete distributions, the exact
distribution of sum can be computed using possible worlds seman-
tics, which has an exponential complexity in the number of tuples
[5]. We instead present a deterministic algorithm that efficiently
computes the approximate distribution of sum.
Approximate Representation using Quantiles. We use StepCDF
and LinCDF with the set of points based on the quantiles of a
distribution. For some 0 < ε < 1, a particularly useful set of
k = d1/εe points are those corresponding to uniform quantiles, or
shortly quantiles, of the distribution, denoted by Q(ε), such that:

PQ(ε)(F) = {(x1, ε), (x2, 2ε), . . . (xk, 1)} .

where each xi = F−1(iε). It is easy to show that

KS(F, LinCDFPQ(ε)(F)) ≤ ε , KS(F, StepCDFPQ(ε)(F)) ≤ ε .

SUM Algorithm. We now present a deterministic algorithm for
maintaining a good approximation of FS

t . We assume that each Yt
takes values from a finite set Vt of size at most λ, where the universe
size is still U. We treat the non-existence value ⊥ as if 0 since this
does not affect the value of sum. In this case, it is easy to see that
FS

t satisfies FS
t (x) = ∑v∈Vt

FS
t−1(x− v)P [Yt = v]. Unfortunately

even when λ = 2, the complexity of exactly representing FS
t is

exponential in t. Hence, to achieve space and time efficiency, we
use approximate representations using quantiles as introduced above.
The challenge is to quickly update the point set when each tuple
arrives. We focus on the LinCDF representation with quantiles but
the following algorithm also applies to StepCDF. (We observed
empirically that LinCDF typically performed better.)

Our algorithm processes each new tuple in two conceptual steps
Update and Simplify. In update, we combine our approximation for
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FS
t−1 with Yt to produce an intermediate approximation F for FS

t :

F(x) = ∑
v∈Vt

LinCDFPt−1 (x− v)P [Yt = v] (1)

In this step, for each v ∈ Vt, we shift the point set Pt−1 for the
previous sum distribution by v and scale it by P [Yt = v]. We then
compose these new point sets into λk points, in particular, using
linear interpolation for the LinCDF representation. See Fig. 3 for
an illustration of this step. Now F contains a set of λk points, which
we call P̄t. Next, simplify F to ensure efficiency in later processing
while meeting the error bound ε′ provisioned for this tuple (Theorem
3.3 shows how to set ε′ by default, which is further optimized in our
implementation.) To do this, we compute the k quantiles of F and
return LinCDFPt where Pt = {(F−1(iε′), iε′) : 1 ≤ i ≤ k}.

However, it is inefficient to perform these steps sequentially: why
compute the set of λk points for F when ultimately we are only
concerned with k points? To avoid this we compute F−1(iε′) for
each i by doing a binary search for the closest pair xa, xb ∈ P̄t such
that F(xa) ≤ iε′ ≤ F(xb). This results in the following theorem.

Theorem 3.3 We can maintain an (ε, 0) approximation for FS
t us-

ing O( 1
ε′ ) space and O( λ

ε′ log( λ
ε′ )) time per tuple, where ε′ = ε/t.

Optimizations. We further develop three optimizations of the basic
algorithm: 1) Adaptive number of quantiles. We observe empirically
that the number of quantiles, k, needed at each step to satisfy the
error bound, ε′, is smaller than the proven bound, 1/ε′. Hence, we
consider a variant of the algorithm that computes the updated set
of λk points, then computes the k quantiles, and then reduces the
number of quantiles, e.g., by half, if the error bound ε′ is still met.
2) Biased quantiles. For distributions that are close to Gaussian, we
observe that using a set of biased quantiles gives a better approxi-
mation. However, to meet a KS requirement, we theoretically need
more biased quantiles than uniform quantiles. We propose to use
both sets of quantiles in the algorithm. 3) Central Limit Theorem.
For sufficiently large t, the distribution of FS

t can be approximated
by a Normal distribution. To exploit this, we just need to compute a
few moments of each input distribution and check if the asymptotic
result holds. Further details can be found in Appendix B.5.
Supporting Continuous Distributions. When the input distribu-
tions are continuous, we propose to discretize and represent these
distributions by StepCDF or LinCDF. When discretized with λ
quantiles, the KS error is ε1 = 1/λ. We show in the appendix that

if the KS error incurred when adding this tuple to sum is ε2, the
total error when processing this tuple is ε1 + ε2.

4. APPROXIMATE QUERY ANSWERS
We next consider approximate answers to complex queries involv-

ing conditioning and aggregation operations. Our work supports
a Select-From-Where-Group by-Having block and a single
aggregate predicate in the Having clause if present (see Appendix
C for further details). To quantify errors of intermediate and final
query results, we extend our approximation framework to account
for errors associated with both the attribute distributions and the
tuple existence probability. We then develop a query planning ap-
proach that given a query accuracy requirement, provisions each
operator with appropriate error bounds. Our approach leverages
previous research [20] that by postponing selections as late as pos-
sible, employs exact closed-form solutions in the earlier part of a
query plan involving joins, projections, and aggregates. Then errors
only start to occur in the first aggregate operator after a selection
or a group-by that uses approximation to handle conditioned tuple
distributions—this is the technical context for our discussion below.

Extended Approximation Metric. We first extend the KS dis-
tance to quantify the distance between two mixed type distributions.

Definition 5 Let G=(p, F) and G̃=( p̃, F̃) be two mixed-type dis-
tributions where F and F̃ are the cumulative distributions of an
uncertain attribute. We define the mixed type KS, termed KSM, as:

KSM(G, G̃) = max(|p− p̃|, sup
x
|p · F(x)− p̃ · F̃(x)|,

sup
x
|p · (1− F(x))− p̃ · (1− F̃(x))|).

As a special case, if p = p̃ = 1, KSM(G, G̃) = KS(F, F̃).
For example, given a random variable X with its G and G̃ distribu-

tions, KSM(G, G̃) = ε means that all quantities such as P [x 6= ⊥],
P [x 6= ⊥∧ x ≤ 5], and P [x 6= ⊥∧ x > 5], when computed us-
ing G or G̃, will not differ by more than ε. The second and third
components of the KSM definition ensure symmetric results for
range predicates (e.g., for <, >) when using the KS-based distance.

To handle multiple uncertain attributes, the KSM definition can
be extended to multi-dimensional CDF’s [15]. In our work, since
errors in query execution start to occur only at the first aggregate
operator that uses approximation, the KSM has non-zero values only
for the derived aggregate attributes. For derived attributes (not in the
base tuples), we currently focus on their marginal distributions and
bound the corresponding errors using the one-dimensional KSM.
Computing joint distributions of correlated attributes derived from
aggregates is a hard problem and is subject to future work.

Query Approximation Objective. We next introduce our notion
of approximate answers of a query. As is known, the evaluation
of a relational query results in an answer set; when given infinite
resources or time, we could compute the exact answer set. We then
define an approximate answer set against such an exact answer set.

Definition 6 An approximate query answer set, S̃, is called (ε, δ) -
approximation of the exact query answer set, S, if S̃ and S contain



the same set of tuples3, and for any tuple in S̃, the KSM between
any of its uncertain attributes and the corresponding attribute in the
corresponding tuple in S is at most ε with probability 1− δ.

Query Planning. The goal of query planning is to find a query
plan that meets the (ε, δ) approximation objective for a given query.
We first perform a bottom-up analysis of a query plan, focusing
on how errors arise and propagate through operators. In our query
plans, errors begin at the first aggregate operator that applies (ε, δ)-
approximation as proposed in §3 (the existence probability of the
aggregate result can still be computed exactly as shown in Appendix
B.2). For post-aggregate operations, the earlier approximation error
now affects the estimates of both the tuple existence probability and
distributions of derived attributes. Below, we focus on selections
and omit the discussion of projections due to space constraints.

Proposition 4.1 Selection on an attribute with (ε, δ)-approximation
using a range condition (x ≤ u, x ≥ l, or l ≤ x ≤ u) is (2ε, δ)-
approximation. If the selection uses a union of ranges, the approxi-
mation error is the sum of error, 2εi, incurred for each range i.

Given an overall query accuracy requirement, the above proposi-
tion allows us to provision error bounds for individual operators in
a top-down fashion. Take Q1 whose query plan is shown in Fig. 1.
Given a target error bound, ε, for the entire query, Proposition 4.1
directly implies that we should provision ε

2 for the approximation
of sum while allowing the error to double (in the worst case) in the
subsequent selection. More details of the query planning process
and illustration with other examples are given in [19].

5. PERFORMANCE EVALUATION
In this section, we evaluate our approximation algorithms for

aggregates and complex queries in both efficiency and accuracy.

5.1 Approximation Algorithms for Aggregates
We first use simulated uncertain data streams with controlled prop-

erties to evaluate our algorithms for aggregates. The experimental
setup is detailed in Appendix D. The parameters used in this study
are: the accuracy requirement (ε, δ), the (tumbling) window size W,
the number of values per tuple λ including the non-existence case
(by default λ = 3), and the universe size U (by default, U=106).
Evaluation of MAX. We evaluate the performance of both the
deterministic algorithm for max, Dmax, where δ=0, and the generic
randomized algorithm, Rand, where 1-δ=0.9, 0.95, or 0.99.

We first vary the error bound ε in a common range [0.01, 0.1].
W is uniformly sampled from [10, 1000]. Fig. 4(a) shows the
throughput of the algorithms. The deterministic algorithm, Dmax,
is 10 to 1000 times faster than the randomized algorithm, Rand, for
all ε values tested. This is because Dmax can use a small number
of intervals to approximate the distribution (e.g., 20-50), whereas
Rand uses hundreds to tens of thousands samples, hence worse
performance. We also observe that Dmax is more accurate than
Rand (as shown in Fig. 7(a)), which we explain in the appendix.

We next study the effect of the number of values per tuple, λ. We
vary λ from 2 to 200, and set W = 100 and ε = 0.01. Fig. 4(b)
shows the throughput results. As expected, the cost of Dmax in-
creases with λ due to the costs of the first two steps of Dmax
depending on λ. However, the number of intervals in the approxi-
mate max distribution does not increase linearly in λ—it is bounded
according to Theorem 3.2. Overall, the throughput of Dmax is better
than that of Rand by at least one order of magnitude.
Evaluation of SUM. We evaluate the performance of the determin-
istic algorithm for sum, Dsum, using the optimizations shown in
Section 3 and Appendix B, and the randomized algorithm, Rand.
3A tuple in S̃ and its corresponding tuple in S can be identified based on
lineage [3], i.e., the same derivation from the same set of base tuples.

We vary W from 10 to 1000 for two values of ε, 0.01 and 0.05.
Figs. 4(c) and 4(d) show the throughput of both algorithms. For
ε = 0.01, Dsum is faster than Rand in all settings because Rand
uses a number of samples increasing quadratically in 1/ε, but Dsum
uses much less. The throughput of Dsum decreases with W because
the additive error bound of Dsum requires provisioning error bounds
to W tuples. For ε = 0.05, Dsum is slightly slower than Rand for
W ≤ 600 due to the reduced benefit from ε. However, for larger
values of W, CLT applies, yielding a high throughput of millions
of tuples per second. If we keep increasing ε, CLT starts to apply
earlier, e.g., when W = 150 for ε = 0.1.

We then vary ε from 0.01 to 0.1. W is uniformly taken from
[1, 100], so that CLT cannot be applied. Fig. 4(e) shows the through-
put (Fig. 7(b) in the appendix shows the accuracy). Dsum is faster
than Rand for the high-precision range [0.01, 0.02]. This confirms
that to gain high accuracy, Rand needs a very large number of sam-
ples and hence degrades the performance quickly. When we do not
require high accuracy, Rand can be used for good throughput.

See Appendix D for other experiments for sum including the
optimization with quantiles and varying number of values per tuple.

5.2 Approximate Query Answers
We now study the performance of two queries shown in Section 1.

We also compare with alternative methods such as [11] using mo-
ments to evaluate the Having predicates. See Appendix D for details
about the datasets and additional results not included below.
Q1. This query computes the sum of object weights per group and
checks if it exceeds 200 (see Fig. 1 for the query plan). Although
the weight of an object is deterministic, each object belongs to a
group with a probability, resulting in the sum of Bernoulli variables,
or λ = 2. This is a common case for aggregation of a deterministic
attribute in the presence of tuple existence probability (TEP). Given
a query accuracy requirement ε, the predicate “sum > 200” requires
assigning an error bound ε/2 to the aggregate algorithm for sum.

We first compare our deterministic algorithm (with ε = 0.05)
with an alternative method that uses only the moments of the sum
distribution to estimate the TEP when evaluating the Having predi-
cate “sum > v”. This method cannot return the distribution of sum
in the query result so we restrict the comparison to computing TEP
only. Since the mean and variance of sum can be computed from
the input tuples using the linearity property, we use the Chebyshev’s
inequality to derive an upper bound of the TEP. Fig. 4(f) shows the
estimates of the TEP as we vary the threshold v in the predicate. As
seen, using the Chebyshev’s inequality can be very inaccurate, thus
confirming the need to use the sum distribution to compute TEP.

We next compare the performance of the deterministic algorithm,
Dsum, and the randomized algorithm, Rand, to compute query
result distributions. Fig. 4(g) shows the throughput. Dsum is faster
than Rand due to the provisioning of smaller error bounds to the
aggregate algorithm in order to account for the Having predicate,
which causes Rand to use more samples. Also, since λ is 2 in this
query, the cost of Dsum is smaller compared to Fig. 4(e).
Q2. As we are unable to obtain an astrophysical data set for this
query, we use a similar query and data trace generated using the
Linear Road benchmark [2]. The query considered computes the
distribution of the maximum speed per road segment, and selects
segments where max(speed) < 40. The main difference from Q1 is
that the aggregate attribute, speed, is a continuous attribute. Hence,
we consider three sizes of the universe, U = 1000, 2000, and 10000,
in the deterministic algorithm for max.

We again consider an alternative method that estimates the TEP
of result tuples based on only the moments of the max distribution.
Since the state-of-the-art technique [11] can only compute the mean
of max, we use the Markov’s inequality to derive an upper bound for
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Figure 4: Experimental results of algorithms for MAX, SUM and 2 queries

the TEP. We vary the value v in the Having predicate max > v as
for Q1. Fig. 4(h) shows that using this technique can give inaccurate
estimates, e.g., the error of the TEP can be as high as 0.6.

We now compare the deterministic and randomized algorithms.
Again, the deterministic algorithm, Dmax, outperforms Rand under
all these settings, which confirms that the former performs well
for large numbers of values per tuple. As expected, for the largest
universe, the performance of Dmax degrades due to the log U com-
plexity. The decrease in throughput of both algorithms in Q2, com-
pared to Fig. 4(a), is due to the group by-aggregation, as opposed
to a scalar aggregate, in which an update to a group can trigger the
processing of all tuples in the group, e.g., 20 to 30 tuples.

6. CONCLUSIONS
In this paper, we presented an evaluation framework and approxi-

mation techniques that return distributions with bounded errors for
complex queries that perform conditioning and aggregation opera-
tions on probabilistic data streams. Our work was the first in the
literature to guarantee accuracy for such queries and evaluate them
on data streams with demonstrated performance. In future work, we
plan to support a wider range of aggregates, capture certain corre-
lation among derived attributes, and explore query optimization to
find the cheapest plan while meeting the accuracy requirement.
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APPENDIX
A. RELATIONAL PROCESSING

We provide a brief overview of relational processing, involving
selections, projections, joins, aggregates, and group-by aggregation,
under our mixed-type data model.

We begin with queries that involve only joins, projections, and
aggregates. Our recent work [20] shows that if continuous uncertain
attributes are modeled by Gaussian mixture models (GMMs), there
are exact closed-form solutions to the distributions of result tuples.

When the above queries are extended with selections, as long as
the selections appear after joins, projections, and aggregates in query
plans, one can still apply the closed-form solutions and then compute
the distribution of a selection strictly based on Definition 2. How-
ever, placing selections before joins, projections, and aggregates in
a query plan can result in conditioned (more precisely, mixed type)
distributions, hence not in GMMs any more. The implications of
this on other relational operations depend on commutativity. It is
known that in traditional databases, projections and joins commute
with selections. These results still hold in probabilistic databases
with continuous uncertain attributes. Therefore, the GMM-based
solutions can still be applied if we postpone selections after the joins
and projections in a query plan. However, aggregates do not com-
mute with selections in either traditional or probabilistic databases.
The lack of commutativity makes it hard to apply those GMM-based
solutions to aggregates. Similarly, group-by aggregation conditions
distributions before aggregation, precluding GMM-based solutions.

The above discussion leads to two conclusions: (1) Aggregation
of tuples with conditioned distributions gives rise to an unsolved
problem in relational processing under the mixed-type model. (2)
The above discussion also suggests the arrangement of relational
operators in a query plan, as depicted in Fig. 5, where the con-
ditioning operator, C, refers generally to a selection or group by,
and the operators contained in the same box can be arranged in any
order. In particular, the bottom part of the query plan computes
exact distributions, using the exact algorithms [20] and Definition 2
of conditioning operations. Errors start to occur at the aggregation
operator when an approximation algorithm is used, as we present in
Section 3, and will propagate to the subsequent operators. In Section
4, we show how our system keeps track of such error propagation.

B. DISTRIBUTIONS OF AGGREGATES
B.1 Approximation Framework

We note that the KS distance is related to another common dis-
tance function, the variation distance (VD), which is defined as
V( f , g) = 1

2
∫

R
| f (x)− g(x)|dx, where f and g are the probabil-

ity density functions (pdf’s) of two random variables.

Proposition B.1 The following relation holds between the KS dis-
tance of two CDF’s, KS(F, G), and the variation distance of the
corresponding pdf’s, V( f , g): KS(F, G) ≤ V( f , g). In some cases,
KS(F, G) can be arbitrarily smaller than V( f , g).

The proof of this proposition is available in [19]. Since KS(F, G)
≤ V( f , g) always holds, any approximation algorithm that satisfies
the error bound ε using the VD metric can be readily included in
our evaluation framework that bounds the KS distance.

B.2 Existence Probabilities of Aggregates
For all standard aggregates, the existence probability of the ag-

gregate result, p, can be computed exactly. Specifically, for count,
p = 1; for sum, avg, max and min, the aggregate result ex-
ists if one of the input tuples exists; hence, p = 1−∏t(1− pt).
Therefore, in Section 3, we focus on algorithms that compute (ε, δ)
approximate distributions when the aggregate results exist.

B.3 Monte Carlo Simulation
PROOF OF THEOREM 3.1. The result follows from the Dvoretsky-

Kiefer-Wolfowitz theorem: Given m i.i.d. samples R1, . . . , Rm from
a distribution F, and the empirical distribution function they define,
F̃(x) = 1

m ∑i∈[m] 1[Ri ,∞)(x), then P
[
KS(F̃, F) > ε

]
< 2e−2mε2

.
If m ≥ ln(2δ−1)/(2ε2), this probability is less than δ.

B.4 Pseudocode and Proof for MAX
Pseudocode of the MAX Algorithm is shown below.

Algorithm 1 MAX: Processing a tuple

Input: Interval I = [a, b], tuple Yt, constants ε, ε′.
1: c′a = caP [Yt ≤ a], c′b = cbP [Yt ≤ b].
2: if c′b < ε then
3: Discard this interval.
4: else
5: if c′a ≥ c′b/(1 + ε′) then
6: Update estimates: ca ← c′a, cb ← c′b.
7: else
8: Subpartition I: I ′ ← Subpartition(I, Yt).
9: for I′ = [a′, b′] ∈ I ′ do

10: ca′ = caP [Yt ≤ a′], cb′ = caP [Yt ≤ b′].
11: if |I′| > |I|/2 then
12: Divide I′ into two equal width intervals, I′1 and I′2.
13: if I′1 starts at a then
14: Shift the estimates of I′2 up by a factor

√
1 + ε′.

15: else
16: Shift the estimates of I′1 down by a factor

√
1 + ε′.

17: end if
18: end if
19: end for
20: end if
21: end if

Algorithm 2 MAX: Subpartition Procedure

Input: Interval [a, b], tuple Yt, constant ε′.
1: i = 1, ai = a.
2: bi = min{r : P [Y ≤ r + 1] > P [Y ≤ ai] (1 + ε′)} ∪ {b}.
3: if bi < b: i = i + 1 then ai = bi−1 + 1; repeat step 2.

PROOF OF LEMMA 3.1. Because a cumulative distribution is
non-decreasing, for any x < y < z, FM

t (x) ≤ FM
t (y) ≤ FM

t (z).
Consequently if for some α, β, γ, cx/α and cz/α are under-estimates
for FM

t (x) and FM
t (z) such that

FM
t (x) ≥ cx/α ≥ FM

t (x)/β and FM
t (z) ≥ cz/α ≥ FM

t (z)/β



and cx ≤ cz ≤ γcx, then cy = cx satisfies

FM
t (y)
βγ

≤ FM
t (z)
βγ

≤ cz

γα
≤

cy

α
≤ FM

t (x) ≤ FM
t (y)

i.e., we implicitly have an under-estimate for FM
t (y), i.e., cx/α,

whose multiplicative error is at most βγ.
We proceed by induction on the generation. Clearly for g = 0,

the result is true because c1 and cn are computed exactly. Consider
an interval [a, b] at step t, characterized by generation g and net
shifting effect s, and assume that the following inequality holds for
v in {a, b} before updating with tuple t.

FM
t (v) ≥ cv/(

√
1 + ε′)s ≥ FM

t (v)/(1 + ε′)g

If updating with tuple t does not trigger subpartitioning, this condi-
tion still holds since both ca and FM

t (a) are multiplied by the same
factor P [Yt ≤ a]. (Similarly for cb and P [Yt ≤ b]).

If updating requires subpartitioning, then g′ = g + 1. Assuming
that no adjustment is needed, after updating ca ≥ cb/(1 + ε′);
hence, γ = 1 + ε′. Since β = (1 + ε′)g, according to our analysis,
the multiplicative error for the estimates of the ends of a new interval
is βγ = (1 + ε′)g+1 = (1 + ε′)g′ . If an adjustment is made, s
is incremented or decremented so that cx/(

√
1 + ε′)s remains the

same estimate for FM
t (x) as before adjustment; therefore the given

inequality holds for new g and s. By induction, it holds for any
generation. This second part of the lemma follows immediately.

PROOF OF LEMMA 3.2. Suppose I = {I1, I2, . . . , Im} where
Ii = [ai, bi]. The lemma follows because ε ≤ cb1

≤ ca1 (1 + ε′),
cam ≤ cbm ≤ 1 and for all i ∈ [m− 1], cai+1 ≥ cai

√
1 + ε′ .

PROOF OF LEMMA 3.3. We define the width of an interval I =
[a, b] to be b− a + 1. Note that the generation 0 interval has width
n and that every interval has width at least 1. The lemma follows
from the fact that if a generation g interval I is subpartitioned into
generation g + 1 intervals I1, I2, . . . Ik then each Ii, i ∈ [k], has a
width of at most half of the width of I.

PROOF OF THEOREM 3.2. From Lemma 3.3, for any interval
[a, b], if we have compensated for the net shifting effect by c̄a =
ca/(
√

1 + ε′)s and c̄b = cb/(
√

1 + ε′)s , then we have:

FM
t (a) ≥ c̄a ≥

FM
t (a)

(1 + ε′)g and FM
t (b) ≥ c̄b ≥

FM
t (b)

(1 + ε′)g

Also, from the algorithm, we have: c̄a ≤ c̄b ≤ (1 + ε′)c̄a. There-
fore, as shown in our analysis in the proof of Lemma 3.1, the multi-
plicative error is (1 + ε′)g+1 ≤ (1 + ε′)log U+1. It can be shown
using Taylor’s theorem that ε′ ≤ ε/((1 + 0.5εeε)(log U + 1))
suffices to ensure that the multiplicative error (and therefore the
additive error since all quantities are less than 1) is less than ε.

The running time of the algorithm follows because there are
O(min(λt, ε−1 log U ln ε−1) intervals and the estimate for each
endpoint is updated when a tuple arrives. In addition, running the
subpartitioning procedure on an interval I takes time proportional
to the number of values taken by Yt that fall in the interval. Hence,
the total time over all intervals is O(λ).

B.5 Proof and Additional Discussion for SUM
PROOF OF THEOREM 3.3. We first consider the error accumu-

lated by repeatedly “rounding” F(x), as defined in Equation 1 in
Section 3.4, to construct LinCDFPt (x). We first note that for any x,

|FS
t (x)− F(x)|

= ∑
v∈Vt

|FS
t−1(x− v)− LinCDFPt−1 (x− v)|P [Yt = v]

≤ ∑
v∈Vt

KS(LinCDFPt−1 , FS
t−1)P [Yt = v] = KS(LinCDFPt−1 , FS

t−1)

and hence KS(FS
t , F) ≤ KS(LinCDFPt−1 , FS

t−1). Therefore,

KS(LinCDFPt , FS
t ) ≤ KS(LinCDFPt−1 , FS

t−1) + KS(F, LinCDFPt )

≤ KS(LinCDFPt−1 , FS
t−1) + ε

and by induction on t, KS(LinCDFPt , FS
t ) ≤ tε.

We next consider the running time of the algorithm. Since eval-
uating F(x) for a given x takes O(λ) time, performing a binary
search for a quantile value over the set P̄t, where |P̄t| ≤ λk, takes
O(λ log λk) time. The total time is O(λk log λk) since we need to
find xi for all 1 ≤ i ≤ 1/ε.

Biased Quantiles. In practice we also observe that a set of points
based on biased quantiles often gives good empirical results. For
some small γ, let k∗ = 1 +

⌊
log1+ε(1/(2γ))

⌋
and let

PBQ(ε,γ)(F) = {(x1, δ1), (x2, δ2), . . . , (x2k∗+2, δ2k∗+2)}

where xi = F−1(δi) and

δi =


(1 + ε)i−1γ if i ∈ [k∗]
1− (1 + ε)2k∗+1−iγ if i− k∗ − 1 ∈ [k∗]
1 if i = 2k∗ + 2

Because |δi − δi+1| ≤ ε for all i ∈ [2k∗ + 2], it is easy to show

KS(F, LinCDFPBQ(ε,γ)(F)) ≤ ε , KS(F, StepCDFPBQ(ε,γ)(F)) ≤ ε .

Fig. 6 shows examples of approximating a cumulative Gaussian
distribution using StepCDF and LinCDF with uniform and biased
quantiles. We observe that LinCDF does a better job of approximat-
ing the true CDF. Furthermore, basing LinCDF on biased quantiles
is more accurate than basing it on uniform quantiles because of the
areas of higher curvature as we approach the tails of the distribution.
Asymptotic Result for Long Windows. We use the following
theorem due to Berry and Esseen (see DasGupta [6] for an overview
of the relevant area of statistics ) to quantify the rate of convergence:
Let Y1, . . . , Yt be independent random variables with finite E [Yi] =
µi, V [Yi] = σ2

i , and βi = E [|Yi − µi|]. Let F be the CDF of
Y = ∑i∈[t] Yi. Let µY = ∑i∈[t] E [Yi] and σ2

Y = ∑i∈[t] σ2
i . Then,

KS(F, ΦµY ,σ2
Y
) ≤ B(β, σ) := 0.8( ∑

i∈[t]
βi)( ∑

i∈[t]
σ2

i )−3/2

where Φa,b is the cumulative distribution of the Normal distribution
with mean a and standard deviation b.

For the algorithmic result, we just need to incrementally compute
∑i∈[t] βi, ∑i∈[t] σ2

i , µSt = ∑i∈[t] µi, and σ2
St

= ∑i∈[t] µi, which
is easily achieved in O(1) words of space and O(λ) time per tu-
ple. Whenever B(β, σ) falls below ε, we can construct an (ε, 0)
approximation for FS

t from the values computed. However, since
B(β, σ) is not necessarily monotonically decreasing in t, it could be
the case that it is sufficient to use the Normal approximation for FS

t
whereas the Normal approximation is not sufficiently accurate for
FS

t+1. In this case, we switch back to the previous algorithm by first
constructing the (biased) quantiles of the Normal approximation.
Implementation Issues. Provisioning error bounds. Since our
goal is to compute an (ε, 0) approximate distribution of sum, the
algorithm needs to know the number of tuples in the window. If
we do not know this number in advance, we can use an infinite
sequence to provision error bounds to tuples, e.g., ε ∑∞

i=1(
1
2 )i = ε.

On the other hand, if we know an upper bound on the number of
tuples based on application knowledge, we can use it to provision
error bounds. Another approach is to buffer them until the window
closes when we can provision an error bound for each tuple. This
incurs some delay in output, but is more efficient than the above two
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Figure 6: Approximate Representations of Cumulative Distribution using 4 intermediate points.

methods. Also, it empirically shows that larger error bounds should
be provisioned to the earlier tuples, e.g., 10 or 15 tuples since when
more tuples are summed, the distribution becomes smoother and
requires fewer quantiles to approximate.

Execution mode. We now consider the execution mode for sum.
We know that when the number of tuples is large enough, the con-
dition by Berry-Esseen theorem is satisfied and hence, CLT can be
applied. Therefore, we use the execution model as follows. On
arrival, tuples are buffered, and the distribution moments specified
in the Berry-Esseen theorem are computed. When the window for
sum closes, check if CLT can be applied. If not, run the determin-
istic algorithm to compute the distribution of sum for the buffered
tuples. Since the window size is known then, it is easy to allocate
error bounds for tuples. Also, if the data arrival rate is low, when
each tuple arrives, we first perform computation for CLT and then
for the deterministic algorithm (sometimes partially) until the next
tuple arrives (in this case, we use an upper bound of the window
size to provision error bounds).

Discretizing Continuous Distributions. Let FS
t−1(x) be the CDF

of sum at time t and Yt be the new tuple represented by CDF F̃Y
t (v)

with KS distance ε1. If we consider FS
t−1(x) to be exact and every

point x having probability P [s = x], then we update the CDF of
sum by FS

t (x) = ∑v∈Vt
P [s = x− v] F̃Y

t (v). Similar to the proof
of Theorem 3.3, the KS error of FS

t (x) is ε1. If we next compute a
set of quantiles for this function and incur a KS error of ε2, the total
error is ε1 + ε2 due to the additive property of KS distance.

C. APPROXIMATE QUERY ANSWERS
Queries Supported in Planning. The class of queries that we
support in this work follows the template below, which involves a
single Select-From-Where-Group By-Having block:

Select group id, Aggr(a1), ...
From S(G a1, G a2, ..., a1, a2...) [window def.]
[Where BooleanExpr(G a1, G a2, ..., a1, a2...)]
[Group By Fn(G a1, G a2, ...,) as group id]
[Having Aggr(a1) ∈ I]

As in relational stream processing, the query window contains
a set of tuples from the input stream, each containing a number
of continuous-valued uncertain attributes. The Where clause, if
present, applies conjunctive predicates to the attributes. Then the
Group By clause assigns tuples into groups based on the group
attributes and then computes aggregates for each group. In our cur-
rent work we consider two cases: (1) The having clause involves
a predicate aggregate that is uncertain. If the input tuples for the
aggregate in having all have TEP=1, then we can support various
aggregates in the select clause with their (marginal) distributions.
If the input tuples for the predicate aggregate may have TEP<1,
we can only return the distribution of this aggregate in the select
clause. This is because multiple aggregates computed from the same
set of tuples, even if from independent attributes, are correlated or
conditionally independent based on the existence of these tuples.

Given the conditioning operation on one of the aggregates in the
having clause, simply returning the marginals of other aggregates
in the select clause is not correct. (2) The having clause does
not involve a predicate aggregate that is uncertain (but can involve
other predicates on deterministic attributes), we can compute the
marginal distributions of various aggregates in the select clause.
Proof of Proposition 4.1 for Selections.

PROOF OF PROPOSITION 4.1. We consider a tuple t having a
mixed type distribution ( p̃t, F̃t), which is an (ε, 0) approximation
of the exact distribution (pt, Ft). Let t̄ denote the output tuple
after applying a selection on t using a range condition. Again,
the approximate distribution of t̄ is denoted by ( p̃t̄, F̃t̄), while the
corresponding exact distribution is (pt̄, Ft̄) .

First, consider the selection condition, x ≤ u. The KSM of
the result distribution may come from the error of the new tuple
existence probability (TEP) or the approximation of the CDF of the
tuple attribute. The approximate TEP after selection is p̃t̄ = p̃t F̃t(u)
while the exact TEP after selection is pt̄ = ptFt(u). The error in
TEP incurred is | p̃t̄ − pt̄| = | p̃t F̃t(u) − ptFt(u)| ≤ ε. (This
inequality follows directly from the definition of KSM).

After selection,

F̃t̄(x) =
F̃t(x)
F̃t(u)

and Ft̄(x) =
Ft(x)
Ft(u)

, x ≤ u

The first error component from the approximate CDF is:

| p̃t̄ F̃t̄(x)− pt̄Ft̄(x)| = | p̃t F̃t(x)− ptFt(x)| ≤ ε

The second error component from the approximate CDF is:

| p̃t̄(1− F̃t̄(x))− pt̄(1− Ft̄(x))|
= | p̃t(F̃t(u)− F̃t(x))− pt(Ft(u)− Ft(x))| ≤ 2ε

Combining all error components gives (2ε, 0)-approximation for
selection with condition, x ≤ u. The proof for the range x ≥ l or
l ≤ x ≤ u can be shown similarly.

For (ε, δ) approximation where δ > 0, we can ensure that se-
lection gives an approximation of (2ε, δ) since when an instance
satisfies the ε requirement, its selection result is bounded by 2ε.

Finally, the result for the union of ranges is straightforward be-
cause selection can be evaluated for one range at a time.

D. PERFORMANCE EVALUATION

D.1 More Results for Aggregates
Experimental Setup. In our experiments, each tuple has a tuple
existence probability p that, by default, is uniformly sampled from
[0, 0.5], denoted by pmax = 0.5. Each tuple, when existent, has two
possible real values uniformly sampled from [0, 20]. This way, each
tuple corresponds to a mixed type distribution with an existence
probability and two possible values, or λ = 3 in our setting. (This
data model was used in recent work on aggregates on uncertain data
streams [11].) All experiments were run on a server with an Intel
Xeon 3GHz CPU and 1GB memory running Java HotSpot 64-Bit
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Figure 7: Additional experimental results of algorithms for MAX, SUM and 2 queries

server VM 1.6. Each reported result was averaged from 100 batches
of tuples with the same setting after warming up the JVM.

We compare the performance of the deterministic algorithms and
the randomized algorithm based on Monte Carlo simulation. The
former compute (ε, 0) approximation. The later computes (ε, δ)
approximation; we use three values for δ, 0.1, 0.05 and 0.01, corre-
sponding to three guarantees, 90%, 95% and 99%. From Theorem
3.1, the numbers of samples needed to meet the KS distance ε are
1.50/ε2, 1.84/ε2 and 2.65/ε2. Note that for both max and sum,
the result tuple existence probability can be computed exactly; thus
the KS error is used to quantify the approximate distributions only.
Accuracy Results for MAX. Fig. 7(a) shows that our deterministic
algorithm, Dmax, is more accurate than the randomized algorithm,
Rand, in KS error. This is because it sets its parameter ε′, to meet the
worst case scenario (i.e., reaching the maximum generation log U).
In practice, the generations of the intervals are smaller than log U.
Additional Results for SUM. The accuracy of both algorithms,
Dsum and Rand, is shown in Fig. 7(b). Given an ε, Dsum is always
more accurate because the provisioning of errors to tuples not only
guarantees the error bound, but also assumes the worst case when
the errors are strictly additive. We observe that for some batches of
tuples, Rand violates the accuracy requirement.

We also examine the optimization for SUM with different quan-
tiles by running SUM using LinCDF with three types of quantiles:
uniform, biased, and a mix of both. We set ε = 0.01 and vary the
window size W from 10 to 200. Fig. 7(c) shows the throughput.
As W increases, the distribution of sum becomes smoother, and
uniform quantiles cause worse performance since they require close
to the maximum number of quantiles, 1

ε , to capture the higher cur-
vature at the tails of a smooth distribution. Biased quantiles, on the
other hand, require fewer quantiles to meet a given ε for a smooth
distribution. Mixed quantiles combine the advantages of these two
types of quantiles and in fact outperform them when W is large
enough, e.g., W > 40. Therefore, in the other experiments for
SUM, we employ LinCDF with mixed quantiles.

We vary the number of values per tuple λ in the SUM algorithm
from 2 to 20. We set ε = 0.01, W = 100, and pmax = 0.1. The
throughput of both algorithms is shown in Fig. 7(d). The perfor-
mance of the deterministic algorithm reduces fast as λ increases due
to the relatively high cost of updating the LinCDF with linear inter-
polation, as shown in Theorem 3.3. As observed, under this setting,

the randomized algorithm starts to outperform when λ ≥ 10.

D.2 More Results for Query Plans
Q1. This query detects the violations of a fire code where the total
weight of objects per area exceeds a threshold. We run inference
([21]) over a raw RFID reading stream to obtain an inferred object
location stream. Each event in the output trace is an update of an
object location, which is modeled by a Gaussian distribution. The
objects are grouped into shelf areas ranging from 10 to 30 objects
per shelf on average. The length of each shelf is 100cm and the
standard deviation of object locations by default is in the range [3,5].

We vary the standard deviation of object locations from 2%, 4%,
7.5% to 15% of the shelf length. The two larger standard deviations
indicate that the traces are highly noisy. In these cases, an object can
belong to multiple groups and each reading triggers computation for
a large number of objects in the group. We set the accuracy require-
ment ε = 0.01. As expected, the throughput is decreased for both
algorithms as shown in Fig. 7(e). The deterministic algorithm still
outperforms the randomized algorithm for all settings considered.
The cost of the deterministic algorithm for sum reduces somewhat
faster because as the number of tuples under sum increases, the error
provisioned for each tuple is reduced, hence the worse throughput.
Q2. This query originates from the Linear Road benchmark [2] for
detecting congested freeway segments. The trace from the bench-
mark reports, at every time step, the most recent location and speed
of vehicles. Both attributes are modeled by Gaussian distributions
in our experiments. Q2 returns the maximum speed of vehicles on
the congested segments, pre-determined to be 1 mile long each.

We vary the standard deviation of vehicle locations from 0.5% to
10% of a segment, which affects the window size for aggregation in
each segment. We set U = 10000 and ε = 0.05 (the randomized
algorithm is too slow for smaller values of ε). Fig. 7(f) shows that
the deterministic algorithm is about an order of magnitude faster
than the randomized one. Also, the result confirms that unlike
sum, the deterministic algorithm for max is quite insensitive to the
window size, since its complexity only depends on ε and U.


